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Abstract

  We propose geometrical models of features of a learning problem. We show that 
there are two alternative ways to interpret similarities between features. The syntactic 
way is well studied and applied in feature selection while the semantic way, in the 
context of kernel methods, is less understood. We show that the latter is equivalent 
to feature semantic similarity (FSS) and there are a number of methods that fall into 
this framework. We analyze to show relations among these methods and differences to 
feature selection ones. Our analysis shows a natural extension to all these methods. It 
automatically suggests that this framework can be applied in a general context. 

  We also note that all the methods using FSS are inherently unsupervised in nature. 
None of these methods make use of labels for classification or regression tasks. On the 
other hand, the feature selection counterparts consider labels as an important informa-
tion. Therefore, we propose an algorithm to learn the feature proximity matrix for FSS 
for supervised tasks. We show the merit of our algorithm in various applications.

1 Introduction

With the understanding that kernel matrix should contain all the necessary information for 
learning method to exploit, it is crucial that a kernel matrix must carry the information 
of the semantics of the problem at hand. However, it is always difficult to incorporate 
background knowledge of the problem into kernels for two reason. First, we do not know 
what is the relevant information that could be helpful to kernel methods. Second, it is not 
always possible to incorporate some information into kernels, as kernels require it to be 
represented as dot products in some space. 

There are various kernels proposed in practice, each of them, either implicitly or explic-
itly, incorporates some background knowledge in a very specific form. The background 
knowledge can be seen clearly from non-vectorial data. Examples can be seen as in discrete 
structures, substructures are used with the understanding that the semantics of substruc-
tures carries the semantics of the whole object (chemical interactions occur at substructures,
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protein interactions happen at subsequences of amino  acids)  . Knowing the data lying in a 
small subspace, kernels can be constructed with low rank using kernel PCA [19] . Assuming 
a latent semantics of data, kernels should represent the data like that in latent semantic 

analysis [3]. Feature selection [11], as a general tool for data preprocessing, should be used 
before kernels are computed. Having known a generative process of the data, kernels should 

take that into account to construct kernels such as Fisher kernels [7] or marginalized kernels 

[?]. Knowing a stochastic process on the graph constructed from data objects, kernel such 
as diffusion kernels [10], von Neumann kernels [?] are to used to take that knowledge into 
kernel construction. 

One of the phenomena that has not received enough attention is that in data described by 

features, it is possible that features have certain semantic similarity among them. This phe-

nomenon could be seen from textual semantic domain where words has semantic relations. 

In image domain, locations of pixels describing the images should reflect pixels' similarity, 

closer pixels should contribute more to image similarity given that images' similarity is 

made to be robust to small changes. 

In this work, we propose two geometrical ways to interpret feature similarity (section 
2) in the context of kernel methods [18] . Both these interpretations relied on the non-
orthogonality of a basis (used to explain features geometrically) to encode similarity among 
features. While one is useful and well applied to feature selection, the other received a lim-
ited attention but equivalent to FSS. We show that there are many methods that fall into 
the latter framework. We draw its relation with Fisher kernels (section 3) and a probabilis-
tic interpretation. With the notion of feature proximity matrix (FPM), we show similarities 
and differences between the methods in this framework (section 4), such as empirical ker-
nels, von Newmann kernels, diffusion kernels, etc. We also show the difference to feature 
selection methods (section 5). We then propose a general kernel taking feature similar-
ity into account with discriminative information of labels for classification (section 6). It 
has the property of the very first kernel with feature similarity based on label information 
(section 6). We present some experiments afterward on a simulation data and Information 
Retrieval data to show the merit of the general kernels and the merit of the framework itself 
(section 7) . Conclusion comes at last.

2 A Geometrical Model for Feature Semantic Similarity

Given a training set X = {xi} 1, where xi = (xi,, x~2, , xid)T E Rd (xi, E R). We abuse 
the notion to denote X as the matrix of data as well, namely X = (xi Ix2 1 • • • lxn) E Rd*n, 
each data point is a column in X. Denote the set of indices of features is D = {1, 2, , d} 
and I C D as a subset of D. Assume that we have label data, namely Y = (yl, Y2 • , yn)T E 
Rn is the desired response vector. In case yi E {+1, —1}, we have a binary classification 
problem. 
Denote xi = (xi~ , • • , xik )T, j • • • ,k E I be the projection of xi in the subset of indices 
I. Feature selection problem is to choose I such that the new data matrix X' = {.xi } 1 
gives a better estimation of the desired response (target) vector Y. A more general prob-
lem is to give a weight to each feature differently for a better estimation. It is to find
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 a vector w  =  (wi, w w T E Rd, usually w • > 0 such that X' = {x }'~ where 
xi _ (wi xii , w2x~2 • • • , w7,,xid )T , gives a better estimation of the target vector Y.

2.1 Feature Interpretations

In this work, we take the interpretation of features as follows. We consider a feature as a 
measurement of a data object in some linear spaces. Suppose the training data §i is in a 
linear space S. The kth measurement of §i is, in our model, a dot product of the training 
example §i with a basic vector ek of S. It is

xik=<§i,ek>S• (1)

Denote the matrix of all basis vectors E = (el, e2 • • ed), (also E = (eile2l • • • ed) in matrix 
form). Then the training data recorded is xi = ET • §i E Rd. 

