
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
‘Divergence via Abstraction' Practices for

Inventing New Puzzles

Author(s)
Sugiyama, Kozo; Maeda, Atsuhiko; Mizumoto,

Akinori

Citation

Research report (School of Knowledge Science,

Japan Advanced Institute of Science and

Technology), KS-RR-2003-003: 1-6

Issue Date 2003-09-25

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/8447

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学知識

科学研究科）

 ̀ Divergence via Abstraction' Practices for

 Inventing New Puzzles

Kozo Sugiyama, Atsuhiko Maeda and Akinori Mizumoto

 September 25, 2003

KS-RR-2003-003

'DIVERGENCE VIA ABSTRACTION' PRACTICES

FOR INVENTING NEW PUZZLES

 Kozo Sugiyama

School of Knowledge Science,

Japan Advanced Institute of

 Science and Technology,

 lshikawa, 923-1292, Japan.

Sugi@ jaist. ac.jp

 Atsuhiko Maeda

NTT Network Innovation Labs,

 NTT Coorporation,

Yokosuka, 239-0847, Japan.

Maeda. a tsuhiko@lab. ntt. co. jp

 Akinori Mizumoto

School of Knowledge Science,

Japan Advanced Institute of

 Science and Technology,

lshikawa, 923-1292, Japan.

A-mizumo@ jaist. ac. jp

Abstract

 To invent new puzzles, we take a systematic approach called divergence via abstraction. Existing popular

puzzles called permutation puzzles and cyclic puzzles are abstracted and converted into other media such as graphs,

blocks, sounds, and robots, while preserving their logic. We implement puzzle generators on different media and

variations of generated puzzles are shown. Merits and demerits of new puzzles are evaluated comparing with the

original puzzles. This systematic approach can flexibly parameterize and creatively extend the puzzles.

Keywords: systematic approach, divergence via abstraction, puzzle invention, media conversion

1. Introduction

 Puzzles have been continually developed and

extremely polished in a long history. Therefore, popular

puzzles have sophisticated logical structures, beautiful
shapes, and attractive user interfaces. However, usually it

is too difficult to solve the Rubik's cube, for example,

and so it is desirable to parametrically change the levels

of difficulty of the puzzles. Moreover, it is interesting to

realize the puzzles on different media. Thus, to make the

world of puzzles further richer and to design new

interfaces of puzzles, we have carried out a systematic

approach called divergence via abstraction. The basic

idea of the approach is illustrated in Figure 1 concretely

and conceptually. Here existing popular puzzles are

abstracted and converted into other media such as graphs,

blocks, sounds, and robots, while preserving their logic.

Using this approach, we can invent new puzzles [1,

2,3,4].

 In this paper, we are concerned with two classes of

puzzles, permutation puzzles and cyclic puzzles. We

 (1) Abstraction------------------- (3) Creative media conversion
 Mathematical

 model

 (2)Parametric media conversion

 ilitt• ti,n10111142skiS
Existing operational puzzles Puzzles created on new media

 (a) Concrete illustration
 levels

 Divergence
 Abstraction -----------------

 MediaMedia
restnctionrestriction

I
0 0 O•••O 0 0 0•••00 0 0.•• CD

 Instances Divergence Divergence

 (b) Conceptual illustration
Figurel Systematic approach for new puzzle invention

analyze the operations of the

abstract (mathematical) models.

we implement various puzzle

puzzles and derive two

Based on these models,

generators on different

1

media. Using these puzzle generators, we can

parametrically change the levels of difficulty and invent

new puzzles that have new aspects and/or unexpected

attractiveness. Merits and demerits of new puzzles on

new media are outlined comparing with the original

puzzles. It is concluded that our systematic approach is

effective for flexibly parameterizing and creatively

extending the original puzzles.

2. Abstract Models of Puzzles

2.1 Permutation Puzzles
 The Rubik's cube is one of the most popular puzzles

and there are several variations such as the Megalinx and

the Pyraminx (see Figure 4). They differ in shapes and

the number of elements, but have similar structure. These

are classified as permutation puzzles because the

operations on the puzzles can be characterized as

permutations between elements.
 Y

 n'iS
SS

z- I---------

 r
oa /0 ~x_W© x-

 e~pr ----- in gx
io

z r~Y

s/ !/

Figure 2 The 23 Rubik's cube and a numbering

 For simplicity, we consider the 23 Rubik's cube,

which consists of 2x2x2 blocks. Figure 2 shows the 23

Rubik's cube. The elements in the surface of the cube are

numbered from 1 to 24. Note that only 6 different colors

are enough to color the surface of the cube. The color

mapping is one of the important factors characterizing

the puzzle.

 The 23 Rubik's cube has 12 operations: 90°

clockwise (or anti-clockwise) rotations of four blocks

around the positive (or negative) direction of each axis.

