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Concurrent Skew and Control Step Assignments in RT-Level
Datapath Synthesis

Takayuki Obata Mineo Kaneko
School of Information Science, Japan Advanced Institute of Science and Technology

Nomi-shi, Ishikawa 923-1292 JAPAN E-mail: {t-obata, mkaneko}@jaist.ac.jp

Abstract— As well as the schedule affects system performance, the
control skew, i.e., the arrival time difference of control signals between
registers, can be utilized for improving the system performance,
enhancing robustness against delay variations, etc. The simultaneous
optimization of the control step assignment and the control skew
assignment is more powerful technique in improving performance. By
our preliminary study, we have proven that, even if the execution
sequence of operations assigned to the same resource is fixed, the
simultaneous optimization problem under a fixed clock period is
NP-hard. In this paper, we propose a heuristic algorithm for the
simultaneous control step and skew optimization under given clock
period, and we show how much the simultaneous optimization improves
system performance. This paper is the first one that uses the intentional
skew to shorten control steps (and hence a real application time) under
a specified clock period. The proposed algorithm has the potential
to play a central role in various scenarios of skew-aware high level
synthesis.

I. INTRODUCTION

In the logic level VLSI design, the clock skew is now utilized
intentionally for improving system performances, enhancing the
robustness against delay variations, reducing maximum peak power,
etc., and significant efforts have been devoted to so-called clock-
scheduling and simultaneous optimization of re-timing and clock-
scheduling[1]-[4]. Recently, the importance and the impact of
considering timing skew in the high level synthesis are recognized,
and related researches have been started at several sections[5]-[6].

Because of the existence of several different approaches to
the high level synthesis, the way of introducing intentional skew
(intentionally controlled timing difference between the beginning
of a control step and the working timing of each register and
multiplexer) into high level synthesis for designing higher per-
formance VLSIs is not unique. One possible scenario is that
a conventional synthesis system incorporates intentional timing
skew, and uses it to compensate mismatches of function delays.
One other possible scenario is that a concurrent datapath/floorplan
synthesis system [7]-[9] incorporates intentional skew, and uses it
to compensate mismatches of path delays (each path delay may
include function delays and signal propagation delays). Similar to
the clock schedule in the logic level design, the skew-aware high
level design will contribute to reducing the clock period, enhancing
the robustness against delay variations. It is interesting that the
intentional skew will also contribute to reducing the number of
control steps (makespan) for a target application.

It is well-known in the logic level design that the clock skew
only is not enough for the highest performance, and the combination
of the clock skew with the re-timing technique is a promising
approach. Similar to this situation, in the skew-aware high level
synthesis, the simultaneous optimization of the control step assign-
ment and the skew assignment has a higher potential in performance
optimization. Taking the peculiarity of the skew assignment into
consideration, we assume that resource binding and the temporal
order (not a specific control step assignment) of lifetimes of data

assigned to the same register are fixed as they are given in the input
description to our problem, and we try to optimize skew and control
step assignments under those constraints. It is clear that, if we have
such a tool to solve this problem, it can be used as a sub-tool for
optimizing resource binding and temporal order of lifetimes.

Major contributions of this paper are to give a heuristic al-
gorithm for our simultaneous control-step and skew optimization
problem, and to show how much the simultaneous optimization
improves system performance. In the past, the intentional skew was
used to shorten a clock period, and as a result, the clock period
was not controlled intentionally. This paper is the first one that
uses the intentional skew to shorten control steps (and hence a real
application time) under a specified clock period.

II. BACK GROUND AND MOTIVATION

A. Structural and Behavioral Descriptions of Datapath Circuit

We assume that the input algorithm of high-level synthesis is
described as a data flow graph (DFG in short) (O,D), where a
vertex set O is the set of operations and an edge set D indicates
data dependencies between operations.

The input algorithm is transformed to the datapath circuit
by determining resource assignment, that is, the functional unit
assignment ρ : O → F and the register assignment ξ : O\U → R,
where F is a set of functional units, R is a set of registers, U is
a set of operations whose outputs are not written to registers, and
ξ(o) = r means that the output data of the operation o is assigned
to the register r (the output of o is written in r).

We let M be the set of all registers (and multiplexers), and S
denotes the set of all control signals, where co

x ∈ S represents the
control signal which is related to the execution of o ∈ O and is sent
to x ∈ M. The arrival timing is partly determined by the control
step assignment, and the rest by the timing skew. Each co

x ∈ S
will be assigned to an appropriate control step. The control step is
denoted as σ(co

x) and we call σ : S → Z+ as a control schedule.
τ (x) for x ∈ M is the skew value assigned to x. As the result, the
control signal co

x reaches x at the time σ(co
x) · clk + τ (x), where

clk is the clock period.

