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Abstract

  Canonical Correlation Analysis is a classical data analysis technique for 
computing common correlated subspaces for two datasets. Recent advances 
in machine learning enable the technique to operate solely on kernel matrices, 
making it a kernel method with the advantages of modularity, efficiency and 
nonlinearity. Its performance is also improved with appropriate regularization 
and low-rank approximation methods, making it applicable to many practical 
applications. 
  However, the classical technique is applicable to find correlation of only two 
datasets. It is a practical problem that we wish to consider correlation of more 
than two datasets at the same time. Such problems occurs in many domains 
such as multilingual text processing, where we wish to find a common represen-
tation of parallel document corpora from more than two languages altogether 
(we call this situation multiple view or multiview for short). Generalizing CCA 
to more than two views face some problems, namely: finding criteria for multi-
view CCA and available computational solutions for these criteria. 

  In this report, we analyze the criteria that have been proposed to be ob-

jective functions for multi-view CCA. We obtain that only some of them are 
suitable for our purpose. In these criteria, only one of them, namely MAX-
VAR, has an efficient solution. We describe our algorithm for this criterion. 
We conduct experiments on a multi-lingual corpora. Experiment results show

1



that multi-view CCA brings an advantage over two view CCA when there are 
not too many training data are available. 

  We then show that low rank approximation of kernels are done indepen-

dently from views. This could be a disadvantage as different views may be 

projected onto subspaces that may not result in correlation. We then propose 
a new incomplete Cholesky decomposition procedure that simultaneously de-
composes all views. Experiment results show that the new  ICD, by making 
sure the alignment of subspaces from different views, give a higher performance 
for multiview CCA when there are many views and a few dimensions for ap-

proximation.

1 Introduction

Introduction: Canonical Correlation Analysis (CCA) is a statistical method to find 
linear correlation between two (or more) multidimensional variables. It was proposed 
by H. Hotelling [9]. CCA can be kernelized, therefore it inherits all advantages of 
kernel methods [14], namely computational efficiency, modularity and nonlinearity. 

The starting idea of CCA is that we may receive different views, or different data rep-
resentations of inherently the same objects. In biological samples express differently 
in different biological experiments [17, 5] . The same documents are translated into 
different languages [12]. From multiple views to the same object, one wishes to find 
a common, latent semantic representation of the object itself. This may seem to be 
impossible as it is task-dependent. However, the good news is that in that common 
semantic representation, the object is uniquely represented. This leads to the fact 
that there exist transformations from different views into the common semantic space 
that should result in the common representation. To this end, it is the purpose of 
CCA to enforce the correlation of different views after being transformed into the 
common semantic space.

Background: CCA is the problem of finding each basic vectors sets, one for each 

set of (multidimensional) variables, such that the correlation between the projections 
of these variables onto their corresponding basics are maximized. We describe only 

the first basic vectors for each set for now. 

Given X = {x1, x2 • • • x,,,} and Y = {yl, y2 • • • yn} where xi E Rn' and yi E Rn2, the 
problem is to find wx E Rill and wy E Rn2 so that the projections of X onto wx and 
Y onto wy are maximized. Without loss of generality, we assume that E 1 xi = 0 
and Eni=1 yi = 0. 
Projection on wx: xi --> (xi, wy), therefore the projections of X become {wx X }T = 
XT wx (X is considered as a column vector). Similarly, projections of Y onto wy are 
YT wy. The objective of CCA is to maximize the correlation with respect to wx and 
wy
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Figure 1: Canonical Correlation Analysis: projecting two sets of data onto subspaces 

that are maximally correlated.

p= max corr(XT wx, YT w) = max 
wz,wyWs,wy

(XT wx, YT wy)

p = max 
wx,w6,

IIXTwxII . IIYTwyI

wx X YT wy

wT X X T wX.wT YYT wy

Denote: CCx = X XT , Cyy = YYT (these are correlation matrices), 
Cyx = YXT (cross-correlation matrices). 