Without preprocessing on features, one can assume that all features are independent. This 

is equivalent to assuming that all ei are orthogonal, that is

< ei, ej >S= Sij, (2)

where (ij is the Kronecker's delta notion. § is then estimated as

         d 

§i r., xi = E xik ek • 
k=1

(3)

When E is orthogonal, (1) and (3) are equivalent. However, they are not the same if 
E is not orthogonal. There is a difference between interpretation in (1) and (3) that we 
exploit to provide a new model for feature similarity later. The difference can be seen from 
a linear kernel constructed using the two interpretations. The difference is illustrated in 
figure 1. We name the interpretation in (1) as syntactic similarityl and in (3) as semantic 
similarity. Mathematically, the two interpretations can be switched from one to another 
with appropriate linear transformations. However, the key difference is at the practical 
implications on the relations with basic vectors: in (1) feature values come from projection, 
as a kind of sensing, of data onto the basic vectors while in (3), feature values are used for 
the reconstruction of data from the basic vectors. 

It is noteworthy that we do not claim which interpretation is correct. Rather, these are two 

alternative interpretations that are suitable to different problems. In fact, we will analyze 

to show that many other methods using feature similarity implicitly, follow either one of 

these interpretations. 

1See section 5 for an explanation .
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Figure 1: The difference between interpretations in a non-orthogonal basis. We show vectors 
x, = (x1, x2)T and = (y1, 712)T in (a): projection interpretation in (1) and (b): reconstruc-
tion interpretation in (3).

2.2 Feature Similarity and Kernels

According to the interpretation in (3) 
are also estimated as

, linear kernels [24, 18, 20] in Support Vector Machines

k(§i, §j) =< §i, §j >S 

< xj >8 

   dd 

xikek, xjkek >S 

k=1k=1 

       =< Xi, xj >IIgd •

The last equation is valid only if (2) holds true. 

However, the assumption of orthogonality of E, equivalently independence of features is 
sometimes too strong as we do not know anything about the process of generating these 
features. Feature weighting (also feature selection) is an attempt to break this assumption. 
The basic vectors are not assumed to have length 1 (but still orthogonal to each other). 
That is to assume < ei, ei >8= w? and < ei, ej >s= 0 for i j. The effect of this can be 
seen from the linear kernel matrix

< §i, §j

  d d 

>8 r..< xiei,xj~j> 

i=1i=1 

      d 

   = d wkxik Wkxjk' 
k=1

This is the dot product of the two vectors after feature weighting. 

set wi = 1 or wi = 0, and is a special case of feature weighting.

Feature selection is to
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In reality, feature weighting cannot represent certain kinds of relationship among features. 

One of the examples is semantic relation between words. Synonymy is a problem when two 

words have the same meaning in a given context [13,  81. In a unigram language model, 
two words are considered two orthogonal dimensions. In the above interpretation, their 

basic vectors coincide. For example, the two basic vectors are ei = ei . The bag of word 

representations of two documents (• • • ni, • • nj, • • )T and (• • • n • • nj, • • • )T, which differ 
at only the ith and jth positions, would be semantically the same if ni + nj = ni + nj. The 
feature weighting techniques such as TFIDF [16, 21] would fail to recognize the synonyms. 
This means that document representation should be unchanged if synonym words are used 

interchangeably. This relationship is not representable by feature weighting. 

When E is non-orthogonal, i.e. the features are semantically similar, to represent dot-

products (kernels), it is sufficient to use the so-called feature proximity matrix (FPM). 
Feature proximity matrix is the matrix of pairwise dot-product between basic vectors ei, 
denoted as 

             F = = {(ei, e7)}j=1'(4)

The benefit of having F is that when computing dot product of two training examples, it 

does not concern the space that training examples lie in, or the basis on which measurements 

are carried out. In other words, one does not have to define explicitly what are the space 

S and the basis E = {el, e2 • • • ed}. Instead, one can set the matrix F directly. This 
resembles the requirements of a kernel matrix of data objects [24]. For example, for x = 
{x1ix2•••Xd}T and x' = {xl,x2••.xd}T, then

   d d 

(x, x')s = (E xiei, E xiei) 
       i=1 i=1 

xix3 (ei, e3) 
i,j=1 

     = Exixjfij 
           i,j=1 

      =xTFx. (5)

One again, the difference between interpretations can be seen clearly from the construction 

linear kernels. As oppose to the above formula, dot product using the matrix F as:

(x,x)s=xTF-1x,

where F-1 is the (possibly pseudo-) inverse ofF. 

The feature proximity matrix must be positive semidefinite, as the way it is defined to be. 

This also resembles the kernel matrix of data objects [24]. When F = I, a dot product is in 
the usual sense as in Euclidean spacellIn with an orthogonal basis. When F is diagonal, it is 
equivalent to weighting features. To model similarity among features, F can be any positive
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semidefinite matrix. By setting no restriction on F rather than positive semidefiniteness, 

this framework can add additional information. 

