
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title The Puzzle Conversion and Layout Problem

Author(s) Sugiyama, Kozo; Hong, Seok-Hee; Maeda, Atsuhiko

Citation

Research report (School of Knowledge Science,

Japan Advanced Institute of Science and

Technology), KS-RR-2003-002: 1-13

Issue Date 2003-07-01

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/8446

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学知識

科学研究科）

 T

The Puzzle Conversion and Layout Problem

 Kozo Sugiyamal, Seok-Hee Hong2 and Atsuhiko Maeda3

 1 School of Knowledge Science, Japan Advanced Institute of Science and Technology
 2 School of Information Technology, University of Sydney

 3 NTT Network Innovation Labs, NTT Corporation

 July 1, 2003

 KS-RR-2003-002

The Puzzle Conversion and Layout Problem

Kozo Sugiyama', Seok-Hee Hong2, and Atsuhiko Maeda3

' School of Knowledge Science, Japan Advanced Institute of Science and Technology, Asahidai 1-1,
 Tatsunokuchi, Nomi, Ishikawa, 923-1292, Japan

 Sugi@jaist.ac.jp
 2 School of Information Technologies, University of Sydney, NSW 2006, Australia

Shhong@it.usyd.edu.au
3 NTT Network Innovation Labs

, NTT Corporation,
Hikarinooka 1-1, Yokosuka, Kanagawa, 239-0847, Japan

Maeda.atsuhiko@lab.ntt.co.jp

Abstract. We address the new problem of puzzle conversion and layout as a new application of graph
drawing. We present two abstract models of puzzles, permutation puzzles and cyclic puzzles, which
can be modeled as puzzle graphs. Based on these models, we implement two puzzle generators and
produce various layouts of the puzzles using graph drawing algorithms. Using these puzzle generators
we can create new puzzles. Further by applying different layout algorithms, we can create new user
interfaces of a puzzle with different attractions. Finally, we discuss a method for constructing
symmetric layouts of puzzles, as symmetry is the most important aesthetic criteria for the puzzle
layout.

1 Introduction

We present a new, interesting application of graph drawing, puzzle conversion and layout. Puzzles
have sophisticated logical structures, beautiful shapes, and attractive user interfaces. To make the
world of puzzles much richer and to design new interfaces of puzzles, we have carried out a
systematic approach called `media conversion' [1,2]. The basic idea of the approach is illustrated in
Fig. 1. Here existing popular puzzles are abstracted and converted into other media such as graphs,
blocks, sounds, and robots, while preserving their logic. Using this approach, we can create new

puzzles and new interfaces for puzzles.
 In this paper, we are mainly concerned with conversions of puzzles into graphs. More

specifically, we consider two classes of puzzles, permutation puzzles (for example, the Rubik's cube)
and cyclic puzzles (for example, the Lightsout). We analyze the operations of the puzzles and derive
two abstract models which can be modeled as puzzle graphs. Based on these models, we implement
two puzzle generators and produce various layouts of the puzzles using various graph drawing
algorithms. Using these puzzle generators, we can parametrically change the levels of difficulty of
the puzzles and create new puzzles. Further by applying various graph drawing algorithms, we can
create new user interfaces for a puzzle with different attractions. Hence, the puzzle layout is an
interesting application for graph drawing.

 The puzzle layout should be very beautiful and attractive to the users. Further, the layout should
operate as a puzzle interactively by the users. We applied various standard graph drawing methods in

[3, 4] to produce puzzle layouts. These include the spring embedder algorithm, orthogonal drawing
and visibility representations. However, we observed that symmetry is the far most important
aesthetic criteria in the puzzle layout problem, as the puzzle graph is highly symmetric inherently.

 In the next section, we present two abstract models of puzzles, which have the property that a

graph representation can effectively be derived from them. Based on the model, we present two
puzzle generators and various layouts of the puzzles in Section 3. Then we discuss a method for
constructing symmetric layouts of puzzles in Section 4. Section 5 concludes.

1

 •

(1) Abstraction

Existing operational puzzles

------------------ (3) Creative media conversion
r 1 ' Mathematical` model ar ,

(2)Parametric media conversion

 •••

 •)1(•

••
 nil%Al •s:••

 Puzzles created on new media

Fig. 1. Media conversion approach.