B. Motivational Example

Fig.1(a) shows an example of a DFG. We assume that the re-
source binding has been finished, and for each operation, signal path
delays from an input register to an output register via multiplexers if
necessary, and a functional unit has been obtained. In general, data
path from a multiple-bit register to a multiple-bit register must be
a multiple-input, multiple-output combinatorial circuit, and hence
data path from a register to a register includes multiple signal paths
having different delays. We will characterize each data path with
the maximum and the minimum among those delays, and we call
them the maximum delay and the minimum delay, respectively. In
Fig.1(a), the maximum and the minimum delays are indicated like
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Fig. 1. Necessity of skew aware scheduling.

7/2 for O2, 8/3 for O3, etc. The assignment of data to registers is
indicated with ri beside each arc.

Fig.1(b) shows a schedule of 6 control signals co1
r1

, co2
r2

, co3
r3

,
co4
r1

, co5
r2

, and co6
r3

. The number written beside a slant solid (broken)
arrow shows maximum (minimum) delay of the corresponding
operation. The schedule requires 4 control steps, and its minimum
clock period is 8 (the total computation time is 8 × 4 = 32). This
is an optimal schedule under zero skew if the number of control
steps is restricted to smaller than or equal to 4. When we assign
skew (τ (r1), τ (r2), τ (r3)) = (0,−0.5, 0.5), the minimum clock
period can be reduced to 7.5 (the total computation time is now
7.5 × 4 = 30). The situation is illustrated in Fig.1(c). Fig.1(d)
shows an optimal schedule and skew assignment. If we try to keep
the number of control steps to 4, the minimum clock period is now
5 (totally, 5 × 4 = 20).

This example shows that we can not obtain an optimal solution
by achieving the skew assignment and the control step assignment
separately, and so we should schedule control signals together with
skew optimization.

III. SIMULTANEOUS OPTIMIZATION OF CONTROL STEP AND

SKEW ASSIGNMENTS

A. Formulation of the Problem

Our simultaneous optimization problem, (σ,τ ,clk)-optimization,
receives (1) a data flow graph G, (2) resource assignments ρ, ξ, and
(3) the execution order of operations assigned to the same FU and
the production order of data assigned to the same register (next),
and outputs σ, τ and clk.

We assume that oi is an operation generating an input of oj , and
the output of the operation oj is written in a register rj (ξ(oj) =
rj). On the other hand, the resource xi is either a register which
stores the input data for oj , an input multiplexer of a FU ρ(oj), or
an input multiplexer of rj .

The “setup constraint” (the arrival of the control signal c
oj
rj

has
to be later than the arrival of the result of oj ) is formulated as

σ(co∗

xi
) · clk + τ (xi) + terr + D

oj

xi−rj
+ s ≤

σ(c
oj
rj

) · clk + τ (rj) (1)

where, when the resource xi is a register storing an input of oj ,
o∗ is the operation which generates the input stored in xi, or when
xi is a multiplexer at the input of either ρ(oj) or rj , o∗ = oj .
D

oj

xi−rj
is the maximum path delay from xi to rj related to the

execution of oj . terr is a timing margin, and s is the setup time of
the register rj .

On the other hand, the “hold constraint” (the arrival of c
oj
rj

has
to be earlier than the destruction of the result of oj ) is given as

σ(c
oj
rj

) · clk + τ (rj) + terr ≤

σ(cnext(xi,oi)
xi

) · clk + τ (xi) + d
oj

xi−rj
− h, (2)

where d
oj

xi−rj
is the minimum path delay from xi to rj related to

the execution of oj , and h is the hold time of rj . next(xi, oi) is
the operation next to oi on the resource xi. In case that several
operations are chained, setup and hold constraints are formulated
between input registers to the first operation, intermediate multi-
plexers located on the chaining path, and the output register of the
last operation of the chain. Note that without loss of optimality we
can set 0 ≤ τ (x) < clk for all x ∈ M.

In general, the objective of the scheduling is the minimization
of the computation time and the size of a resultant circuit. Since ξ
and ρ are fixed in our problem, to minimize the size of a circuit
is to minimize the size of a controller. We can assume that the
size of the controller is an increasing function of |M| and CS (the
number of control steps). Since |M| is fixed, CS is our objective
to be minimized in terms of circuit size. On the other hand, the
computation time of a circuit can be evaluated with clk·CS. Hence,
we choose clk · CS + λ · CS as the objective to be minimized,
where λ is a weighting coefficient.

B. Partial Problems

Depending on the design strategy, design methodology, target
application, design constraints, etc., we may encounter several
partial problems.