Proposition 1. All possible dot products on Rd can be represented as  (•, A.). 

Proof can be found on any Linear Algebra textbook such as [?] . The implication of this 
theorem is as follows. All linear kernels on Rd imply some feature similarities in some linear 

spaces in the interpretation of this framework. This completes the picture of equivalent 

relations between three concepts: feature similarity, generalized linear kernels and the dot 

products of the form (5). It is noteworthy that [3], rooted in textual semantics, using 
LSA, also follows this form. The key difference in our work is that it is motivated from 

a general geometrical point of view. This is of vital importance as by coming from a 

general framework, we can safely induce that this framework is applicable to general context 
application, not textual semantics alone. This is later on discussed in the feature extraction 

subsection 4.3. 

We take some simple examples to illustrate the utility of feature semantic similarity. 

Example 1. When numerize ordinal data attributes for kernel methods, for example low, 

normal, high, very-high, each ordinal value usually becomes a new feature. By taking the 

order of values into account, it is necessary to say that high and very-high are semantically 

close. One can ensure this by having a high semantic similarity between them. 

Example 2. Given the data set X = {x1, x2, x3} where xi = (1, 0, 0)T, x2 = (0, 1, 0)T and 
x3 = (0, 0, 1)T. Traditionally, as (xi, xi) = 0, there is no similarity information encoded 
in this data set. If we know a priori that the first two features el and e2 are semantically 

close, then we wish to say that xl and x2 are similar to each other, but not to x3. The 

reason is that xi and x2 score 1 in one of the two semantically similar features, then they 

should have some similarity. One of the way to encode this similarity information is to use 

the feature proximity matrix F. For example, take

1 1 0 ) 
F= 1 1 0 

0 0 1

then xl Fx2 = 1, xl Fx3 = x2 Fx3 = 0. It is evident that by forcing (ei, e2) > 0, we can 
model the similarity between features ei and e2. 

Example 3. In measuring similarity between images for recognition and retrieval, one 

important requirement of the similarity measure is that it must be robust to small changes 

in images. A dot in either of the neighboring pixels would give a visually similar perception. 

However, when considering an image as a vector and a pixel as a independent dimension, 

the representation does not reflect neighboring pixels to be semantically similar. Therefore, 

if we set the feature proximity matrix to have high similarity between neighboring pixels 

(features), the representation would be robust to small change in neighboring pixels. For 
example, in figure 2, images (a) and (b) should have a higher similarity to each other than 
to image (c) .
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Figure 2: Image similarity: the images (a) and (b) should be more similar to each other than 
to  (c)  . In vector representation, the three images have the same similarity to each other. 
By enforcing nearby pixels to be similar, images (a) and (b) can have a higher similarity.

3 Feature Semantic Similarity and Fisher Kernels

The proposed framework holds a tight connection with feature extractors from generative 

models, namely Fisher kernels [7] . The way to compute kernels immediately shows the 
resemblance between Fisher scores and measurements of an object. Moreover, the roles of 
the inverses of Fisher information matrices [2] and kernel matrices of features is to model 
correlations among Fisher scores or features. This already suggests that the proposed 
framework would be interpreted as Fisher kernels with some generative models. It also 
suggests that Fisher scores can be interpreted as projection of objects in some spaces onto 
appropriate basic vectors. 

One of the ways to exploit generative models to learn kernels is proposed in the framework 
of Fisher kernels [7] . In this framework, Fisher scores are used as feature extractors for 
discriminative learning. A data object in a parametric probabilistic model, denoted q(.x1e), 
when the parameter is estimated as 0, is measured by Fisher scores 

             f(x)_(alnp(xIO) alnp(xI9) alnp(xIO))T •            —ae 1 ' ae2 aed

Kernels induced from a generative model are based on the dot products while taking into 

account similarity among parameters of the generative model. It is defined to be 

K(xi, xj) = f (xi)TI-1(g)f(x .i)(6) 

where I(0) is the Fisher information matrix of the generative model. 

The formula (5) resembles (6). It suggests that the original feature values can be interpreted 
as Fisher score of some family of distributions. Denote thatx,={x(1), .T,(2), x(d)1T

x(i) _
a In p(x 10)

aei
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Therefore

 In  p(x18) = 6 xi + g(x) 

p(x10) = h(x)exp{OTx}

for some g(x) and h(x). The last equation is in form of an exponential family [4]. This 
shows that feature values can be interpreted as Fisher scores of the exponential family of 

multinomial distributions [1]. 

The difference from the Fisher kernel point of view to our framework is that we do not 
require a parametric distribution to be assumed beforehand. It gives the flexibility to 

choose a suitable distribution for the task at hand. Instead, we can just learn the Fisher 
information matrix. 

From feature semantic similarity point of view, Fisher kernel is a special case where F = 
I-1(0). Recall that 

             I(B)ii = E[alnp(x1B) alnp(x1e)] = Ei[xii • xli] ae
i aeJ 

I(8) = Cov(X)

where Cov (X) is the covariance matrix of X . Therefore, up to a constant, /-1(0) acts as 
the whitening operator for the distribution. Fisher kernel is equivalent to the dot-product 

kernel in the whitened distribution.