2 Abstract Models of Puzzles

2.1 Permutation Puzzles

The Rubik's cube is one of the most popular puzzles and there are several variations such as the
Megalinx and the Pyraminx (see Fig. 2). They differ in shapes and the number of elements, but have
similar structure. These are classified as permutation puzzles because the operations on the puzzles
can be characterized as permutations between elements. Group theoretic descriptions and analysis
for such puzzles can be found in [12,13].

 (a)(b)(c)

Fig. 2. Examples of the permutation puzzles: (a) Rubik's cube (b) Megalinx and (c) Pyraminx.

Numbering and Color Mapping. The Rubik's cube consists of 3x3x3 blocks, also called as the 33

Rubik's cube. For simplicity, we consider the 23 Rubik's cube, which consists of 2x2x2 blocks. Fig.

3 shows the 23 Rubik's cube. The elements in the surface of the cube are numbered from 1 to 24. We

use this numbering for the purpose of analysis. Note that only 6 different colors are enough to color

the surface of the cube. The color mapping is one of the important factors characterizing the puzzle.

Operational Redundancy. The 23 Rubik's cube has 12 operations: 90° clockwise (or
anti-clockwise) rotations of four blocks around the positive (or negative) direction of each axis.
However, there are redundancies between the operations and it is sufficient to consider only three
operations x+, y+ and z+, where x+ represents 90° clockwise rotation of the four blocks around the

positive x-axis. We define the operational redundancy of the 23 Rubik's cube as 9/12. Redundancy is
another important factor for characterizing puzzles.

2

Y

IE~fx-
et-------3

 Y"

z-

AS PS

SS

z.

6 /

12 9

10

i
k

Y-

3

z

S///7

x•

x

Fig. 3. The 23 Rubik's cube and a numbering.

 Operation x+

each of length 4.

can be denoted as the following expression: a sequence of three permutations,

In (1),

_
1 2 3 4)(5 21 20 10)(8 22 179l
4 1 23J)10 5 21 209 8 22 17

each permutation is cyclic. Hence x+, y+ and z+

x+ _ (l 2 3 4X5 21 20 10X8 22 17 9)
y+ _ (5 6 7 8X1 12 14 21X2 9 13 24)
z+ _ (9 10 11 12X1 17 16 6X4 18 13 5)

(1)

can be simply rewritten as

(2)

Types of Expressions. We define the expressions in (2) as (4.4.4)-type expressions, as each
operation consists of three permutations of length 4. If we insert the elements of the last permutation
into the elements of the second permutation in expressions (2), we have the following expressions.

 = (1 2 3 4X5 8 21 22 20 17 10 9)2

y+=(5678X2 1 9 12 13 14 24 21)2 (3)
z+ _ (9 10 11 12X1 4 17 18 16 13 6 5)2

 We define these expressions as (4.82)-type expressions. Similarly, (123)-type expressions can be
defined as follows.

x+ _ (1 5 6 2 21 22 3 20 17 4 10 9)3

y+ _ (2 1 5 9 12 6 13 14 7 24 21 8)3(4)
z+ _ (9 1 4 10 17 18 11 16 13 12 6 5)3

Abstract Model. Based on the analysis of the 23 Rubik's cube (similar analysis can be done for the
cases of the Megalinx and the Pyraminx), we can derive an abstract model Mp of permutation

puzzles as follows:

Mp = (X, C, yo, R, s, t) where(5)

• X = { 1, 2,..., n} : a set of n elements;
• q): X- C = {c1, c2, ..., cp} : a color mapping. C is a set ofp colors;
• R= {r1, r2, ... , r,,, } : a set of m operations, and

yrk ri = Pi1qd Pr2g12 ...ptk' (i =1,2,...,m) ; (6)

3

• s: an initial state obtained by randomly repeating operations from the goal state;
• t: the goal state that is a sequence of the numbers labeled to the elements.

 In (6), each permutation po corresponds to a cycle and therefore a set of operations can be
expressed by a set of cycles, as illustrated in Fig. 4. Here, each cycle represents a permutation. Thus
we can define a puzzle graph, which consists of a set of cycles.

 •
•

• ••
 •. •.

,.

••
.

 ••• y

 ̂ _ ••Ai•

^ ../

Fig. 4. An illustration of a puzzle graph.

2.2 Cyclic Puzzles

We can classify the puzzles such as the Lightsout, the Lightsout cube, and the Rubik's clock in Fig. 5 as

cyclic puzzles. This is because when we repeat the same operation on the puzzle, the state of the puzzle
changes cyclically and returns to the original state after a fixed number of operations.

L4
.