(τ ,clk)-optimization is the problem to optimize τ and clk while
keeping control schedule σ. Because τ and clk take real values,
(τ ,clk)-optimization problem can be formulated as LP problem.

(σ,clk)-optimization is the problem to optimize σ and clk under
given skew τ . Conventional high-level synthesis systems treated
(σ,clk)-optimization under zero skew.

(σ,τ )-optimization is the problem to optimize σ and τ under
a give clock period clk. In most cases clk may be determined
considering various factors, and we often encounter this type
of optimization problem. (σ,τ )-optimization can be considered
also as a candidate subroutine for solving the original (σ,τ ,clk)-
optimization, that is, for example repeating (σ,τ )-optimization with
a systematic sweep of clk. In the rest of this paper, we investigate
(σ,τ )-optimization problem.

IV. HEURISTIC ALGORITHM

By our preliminary study, we have proven that, even if the
execution sequence of operations assigned to the same resource is
fixed and only the control step assignment remains unfixed, (σ, τ )-
optimization under a fixed clock period is NP-hard. In this section,
we show a heuristic algorithm for this (σ,τ )-optimization problem.
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Fig. 2. Skew constraint multigraph

A. Skew Constraint Graph

From (1)-(2), we have

τr − τm ≥ (σ
op
m − σok

r ) · clk + τerr + Dok
m−r + s, (3)

τm − τr ≥ (σok
r − σ

next(m,op)
m ) · clk + τerr − dok

m−r + h. (4)

We generate a skew constraint multigraph Gτ = (V, E) from (3-4)
as shown in Fig.2. V is a set of multiplexers, registers and one
auxiliary source node vs. A set of weighted edges E is the union
of a set of edges reflecting (3) or (4) (i.e., an edge (m, r) with
weight (τ

op
m − τ

ok
r ) · clk + τerr + D

ok
m−r + s or an edge (r,m)

with weight (τ
ok
r − τ

next(m,op)
m ) · clk + τerr − d

ok
m−r + h) over all

operations, and a set of auxiliary edges {(m, vs)|m ∈ V \ vs} ∪
{(vs, m)|m ∈ V \vs}. Edge weights for {(m, vs)|m ∈ V \vs} and
{(vs, m)|m ∈ V \ vs} are −clk and 0, respectively. Then, skew
assignment problem is now considered as the problem to assign
real values to vertices in Gτ , and maximum path lengths from vs

to other vertices gives us a solution, i.e., skew of registers and
multiplexers. If Gτ has a positive cycle, feasible skew schedule
does not exist.

B. Schedule Constraint Graph

From (1)-(2) with regarding integral σ, we have

σ(c
oj
rj

) − σ(coi
xi

) ≥l“
τ (xi) − τ (rj) + terr + D

oj

xi−rj
+ s

”
/clk

m
, (5)

σ(cnext(xi,oi)
xi

) − σ(c
oj
rj

) ≥l“
τ (rj) − τ (xi) + terr − d

oj

xi−rj
+ h

”
/clk

m
(6)

We generate a schedule constraint graph Gσ = (Vσ, Eσ) similar
to a skew constraint graph. Vσ = S

S
{vs} where vs is an auxiliary

source node. Eσ is the set of edges reflecting (5) or (6), and (vs, v)
for all v ∈ S whose weight is 0. Once τ and clk are given, the
longest path length from vs to each node v is a feasible value of
σ(v), and the maximum of those longest path lengths gives CS. A
path which gives CS is called a critical path. If Gτ has a positive
cycle, feasible schedule does not exist.

C. Heuristic Algorithm for (σ, τ )-optimization Problem

Suppose we have computed τ from Gτ , and consider the union
T of a longest path from vs to each node. Then, T is a spanning
tree, and for each edge (xi, rj) in T , relative skew (σ(rj) −
σ(xi)) mod clk is equal to either “(terr +D

oj

xi−rj
+ s) mod clk”

u

v

w

partition1
partition2

critical path

Gτ
vs vs

Gσ

co
u

co′

v

Fig. 3. We add an edge on a critical path in Gσ to T .

Step1. Generate Gτ and Gσ

Step2. Generate an initial solution T ⊂ Gτ .
Step3. Compute τ from T . Compute σ from Gσ. Let P be a critical

path in Gσ .
Step5. For each edge (u, v) ∈ Gτ corresponding to e ∈ P ,

try to generate T(u,v) from T by adding (u, v) and removing
an appropriate edge. If we can compute T(u,v), compute skew
assignment τ(u,v) and the number of control steps CS(u,v).

Step6. If CS(u,v) > CS or we cannot generate T(u,v) for all (u, v)
in Step5, output τ and σ and quit. Otherwise, set T = T(u,v) by
such (u, v) which achieves the smallest CS(u,v), and go to Step3.

