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Abstract. We address the new problem of puzzle conversion and layout as a new application of graph 
drawing. We present two abstract models of puzzles, permutation puzzles and cyclic puzzles, which 
can be modeled as puzzle graphs. Based on these models, we implement two puzzle generators and 
produce various layouts of the puzzles using graph drawing algorithms. Using these puzzle generators 
we can create new puzzles. Further by applying different layout algorithms, we can create new user 
interfaces of a puzzle with different attractions. Finally, we discuss a method for constructing 
symmetric layouts of puzzles, as symmetry is the most important aesthetic criteria for the puzzle 
layout.

1 Introduction

We present a new, interesting application of graph drawing, puzzle conversion and layout. Puzzles 
have sophisticated logical structures, beautiful shapes, and attractive user interfaces. To make the 
world of puzzles much richer and to design new interfaces of puzzles, we have carried out a 
systematic approach called `media conversion' [ 1,2]. The basic idea of the approach is illustrated in 
Fig. 1. Here existing popular puzzles are abstracted and converted into other media such as graphs, 
blocks, sounds, and robots, while preserving their logic. Using this approach, we can create new 

puzzles and new interfaces for puzzles. 
   In this paper, we are mainly concerned with conversions of puzzles into graphs. More 

specifically, we consider two classes of puzzles, permutation puzzles (for example, the Rubik's cube) 
and cyclic puzzles (for example, the Lightsout). We analyze the operations of the puzzles and derive 
two abstract models which can be modeled as puzzle graphs. Based on these models, we implement 
two puzzle generators and produce various layouts of the puzzles using various graph drawing 
algorithms. Using these puzzle generators, we can parametrically change the levels of difficulty of 
the puzzles and create new puzzles. Further by applying various graph drawing algorithms, we can 
create new user interfaces for a puzzle with different attractions. Hence, the puzzle layout is an 
interesting application for graph drawing. 

   The puzzle layout should be very beautiful and attractive to the users. Further, the layout should 
operate as a puzzle interactively by the users. We applied various standard graph drawing methods in 

[3, 4] to produce puzzle layouts. These include the spring embedder algorithm, orthogonal drawing 
and visibility representations. However, we observed that symmetry is the far most important 
aesthetic criteria in the puzzle layout problem, as the puzzle graph is highly symmetric inherently. 

   In the next section, we present two abstract models of puzzles, which have the property that a 

graph representation can effectively be derived from them. Based on the model, we present two 
puzzle generators and various layouts of the puzzles in Section 3. Then we discuss a method for 
constructing symmetric layouts of puzzles in Section 4. Section 5 concludes.
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Fig. 1. Media conversion approach.

2 Abstract Models of Puzzles

2.1 Permutation Puzzles

The Rubik's cube is one of the most popular puzzles and there are several variations such as the 
Megalinx and the Pyraminx (see Fig. 2). They differ in shapes and the number of elements, but have 
similar structure. These are classified as permutation puzzles because the operations on the puzzles 
can be characterized as permutations between elements. Group theoretic descriptions and analysis 
for such puzzles can be found in [12,13].

  (a)(b)(c) 

Fig. 2. Examples of the permutation puzzles: (a) Rubik's cube (b) Megalinx and (c) Pyraminx.

Numbering and Color Mapping. The Rubik's cube consists of 3x3x3 blocks, also called as the 33 

Rubik's cube. For simplicity, we consider the 23 Rubik's cube, which consists of 2x2x2 blocks. Fig. 

3 shows the 23 Rubik's cube. The elements in the surface of the cube are numbered from 1 to 24. We 

use this numbering for the purpose of analysis. Note that only 6 different colors are enough to color 

the surface of the cube. The color mapping is one of the important factors characterizing the puzzle.

Operational Redundancy. The 23 Rubik's cube has 12 operations: 90° clockwise (or 
anti-clockwise) rotations of four blocks around the positive (or negative) direction of each axis. 
However, there are redundancies between the operations and it is sufficient to consider only three 
operations x+, y+ and z+, where x+ represents 90° clockwise rotation of the four blocks around the 

positive x-axis. We define the operational redundancy of the 23 Rubik's cube as 9/12. Redundancy is 
another important factor for characterizing puzzles.

2



Y

IE~fx- 
et-------3

 Y"

z-

AS PS

SS

z.

