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Abstract 

   To invent new puzzles, we take a systematic approach called divergence via abstraction. Existing popular 

puzzles called permutation puzzles and cyclic puzzles are abstracted and converted into other media such as graphs, 

blocks, sounds, and robots, while preserving their logic. We implement puzzle generators on different media and 

variations of generated puzzles are shown. Merits and demerits of new puzzles are evaluated comparing with the 

original puzzles. This systematic approach can flexibly parameterize and creatively extend the puzzles.

Keywords: systematic approach, divergence via abstraction, puzzle invention, media conversion

1. Introduction 

   Puzzles have been continually developed and 

extremely polished in a long history. Therefore, popular 

puzzles have sophisticated logical structures, beautiful 
shapes, and attractive user interfaces. However, usually it 

is too difficult to solve the Rubik's cube, for example, 

and so it is desirable to parametrically change the levels 

of difficulty of the puzzles. Moreover, it is interesting to 

realize the puzzles on different media. Thus, to make the 

world of puzzles further richer and to design new 

interfaces of puzzles, we have carried out a systematic 

approach called divergence via abstraction. The basic 

idea of the approach is illustrated in Figure 1 concretely 

and conceptually. Here existing popular puzzles are 

abstracted and converted into other media such as graphs, 

blocks, sounds, and robots, while preserving their logic. 

Using this approach, we can invent new puzzles [1, 

2,3,4]. 

  In this paper, we are concerned with two classes of 

puzzles, permutation puzzles and cyclic puzzles. We
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media. Using these puzzle generators, we can 

parametrically change the levels of difficulty and invent 

new puzzles that have new aspects and/or unexpected 

attractiveness. Merits and demerits of new puzzles on 

new media are outlined comparing with the original 

puzzles. It is concluded that our systematic approach is 

effective for flexibly parameterizing and creatively 

extending the original puzzles.

2. Abstract Models of Puzzles 

2.1 Permutation Puzzles 
  The Rubik's cube is one of the most popular puzzles 

and there are several variations such as the Megalinx and 

the Pyraminx (see Figure 4). They differ in shapes and 

the number of elements, but have similar structure. These 

are classified as permutation puzzles because the 

operations on the puzzles can be characterized as 

permutations between elements. 
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Figure 2 The 23 Rubik's cube and a numbering 

  For simplicity, we consider the 23 Rubik's cube, 

which consists of 2x2x2 blocks. Figure 2 shows the 23 

Rubik's cube. The elements in the surface of the cube are 

numbered from 1 to 24. Note that only 6 different colors 

are enough to color the surface of the cube. The color 

mapping is one of the important factors characterizing 

the puzzle. 

  The 23 Rubik's cube has 12 operations: 90° 

clockwise (or anti-clockwise) rotations of four blocks 

around the positive (or negative) direction of each axis. 

However, there are redundancies between the operations 

and it is sufficient to consider only three operations x+, y+ 

and z+. We define the operational redundancy of the 23 

Rubik's cube as 9/12, Redundancy is another important
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factor for characterizing puzzles. 

  Operations x+, y+ and z+ can be denoted as the 

following (4-4.4)-type expressions: sequences of three 

cyclic permutations, each of length 4. 

x+ _ (1 2 3 45 21 20 10X8 22 17 9) 

y+ _ (5 6 7 8X1 12 14 21X2 9 13 24)(1) 
z+ _ (9 10 11 12X1 17 16 6X4 18 13 5) 

 If we insert the elements of the last permutation into 

the elements of the second permutation in (1), we have 

the following (4.82)-type expressions. 

x+ _ (1 2 3 4X5 8 21 22 20 17 10 9)2 

y+ _ (5 6 7 8X2 1 9 12 13 14 24 21)2(2) 
z+ _ (9 10 11 12X1 4 17 18 16 13 6 5)2 

   Similarly, (123)-type expressions can be defined as 

follows (this is the maximum length expression). 

x+ _ (1 5 6 2 21 22 3 20 17 4 10 9) 

y+ _ (2 1 5 9 12 6 13 14 7 24 21 8)3(3) 
z+_(9 1 4 10 17 18 11 16 13 12 6 5)3 

  Based on the above analysis (similar analysis can be 

done for the Megalinx and the Pyraminx), we can derive 

an abstract operation model Mp of permutation puzzles as 

follows: 

Mp = (X, C, rp, R, s, t) where
• 

•

Thus we car 

set of cycles.

