JAIST Repository

https://dspace.jaist.ac.jp/

K On the derivation of a miphimum test
quality transition testing

Author(s) |l wagaki, Tsuyoshi; Kaneko Mi neo

o 10th Latin American Test Wor kshop,

Citation
"09. 1-6

Issue Date 2009-03

Type Conference Paper

Text version publ i sher

URL http:// hdl handle.net/ 10119/ 8480
Copyright (C) 2009 | EEE. Reprinted
Latin American Test Workshop, 2009.
6. This materi al i's postefd here wit
of the | EEE. Such permissjon of the
in any way imply | EEE endprsement o
JAI ST's products or servifges. Il nter

_ personal use of this matefpi al i's pe

Rights . . :
However, permission to reprint/repu
material for advertising pr promot.i
or for creating new collefptive work
or redistribution must be|l obtained
by writing to pubs-permispions @i ee
choosing to view this docuhment, you
provisions of the copyright | aws pr

Description

AIST

JAPAN

ADVANCED

INSTITUTE OF

SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

1

(

On the Derivation of a Minimum Test Set in High Quality Transition Testing

Tsuyoshi Iwagaki and Mineo Kaneko

Japan Advanced Institute of Science and Technology (JAIST), Ishikawa 923-1292, Japan
E-mail: {iwagaki, mkaneko}@jaist.ac.jp

Abstract

This paper discusses a test generation method to derive
high quality transition tests for combinational circuits. It
is known that, for a transition fault, a test set which propa-
gates the errors (late transitions) to all the primary outputs
reachable from the fault site can enhance the detectability
of unmodeled defects. In this paper, to generate a mini-
mum test set that meets the above property, the test gener-
ation problem is formulated as a problem of integer linear
programming. The proposed formulation guarantees that
minimum two-pattern tests for a transition fault are gener-
ated so that the errors will be observed at all the primary
outputs reachable from the fault site. A case study using a
benchmark circuit is presented to show the feasibility of the
proposed method.

1 Introduction

The purpose of manufacturing test is to separate defec-
tive circuits from good ones. The behavior of a defect can
be expressed by a fault model. To cope with various types of
defects, several fault models such as the stuck-at fault model
and the transition fault model are usually considered during
test generation phases. When a target fault model is spec-
ified, test engineers try to generate tests with 100% fault
coverage under the fault model. Obtained tests are then ap-
plied to actual circuits for defect screening. However, some
defective circuits can pass the screening due to the presence
of unmodeled defects even though the fault coverage of the
applied tests is 100%. One way to avoid this undesirable
situation is to develop a dedicated fault model for such de-
fects. However, since it is costly to do so in general, several
alternatives which assume conventional fault models have
been discussed to enhance the detectability of unmodeled
defects [1, 2, 3, 4].

Multiple-detection tests [1] have been shown to have an
ability of detecting unmodeled defects. In order to clar-
ify how effective multiple-detection tests are, some metrics
were discussed in [2, 3, 4]. This paper focuses on the metric
in [2]. In [2], the authors considered a test set for transition
faults that propagates the errors (late transitions) of each
transition fault to all the primary outputs reachable from the

978-1-4244-4206-5/09/$25.00 ©2009 IEEE

fault site, and showed it is effective in screening defective
circuits compared to a conventional test set. To derive such
a test set, some test generation procedures have been pro-
posed in [5, 6]. The procedures in [5, 6] used a Boolean
satisfiability technique with some heuristics and an existing
test generation tool, respectively. Given a combinational
circuit and a transition fault in the circuit, the following sim-
ple question can arise:

e What is the minimum number of two-pattern tests that
detect the fault at all the primary outputs reachable
from the fault site?

To the best of our knowledge, there has been no answer to
this question yet. One goal of this paper is to give an answer
to it. In this paper, we try to tackle this problem by using a
technique of integer linear programming (ILP).

The rest of this paper is organized as follows. Section 2
gives the concept of test generation using ILP, then, in Sec-
tion 3, an ILP formulation is presented to derive a minimum
test set for a transition fault that meets the above property.
Section 4 presents a case study to show the feasibility of our
proposed method, and finally, Section 5 concludes the paper
and describes our future work.

2 Preliminaries

Our test generation method is based on integer linear
programming (ILP). In this section, we describe how to
translate the test generation problem for a transition fault
in a combinational circuit into an ILP problem.