MI ci

I
the back

l

the face

 (a) (b) (c)

Fig. 5. Example of cyclic puzzles: (a) Lightsout, (b) Lightsout cube, and (c) Rubik's clock.

 For example, Fig. 5(a) shows the Lightsout which has 5x5 buttons with lights and Fig. 5(b)
shows the Lightsout cube which has 3x3x6 buttons with lights. The goal of the puzzle is to turn off
all the lights or change all the colors of the lights to the same one. Pressing one button toggles the
lights of 5 buttons; the one selected and its four neighbors.

 The method for solving the Lightsout puzzle has been studied in [5]; by pressing each button
twice, the ON/OFF state returns to the original state. A solution can be determined whether each
button is pressed once or not.

 Therefore, the Lightsout puzzle can be formulated as follows: for a given graph G=(V, E), we
define the matrix A=[ay] as

 1 (i= j or e = (vt , vi) E E)
a;~ _ 0 (

e=(v;,v1)0 E) (7)

4

 The matrix A represents the toggling rules in regards to the buttons. We denote the solution
vector as x = {x1, x2,..., xn } where xi =1 (pushed) or xi =0 (not pushed). Further we denote an input
vector as b={b1, b2,..., bn} which represents an initial state of the buttons. To obtain a solution, we

define an equation

Ax=b where (8)

b. = al;xl O a2ix2 O+ • • • © a25;x25, i = 1,...,25 . (9)

 The equation Ax=b has a solution if and only if r(A)=r([A b])[5].
 We denote the current state of the buttons as y={yl,Y2,...,yn} and when push(vi) is performed,

the state y is replaced by

y, - y C a 1(mod2), j = 1, ..., 25. (10)

 Fig. 5(c) shows the Rubik's clock, which has more complicated structure. Each clock has 12
states, and ON/OFF states of four switches changing toggling rules between clocks. There are 16
different sets of rules and three types of effects: positive, negative, and no effect. However, the basic
structures of these three puzzles are similar. It has been shown that the operational redundancy of the
Rubik's clock is 112/128 [2] while that of the Lightsout is 2/25 [7].

Abstract Model. Based on the analysis, we can define an abstract model Mc. of cyclic puzzles as

•

•

•

•

•

Mc. _ (y, q, A, R, b, t) where

Y = [y1, Y2,..., ym], yiE { 1, 2,..., q} : a vector of element states;

A={A1, A2,..., Ap}: a set of n x m adjacency matrices;

R= {r1, r2,..., r}: a set of operations where

r;:y,F- yj©a;~(modq), i=1,...,n, j=1,...,m.

b: an initial state (or input pattern)
t : the goal state.

(11)

(12)

3 The Puzzle Generator and the Layouts of Puzzles

3.1 Permutation Puzzles

Permutation Puzzle Generator. Based on the model, we implement a puzzle generator which
allows a user to define their own puzzle. Fig. 6 shows a user interface of the permutation puzzle

generator. Using the interface, puzzles can be defined in a text-based dialog box. To define a new
puzzle, the user needs to input the number of elements, expressions for the operations, and a color
mapping. An example of defining a puzzle is shown in Fig. 6(a).

 We use a spring algorithm for the layout. However, we observe that it sometimes fails to
achieve a good symmetric layout. Thus we allow the user to interact with the drawing to improve the
layout. An example of the layout is shown in Fig. 6(b). To operate the layout as a puzzle, the user
can simply use drag and drop to move an element or to rotate a cycle. Then the cycle which contains
the element and the other cycles which are included in the operation rotate together.

5

Operations

 ...Or -
 a=(1. 5, 8.2. 21, 22.3. 20, 17.4, 10, 9) -3 .

=(9, 1.4, 10, 17, 18, 11, 16. 13. 12, 6.5) "3;, (2
,1,5, 9,12.6.13. 4.7.

...2...4....21,8);3••' ...

 S= 21.22.24. 23.
1S=13,14.16. 15-
1S. 17,18.20, 191

 3=9. 10.11. 121

J

Coloring Spz 1n9 U U006,1110pislpn 1•

•• • 4,4:

 •

 ••

 •

SK.uE~kl.]!n_ablo 11

•

•

 (a)(b)

Fig. 6. User interface of a permutation puzzle generator and its layout.