6 /

12 9

10

i 
k

Y-

3

z

S///7

x•

x

Fig. 3. The 23 Rubik's cube and a numbering.

   Operation x+ 

each of length 4.

can be denoted as the following expression: a sequence of three permutations,

In (1),

_
1 2 3 4)( 5 21 20 10)(8 22 179l 
4 1 23J)10 5 21 209 8 22 17

each permutation is cyclic. Hence x+, y+ and z+ 

x+ _ (l 2 3 4X5 21 20 10X8 22 17 9) 
y+ _ (5 6 7 8X1 12 14 21X2 9 13 24) 
z+ _ (9 10 11 12X1 17 16 6X4 18 13 5)

(1)

can be simply rewritten as

(2)

Types of Expressions. We define the expressions in (2) as (4.4.4)-type expressions, as each 
operation consists of three permutations of length 4. If we insert the elements of the last permutation 
into the elements of the second permutation in expressions (2), we have the following expressions. 

                                                            = (1 2 3 4X5 8 21 22 20 17 10 9)2 

y+=(5678X2 1 9 12 13 14 24 21)2 (3) 
z+ _ (9 10 11 12X1 4 17 18 16 13 6 5)2 

   We define these expressions as (4.82)-type expressions. Similarly, (123)-type expressions can be 
defined as follows. 

x+ _ (1 5 6 2 21 22 3 20 17 4 10 9 )3 

y+ _ (2 1 5 9 12 6 13 14 7 24 21 8)3(4) 
z+ _ (9 1 4 10 17 18 11 16 13 12 6 5)3

Abstract Model. Based on the analysis of the 23 Rubik's cube (similar analysis can be done for the 
cases of the Megalinx and the Pyraminx), we can derive an abstract model Mp of permutation 

puzzles as follows: 

Mp = (X, C, yo, R, s, t) where(5) 

• X = { 1, 2,..., n} : a set of n elements; 
• q): X- C = {c1, c2, ..., cp} : a color mapping. C is a set ofp colors; 
• R= {r1, r2, ... , r,,, } : a set of m operations, and 

yrk                ri = Pi1qd Pr2g12 ...ptk' (i =1,2,...,m) ; (6)
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• s: an initial state obtained by randomly repeating operations from the goal state; 
• t: the goal state that is a sequence of the numbers labeled to the elements. 

   In (6), each permutation  po corresponds to a cycle and therefore a set of operations can be 
expressed by a set of cycles, as illustrated in Fig. 4. Here, each cycle represents a permutation. Thus 
we can define a puzzle graph, which consists of a set of cycles. 

                                                                             • 
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Fig. 4. An illustration of a puzzle graph.

2.2 Cyclic Puzzles 

We can classify the puzzles such as the Lightsout, the Lightsout cube, and the Rubik's clock in Fig. 5 as 

cyclic puzzles. This is because when we repeat the same operation on the puzzle, the state of the puzzle 
changes cyclically and returns to the original state after a fixed number of operations.

L4
. 

MI ci 

I
the back

l

the face

 (a) (b) (c) 

Fig. 5. Example of cyclic puzzles: (a) Lightsout, (b) Lightsout cube, and (c) Rubik's clock.

   For example, Fig. 5(a) shows the Lightsout which has 5x5 buttons with lights and Fig. 5(b) 
shows the Lightsout cube which has 3x3x6 buttons with lights. The goal of the puzzle is to turn off 
all the lights or change all the colors of the lights to the same one. Pressing one button toggles the 
lights of 5 buttons; the one selected and its four neighbors. 

   The method for solving the Lightsout puzzle has been studied in [5]; by pressing each button 
twice, the ON/OFF state returns to the original state. A solution can be determined whether each 
button is pressed once or not. 