4 Analysis of Feature Semantic Similarity

There are some works that similarity among features are implicitly or explicitly exploited 

in different ways but still be viewed from this framework. In these methods, the feature 

proximity matrix is set fixed or based on some other criteria. FSS provides a geometrical 
interpretation and natural extension to all these methods.

4.1 Context vector for feature similarity

For the task of generating bilingual lexicon, similarity among words is learnt using compa-

rable corpora from two languages [6] . The basic assumption behind all those works is that 
if two words are mutual translations, their collocates (the words that occur at the same 
location) are likely to be mutual translations as well (for example [15, 22]) . On that as-
sumption, standard approaches build context vectors for word pairs from the two languages 

and then compare context vectors utilizing translations. The problems of synonymy and 

polysemy can be solved by imposing similarity among features (words) when comparing 
context vectors. 

To consider two words v and w from two languages to be mutual translations or not, context 
vectors v and w are generated from comparable corpora. A context vector of a word v is 
defined to be the vector of association scores between v and a set of words in the context 

(ei E E): v = {a(v, el), a(v, e2),. • • a(v, ep)}T. Traditional approaches would compare two
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words from two languages by the dot product:  S(v, w) = >(e ,f)ED a(v, e)a(w, f), where D 
is a dictionary consisting of bilingual lexicons, used as seeds. It is formulated as: 

s(v, w) _ (v, tr(w)) 

In fact, this is a vector space model of a word by its context vectors with the basis 
el, e2, • • • , en, which is assumed to be orthogonal. Orthogonality means that no relations 
among basic vectors (words) are considered. To account for the problems of synonymy 
and polysemy, it is conjectured that the context vector can provide additional information. 
In [6], it is assumed that the context vector v is actually in the non-orthogonal basis of 

(sl, s2i • • , s„L) Si E E and the set of si-s is a subset of all the words in the context. 
The representation of the context vector of v in the original orthogonal basis spanned by 
(si, s2, • • , sin) then becomes 

                         v =QSv 

where 

                      //~~a(sl, el)...a(sm,el)                      Qs = 
a(sl, ep) ... a(s„t, ep) 

We name the matrix QS association matrix. This is equivalent to:

pa(si, ei) 
v = a(v, ei) • . . 

                       i=1 a(s,n, ei) 

In this case, the feature proximity matrix becomes F = {k(si, si)} =1 = QSQT and 
k (si, s,) = (4, 4) . From our perspective, the philosophy behind is that if two words v 
and v have a similar collocates, they form two basic vectors with large dot-product. The 

matrix F in this case is set using specific domain knowledge.

4.2 Smoothing and Sharpening 

In image processing, smoothing and sharpening mean averaging out pixel intensities to 
neighboring pixels for some desired effects. In fact, these operators are linear on features 
(as pixels), therefore also a part of FSS framework. It can be characterized by a linear 
matrix A = {ai~ }d_1 E Rd*d. In this matrix, ai7 encodes the neighborhood between itla 
and ith features. Smoothing or sharpening operators tranform x to x' as: x = Ax'. 
Linear kernels on this data after smoothing or sharpening then become 

k(xi, xj) = (xi, x) 
                            = (Axi, Ax j) 

                             = xT • (AT A) • x . 

This models feature semantic similarity with the similarity of ei (ith feature) and c as 

Iii = ~1=1 aila~l.

9



However, FSS provides a richer family kernel functions on images than what obtained from 

dot-product kernels with these image operators. The evidence is as follows. Suppose that 

these operators use a  distance-1 pixel neighborhood (d(i, j) = 1) as the smallest number 
of neighboring pixels for some pixel neighborhood function d. Then aij 0 if d(i, j) 1. 
Hence, fij � 0 if d(i, j) 2. In other word, by using the operators on a distance-1 
pixel neighborhood, it is equivalent to imposing a feature similarity of distance-2 pixel 
neighborhood. Therefore, setting a distance-1 pixel neighborhood with the FPM is not 

representable with those image operators. Hence, FSS provides a richer family of kernels 

than these operators do.

4.3 Feature Extraction Methods

There are a large number of methods to extract a small number of features for a specific 

task, such as PCA, ICA, CCA and LSA [4]. The methods provide computational efficiency 
by working with a small set of (new) features, making expensive methods also applicable. 
They also improve overall quality of the task by preprocessing data beforehand, stripping 

off irrelevant or noisy information. 

In these methods, data in Rd is projected into a subspace spanned by {w1, e2, • • , w,,,,} 
where wi E Rd, i = 1, m. The set of wi is usually orthogonal. Usually, m << d. The 

projection matrix is P = (wi, w2, • • , wr,t)T E Rrn*d projecting xi E Rd into Pxi = 
              mT (wi xi, w2 xi,•••,wxi)T E IF8"'Dot product, or linear kernel, in the reduced space is 

carried out as

k(xi, x3) = (Pxi, Pxj) 
      = xT PT Px j 

      = xi(PTP)xj•

Therefore, a linear kernel on the subspace after projection has KF = PT P as the feature 

proximity matrix. Therefore, fij = 2_,d_1 wiiwi3 encodes the similarity between ith and jth 
features. When i = j, it becomes a square of the weight of the ith feature.