Layouts of the 23 Rubik's Cube and the Pyraminx. Fig. 7(a) shows the layouts of three different
expressions of the 23 Rubik's Cube. In Fig. 7(a), the upper three layouts are produced by a spring
algorithm and the lower three layouts are drawn manually. Note that all the layouts are symmetric
and the graphs corresponding to the (4.82)-type and the (123)-type expressions are planar. Fig. 7(b)
shows a layout of a puzzle graph which models the Pyraminx. Note that the graph is disconnected.

2

1e; 1

4

fi

2

1?_

3

9

f

2

21

5

a

a

2

1(, 1p-a 20

I

2

•00
• 00

•00

(a)

6

 met
 nuffle
valuation

enerate

3~~..

3 t t`i:

Tir
zr~

4

Ake PIPz~~
U

MPG

0

Fig. 7. Layouts of (a) 2

 (b)
3 Rubik's Cube and (b) Pyraminx .

Layouts of the n3 Rubik's Cube. Note that the longest expression of the n3 Rubik's cube can be
modeled as a planar graph for any n� 2. Fig. 8(a) shows a tiling of the 43 Rubik's cube and Fig. 8(b)
shows how to route the tiling without edge crossings. Fig. 8(c) shows the corresponding drawing.
This method can be applied to the case of any n in a similar way.

7.

n

71

K

(a)

~ n

(b)

7

 • •

•

 (c)

 Fig. 8. (a) Tiling, (b) routing, and (c) drawing of 43 Rubik's cube.

New Permutation Puzzles and More Layouts. Permutation puzzles such as the Rubik's cube are
sometimes too difficult to solve. Using the puzzle generator, we can create new puzzles with
different levels of difficulty. Fig. 9(a) shows examples of the new puzzles with small size. Note that
sometimes hand drawn drawings can be more amusing and attractive for the users as shown in Fig.
9(b).

 ~~ © Øo 0— MP°0— lIA G — --®,
 O 4

 fli ,0 k (Aro
0___®/
 ©O

 0—,...,10.— Olinu 0illp el
0.6 ,„

 O~'~~~s041
 O~a0400
 9 '©

y-0~©0t*,

~E- easy ----------difficult --0

 (a)

8

 \t
3 2

s o .

i

s

s

s

b.,

 0

 O

z*-4
2 to7t r4tt; f

 (b)

Fig. 9. New permutation puzzles and their layouts.

3.2 Cyclic Puzzles

Cyclic Puzzle Generator. Fig. 10(a) shows a user interface for the cyclic puzzle generator. A puzzle

(i.e. toggling rules) is defined in the lower-left window and the rules are illustrated using L-mapping
in the lower-right window. An `up and down box puzzle' is shown in the upper window. Fig. 10(b)
shows variations of the layouts of cyclic puzzles which correspond to n-color cyclic puzzles.

Blocks

mossalmionnwoonsmour

11, 1, 0, 1, 0, 0, 0,
 1, 1, 1, 0, 1, 0, 0.

1 0, 1, 1, 0. 0. 1, 0,
 1, 0, 0, 1, 1, 0, 1,
 0, 1, 0, 1, 1, 1, 0,
 0, 0, 1, 0, 1, 1, 0,
 0, 0, 0, 1, 0, 0, 1,
 0, 0, 0, 0, 1, 0, 1,

1 0. 0, 0, 0, 0, 1, 0.
Adjacency matrix
1,

0,
0,
0,
0,
1,
0,
1,
1,
1,

01

01
01

0
1
1

2 3 6 5 4 7 9

Graph

(a)

9

 AP.

number

color

clock

 (b)

Fig. 10. (a) User interface and (b) variations of layouts of cyclic puzzles.

More Layouts of Cyclic Puzzles. We applied various graph drawing methods to achieve a variety of
layouts for the puzzle. Fig. 11(a) shows an orthogonal layout and Fig. 11(b) shows a visibility
representation.

 (a)(b)

Fig. 11. (a) orthogonal layout and (b) visibility representations of cyclic puzzles.

Layouts of Lightsout cube. Fig. 12 shows two symmetric layouts of the Lightsout cube. Fig. 12(a)
uses the concept of concentric circles, and Fig. 12(b) uses straight-line. Both are produced manually.

10

(a) (b)

Fig. 12. Layouts of the Lightsout cube.

4. Symmetric Layout Algorithm for Puzzles

In this section, we describe a method for constructing symmetric layouts of puzzles. Our aim is to

produce symmetric layouts of the puzzle graphs as in Fig. 7 and Fig. 12 automatically. The main problem
can be formally defined as follows.