2.1 Concept of ILP-based test generation

ILP-based test generation has first been presented for the
stuck-at fault model [8]. Figure 1 represents the concept
of ILP-based test generation. In this framework, given a
combinational circuit and a fault, the circuit and the detec-
tion condition of the fault are first translated into the corre-
sponding constraints that consist of inequalities and equali-
ties with integer variables (especially 0-1 variables). Then,
a feasible assignment to the variables that meets the con-
straints is obtained by an ILP solver. The assigned values of
the variables that correspond to the circuit inputs form a test
for the fault. If one wants to optimize some property during

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on October 28, 2009 at 04:12 from IEEE Xplore. Restrictions apply.

—* Circuit —
— —
—_— x —

* fault —
— —_

Translate ﬁ

ILP constraints:

« Constraints for the fault-free circuit
* Constraints for the faulty circuit

* Constraints for fault detection

(+ objective function)

ILP solver
Solution: test pattern |

Figure 1: Concept of ILP-based test generation

Figure 2: ISCAS ’85 benchmark circuit c17

test generation, one can add it as an objective function to
the ILP problem.

In the following, we explain how to translate the test gen-
eration problem for a transition fault in a combinational cir-
cuit into an ILP problem by using an example. More for-
mal descriptions of ILP-based test generation can be found
in [8, 9].

2.2 Transition Test Generation Using ILP

A two-pattern test for a transition fault, which is of the
slow-to-rise type or slow-to-fall type, satisfies the following
two conditions:

1. The first vector sets an appropriate value to the fault
site.

2. The second vector detects the corresponding stuck-at
fault.
Since there is no correlation between the first vector and the
second vector, they can be considered separately during test
generation. Before describing how to generate a two-pattern
test for a transition fault, we first explain how to express the
circuit behavior by using ILP constraints.

Table 1 shows inequalities in ILP constraints to express
the behaviors of primitive gates with one or two inputs. In
the first column of the table, y represents a gate output and
each of x, x| and x; represents a gate input, where they can
take ‘0’ or ‘1. A feasible assignment to the variables of
the inequalities for a gate corresponds to the behavior of the
gate. For example, a 2-input AND gate produces ‘0’ if at
least one input has ‘0" This behavior corresponds to the
first and second inequalities in Table 1. Indeed, if x; or x;
takes ‘0,” y has to be ‘0’ in those inequalities. Furthermore,
if both inputs take ‘1, the AND gate produces ’1.” This be-
havior is expressed by the last inequality in the table. In this
way, each gate in a combination circuit can be interpreted
as inequalities in ILP constraints. Given a combinational
circuit, we can obtain ILP constraints for the whole circuit
by replacing each gate with its corresponding inequalities
repeatedly. Now, let us consider the circuit shown in Fig-
ure 2. For example, we can obtain the following constraints
for c17:

Giixp+x10 2> 1,x3+x10 > 1,—x1 —x3 —x10 = -2,
Gaix3+x11 2> 1xe+x11 > 1,—x3 —x¢ —x11 2> =2,
G3:xp+x16 > 1,x11 +x16 > 1, —x2 —X11 — X16 2> —2,
Gg: x11 +x19 > 1,x7 +x19 > 1, —x11 — X7 —X19 > =2,
Gs: x10+x22 > 1,x16+x22 > 1,—x10 — X16 — X22 > —2,
Ge: x16+x23 > 1,x194+X23 > 1, —x16 —X19 — X3 > —2.

Any feasible assignment for these constraints simulates
the behavior of ¢17. In Figure 2, when we have x| = 1,
xp=1,x3 =0, x¢ = 1 and x7 = 1, the circuit behaves as
follows: X10 = 1, X11 = 1, X16 = 0, X19 = 0, X2 = 1 and
xp3 = 1. These values satisfy the above constraints, and vice
versa.

Given a combinational circuit C and a transition fault f
in C, the following procedure is performed to generate a
two-pattern test in this paper.
1. Extract the fanin cone C8' reachable to f and the
fanout cone Cf reachable from f, from C.

2. Copy C as C%.

3. Translate C8', C# and Cf into the corresponding ILP
constraints, and create additional constraints to express
the connection between C# and CT.

4. Create the constraints for detecting f.

5. Apply an ILP solver to the above constraints.

Here, we consider Figure 2 and the slow-to-rise transi-
tion fault on x;1. To generate a two-pattern test for the fault,
we first perform steps 1 and 2 of the above procedure. Fig-
ure 3 shows the obtained three circuits. Figure 3(a) repre-
sents the fault-free version of the original circuit associated
with x;;. This fault-free circuit is used to generate the first
vector of a two-pattern test, and the behavior of it is ex-
pressed by the following constraint:

I R]

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on October 28, 2009 at 04:12 from IEEE Xplore. Restrictions apply.