4.4 Empirical Kernel Maps

It is known that kernel methods map data into a high (sometimes infinite) dimensional 
space. The mapping induces a natural vector representation of (possibly) infinite dimen-
sion via Mercer's theorem [18] . To shed a light on the mapping, sometimes it is useful to 
approximate the mapping using landmarks. Empirical kernel map [23] represents the map-
ping by evaluating on training data as follows. Given a set {x1, x2, • • , x,,}, the mapping

:X—>IEB'~ 

    = (k(x, xl), k(x, x2), . • • k(x, xn))
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is called the empirical kernel map w.r.t  {x1,  x2i  •  •  • , xn}. 

Kernel evaluation of the empirical kernel kemp is then carried out as

kemp (x, ) _ k (x, xi) • 
               i=1

k(.x xi).

This dot product is equivalent to endowing the feature space Rm with a new dot product 

(,) [17]. Denote the images of data points in the first kernel map as (x1), 0(3;2) ,xn), 
and Q be matrix with these vectors as columns. Then,

kemp(x, ) = E k(x, .xi) • k(x , xi) 
i=1 

= E(4'(x), 43(xi)) • (4)(xi), 43(x )) 
i=1 

= 4)(x)T • E.Nxi>4)(xi)T . (Ex') 
i=1 

=(13(x)T•S•`3(x') (7)

Here we denote S = 1 43(xi)4)(xi)T as the unnormalized scatter matrix of the data in 
the feature space. It is the scatter matrix of the original space if linear kernels are used. 

The above formula shows that empirical maps, belong to FSS framework where the feature 

proximity matrix is the unnormalized scatter matrix of the data. Note that an empirical 
kernel map is, up to a constant, an inverse of a Fisher kernel in terms of feature semantic 

similarity. Another thing to note is that regardless of data is still in original space or any 

feature space, the final kernel matrix remains unchanged.

4.5 von Neumann and Semantic Diffusion kernels

In [3], the authors proposed the latent semantic kernels aiming at taking into account 
semantical similarity between words in vector space models of documents. An automatic 

learning of those kernels is proposed in [9] . The von Neumann kernel is defined to be a 
kernel that satisfy the equilibrium between word similarity and document similarity. 

K = K(I - AK)-1 
= K + AK2 + A2 K3 + A3 K4 + • • • 

=XT • (I+AS+A2S2+...) .X

where S is a unnormalized scatter matrix of the data as in (7). By making the weight of 
high order terms in the von Neumann kernels decaying faster [9], they came to the semantic 
diffusion kernels [10].
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       A23 K=K-{- K2  ±2K3+3K4{-.• 
  =XT •(I+ S+ 21S2+...).X

These kernels can be casted as linear kernels with feature semantic similarity, where the 

FPM F = I + AS + A2S2 + • and I + S + 2, S2 + , respectively. Empirical kernel 
maps (4.4) can be considered as a special case in the sense that empirical kernel maps take 
only the second term in these FPMs.

4.6 Summary

In summary, there are some methods that can be interpreted as special cases of feature 
semantic similarity where the FPM is hard coded or learn using a totally different objectives. 
We summarize methods that use feature similarity implicitly and set the feature proximity 
matrix fixed following other criteria in table 1.

Method

Context vector 

Fisher kernels 

Smoothing 

Empirical kernels 

Feature extractions 

von Neumann kernels 

Diffusion kernels

Feature proximity matrix

       QS " 
I-1 
ATA 

S 
pTp 

I+aS+A2S2+ 

I+;;S+ ~~S2+...

Note

Q 
I: 
A 

S 
P 

S 

S

S: association matrix 
Fisher information matrix 

: smoothing operator 
= XXT, X: data matrix 

: projection matrix 
= XXT 

= XXT

Table 1: Summary of methods incorporating feature semantic similarity.

As we analyzed and summarized in the table, these methods are special intances our frame-

work of feature semantic similarity. The framework not only gives a natural way to general-

ize all these methods, it also suggests a natural way to combine these methods for desirable 

effect. For example, if onw assume a exponential process over the associations of words, 

context vector can be generated with von Neumann kernels by replacing S in the original 

von Neumann kernels with QSQS . If we assume a diffusion process on the smoothing op-
erators, combining these kernel construction methodology would give a deeper smoothing 

operator. 

It is noteworthy that in the methods that learn the feature proximity matrix (the last fourin 
the table 1), all of them rely on the matrix S = XXT, which can be called uncentralized 
scatter matrix. Of course, being uncentralized, the matrix S is sensitive data translation 
in the feature space. By combining higher powers of the matrix S, the effect is to have a 
higher level of propagation of feature similarity. Also, by using S, kernels for both in and 
out-of-sample extension can be computed solely on the feature space, meaning that they 
can be computed based solely on a original kernels without refering to any concrete feature
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space. This also means that by using different feature spaces, the matrix S may appear 
differently, but the final kernels remain the same. 