                                       T 

                  p = max w~C~ywy wx,wy l/wxxxwx . wy cyywy

(1)

(2)

Cxy = XYT and

(3)

Here, p is called canonical correlation and wx, wy are called canonical variates or 

canonical variables. A pictorial description of the algorithm is shown in figure 1. 

In this paper, we first describe the CCA algorithm in the next section, followed 

by its kernelization, regularization and low rank versions using Incomplete Cholesky 

Decomposition for computational efficiency. We then analyze its multiple views gen-

eralization criteria to see which ones are suitable and solvable for very large scale 

applications. We describe the formulations for the criteria and show their interpreta-

tions. Experiments are presented to show that advantage of multiview version when 

there are a few training data points. We when propose a new ICD algorithm that 

simultaneously decompose kernel matrices from different views, which is supposed to 

preserve more correlation so that the multiview CCA would have a higher perfor-
mance.
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2 Canonical Correlation Analysis 

Formula 1 is equivalent to maximizing its numerator subject to the following con-
straints:  wI  CCxwx = 1 and wT Cyywy = 1. 
Lagrangian is 

L(A, Ay, wx, wy) =wTCyywy—Ax (wxCCxwx—1)—Ay(wyCyywy — 1). (4) 
22 

Taking derivatives in respect to wx and wy give us: 

Cyywy—AxCxxwx=0(5) 

Cy,w, — AyCyywy = 0•(6) 

Taking the constraints into account, we have A = Ay = A. 

The solution:Assuming Cyy is invertible. 

                             CyyCyXWX 
wy=----------A(7) 

Substituting into 5 then: 

                   CyyCCXw~ 
---------- ACxxwx — 0•(8) 

Cyy CyXWX = A2C„w,(9) 

Therefore, the solution to the problem can be calculated using an inversion of a matrix 

7 and a generalized eigenvalue problem 9. 

Note 1: Equations 5 and 6 can be rewritten as: 

        0 CyywX _ A CCx 0 wx(10) 
Cyx 0wy0 Cyy wy 

        (CxxCxy(Wx(l+A)(Cxx 0 wx(11) 
Cyx Cyy wy0 Cyy wy 

This means that we can formulate it into a generalized eigenvalue problem [6] .
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2.1 Kernelization

Above is the linear version of CCA where we need to find canonical covariates that 
after linear projections, views are correlated. However, the class of linear functions 
is not able to capture nonlinear relations among views, which is the case in practice. 
For that reason, one needs to use a larger class of  functions. It is usually the case 
that one settles to the space called Reproducing Kernel Hilbert Space [15], which is 
large enough to capture nonlinear relation and small enough not to contain many 
non-smooth functions. The space is defined to be any combination of kernel function 
k (being a positive semidefinite function):

f(.) _ aik(•, x). (12)

By the virtue of the Representer theorem [16], we know that in this particular case, 
canonical covariates have its representation (for both X and Y):

wx = Eaik(•,xi), xi E X. (13)

Having known that wx lies in the span of columns of X and wy lies in the span of 
columns of Y, we may rewrite the equation 3 using wx = Xa and wy = Y/3, where 
aERn and ,3eRn:

aT XT • XYT • Ya
p max, ,/(aTXT • XXT • Xa) • (,3TYT • YYT • Ya) (14)

p = max 
a,Q

aT KxKy,d

given that KK = XT X and Ky = YT Y. 