Symmetric Puzzle Layout Problem
Input: a puzzle graph G

Output: a drawing D of G displaying maximum number of symmetries.

 The problem of drawing graphs with a maximum number of symmetries can be formulated as a

problem of finding a geometric automorphism group of a maximum size. It has been proven that the
problem is NP-hard. There are many algorithms available to construct a symmetric drawing of a
graph for different classes of graphs and different motivations. However, to achieve the maximum
number of symmetries, we choose the algorithm by Hong et al. for planar graphs [7,8,9] and the
algorithm by Abelson et al. for general graphs [6]. The main algorithm can be described as follows.

Algorithm Symmetric_Puzzle_Layout
Input: a puzzle graph G.

Output: a drawing D of G displaying the maximum number of symmetries.

If G is disconnected
then use the algorithm by Hong and Eades [9]
elseif G is planar

 then if G is triconnected, then use the algorithm by Hong, McKay and Eades [7]
 if G is biconnected, then use the algorithm by Hong and Eades [8]

 else use the algorithm by Abelson, Hong and Taylor [6]

 Note that the algorithm for the disconnected case [9] was developed for planar graphs. However
the same algorithm can be applied to general graphs as long as we want to minimize the number of
edge crossings. In fact, the algorithm uses each algorithm in [7,8] as subroutines.

 To construct a symmetric drawing, we need two steps. The first step is to find the symmetries of a

graph. The second step is to display the symmetries. All the algorithms in [6,7,8,9] provide both a
symmetry finding algorithm for step 1 and a symmetric drawing algorithm for step 2. Two algorithms

 11

for planar graphs [7,8] and the disconnected case [9] can be implemented in linear time. The
implementation of the symmetry finding algorithm in [8] is rather complicated as it involves many
other algorithms such as computing isomorphism of planar graphs and construction of the SPQR tree.
However, the output of the symmetry finding algorithm fixes the plane embedding of the graph, which
shows the maximum number of symmetries. Given an embedding, the drawing algorithm constructs a
drawing displaying given symmetries.

 The method for general graphs [6] was implemented using MAGMA and the experimental
results show that, in practice, it runs very fast. For example, generally it finds the maximum
symmetries of a graph with up to 50 vertices within a second. However, it does not give an
embedding as an output. The output of the symmetry finding algorithm is a set of orbits under the

geometric automorphism group. An orbit is a subset of the vertex set V of G. If two vertices u and
v belong to the same orbit, then there is a geometric automorphism which maps u to v. The drawing
algorithm implemented by Abelson et al [6] simply draws each orbit as a concentric circle, as in Fig.
12(a). However, the relative ordering of the orbits is not decided, as the embedding is not given.
Hence we need another algorithm to decide the ordering of the concentric circles, each representing
an orbit, to minimize the number of edge crossings. Unfortunately, this problem is also NP-hard [10].
However, a heuristic is given in [10], and it is under implementation.

 We now discuss a variation of the algorithm, an algorithm for the permutation puzzles. In this case,
the puzzle graph can be defined as a set of cycles. In general, the size of the puzzle graph is small (the
number of vertices is around 30) and not so dense, but not necessarily planar. If the size becomes large,
then we can use the following speed up method.

 Firstly, observe that there are many degree two vertices in the set of cycles. In terms of finding
symmetries and deciding embeddings, the degree two vertices do not contribute. The most important
vertices are intersection points, i.e. the vertices which are overlapped by more than one cycle. This
motivates the following algorithm. The main idea is to delete all the degree two vertices and then
define a simplified graph G' of G. Then we use the algorithms in [6,7,9] to draw G' and then
finally reinsert all the degree two vertices. This approach has an advantage in terms of running time
and implementation. That is, we don't need to implement the algorithm in [8].

Algorithm Symmetric _Permutation_Puzzle_Layout
Input: a puzzle graph G consists of a set of cycles.

Output: a drawing D of G displaying the maximum number of symmetries.

1. Delete all degree two vertices resulting in a graph G'.
2. Label the edges and vertices of G' with proper color, so that its automorphism preserve the color.
This includes the case of multiple edges or self-loops.
3. If G' is disconnected
then use the algorithm by Hong and Eades [9].
elseif G' is planar

 then use the algorithm by Hong, McKay and Eades [7] to draw G'.
 else use the algorithm by Abelson, Hong and Taylor [6] to draw G'.