X = { 1, 2,..., n} : a set of n elements; 

co : X--> C = {c1, c2, ..., cp}: a color mapping. C 
 is a set ofp colors; 

R= {r1, r2, ..., rm}: a set of m operations, and 

             9; t 9; z                               k        = pi1 1-'12 ...p9;lk=1,2,...,m) (4)     (i 

s: an initial state obtained by randomly repeating 

 operations from the goal state; 

1: the goal state that is a sequence of the numbers 
 labeled to the elements. 

In (4), each permutation p0 corresponds to a cycle. 

we can define a puzzle graph, which consists of a

2.2 Cyclic Puzzles 

  We can classify the puzzles such as the Lightsout, 

the Lightsout cube, and the Rubik's clock in Figure 7 as



cyclic puzzles. This is because when we repeat the same 

operation on the puzzle, the state of the puzzle changes 

cyclically and returns to the original state after a fixed 

number of operations. 

   For example, the Lightsout has 5x5 buttons with 

lights and the Lightsout cube has  3  x3  x6 buttons with 
lights. The goal of the puzzle is to turn off all the lights 

or change all the colors of the lights to the same one. 

Pressing one button toggles the lights of buttons of the 

one selected and its neighbors. 

   The method for solving the Lightsout puzzle has 

been studied in [5]; by pressing each button twice, the 

ON/OFF state returns to the original state. A solution can 

be determined whether each button is pressed once or not. 

Therefore, the Lightsout puzzle can be formulated as 

follows: for a given graph G=(V, E), we define the 
matrix Alai]] as 

a _1 (i= j or e=(v,,v~)EE)(5)       '~ 0 (
e = (v1, v1) 0 E) 

  The matrix A represents the toggling rules in regards 
to the buttons. We denote the solution vector as x ={x1, 

x2,..., xn} where xi =1 (pushed) or xi =0 (not pushed). 

Further we denote an input vector as b= { b i , b2,..., bn } 

which represents an initial state of the buttons. To obtain 

a solution, we define an equation Ax=b where 

b, = al;xi O+ a2,x2 O+ • • • O+ a25;x25, i =1,...,25 (6) 

The equation Ax=b has a solution if and only if r(A)=r([A 

b])[5]. 
   We denote the current state of the buttons as y = {y i , 

y2,..., yn} and when push(vi) is performed, the state y is 
replaced by 

yi - yi O+ a; (mod2), j = 1, ..., 25. (7) 

   Figure 7(c) shows the Rubik's clock, which has 

more complicated structure. Each clock has 12 states, 

and ON/OFF states of four switches changing toggling 

rules between clocks. There are 16 different sets of rules 

and three types of effects: positive, negative, and no 

effect. However, the basic structures of these three 

puzzles are similar. It has been shown that the 
operational redundancy of the Rubik's clock is 112/128 

while that of the Lightsout is 2/25[2]. 

  Based on the analysis, we can define an abstract 

model M, of cyclic puzzles as
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•

•

•

• 

•

=(y ,q,A,R,b,t)where 

 y = [Y1, y2,..., yin], yiE { 1, 2,..., q}: a vector of 

 element states; 

A={A1, A2,..., Ap}: a set of n x m adjacency 

 matrices; 

R={r1, r2,..., rn}: a set of operations where 

r;:y;F-- y; O+ay(modq),i=1,...,n,j=1,..., 

m.(8) 

 b: an initial state (or input pattern) 

 t : the goal state.

3. Generation and Evaluation 

3.1 Permutation Puzzles 
Puzzle Generator: Based on the model, we implement a 

puzzle generator that allows a user to define their own 

puzzle. Figure 3 shows a user interface of the 

permutation puzzle generator. To define a new puzzle, 
the user needs to input the number of elements, 

expressions for the operations, and a color mapping. An 

example of defining a puzzle is shown in the left window. 

We use a spring algorithm [6] for the layout. However, 

we observe that it sometimes fails to achieve a good 

layout. Thus we allow the user to interact with the 

drawing to improve the layout. An example of the layout 

is shown in the right window. To operate the layout as a 

puzzle, the user can simply use drag and drop to move an 
element or to rotate a cycle. Then the cycle that contains 

the element and the other cycles that are included in the 

operation rotate together. 

     Operations 
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Figure 3 User interface of a permutation puzzle generator
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(C) More amusing generation

Figure 4 Existing permutation puzzles and generated puzzles on graph media
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Puzzles on Graph. Media: In Figure 4, the existing 

permutation puzzles are shown in the upper part and 

generated puzzles on graph media are shown in the lower 

part. In (A), direct conversions of the existing puzzles are 

presented where all graphs in (A) are planar. In fact, the 

graphs corresponding to the (4.82)-type and the 

(123)-type expressions of the 23 Rubik's cube are planar 
and the longest expression of the n3 Rubik's cube can be 

modeled as a planar graph for any n >_ 2 [3]. Figure 4(B) 

shows examples of the new puzzles with small size. Note 

that sometimes hand drawn drawings can be more

amusing and attractive for the users as shown in Figure 

4(C). 