   Therefore, the Lightsout puzzle can be formulated as follows: for a given graph G=(V, E), we 
define the matrix A=[ay] as

    1 (i= j or e = (vt , vi) E E) 
a;~ _     0 (

e=(v;,v1)0 E) (7)
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   The matrix A represents the toggling rules in regards to the buttons. We denote the solution 
vector as x  =  {x1, x2,..., xn } where xi =1 (pushed) or xi =0 (not pushed). Further we denote an input 
vector as b={b1, b2,..., bn} which represents an initial state of the buttons. To obtain a solution, we 

define an equation

Ax=b where (8)

b. = al;xl O a2ix2 O+ • • • © a25;x25, i = 1,...,25 . (9)

   The equation Ax=b has a solution if and only if r(A)=r([A b])[5]. 
   We denote the current state of the buttons as y={yl,Y2,...,yn} and when push(vi) is performed, 

the state y is replaced by

y, - y C a 1(mod2), j = 1, ..., 25. (10)

   Fig. 5(c) shows the Rubik's clock, which has more complicated structure. Each clock has 12 
states, and ON/OFF states of four switches changing toggling rules between clocks. There are 16 
different sets of rules and three types of effects: positive, negative, and no effect. However, the basic 
structures of these three puzzles are similar. It has been shown that the operational redundancy of the 
Rubik's clock is 112/128 [2] while that of the Lightsout is 2/25 [7]. 

Abstract Model. Based on the analysis, we can define an abstract model Mc. of cyclic puzzles as

•

•

•

• 

•

Mc. _ (y, q, A, R, b, t) where 

Y = [y1, Y2,..., ym], yiE { 1, 2,..., q} : a vector of element states; 

A={A1, A2,..., Ap}: a set of n x m adjacency matrices; 

R= {r1,  r2,..., r}: a set of operations where 

r;:y,F- yj©a;~(modq), i=1,...,n, j=1,...,m. 

b: an initial state (or input pattern) 
t : the goal state.

(11)

(12)

3 The Puzzle Generator and the Layouts of Puzzles

3.1 Permutation Puzzles

Permutation Puzzle Generator. Based on the model, we implement a puzzle generator which 
allows a user to define their own puzzle. Fig. 6 shows a user interface of the permutation puzzle 

generator. Using the interface, puzzles can be defined in a text-based dialog box. To define a new 
puzzle, the user needs to input the number of elements, expressions for the operations, and a color 
mapping. An example of defining a puzzle is shown in Fig. 6(a). 

   We use a spring algorithm for the layout. However, we observe that it sometimes fails to 
achieve a good symmetric layout. Thus we allow the user to interact with the drawing to improve the 
layout. An example of the layout is shown in Fig. 6(b). To operate the layout as a puzzle, the user 
can simply use drag and drop to move an element or to rotate a cycle. Then the cycle which contains 
the element and the other cycles which are included in the operation rotate together.
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Fig. 6. User interface of a permutation puzzle generator and its layout.

Layouts of the 23 Rubik's Cube and the Pyraminx. Fig. 7(a) shows the layouts of three different 
expressions of the 23 Rubik's Cube. In Fig. 7(a), the upper three layouts are produced by a spring 
algorithm and the lower three layouts are drawn manually. Note that all the layouts are symmetric 
and the graphs corresponding to the (4.82)-type and the (123)-type expressions are planar. Fig. 7(b) 
shows a layout of a puzzle graph which models the Pyraminx. Note that the graph is disconnected.
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 (b) 
3 Rubik's Cube and (b) Pyraminx .

Layouts of the n3 Rubik's Cube. Note that the longest expression of the n3 Rubik's cube can be 
modeled as a planar graph for any n� 2. Fig. 8(a) shows a tiling of the 43 Rubik's cube and Fig. 8(b) 
shows how to route the tiling without edge crossings. Fig. 8(c) shows the corresponding drawing. 
This method can be applied to the case of any n in a similar way.
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                 Fig. 8. (a) Tiling, (b) routing, and (c) drawing of 43 Rubik's cube. 

New Permutation Puzzles and More Layouts. Permutation puzzles such as the Rubik's cube are 
sometimes too difficult to solve. Using the puzzle generator, we can create new puzzles with 
different levels of difficulty. Fig. 9(a) shows examples of the new puzzles with small size. Note that 
sometimes hand drawn drawings can be more amusing and attractive for the users as shown in Fig. 
9(b). 
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Fig. 9. New permutation puzzles and their layouts.

3.2 Cyclic Puzzles 

Cyclic Puzzle Generator. Fig. 10(a) shows a user interface for the cyclic puzzle generator. A puzzle 

(i.e. toggling rules) is defined in the lower-left window and the rules are illustrated using L-mapping 
in the lower-right window. An `up and down box puzzle' is shown in the upper window. Fig. 10(b) 
shows variations of the layouts of cyclic puzzles which correspond to n-color cyclic puzzles.