Fig. 4. Heuristic algorithm

or “(terr − d
oj

xi−rj
+ h) mod clk” depending on the edge weight.

Therefore, we can consider the skew optimization problem as the
problem to extract a spanning tree from Gτ .

Since the right hand side of (5)-(6) has a ceiling, if the relative
skew (σ(rj) − σ(xi)) mod clk is equal to (terr + D

oj

xi−rj
+

s) mod clk or (terr − d
oj

xi−rj
+ h) mod clk, the weight of the

edge reflecting inequality (5) or (6) is minimized. Therefore, to
minimize CS, it is efficient to set relative skew to (terr+D

oj

xi−rj
+

s) mod clk or (terr − d
oj

xi−rj
+ h) mod clk for as many edges as

possible in a critical path i.e. we have to choose as many edges in
a critical path in Gσ as edges of spanning tree in Gτ .

Our heuristic algorithm is shown in figure 4. We start with the
spanning tree T in Gτ whose edge set is {(vs, m)|m ∈ V \vs} i.e.
σ(m) = 0 for all m. We replace (vs, m) by an edge corresponding
to an edge on a critical path in Gσ one by one. We use a partitioning
to know which edge we can add and which edge we have to remove
in order to keep T a tree. Each component in T\{(vs, x)|x ∈ V }
forms a partite set of a partition. Because T is a tree, only one edge
from each partite set connects to vs. If we generate T(u,v) by adding
(u, v) to T , we remove the edge between vs and the component
to which v belongs to. Gτ in Figure 3 shows the replacement of
edges. We add (u, v) to T only if u and v belong to different partite
sets.

V. EXPERIMENTS

Proposed algorithm has been implemented using C program-
ming language and tested on AMD OpteronTM based PC. As input
applications, we use three DAG algorithms modified from Jaumann
wave filter, all-pole lattice filter and elliptic wave filter.

Path delays between two modules are the sum of delays
of register-multiplexer, multiplexer-FU, FU, FU-multiplexer, and
multiplexer-register. Maximum/minimum delays of multipliers and
adders are 60/10 and 20/10, respectively. The other delays are given
randomly. The minimum register-multiplexer and FU-multiplexer
delays are chosen from 3-25 and the minimum multiplexer-register
and multiplexer-FU delays are chosen from 2-15. The maximum
delay of each path is 1.1-1.4 times larger than its minimum delay.
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TABLE I
EXPERIMENTAL RESULTS

Algorithm #fu #reg clk CS time(ms)
n/s w/s n/s w/s

Jaumann 6 6 20 38 33 0.122 8.31
40 22 18 0.124 11.4
80 14 11 0.123 11.9

7 7 20 33 31 0.114 1.72
40 19 17 0.114 3.05
80 11 9 0.115 10.5

Lattice 3 5 20 55 50 0.075 2.12
40 31 27 0.076 3.05
80 19 15 0.075 3.80

4 5 20 50 46 0.078 2.76
40 29 25 0.078 3.33
80 17 14 0.077 5.02

Elliptic 8 13 20 66 57 0.241 42.1
40 38 33 0.241 74.0
80 23 16 0.239 96.5

8 14 20 67 58 0.245 42.2
40 38 31 0.244 51.6
80 22 18 0.243 101

We have prepared 2 input instances for each input algorithm,
each instance has different resource assignment, different delay
assignment and different operation order. For each instance, we
have applied schedule optimization without skew optimization
(assuming zero skew) and proposed algorithm.

Table I shows some of experimental results. The column
“#fu”,”#reg”,”clk” represent the number of function units, regis-
ters, and clock period of each instance, respectively. The column
“CS” represents the number of control steps (makespan) of output
schedule with proposed algorithm (the subcolumn “n/s”) and zero
skew (the subcolumn “w/s”). The column “time” represents the
computation time in milli-seconds. Figures 5-7 plot the application
time (i.e., CS × clk) vs. clock period. Those plots are obtained
by applying our algorithm repeatedly with increasing clk by 1 at a
time. A thin doted line represents the lower bound of CS × clk.

For almost all input instances, we have better results than
zero skew control step assignment. Experimental results show the
effectiveness of our proposed algorithm, and also the potential of
the simultaneous optimization of skew and control step assignments
in improving system performance.

VI. CONCLUSIONS

We have introduced a novel optimization problem, simultaneous
schedule (control step assignment) and skew optimization problem,
and we have proposed a heuristic algorithm for the simultaneous
control step and skew optimization under given clock period.
The algorithm has the potential to play a central role in various
scenarios of skew-aware high level synthesis. Relation between the
simultaneous optimization of skew and re-timing in logic level and
our problem in high level is one of the interesting future works.
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