Table 1 Comparison between media for permutation puzzles

 Symmetry 

See the whole 

  Variations 

Color mapping 

    Size 
Decomposition 

of problem 
  Layout

Physical Media Granh Media

  3D symmetry 

Can't see the whole at 

    a glance 

  Rigid to change 

 Each plane with a 

    same color 

     Fixed 

  Physically fixed 

     Fixed

  2D symmetry 

+Can see the whole at 

    a glance 
 +Easy to change 

 +Flexible to paint 

 +Easy to change 

+Sometimes reveal 

 +Many variations
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  Table 1 shows comparisons between media of 

existing puzzles (physical) and generated puzzles (graph). 

From Table 1 we can see that graph media have merits in 

most items comparing with existing puzzles (see + in the 

table). 

Implementation on Robot: We have preliminarily tried 

to map a permutation puzzle onto elements (a head lamp 

and four foots) of a robot called AIBO that is a 

commercial product by SONY. Figure 5 shows a scene, 

where the upper-left graph puzzle is mapped onto the 

AIBO. As the AIBO has a voice sensor, the AIBO 

elements are operated with voice commands. In the robot 

puzzle, information about connectivity is lost. This makes 
the puzzle more  difficult but interesting. 

so 

• • 

   I I 

e                              

ey 

Figure 5 A graph puzzle and its corresponding robot puzzle

3.2 Cyclic Puzzles 
Puzzles on Graph/Block Media: Figure 6 shows a user 

interface for a cyclic puzzle generator. A puzzle (i.e. 

toggling rules) is defined in the lower-left window and 

the rules are illustrated using L-mapping [6] in the 

lower-right window. An `up and down box puzzle' is 

shown in the upper window. 

  Figures 7(C1)-(C3) show variations of the layouts of 

cyclic puzzles that correspond to n-color cyclic (or 

multi-state) puzzles. We applied various graph drawing 

methods to achieve a variety of layouts for the puzzle. 

Figure 7(B1) shows an orthogonal layout [6] and Figure 

7(B2) shows a visibility representation [6]. Figure 7(A) 

shows a symmetric layout of the Lightsout cube, which 

uses the concept of concentric circles. 

  Table 2 shows comparisons among media for cyclic 

puzzles: Lightsout, Rubik's clock, and graph/block 

puzzles. From Table 2 we can see that graph/block media

5

have merits in several items comparing with 

puzzles (see + in the table).

existing
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Figure 6 User interface for cyclic puzzles 

Table 2 Comparison among media for cyclic puzzles

Adjacency 

Planarity 

 See the 
 whole 

Variations 
  Size 

 Layout

Li2htsout Rubik's clock Graoh/block

  See 

explicitly 

 Planar 

possible 

 Fixed 

 Fixed 

 Fixed

 Implicit 

Non-planar 

impossible 

 Fixed 

 Fixed 

 Fixed

Can choose either 

 Planar a.m.a.p. 

  +possible 

+Easy to change 

+Easy to change 

+Many variations

Sound puzzles: We generated a sound puzzle where a 

familiar melody with 7 notes (see Figure 7(c4)). Note that 

this puzzle is very similar to `up and down' puzzle in 

Figure 7(C1) except listening instead of viewing. We 

asked subjects to solve the puzzle. The subjects all are 

experts of music. Their impressions on this puzzle are as 

follows: This is very fresh and interesting. But it is 

difficult to solve even with 7 notes. 4 notes are adequate 

for beginners. This puzzles seems very useful for music 

education of both children and adults.

4 Concluding Remarks 

  We present a new application for inventing new 

puzzles. We define abstract models for permutation 
and cyclic puzzles which can be modeled as puzzle 

graphs. Based on these models, we implement two 

puzzle generators and produce various puzzles on 
various media. Using the puzzle generators, we create 

new puzzles. Moreover by applying various graph 

drawing algorithms [6], we create new user interfaces 

for a puzzle with different attractions.



  Our ultimate goal is to develop software that 

implements the puzzle generators and various layouts, so 

that the users can define their own puzzles and then

communicate the puzzles with small 

devices, such as PDA or mobile phones.

communication
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Figure 7 Existing cyclic puzzles and generated puzzles on various media
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