Blocks

mossalmionnwoonsmour

11, 1, 0, 1, 0, 0, 0, 
 1, 1, 1, 0, 1, 0, 0. 

1 0, 1, 1, 0. 0. 1, 0, 
 1, 0, 0, 1, 1, 0, 1, 
 0, 1, 0, 1, 1, 1, 0, 
 0, 0, 1, 0, 1, 1, 0, 
 0, 0, 0, 1, 0, 0, 1, 
 0, 0, 0, 0, 1, 0, 1, 

1 0. 0, 0, 0, 0, 1, 0. 
Adjacency matrix 
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0, 
0, 
1, 
0, 
1, 
1, 
1,

01 

01 
01 
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1 
1

2 3 6 5 4 7 9

Graph

(a)

9



 AP.

number

color

clock

                 (b) 

Fig. 10. (a) User interface and (b) variations of layouts of cyclic puzzles.

More Layouts of Cyclic Puzzles. We applied various graph drawing methods to achieve a variety of 
layouts for the puzzle. Fig. 11(a) shows an orthogonal layout and Fig. 11(b) shows a visibility 
representation.

 (a)(b) 

Fig. 11. (a) orthogonal layout and (b) visibility representations of cyclic puzzles.

Layouts of Lightsout cube. Fig. 12 shows two symmetric layouts of the Lightsout cube. Fig. 12(a) 
uses the concept of concentric circles, and Fig. 12(b) uses straight-line. Both are produced manually.
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(a) (b)

Fig. 12. Layouts of the Lightsout cube.

4. Symmetric Layout Algorithm for Puzzles

In this section, we describe a method for constructing symmetric layouts of puzzles. Our aim is to 

produce symmetric layouts of the puzzle graphs as in Fig. 7 and Fig. 12 automatically. The main problem 
can be formally defined as follows.

Symmetric Puzzle Layout Problem 
Input: a puzzle graph G 

Output: a drawing D of G displaying maximum number of symmetries.

   The problem of drawing graphs with a maximum number of symmetries can be formulated as a 

problem of finding a geometric automorphism group of a maximum size. It has been proven that the 
problem is NP-hard. There are many algorithms available to construct a symmetric drawing of a 
graph for different classes of graphs and different motivations. However, to achieve the maximum 
number of symmetries, we choose the algorithm by Hong et al. for planar graphs [7,8,9] and the 
algorithm by Abelson et  al. for general graphs [6]. The main algorithm can be described as follows.

Algorithm Symmetric_Puzzle_Layout 
Input: a puzzle graph G. 

Output: a drawing D of G displaying the maximum number of symmetries.

If G is disconnected 
then use the algorithm by Hong and Eades [9] 
elseif G is planar 

        then if G is triconnected, then use the algorithm by Hong, McKay and Eades [7] 
               if G is biconnected, then use the algorithm by Hong and Eades [8] 

        else use the algorithm by Abelson, Hong and Taylor [6]

   Note that the algorithm for the disconnected case [9] was developed for planar graphs. However 
the same algorithm can be applied to general graphs as long as we want to minimize the number of 
edge crossings. In fact, the algorithm uses each algorithm in [7,8] as subroutines. 

  To construct a symmetric drawing, we need two steps. The first step is to find the symmetries of a 

graph. The second step is to display the symmetries. All the algorithms in [6,7,8,9] provide both a 
symmetry finding algorithm for step 1 and a symmetric drawing algorithm for step 2. Two algorithms 

                             11



for planar graphs [7,8] and the disconnected case [9] can be implemented in linear time. The 
implementation of the symmetry finding algorithm in [8] is rather complicated as it involves many 
other algorithms such as computing isomorphism of planar graphs and construction of the SPQR tree. 
However, the output of the symmetry finding algorithm fixes the plane embedding of the graph, which 
shows the maximum number of symmetries. Given an embedding, the drawing algorithm constructs a 
drawing displaying given symmetries. 