However, there are redundancies between the operations

and it is sufficient to consider only three operations x+, y+

and z+. We define the operational redundancy of the 23

Rubik's cube as 9/12, Redundancy is another important

2

factor for characterizing puzzles.

 Operations x+, y+ and z+ can be denoted as the

following (4-4.4)-type expressions: sequences of three

cyclic permutations, each of length 4.

x+ _ (1 2 3 45 21 20 10X8 22 17 9)

y+ _ (5 6 7 8X1 12 14 21X2 9 13 24)(1)
z+ _ (9 10 11 12X1 17 16 6X4 18 13 5)

 If we insert the elements of the last permutation into

the elements of the second permutation in (1), we have

the following (4.82)-type expressions.

x+ _ (1 2 3 4X5 8 21 22 20 17 10 9)2

y+ _ (5 6 7 8X2 1 9 12 13 14 24 21)2(2)
z+ _ (9 10 11 12X1 4 17 18 16 13 6 5)2

 Similarly, (123)-type expressions can be defined as

follows (this is the maximum length expression).

x+ _ (1 5 6 2 21 22 3 20 17 4 10 9)

y+ _ (2 1 5 9 12 6 13 14 7 24 21 8)3(3)
z+_(9 1 4 10 17 18 11 16 13 12 6 5)3

 Based on the above analysis (similar analysis can be

done for the Megalinx and the Pyraminx), we can derive

an abstract operation model Mp of permutation puzzles as

follows:

Mp = (X, C, rp, R, s, t) where
•

•

Thus we car

set of cycles.

X = { 1, 2,..., n} : a set of n elements;

co : X--> C = {c1, c2, ..., cp}: a color mapping. C
 is a set ofp colors;

R= {r1, r2, ..., rm}: a set of m operations, and

 9; t 9; z k = pi1 1-'12 ...p9;lk=1,2,...,m) (4) (i

s: an initial state obtained by randomly repeating

 operations from the goal state;

1: the goal state that is a sequence of the numbers
 labeled to the elements.

In (4), each permutation p0 corresponds to a cycle.

we can define a puzzle graph, which consists of a

2.2 Cyclic Puzzles

 We can classify the puzzles such as the Lightsout,

the Lightsout cube, and the Rubik's clock in Figure 7 as

cyclic puzzles. This is because when we repeat the same

operation on the puzzle, the state of the puzzle changes

cyclically and returns to the original state after a fixed

number of operations.

 For example, the Lightsout has 5x5 buttons with

lights and the Lightsout cube has 3 x3 x6 buttons with
lights. The goal of the puzzle is to turn off all the lights

or change all the colors of the lights to the same one.

Pressing one button toggles the lights of buttons of the

one selected and its neighbors.

 The method for solving the Lightsout puzzle has

been studied in [5]; by pressing each button twice, the

ON/OFF state returns to the original state. A solution can

be determined whether each button is pressed once or not.

Therefore, the Lightsout puzzle can be formulated as

follows: for a given graph G=(V, E), we define the
matrix Alai]] as

a _1 (i= j or e=(v,,v~)EE)(5) '~ 0 (
e = (v1, v1) 0 E)

 The matrix A represents the toggling rules in regards
to the buttons. We denote the solution vector as x ={x1,

x2,..., xn} where xi =1 (pushed) or xi =0 (not pushed).

Further we denote an input vector as b= { b i , b2,..., bn }

which represents an initial state of the buttons. To obtain

a solution, we define an equation Ax=b where

b, = al;xi O+ a2,x2 O+ • • • O+ a25;x25, i =1,...,25 (6)

The equation Ax=b has a solution if and only if r(A)=r([A

b])[5].
 We denote the current state of the buttons as y = {y i ,

y2,..., yn} and when push(vi) is performed, the state y is
replaced by

yi - yi O+ a; (mod2), j = 1, ..., 25. (7)

 Figure 7(c) shows the Rubik's clock, which has

more complicated structure. Each clock has 12 states,

and ON/OFF states of four switches changing toggling

rules between clocks. There are 16 different sets of rules

and three types of effects: positive, negative, and no

effect. However, the basic structures of these three

puzzles are similar. It has been shown that the
operational redundancy of the Rubik's clock is 112/128

while that of the Lightsout is 2/25[2].

 Based on the analysis, we can define an abstract

model M, of cyclic puzzles as

3

•

•

•

•

•

=(y ,q,A,R,b,t)where

 y = [Y1, y2,..., yin], yiE { 1, 2,..., q}: a vector of

 element states;

A={A1, A2,..., Ap}: a set of n x m adjacency

 matrices;

R={r1, r2,..., rn}: a set of operations where

r;:y;F-- y; O+ay(modq),i=1,...,n,j=1,...,

m.(8)

 b: an initial state (or input pattern)

 t : the goal state.