Again, Lagrangian is:

aT K2a . /3T2/3
(15)

L(Aa,A ,a,,(3) =aTKxKyi3— Aa(aTK~a— 1) —2~(,3TKy,3— 1) 

                    2

(16)

In a similar fashion as before, taking derivatives in respect to a and ,3, we have 

Aa=Aa=Aand

KX Ky,d — AKK a = 0 
KyKXa—AKK/3=0

(17) 

(18)
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The solution: When  Ky is invertible then: 

                               K-'K~a 
         ,Q=  yA(19) 

and 

 KKKKa = A2KKKKa(20) 

This means that perfect correlation (A = 1) can be obtained with any a. We have the 
problem of overfitting here. 
Note 2: Equations 17 and 18 can be rewritten as: 

      0 KxKy a  KxKx 0 a(21)A
Ky KX 0 ,Q0 KyKy ,Q 

KXKX KxKy a = (1 + A) KxKx 0a (22) 
KyKX KyKy,Q0KyKy,Q 

We arrive at one generalized eigenvalue problem (of the 2n * 2n matrix) . 

Note 3: Since the solution can be computed using kernel matrices KK and Ky, 

nonlinear transformation of original variables can be introduced into this problem in 

a similar fashion as other kernel methods. 

2.2 Regularization 

As mention before, the cases, in which perfect correlation and any a can be a canonical 
covariate, would happen. Therefore, regularization is necessary to avoid nonsense 

solution (overfitting). It is introduced as follows: 

     p= max aT K~Ky~ (23) a7 
V (aTicza+kI wxl 2) . (13TKy/3"+ IIwyII2) 

                              aT KxKy/ 
p=max   (24) a,Q /(aTKa + kaT Kxa) . (13T K2/3 + k/3TK 13)

Lagrangian is: 

L(A ,A ,a,13) = aTKxKy,Q— a2a(aTK2a+kaTKxa-1)—a213(13TKyfi+k13TKy13-1) 
                                         (25)
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Taking derivatives, proving  as = )Q = A, we arrive at: 

KXKy/3 — A(KX + kI)KKa = 0,"(26) 

KyKKa—A(Ky+kI)Ky,Q=0.(27) 

The solution: If Ky is invertible, we have: 

               (Ky + kI)-1KXa(28) 

                         A and substituting into 26 give us: 

KXKy(Ky + kI)-1KKa = A2KX(KX + kI)-1a(29) 

This give us the generalized eigenvalue problem. When KC is also invertible, we have: 

(KC + kI)-1Ky(Ky + kI)-1KKa = A2a(30) 

Note 4: Equations 26 and 27 can be rewritten as: 

   0 KXKya  (KK + kI)KK 0a (31) 
Ky K, 0Q0 (Ky + kI) Ky,Q 

(KK + kI) KK KKKya = (1+~)(KK+ kI) KK 0 
KyKK (Ky + kI )Ky0 (Ky + kI )Ky 

                                         (32) 
Note 5: In Bach & Jordan, (KC + kI)KK is approximated with (KC + 2I)2, arriving 
at: 

(Kr + k J)2 KKKa(Kr+t_020a   KyKK (Ky +ZI)2 — (1+A) 0(Ky + ZI)2 
                                         (33) 

2.3 Efficient Computation 

To reduce the computation load, it is better to approximate the kernel matrices with 
lower rank ones. The reasons are: 

  • Efficient matrix inversion and eigen-decomposition, making these methods lin-
    ear in n - number of data objects, as opposed to n3 originally. 

                          7
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• It is observed that many kernel matrices have low ranks. Advantages have 

 already been taken for SVMs  [4]  . 

• It is natural to expect much linear dependency among variables in the same sets 

 when working with CCA (if they are independent, overfitting may happen and 
 meaningless correlations occur). Therefore, the kernel matrix is likely to be of 

 low rank.