   The method for general graphs [6] was implemented using MAGMA and the experimental 
results show that, in practice, it runs very fast. For example, generally it finds the maximum 
symmetries of a graph with up to 50 vertices within a second. However, it does not give an 
embedding as an output. The output of the symmetry finding algorithm is a set of orbits under the 

geometric automorphism group. An orbit is a subset of the vertex set V of G. If two vertices u and 
v belong to the same orbit, then there is a geometric automorphism which maps u to v. The drawing 
algorithm implemented by Abelson et al [6] simply draws each orbit as a concentric circle, as in Fig. 
12(a). However, the relative ordering of the orbits is not decided, as the embedding is not given. 
Hence we need another algorithm to decide the ordering of the concentric circles, each representing 
an orbit, to minimize the number of edge crossings. Unfortunately, this problem is also NP-hard [10]. 
However, a heuristic is given in  [ 10], and it is under implementation. 

  We now discuss a variation of the algorithm, an algorithm for the permutation puzzles. In this case, 
the puzzle graph can be defined as a set of cycles. In general, the size of the puzzle graph is small (the 
number of vertices is around 30) and not so dense, but not necessarily planar. If the size becomes large, 
then we can use the following speed up method. 

   Firstly, observe that there are many degree two vertices in the set of cycles. In terms of finding 
symmetries and deciding embeddings, the degree two vertices do not contribute. The most important 
vertices are intersection points, i.e. the vertices which are overlapped by more than one cycle. This 
motivates the following algorithm. The main idea is to delete all the degree two vertices and then 
define a simplified graph G' of G. Then we use the algorithms in [6,7,9] to draw G' and then 
finally reinsert all the degree two vertices. This approach has an advantage in terms of running time 
and implementation. That is, we don't need to implement the algorithm in [8].

Algorithm Symmetric _Permutation_Puzzle_Layout 
Input: a puzzle graph G consists of a set of cycles. 

Output: a drawing D of G displaying the maximum number of symmetries.

1. Delete all degree two vertices resulting in a graph G'. 
2. Label the edges and vertices of G' with proper color, so that its automorphism preserve the color. 
This includes the case of multiple edges or self-loops. 
3. If G' is disconnected 
then use the algorithm by Hong and Eades [9]. 
elseif G' is planar 

        then use the algorithm by Hong, McKay and Eades [7] to draw G'. 
        else use the algorithm by Abelson, Hong and Taylor [6] to draw G'. 

4. Reinsert all deleted degree two vertices to construct a drawing of G.

   The refinement of the algorithm needs a little modification of the existing algorithm. For 
example, we need to modify the symmetry finding algorithm to work for the labeled graphs. This is 
an easy extension and can be done easily for the algorithm for the triconnected planar graphs [7] and 
the general graphs [6]. The main advantage of the algorithm is that G' is either disconnected or 
triconnected. Hence the algorithm requires only the implementation of the triconnected case [7]. It is 
a slight adaptation of the existing algorithm to preserve colors of edges and vertices. 

  Another variation is the use of other drawing algorithms, the barycenter algorithm by Tutte [3], or 
the algorithm by Can and Kocay [11]. Both algorithms require more input. We can use the output of 
the symmetry finding algorithm to fix the outer face of the triconnected planar graphs for the Tutte 
algorithm. The time complexity is superlinear [3], but gives a straight-line convex symmetric drawing

12



as in Fig. 12(b). The algorithm of Can and Kocay needs a geometric automorphism as an input, and 
then finds a largest cycle. It is implemented in Group & Graphs  [11]. 

                                                Another variation is to combine the two methods. That is to use symmetry finding algorithm to 
fix the embedding and then run the spring algorithm to preserve the embedding to produce nice 
layout.

5. Conclusion

We present a new application for graph drawing, the puzzle layout. We define abstract models for 

permutation and cyclic puzzles which can be modeled as puzzle graphs. Based on these models, we 
implement two puzzle generators and produce various layouts of the puzzles using various graph 

drawing algorithms. Using the puzzle generators, we create new puzzles. Moreover by applying 

various graph drawing algorithms, we create new user interfaces for a puzzle with different 

attractions. We further discuss a symmetric drawing algorithm for puzzles. 

   Our current work includes the implementation of the symmetric drawing algorithm for the 

puzzle layout problem. However, our ultimate goal is to develop a software which implements the 

puzzle generators and various layouts, so that the users can define their own puzzles and then 
communicate the puzzles with small communication devices, such as PDA or mobile phones.
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