3. Generation and Evaluation

3.1 Permutation Puzzles
Puzzle Generator: Based on the model, we implement a

puzzle generator that allows a user to define their own

puzzle. Figure 3 shows a user interface of the

permutation puzzle generator. To define a new puzzle,
the user needs to input the number of elements,

expressions for the operations, and a color mapping. An

example of defining a puzzle is shown in the left window.

We use a spring algorithm [6] for the layout. However,

we observe that it sometimes fails to achieve a good

layout. Thus we allow the user to interact with the

drawing to improve the layout. An example of the layout

is shown in the right window. To operate the layout as a

puzzle, the user can simply use drag and drop to move an
element or to rotate a cycle. Then the cycle that contains

the element and the other cycles that are included in the

operation rotate together.

 Operations

 •
.1024'....•
 4=,1.5.8.22122.3.20. 17.4.10.9;"3•
;c= .8. I. 4. 10. 17. 18. 11. 16. 13. 12. 6. 5r 3 '-.1b.=12. 1,,.5 9.12.6. 13.14.7.24. 21• ~•

• / iS12I.22. 24. 231 `.•• 5=1I3.14.16.151•••,•
 S=I17.18.20.191 .̀. 5=19. 10. 11. 121 .•

••• L.JJ•

Coloring:....

Figure 3 User interface of a permutation puzzle generator

4D
Physical world (3D)

 (a) 102x 3Rc

(b) Megalinx (c) Pyraminx (d) 23 Rubik's cube (e) 33 Rc (f) 43 Rc (g) Rings

Abstract model

S. u

S.

S•

t/

,!- 1,

 ~~ !f "Sr

IT.

1i

o

Z
3 20

5

6

7

••

 • •

• • • • •° •
• ••

• •

 }~
•Y

e1•O •z
ok c •

 (A) Direct conversion

O O
° O.

• °• • • . x n n
f •»••.p
^• • • Iv

•
,T

GRAPH (2D)

7 7

2 5

 A0:
olwi

o ot.°404P°o
 025

 ee°FTiU
6

0o0 O00O7 O o O

 (B) Parametric generation

' —13
1 ® ̀^(O

i

I

r

2

CD

ar

M 26 2 2

 21 26

is is

x J 6 ',f
 Jl

ar »
 :a)

)

76 2a

 i, b

A

r
is

i6

,2

+ 9

f

 /.6 +5 12 1T r i

T

6

+
2

 616

9

1r +t6
f)

,0 f

 it

)0
a222s

u

(C) More amusing generation

Figure 4 Existing permutation puzzles and generated puzzles on graph media

 11
30 .~ I

n r i
e

Puzzles on Graph. Media: In Figure 4, the existing

permutation puzzles are shown in the upper part and

generated puzzles on graph media are shown in the lower

part. In (A), direct conversions of the existing puzzles are

presented where all graphs in (A) are planar. In fact, the

graphs corresponding to the (4.82)-type and the

(123)-type expressions of the 23 Rubik's cube are planar
and the longest expression of the n3 Rubik's cube can be

modeled as a planar graph for any n >_ 2 [3]. Figure 4(B)

shows examples of the new puzzles with small size. Note

that sometimes hand drawn drawings can be more

amusing and attractive for the users as shown in Figure

4(C).

Table 1 Comparison between media for permutation puzzles

 Symmetry

See the whole

 Variations

Color mapping

 Size
Decomposition

of problem
 Layout

Physical Media Granh Media

 3D symmetry

Can't see the whole at

 a glance

 Rigid to change

 Each plane with a

 same color

 Fixed

 Physically fixed

 Fixed

 2D symmetry

+Can see the whole at

 a glance
 +Easy to change

 +Flexible to paint

 +Easy to change

+Sometimes reveal

 +Many variations

4

 Table 1 shows comparisons between media of

existing puzzles (physical) and generated puzzles (graph).

From Table 1 we can see that graph media have merits in

most items comparing with existing puzzles (see + in the

table).

Implementation on Robot: We have preliminarily tried

to map a permutation puzzle onto elements (a head lamp

and four foots) of a robot called AIBO that is a

commercial product by SONY. Figure 5 shows a scene,

where the upper-left graph puzzle is mapped onto the

AIBO. As the AIBO has a voice sensor, the AIBO

elements are operated with voice commands. In the robot

puzzle, information about connectivity is lost. This makes
the puzzle more difficult but interesting.

so

• •

 I I

e

ey

Figure 5 A graph puzzle and its corresponding robot puzzle

3.2 Cyclic Puzzles
Puzzles on Graph/Block Media: Figure 6 shows a user

interface for a cyclic puzzle generator. A puzzle (i.e.

toggling rules) is defined in the lower-left window and

the rules are illustrated using L-mapping [6] in the

lower-right window. An `up and down box puzzle' is

shown in the upper window.