4. Reinsert all deleted degree two vertices to construct a drawing of G.

 The refinement of the algorithm needs a little modification of the existing algorithm. For
example, we need to modify the symmetry finding algorithm to work for the labeled graphs. This is
an easy extension and can be done easily for the algorithm for the triconnected planar graphs [7] and
the general graphs [6]. The main advantage of the algorithm is that G' is either disconnected or
triconnected. Hence the algorithm requires only the implementation of the triconnected case [7]. It is
a slight adaptation of the existing algorithm to preserve colors of edges and vertices.

 Another variation is the use of other drawing algorithms, the barycenter algorithm by Tutte [3], or
the algorithm by Can and Kocay [11]. Both algorithms require more input. We can use the output of
the symmetry finding algorithm to fix the outer face of the triconnected planar graphs for the Tutte
algorithm. The time complexity is superlinear [3], but gives a straight-line convex symmetric drawing

12

as in Fig. 12(b). The algorithm of Can and Kocay needs a geometric automorphism as an input, and
then finds a largest cycle. It is implemented in Group & Graphs [11].

 Another variation is to combine the two methods. That is to use symmetry finding algorithm to
fix the embedding and then run the spring algorithm to preserve the embedding to produce nice
layout.

5. Conclusion

We present a new application for graph drawing, the puzzle layout. We define abstract models for

permutation and cyclic puzzles which can be modeled as puzzle graphs. Based on these models, we
implement two puzzle generators and produce various layouts of the puzzles using various graph

drawing algorithms. Using the puzzle generators, we create new puzzles. Moreover by applying

various graph drawing algorithms, we create new user interfaces for a puzzle with different

attractions. We further discuss a symmetric drawing algorithm for puzzles.

 Our current work includes the implementation of the symmetric drawing algorithm for the

puzzle layout problem. However, our ultimate goal is to develop a software which implements the

puzzle generators and various layouts, so that the users can define their own puzzles and then
communicate the puzzles with small communication devices, such as PDA or mobile phones.

References

1. Maeda, A., Sugiyama, K. and Mase, K., Media Conversion of Permutation Puzzles and Development of
 Permutation Puzzles Generators, IPSJSIG Notes Human Interface, No. 101, 33-40. (in Japanese)

2. Maeda, A., Sugiyama, K. and Mase, K., Media Conversion of Cyclic Puzzles and Development of Cyclic Puzzle
 Generators, IPSJ SIG Notes Human Interface, No. 101, 40-47. (in Japanese)

3. Di Battista, G., Eades, P., Tamassia, R. and Tollis, I., Graph Drawing: Algorithms for the Visualization of Graphs,
 Prentice Hall, 1999.

4. Sugiyama, K., Graph Drawing and Applications for Software and Knowledge Engineers, World Scientific, 2002.
5. Aoki, S., A Location Problem with Variables on Boolean Field, B. Eng. Thesis in Information Engineering,

 Toyohashi University of Technology, 1997.
6. Abelson, D., Hong, S. and Taylor, D. E., A Group-Theoretic Method for Drawing Graphs Symmetrically, Proc. of

 Graph Drawing 2002, LNCS, Springer Verlag, pp. 86-97, 2002.
7. Hong, S., McKay, B. and Eades, P., Symmetric Drawings of Triconnected Planar Graphs, Proc. of SODA 2002, pp.

 356-365, 2002.
8. Hong, S. and Eades, P., Drawing Planar Graphs Symmetrically II: Biconnected Graphs, Technical Report

CS-IVG-2001-01, School of IT, The University of Sydney, 2001.
9. Hong, S. and Eades, P., Drawing Planar Graphs Symmetrically III: Disconnected Graphs, Technical Report

CS-IVG-2001-03, School of IT, The University of Sydney, 2001.
10. Buchheim, C. and Hong, S., Crossing Minimization for Symmetries, Proc. of ISAAC 2002, Lecture Notes in

 Computer Science, Springer Verlag, pp. 563-574, 2002.
11. Carr, H. and Kocay, W., An Algorithm for Drawing a Graph Symmetrically, Bulletin of the Institute of

 Combinatorics and its Applications, 27, pp. 19-25, 1999.
12. Tuner, E. C. and Gold, K. F., Rubik's Groups, American Mathematical Monthly, Vol. 92, No.9, 1982.
13. Joyner, D., Adventures in Group Theory: Rubik's Cube, Merlin's Machine, and Other Mathematical Toys, Johns

 Hopkins Univ. Press, 2002.

13