An efficient approximation is Incomplete Cholesky decomposition [6] or its dual imple-
mentation Gram-Schmidt orthogonalization. In the end, we will have lower rank ap-
proximations of kernel matrices as: KK = RXRTx and Ky = RyRT , where Rx E Rn*ml 
and Ry E Rn*m2. Both Rx and 14 are lower triangular matrices and ml, m2 << n. 
In the reduced dimensional space, d = Rx cx E Rml and ,C3 = RT 13 E Rm2. Plugging 
into formulas 26 and 27, we have:

Putting RTx an

RX Rx Ry Ry ,Q — ARX (RTx RX + kI) Rx a = 0 

RyRTR,Rxa — ARy(RTRy + kI)RT13 = 0 

d Ry into the left hand side of the above equations gives us: 

RT RX RT Ry Ry ,Q — ART RX (Rx RX + kI) Rx cx = 0 

RTRyRTRXRTcx — ARTRy(RTRy + kI)Ry,Q = 0

(34) 

(35)

(36)

(37)

Let

ZXX 

Zyy 

Zxy 

Zyx

= Rx Rx e Rml*ml, 
= RT RyERm2*m2 

                        , = RT Ry E Rml*m2 

= RT RXERm2*m1• (38)

We have finally:

ZXXZXy,Q — AZXX(ZXX + kI)d = 0 

ZyyZyXE — AZyy (Zyy + kI)13 = 0 

Assuming (again) that ZZx and Zyy are invertible, then: 

Zxy—A(Zxx+kI)d=0 

Zyxa—A(Zyy+kI)13=0

(39) 

(40)

(41)

(42)
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The solution:

 _
(Zyy + kI)-1 Zyxa

To compute 

composition 

SyE Rm2 *m2

Zyx ( Zyy
       A 

+ kI)-1Zyxii = A2(ZZx + kI)a

(ZZx + kI)-1 and (Zyy + kI)-1 efficiently, do 
, (ZZx + kI) = SXST and (Zyy + kI) = SyST 

are lower triangular matrices.

a complete 

where SS E

Cholesky 

Rm1*M1

(43)

(44)

de-

and

Note 6:

S; 1 Zxy

The formulas 41

(sT)-1S-1Z 1~.7yyyx (SD-1a = A2a.

and 42 can be rewritten in a matrix form:

(45)

0 

Zyx

Zxy 

0

a (ZZx+kI) 

0

  0 

(Zyy + kI )

a 

13
(46)

(ZZx+kI) 
Zyx

Zxy 

(Zyy + kI)

a

(1 + A)
(ZZx + kI) 

0

0 

(Zyy + kI)

We then arrive at a generalized eigenvalue problem of a matrix with size 
Once a and ,Q are computed, original solution can be recovered as:

a 

 13) • 
  (47) 

m1 + m2.

 = (Rx   )1 R~T-Rxa, 

2Ua = Xa. (48)

3 Generalization to m
    . 

views

So far, we are dealing with correlation of two sets of variables. This section describe 

how to deal with m sets of variabels, called m views. here we first analyze criteria to 

generalize CCA to m views. We then describe MAXVAR, the criterion with known 
efficient solutions. 

In practice, it is anticipated that sometimes data express in more than two views. It 

is the case of documents are translated in many languages. An example is Acquis, the 

European constitutional body. Each document are translated into 23 languages. Of 

course, taking into account two views would be a solution. However, having only two 

views may bring more canonical covariates than it should, spurious correlations may 

happen. Having additional views would give a more reliable estimations of correlation 

among view, making the set of canonical covariates smaller. By having a smaller set 

of canonical covariates, with the assumption that all semantic representations arc
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Figure 2: Generalizing CCA into multiview: projecting data from different views into 
a common subspace S, where semantically equivalent data points arc projected into 
an unique point.

captured by those covariates, we expect to have a more concise (smaller and more 
reliable) representation of semantics. A pictorial description of multiview CCA is 
shown in figure 3 

The central problem for generalizing CCA into multiview is the objective function 
of the multiview correlation. As in the classical two-view case, correlation is the 
objective function. However, correlation is defined for two random variables only. 
When generalizing into more than two views, there is nothing such as correlation. 
Here come the problem of defining what is a correlation for multiview version. There 
are attempts to define correlation for multiview, but one must bear in mind that 
there are several constraints. First, it must carry the meaning of correlation for our 

purpose of capturing common semantics of different views. Second, for a practical 
reason, the computational mean must be available for such objective functions. Here, 
we mean that there must be a solution to optimize the objective functions that scales 
well with large or massive data sets. 