 Figures 7(C1)-(C3) show variations of the layouts of

cyclic puzzles that correspond to n-color cyclic (or

multi-state) puzzles. We applied various graph drawing

methods to achieve a variety of layouts for the puzzle.

Figure 7(B1) shows an orthogonal layout [6] and Figure

7(B2) shows a visibility representation [6]. Figure 7(A)

shows a symmetric layout of the Lightsout cube, which

uses the concept of concentric circles.

 Table 2 shows comparisons among media for cyclic

puzzles: Lightsout, Rubik's clock, and graph/block

puzzles. From Table 2 we can see that graph/block media

5

have merits in several items comparing with

puzzles (see + in the table).

existing

Blocks

MAm WV WV a4741/

 1. 1. O. 1. 0. 0, S. S. 4 ~..1. 1.0.C
a1.I.S,01.R0
1.411.1.1.11.5 Q

0.5.i 1.1.1:Ls.1 I ~ ^. & i 1. 1. Si(1R41.*1 .1
Adjacency matrix

11--(21-43) (51-451-441 (71-48',49

Graph

Figure 6 User interface for cyclic puzzles

Table 2 Comparison among media for cyclic puzzles

Adjacency

Planarity

 See the
 whole

Variations
 Size

 Layout

Li2htsout Rubik's clock Graoh/block

 See

explicitly

 Planar

possible

 Fixed

 Fixed

 Fixed

 Implicit

Non-planar

impossible

 Fixed

 Fixed

 Fixed

Can choose either

 Planar a.m.a.p.

 +possible

+Easy to change

+Easy to change

+Many variations

Sound puzzles: We generated a sound puzzle where a

familiar melody with 7 notes (see Figure 7(c4)). Note that

this puzzle is very similar to `up and down' puzzle in

Figure 7(C1) except listening instead of viewing. We

asked subjects to solve the puzzle. The subjects all are

experts of music. Their impressions on this puzzle are as

follows: This is very fresh and interesting. But it is

difficult to solve even with 7 notes. 4 notes are adequate

for beginners. This puzzles seems very useful for music

education of both children and adults.

4 Concluding Remarks

 We present a new application for inventing new

puzzles. We define abstract models for permutation
and cyclic puzzles which can be modeled as puzzle

graphs. Based on these models, we implement two

puzzle generators and produce various puzzles on
various media. Using the puzzle generators, we create

new puzzles. Moreover by applying various graph

drawing algorithms [6], we create new user interfaces

for a puzzle with different attractions.

 Our ultimate goal is to develop software that

implements the puzzle generators and various layouts, so

that the users can define their own puzzles and then

communicate the puzzles with small

devices, such as PDA or mobile phones.

communication

iII~%
volvaveg

(a) Lightsout cube (3D)

 n?

(b) Lightsout (2D) (c) Rubik's clock (2.5D)

Abstract model

GRAPH •

 • • • .•

 ••
••• •

• •

 r • ••• ••• • •

 •

(A) Lightsout cube (2D)

GRAPH &

BLOCK

 IIlir

(B1) Orthogonal layout

 GRAPH &
 BLOCK !Mil

 Jelin
111111111

 (B2) Visibility layout

 (B) Generalized Lightsout (2D)

BLOCK

BLOCK

(C1) Up/down

(C2) Color

SOUND

(C3) CO
A • • A A •

•••••• •

(C4) Music

(C) Multiple-state Lightsout (1D)

Figure 7 Existing cyclic puzzles and generated puzzles on various media

References

[1] Maeda, A., Sugiyama, K. and Mase, K.: Conversion
 of permutation puzzles and development of

 permutation puzzles generators, IPSJ SIG Notes
 Human Interface, No.101, 33-40, 2002. (in Japanese)

[2] Maeda, A., Sugiyama, K. and Mase, K.: Conversion
 of cyclic puzzles and development of cyclic puzzles

 generators, IPSJ SIG Notes Human Interface, No.101,
41-48, 2002. (in Japanese)

[3] Sugiyama, K., Hong, S. and Maeda, A.: The puzzle
 conversion and layout problem, Research Report

 KS-RR-2003-002, JAIST, 13p, 2003.

[4] Sugiyama, K., Hong, S. and Maeda, A.: The puzzle
 layout problem, Proc. of GD'03, Perugia, Sept. 2003.

 (to appear in Springer LNCS)

[5] Aoki, S., A location problem with variables on
 Boolean field, B. Eng. Thesis in Information

 Engineering, Toyohashi University of Technology,

 1997. (in Japanese)

[6] Sugiyama, K.: Graph drawing and applications for
 software and knowledge engineers, World Scientific,

 2002,

6