One thing can be learnt from von Neumann and diffusion kernels is that the exponential 
or diffusion process at the object level is translated to the exponential or diffusion process 
at feature level. This comes from the dual formulae:  Fyn,  = I + AS + A2S2 + • • • = I + 
AS(I - AS)-1 as opposed to K(I - AK)-1 with only a constant I differnt. Similarly, 
Fdf = I + S +  S2 + • • = exp(AS) while Kdf = Kexp(AK), which a scalar K different 
in the kernel computation. This is to say that if we assume such processes on objects, it 
is equivalent to understand that it is the process on feature. Therefore, feature similarity 
view give a dual interpretation of such processes, which could be useful in applications. 

A very important merit of the framework is that it provides a general geometrical view 
on these methods. An knowledge of all these method that can be taken advantage of is 
that all these methods are unsupervised in nature. All of them do not take into account 
label information. However, almost all (if not all) of them are used for supervised purpose. 
This opens a research direction of making use of label information to learn the feature 
proximity matrix adaptively for each task, not fixed as in those methods. We consider 
this is a significant theoretical contribution as it opens a new research direction to many 
commonly used methods.

5 Feature Similarity versus Feature Selection

Feature selection methods usually make an assumption that some features are redundant 

[11]. Filtering them out will increase performances on the problem. The notion of feature 
redundancy is used to describe when one feature does not bring any more information for a 
task given that a set of other features is already in use. It is usually in form of correlation. 

Feature redundancy does not follow the FSS framework. Istead, it makes use of the inter-
pretation in (1). It can be described as follows. Given the feature set E1 = el, e2 • • • , ck 
and ep E1. If we assume that ep is in the span of E1, then

ep = E aiei, ai E R. 
i=1

(8)

For any x E S, its representation is(xi =< x, ei >s)L 1. Then xp =< x, ep >s=< 
X, E 1 aiei >s= Ei l ai < x, ei >s= E 1 aixi• In this case, the feature measured by 
ep is completely determined by E1, therefore does not bring any more information. It is 

noteworthy that vice verse, when xp = E 1 aixi, ep = Eik aiei is a candidate for feature 
basic vector. In an extreme case, if xp = xi, one can safely make ep = ei. In this case, the 

similarity of ep and el can be induced from xp and xi if we use the interpretation in (1). 
This is the reason of naming this interpretation as syntactic similarity. 

In fact, in practice, this interpretation is used in many feature selection methods [25, 14, 
26, 5] . From the difference in interpretations, we can infer the difference in the families of 
methods, one for feature selection and the other for feature semantic similarity.
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6 Supervised Feature Semantic Similarity

As analysed above, our framework opens a new research direction of learning the feature 

proximity matrix in a supervised way, that it to learn the matrix for discriminative purpose. 
In this section, we realize this analysis by proposing a general purpose method followed by 

some concrete application benefiting from the framework.

6.1 A General Discriminative Feature Proximity Matrix

Denote S as the within class covariance matrix. Denote M is the matrix containing corre-
sponding classes' means from the original data matrix  X. We have S = (X — M) (X — M)T 
Denote R as the between class covariance matrix. We restrict to the binary case, then 
R = rrT where r is the vector between classes' means. The objective is chosen to be the 
feature proximity matrix F that on the direction of classes' means, the ratio between within 
class variance and between class variance is minimized. Within class variance on the di-
rection r is computed as the variance of < (X — M), r >= (X — M)T Fr, hence equal to 
((X — M)T Fr)T ((X — M)T Fr) = rT FSFr. Similarly, between class variance on the direc-
tion r is rTFRFr. The problem is then formulated as maximizing some class separability 

criteria, as

rTFSFr F = arg min f (F) = 
rTFRFr                                            (9) 

Here we do not search for all possible F. Instead, we design the matrix F to have a special 
form so that the kernel is then computed from the original kernel. It is also our idea to use 
F of the form of a polynomial of S (with possibly negative degree). The reason is that S 
contains the label information (as opposed to the (uncentralized) covariance that does not 
contain label information). With some manipulation, we come up with the result F = S-1. 

Kernelization. We show that the having F = 8-1, kernels can be conveniently computed 

in the feature space, i.e., by using kernels themselves. Denote the kernels with feature 

similarity as K fs, original kernel K = XT X for training data X, the kernel matrix is then:

Kfs=XTFX 
                     = XT ((X — M)(X — M)T)-1X 

Denote the class-conditioned centralized kernel as Kcn = (X — M)T (X — M) = XT X + 
MT M — XT M — MT X = XT X — MT M, which is computable from the kernel matrix K 
2. Denote Ka, = (X — M)T X, then Kay can also be computed directly from the original 
kernel matrix K3. Suppose that Singular Value Decomposition of X — M is 

X—M=UAVT, 
2Suppose that Ke„ is generated from the kernel function k(„L then ken (xi, xj) = k(xi, x j) — k(xi,:L j), 

where kM, Tj) is the average of all k(xk, xi) that yk = yi, Yi = yj 3 Suppose that Ka„ is generated from the kernel function kav then kav (xi, x j) = k(xi, x j) — 
where k(xi, Y j) is the average of k(xi, x1) as yi = yj .
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then  (X — M) (X — M)T = UA2UT , UT U = I, VT V = I and i is an identity matrix in an 
appropriate space. Plugging in the above equation, we get

K fs = XT ((X — M) (X — M)T)-1X 

   = XTUA-2UTX 

   = XT UAVT • VA-4 VT • VAUT X 

= XT (X — M) • ((X — M)T (X — M))-2 • (X — x.