The next subsection will discuss the proposed criteria and we will analyze to see if 
they satisfy those constraints.
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Criteria

SUMCOR 

MAXVAR 

SSQCOR 

 MINVAR 

GENVAR

Usage in ML

Min-sum-of-distance 

MKCCA 

No 

KerICA 

KerICA

Suitability

Yes 

Yes 

Yes 

No 

No

Has solutions

No 

Yes 

No 

Yes 

Yes

Table 1: Analysis of CCA generalization criteria.

3.1 Analysis of criteria 

For the two view problem as before, correlation is the only objective function has 
been taken into account so far. However, when having more than two views, there 
are many ways to define correlation among a set of projections from different views. 
The objectives for multiview CCA can be analyzed from the correlation matrix of all 
projected vectors. Here, we discuss only the objective functions for solving the first 
correlation variates. The following correlation variates can be computed in the same 
way, with an additional constraint of orthogonality of projections. Fortunately, this 
constraint is automatically satisfied by the solutions. 
First is some notations. Suppose that having m views, Xi, X2 ... Xm, which are 
row-wise centered. The target is to find m projections into w1, W2 ... w.,,,, such that 
XT wi are maximally correlated (the meanings of maximally correlated are defined 
later). Denote: Ci.7 = XiXT , li = f(wT Ciiwi) be the length of the projected vector, 
ei =xwiwould be the normalized projected vector. Denote: C is the full covariance 

matrix comprising of  and D is the block-diagonal matrix of Cii. We now have: 
   = 1 and 1T ei = 0. The correlation matrix of ei is a m * m matrix = {Oij } _1 

satisfying: 
               =< ei, ei > .(49) 

There are some works in Statistics that propose criteria for generalizing CCA into 

more than m views [13], [10], and [7]. All the criteria basically measure how well 
projections of views are grouped together in the feature space. Hence, most of them 
are based on the matrix 43. The criteria proposed in [10] arc milestones. Other works 
just modify them to incorporate other information such as covariance into the criteria. 
The list of criteria is in the first column of table 3.1. It is noteworthy that all these 
criteria are equivalent to each other when m = 2. 

The second column shows how these criteria are known and used in the Machine 
Learning community. We analyze these criteria to see if which ones would be suitable 
for our purpose, named Suitability in the table 3.1. The last column shows if using
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these criteria may give a efficient enough algorithm for large scale application.  SUM-

COR is known to be the sum of square distance measure. It is the most intuitive 

criterion without any known efficient solution. In fact, it is equivalent to a multivari-

ate eigenvalue problem where there exist no theories to shed a light on its solutions. 

It is known to have a very large number of solutions in [3] . MAXVAR is known to be 
a generalized eigenvalue problem and has been proposed and used in [1, 13, 17]. SSQ-
COR has not been used due to the fact that it is not known to be formulated to any 
easily solvable problem. The two criteria MINVAR and GENVAR are not considered 
to be suitable for generalized CCA for the following reason. As long as there is any 
linear dependency among projections of all the views, MINVAR and GENVAR would 

get the maximum value, indicating a perfect correlations among all projections. In 
fact, linear dependency does not guarantee perfect correlations for more than two 
random variables. These criteria are, therefore, used to measure independency in 
ICA [1] .

3.2 MAXVAR

We start with another objective function:

m m 

p3 = max E wT Cijwj, 
           i=1 j=1

(50)

subject to: E wT Ciiwi = 1. 
Theorem 1: p3 is the maximum generalized eigenvalue (Amax) of the following gen-
eralized eigenvalue problem.

C11 C12 • • Clm 

C21 C22 • • • C2m 

Cml Cm2 • • Cmm

wl 

W2 

turn

= A . Diag(C11, C22, .. • Cmm)

Proof: Lagrangian of the objective function:

m m 

L(w, A) = E >wC3w3  — A(> wT Ciiwi - 1). 
           i=1 j=1

wl 

W2 

wm

(51)

(52)

Taking derivatives with respect to wi for all is 

ECijwj = ̂ Ciiwi. 
                                   j=1

(53)
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Multiplying  wT to the left hand side of each part of 53, we have: 

E wT Cijwj = AwT Ciiwi.(54) 
                              j=1 

Summing over i from 54 then: 

m m 

EE  wT Cijwj = A.(55) 
i=1 j=1 

We have p3 is an eigenvalue of 51. Now we need to prove it is the largest one. 

If p3 = A < Amax then the exists a (normalized) wmax is the generalized eigenvector 
corresponding to the eigenvalue Amax. Then: 

                 m m 

              Amax = EE  Wi maxCijwj—max > A = p3-(56) 
                               i=1 j=1 

This contradicts the optimality of p3. Hence, p3 = Amax. 

Note 7: One can conclude that maximizing p3 is equivalent to finding the maximum 

eigenvalue of the generalized eigenvalue problem.This is different from the problem in 

?? only at having the same A instead of different Ai. The difference between pi and 

p3 is the weighting of each (normalized) projected vector ei with its length i . p3 is, 
in fact, a weighted version of pi. 

Geometrical interpretation of the weights: The weights li are introduced from 

wi, which are, in turn, introduced by the generalized eigenvalue problem. However, 

we can get some ideas from equation 54. 

Having liei = XTwi, the right hand side of the equation 54 is:

AwT Ciiwi = A • l2. 

The left hand side is 

mmm 

E wT Cijwj = wT Xi E WT xj =< liei, E13e3 > . 
j=1 j=1j=1 

Denote le =E jm  1 ljej be the sum of all un-normalized projected vectors, then A•li 
liei, le >. 

li=  <ei,e>. A 

                        < ei, le > = Ali.

(57)

(58)

=<

(59) 

(60)
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Hence, the weight of a projected vector  ei in the objective function is the dot product 
between it and the weighted mean. 

In light of the correlation matrix 43, we can see that:

/ 011 012 ... Olm11>j < el, lie.; >< el, le >11 
  021 022 • • • 02m l2 _Ej < e2, lie.;>=< e2, le >_12 

\Oml 0m2•• 0mm imE. < em,lie >< em, le >lm                                          (
61) 

Refer to 60 for the last equation. 

This means that the weights Ii form a eigenvector for the correlation matrix. This also 

means that the objective function p3, equivalently A (see 55), is actually maximizing 
an eigenvalue of the correlation matrix 4). 

Theorem 2: Amax is the maximum eigenvalue of all the correlation matrices obtained 
from projections of Xi into wi. 

Proof: Denote li = 1 XTwi l l , L = I/1,12  • • • lm }T , e, =x awti as usual.

                 AmaxWTCW                  ^max— max WTDW 

                    `
immT                            L_i=1Lj=1wicijwj  

             = max m 

                              Ei=1wT ciiwi 

                                m 

                             Eim=1~j=1 < liei, ljej > 
            = maxn+ 2 

w~i=1 li 

                          Eim—i1lilj< ei,ej>  
             = max~m_ 

         wLm 2                                              i=1 li 
                                 T 

= maxL(1)L(62) 
                        w LT L • 

One can observe that we can scale wi independently of other wj, therefore li can 

receive any value independently of other l j . As W runs all over its space, L also runs 

all over its space. 

Therefore, 

LT (13LA
max = max -----                              w LT L 

                                        T 
= maxL(DI, 

                               L LTL• 

Then, Amax is also the maximum eigenvalue of all eigenvalues of all correlation ma-

trices. This means that p3 is the MAXVAR criterion in [10].
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3.2.1 Kernelization and Regularization 

In a similar fashion as [1], we can come to the  kernelized form of the objective as 
finding the maximal eigenvalue of: 

K1K1 K1K2 • • • KiKm alal 

K2 K1 K2K2 ... K2Km a2a2 
. = A•Diag(KiK1, K2K2, ... KmKm) . 