We have

Kfs= KT, 'Kcn'Kay. (10)

For out-of-sample test data matrix A, the kernel function on them with training data are 

computed as

T f s = Tav ' Kcn ' Kav(11) 

where Tav is computed with the kernel function kav (xm., xj) = k (xrn, xi) — k (x„z, Ti) and 
k (x,,,T~) is the average of all k (Xm 7 x1) that yi = yi . This kernel is computable from original 
kernels, therefore, it is free from concrete feature spaces. 

Two dimensional example. We take a simple example in a two dimensional space to 

show the intuition of our supervised feature similarity. Suppose that data are as in the 

figure 3. In this case, the two features are highly correlated for each class, but not for the 

whole data set. The within class covariance matrix is

 1x 

  r,1

for some x E IE ±, Ix' < 1. Our proposed feature similarity have the feature proximity 
matrix as:

F,def1 x—1 
x 1

1

1 — x2

( 1 —x 
—x 1

In this case, the degree of similarity is an inverse of class conditional correlation of feature. 

When x 1, meaning that the two features are highly correlated, in our method, feature 

similarity is close to the smallest possible value. This means that in the geometric frame-

work, the two features should be stretch away almost as far as possible, i.e. having opposite 

directions (e1 —e2). We call this the two features complements each others. By using 
this feature proximity matrix when computing kernel, k(xi, xi) = xT Fxj, it is equivalent to 
transforming the whole class to a point in the x axis, as shown in the figure 3. When having 
the two classes transformed to two different points, we are sure to be able to learn a perfect 
classification. It is noteworthy that by using other methods for feature similarity such as 
in [9], in this case, the two features are detected to have a positive similarity. Therefore,
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Figure 3: The case of perfect complementarily x = —1 while the two feature f; 
not correlated. Each thick red line segment represents data from a class (-I- or 
arrows mean the transformations (to points) of the whole class via the effect 
similarity. Note that the two features may not be correlated.

and f are 
—). Yellow 
of feature

those methods do not transform data the way our method does to have a classes shrunken 

down to close to points, which results in high classification performance. The reason is 

straightforward, those methods do not take into account label information.

6.2 Properties

Some properties of the approach can be analyzed as fo llows.

• It is different from feature selection [25, 5] that we semantically similar features do 
 not have a high correlation or contain similar information. Instead, they have anti-

 correlation or contain complementary information. This method is supposed to be 

 a corresponding counterpart of those in [25, 5] when using an alternative feature 
 interpretation. 

• It is different from latent semantic kernels and [3] learning semantic similarity [9] 
 that in our formulation, two features are said to be semantically similar if they show a 

 complementary behavior with respect to the task at hand, not semantical similarity in 
 the natural language sense as used in theirs. This can be a significant difference for the 

 following reasoons. First, in natural language, synonyms or semantically similar words 
 (in natural language senses) may not have complementary behavior. These words my 

 appear in the same document with different functionality, not only as synonyms for 

 each other. Second, semantically similar features may not have similar meaning in 

 the natural language sense. For example, the words buy and rent would likely appear 

 in the category advertisement complementarily but not synonyms. The pair of words 

 car and motorbike in the category vehicle is another example. This difference also 

 generalizes to the case of any kind of features, not necessarily words in previous 
 applications [9, 3, 12] .
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7 Experiments

We conduct some experiments to show that the proposed general kernel actually improve 

performance over its baseline. In our case, baselines are linear kernels. However, the 
baselines could be any kernel as computing our proposed kernel is done completely in 

feature space, i.e. from baseline kernel only. We compare our proposed kernels with the 

baselines and empirical kernels, von Neumann kernel and diffusion kernels as well.

7.1 Synthetic data 

Two classes: class +1 centers at (0,  0)T and class —1 centers at (1, 0)T. Both classes are a 
Gaussian distribution with covariance matrix 

6 4 

4 6 

We randomly generate 50 data points for each class following the distribution. Out of this 

data set, we sample different percentages of the whole data set for training while the rest 

are held for testing. The list of percentages used for split can be seen in the figure 5. For 

each percentage, we randomly split the data ten times. Support Vector Machines are used 

for classification with parameter C optimized by cross validation. The measure we show in 

the figure is the average of the ten accuracy from hold-out test set. 
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8
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• 
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Figure 4 : Two dimensional simulation data with each class is a Gaussian distribution.