KmKi KmK2 • • • KmKmam" 
                                         (64) 

If we regularize like PLS wT w, then the above problem becomes: 

0 K1 K2 ... KiKmal1 
K2 K1 0 • • • K2Km a2

• 

KmK1 KmK2 ... 0am/ 

           (al)       = A • Diag(K1K1 + kK1i K2K2 + kK2, . . . KmKm + kK,,)a2.(65) 

                                                   am 

If we want to regularize futher aT a, the it becomes: 

                 0 K1 K2 ... KiKmal 

K2 K1 0 ... K2Km a2 

              KmK1KmK2 • .. 0 am 

a1 

a2 
=A•Diag(K1K1+kI,K2K2+kI,... KmKm +kI)(66) 

am/ 

3.2.2 Efficient Computation 

For the PLS regularization, proceeding similarly as in section 5 or previous subsection, 
we arrive at the reduced dimensional form: 

                         15



 0 Z12  ••• Zim 

Z21 0 •.. Z2m 

Zml Zm2 •.• 0

al 

a2 

am

_ A•Diag(Z11+kI,Z22+kI,... Zmm+kI)

al 

a2 

am 

 (67)
If the aTa regularization then:

0 Z12 ••• Zlm 

Z21 0 ... Z2m 

Zml Zm2 - .. 0

al 

a2 

am

= ,\•Diag(Z11+kZ111, Z22+kZ21, ... Zmm+kZmm)

al 

a2 

am

(68)
Original solution can be recovered by:

    ai = K22 l l ~i ai 

= UiAZV , 

Kii1=UZAI2Ui, 

wi = XiUiAi lUai. (69)

4 Algorithm and Experiments

4.1 Algorithm

The algorithm we implemented is using MAXVAR criterion, which is known to be 
the generalized eigenvalue problem. There are two part of the algorithms: learning, 
i.e. determining the canonical covariate and testing, i.e. projecting test data into the 
common subspace. Learning part follows strictly the description in section 2.3 and 
3.2. The the generalized eigenvalue problem, we use the BLOPEX package [11] . 

There are two ways for the testing part. One is to go from di to ai and wi, then 
testing data is projected into these canonical covariate directly. Another way, as 
described in [8], is to project the data into the low dimensional space and perform 
projections there. We found that the second way is not only much more efficient, but 
also give much more stable results. Unstability and inefficiency come from the fact 
that in the former way, one needs to pseudo-inverse the reduced dimensional kernel 
matrices. Matrix pseudo-inversion is very expensive and unstable.
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We has tried and found that the implementation is scalable so far for 30000 training 

data for 4 languages (totalling 120000 training data points).

4.2 Experiments

We would like to evaluate this algorithm to see whether having more than two views 
can be beneficial for some cross language information retrieval tasks. We choose the 

Mate Retrieval task in our experiments. The data is the alignments of the JRC-

Acquis Corpus  1. It contains alignment of sentences from pair languages. As we 

need a multiple view corpus, we merged from different pairs together to create on 
multiple alignment corpus. About merging alignment pairs, about 90% are retained 

after merging. Any conflict in merging is discarded. 

The experiments were setup as follows. The baseline is the two language case, en and 

fr, and multiple view version is four languages: de, en, fr, and es. We trained models 

for the two and four view settings. In the testing face, we query in en and expect the 

answer in fr in both cases. Euclidean distance is used to retrieve mates. We used two 
measures for the result, top 1% retrieval and average mate rank. Training data were 

randomly sampled from the corpus. The sizes of training data were 50, 100, 200, 500, 

1000, 2000 and 5000. For each size, we sampled 5 training data sets. For testing, we 
sampled 10 testing sets of size 1000. 