Form the figure 5, we can observe that:

• Our proposed kernels show a consistently higher performance than any other kernels in 

 comparison. This shows that by taking into account feature similarity in our method 

 helps to improve accuracy over the baseline. 

• Kernels proposed in [9] does not show any improvement over the baseline even though 
 there is an additional parameter A to generalize from the baseline. This means that
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those method are not able to exploit feature semantic similarity for the purpose of 

classification. When we inspect the value of  a, it is usually set to close to 0, mean-

ing that the additional information of feature semantic similarity are not helpful for 

discriminative purpose, therefore, down-weighted.

• Empirical kernels show the worst performance of all for a reason that it does not mean 

 to exploit feature similarity.

• When there is a lesser amount of data, all methods perform not as well as when having 

 more. In this case, our methods improve more over the baseline. This shows that our 

 method is beneficial when there is as few data, i.e., additional information is needed. 

 It may not help when there is a large amount of data, i.e., having enough information.

2D Simulation
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Figure 5: Classification accuracy of simulation data as a function of percentage of training 

data. Our proposed kernel usually gives a higher accuracy.

7.2 Text Retrieval with SVM

We follow the experiment conducted in the paper that proposes to learn semantic similarity 

of features, i.e., von Neumann and diffusion kernels [9]. Medlinel033 [3] is the information 
retrieval data set used. The data set contains 1033 documents and 30 queries obtained from 

the national library of medicine. Here we concentrate on query20. For the data sets, each 

document is represented in a vector space that allows us to compute bag-of-word kernels as 

the baseline. Stop words and punctuation signs are removed from the documents. Poster 

stemmer was applied to the remaining words. Words are then are weighted according to a 

variance of tfidf scheme as in [9] . Support Vector Machines are used to learn to recognize 
relevant documents to a query. Parameter C is chosen using a cross validation scheme for 
the baseline kernel, then used for all other kernels. As a retrieval problem we use Fl as the 
performance measure as 

                               F1—2 pr•rc 
pr re

18



where pr is the precision and rc is the recall of retrieval result. 

measure for Information Retrieval.

Fl is a popular performance

 Medline1033
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Figure 6: Fl measures of retrieval result on Medline1033 data as a function of percentage 

of training data taken for training. Our proposed kernel usually shows higher Fl measures. 

Linear, von Neumann and diffusion kernels give almost identical results.

We also use different splits of data with 20, 30, 40 and 50 percent of data for training. The 

rest are used for testing. Each split is repeated ten times. The averaged Fl results is shown 

in table 7.2 and visualized in figure 6.

Linear 

Empirical

von Neumann

Diffusion 

Ours

20 30 40 50

45.22(±17.63) 
41.09(±15.54) 
45.22(±17.63) 
45.22 (± 17.63 ) 
46.05 (+ 17.77 )

57.94 (± 15.94 ) 
56.19(f13.40) 
57.94 (± 15.94 ) 
57.94 (+ 15.94 ) 
60.35(f13.16)

66.76(±5.69) 
61.78(+10.06) 
66.76 (± 5.69 ) 
66.76(:5.69) 
69.64(±3.57)

67.62 (+ 5.65 ) 
66.48 (+ 5.26 ) 
67.62 (± 5.65 ) 
67.62(+5.65) 
71.06(±6.44)

Table 2: Fl results for comparing different kernels using feature similarity at different data 

split ratios.

From the figure and table, the following can be observed.

• Our proposed kernels show either a higher performance than any other kernels or 

 equal performance in comparison. This shows that by taking into account feature 

 similarity in our proposed kernels helps to improve accuracy over the baseline.

• Similar to the previous experiment, kernels proposed in [9] does not show any improve-
 ment over the baseline even though there is an additional parameter ,\ to generalize

19



from the baseline. When we inspect the value of A, it is also usually close to 0, mean-

ing that the additional information of feature semantic similarity are not helpful for 

discriminative purpose.

 • Empirical kernels also show the worst performance of all.

• Due to the sparseness of data and the limited number of training data, retrieval results 

 are usually highly variable.

8 Conclusion

In this part, we propose a framework that can incorporate feature similarity, a type of 

background knowledge that exists in various domain. The framework is based on a  geo-

metrical interpretation of the non-orthogonality of the space. The framework generalizes 

various previous methods for constructing kernels, e.g. Fisher kernel, von Neumann kernels, 

diffusion kernels, among others. It shows a possibility to generalize all those methods and 

sheds a light on their relations. It also allows us to see that all those methods, usually 

used for supervised purpose, does not take label information into account. We then utilize 

the framework to propose a general kernels incorporating feature similarity and label in-

formation at the same time. This is the first methods having this properties. The kernel 

is computed on feature space, i.e., from an original kernel. Evaluating the kernels on a 

simulation and text retrieval domain, we can see some merit of using the proposed kernel. 

The merit comes from the fact that the proposed kernel utilize label information and feature 

similarity, as a proof to show the practical benefit of the framework we proposed earlier on. 

The contribution here can be twofold, at the theoretical part with the framework, and at 

the practical part with the general method with many desirable properties.
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