Parameters of the experiments were set as follows. We used linear kernel. The 
maximum dimension of the low dimensional approximation was 300. Regularization 

with  k were set as recommended in [1] . For the generalized eigenvalue problem, we 
run the 4000 iterations. We extracted 30 eigenvalue-eigenvector pairs. Results are 

depicted in the figure 4.2. On the horizontal axes are the sizes of training sets. The 

vertical axes are the measures with respect to different training sizes. Any point in 

the graphs is the average of 50 measures from 5 models on 10 data sets. 

The conclusion we derived from this graph is that having four views does not improve 

the retrieval rates when the training sizes are 500 or more. The two view version is 

more tailored to the language pair. The multi-view version is beneficial when there 

are few training data. The reason is that in that case, two view version is not relible 

enough and additional data helps. When there are more data, the two view version 

is more tailored to the task.

5 Low Rank Kernel Learning

Suppose that views lie in spaces R1 R2, • • • Rm. We wish to find for each view 
a subspace Ri C Ri so that after projecting data onto these subspaces, data from

ihttp://www .jrc.it/langtech
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Figure 3: Retrieval results of different sizes of the set.

different views become correlated. 

However, using original spaces RZ to discover RZ is, being a generalized eigenvalue 

problem with MAXVAR as analyzed in the previous section, is computationally ex-
pensive for moderate sizes. One usually use some efficient approximation. As for 
mKCCA, in the kernel setting, the usual technique is using low rank approximation 
of kernel matrices to have efficient training. 

Customizing Incomplete Cholesky Decomposition for CCA. The problem is that not 
the same semantic space from different views are attracted as ICD is carried out 
independently from each view. We found that in the 5000 sizes data sets, for the two 
view version, about 80% of the data objects are in common when ICD picks them 
for the spanning set of the low dimensional space. For four-view version, the number 
drops to about 64%. In order to ensure that the same semantic space are extracted 
from different languages, one needs to have a customized ICD for this purpose. This 
resembles the work in [2], and indeed is mentioned as a future work.

5.1 Incomplete Cholesky Decomposition with side informa-

    tion 

Our idea is to use ICD that makes sure that 100% of data picked are in common. 
This can be done by simultaneously decomposing all data matrices at the same time. 

The data object picked by by ICD each time is common among all views; the one 

which overall reduces the most the trace of the projected data matrices is picked.

5.2 Experiments 

Experiments are carried out on the same data set JRC-Acquis as the previous section.
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As before, we train on 5 data samples of different sizes (from 50 to 5000). The models 
are then used to test on 10 samples of size 1000. The figure shows an average of 50 
results, which are the success rates of retrieving the right mate within the top 1%. 
mKCCA setting is as the previous section, with the low rank approximation of kernel 
matrices of 50 (set fixed on  these experiments). 

It shows that for two-view version, the new ICD algorithm gives a some performance 
improvement. However, on the four-view version, the improvements are seen more 
clearly. The reason could be the fact that the four-view version has less data points 
in common.

6 Conclusion and Future Works

The contributions of this paper are: an overall analysis of criteria for generalizing 

CCA into multiple views and a new ICD algorithm specially for generalized CCA. 

We showed that the MAXVAR, as proposed and used by others are the only crite-
rion with known efficient solution. We provided an implementation. On the dataset 

we evaluated on, the multiple view versions show to improve performances of Mate 

Retrieval tasks when there are few training data. The new ICD algorithm we pro-

posed simultaneously decompose kernels from different views to make sure that they 
retain more correlation on the projected subspaces. Experiments show that new ICD 

algorithm gives generalized CCA a higher performance.
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Figure 4: Comparing the original and new ICD algorithms for mKCCA. New ICD 

algorithm gives mKCCA a higher performance, especially when there are more views 

and smaller rank is used to approximate kernels.
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