Table 1: Inequalities in ILP constraints expressing the behaviors of primitive gates

Gate types Inequalities
¥ = AND(x1,x2) xX1=y>0,x20—y>0,—x1—x2+y>—1
y=NAND(x1,x2) | x1+y> 1, x04+y> 1, —xj—xp -y > -2
y=OR(x1,x3) —x1+y>0,—x+y>0,x1+x—y>0
y=NOR(x},x2) —x1—y>-1,-x-y>-Lxi+x3+y>1
y=XOR(x1,x3) X1—x2+y>0,—x1+x24+y>0,x1+x2—y>0,—x1 —x2—y > -2
y=XNOR(x1,x2) | x1 —x2—y> -1, =x1+x2—-y>-Lxi+x+y>1, —-x1—-x2+y> -1
y=NOT(x) x+y>1,—-x-y>-1
y = BUFFER(x) x=y>0,-x+y>0

Figure 3(b) represents the fault-free version of the orig-
inal circuit. This fault-free circuit is used together with the
circuit of Figure 3(c) in order to generate the second vector
of a two-pattern test, and the behavior of it is expressed by
the following constraints.

GP o +xfy 2 1,87 4y 2 1, - —afy > 2,
G +af) > 1ag) > 1,03 o —f) > 2,
G1 3% +xig > 1] xf > 1, -8 —xf e > =2,
Gy oy 2 1 4 > 1=y~ —xy > =2,
Oty > gy oy gy > -2
Gt xfg +x33 > 1y +53 > 1, —xjg —xfg — x5y > 2.

Figure 3(c) represents the faulty version of the original
circuit associated with x;. This faulty circuit is used to
generate the second vector of a two-pattern test, and the be-
havior of it is expressed by the following constraints.

GE: xf +x{ > I,x{1 —}—x{6 >1,—xf —x{l —x‘;6 > -2,
G‘f‘: X1 +Xj9 2> 1,x§+x§? >],—xl% —ng—xggfz -2,
G5 xjp+x5 2 1,x16+x55 2 1, X9 — X1 — X35 > —2,
G X +x33 2 1,xjg+x33 > 1, =g —Xjg —Xp3 > —2.

In Figure 3(c), since we can assume that x{; has a stuck-
at 0 fault, and that x}, x{ and x{; have the same values of
the corresponding signals of Figure 3(b), we must have the
following constraints:

x{l = O,

x%i —x% =0,
x‘;gz —xZ =0,
Xjo—X10 = 0.

Now, we consider the detection conditions for the slow-
to-rise transition fault on x1;. According to the first detec-
tion condition mentioned before, x1; must be set to ‘0’ un-
der the first vector of a two-pattern test. Hence, the follow-
ing constraint is required:

x%ll =0.

Moreover, according to the seconds detection condition,
in order to detect the corresponding stuck-at fault, we need
to differentiate the fault-free circuit from the faulty one. To
translate this condition into ILP constraints, we introduce
variables e;;,e23 with the following constraints:

X5 —xly +exn >0, —x55 +x5, +en >0,

(@)

g2
X22
(b)

g2
3

X22
©

f
23

Figure 3: Three circuits for fault detection: (a)
Fault-free circuit for generating the first
vector of a two-pattern test; (b) Fault-free
circuit for generating the second vector
of a two-pattern test; and (c) Faulty cir-
cuit for generating the second vector of
a two-pattern test

x5 +aly —en >0, —xf — x5 —en > -2
x§§ —xby +e23 >0, —x§§ +xby +ex3 >0,
X33 +xhy —e23 2 0, —x5; —xhy —ex3 > 2.
Each of e, and ep; takes ‘1’ if and only if the corre-

sponding primary outputs of the fault-free circuit and faulty
circuit take different values.

Finally, since the error must be propagated to at least one
primary output, we have the following constraint:
exn+epn>1.

In this way, a two-pattern test can be generated by apply-
ing any ILP solver to all the above constraints.

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on October 28, 2009 at 04:12 from IEEE Xplore. Restrictions apply.

) - ILP constraints for fin C,

ILP constraints for fin C,

AN

=k <

identical copies

—Jc

Figure 4: ILP model for generating a minimum test
set

ILP constraints for f'in C/Of/ V

3 Proposed Method
3.1 Our Test Generation Problem

We formally state our test generation problem as follows.
Input: A combinational circuit C and a transition fault
finC

Output: A two-pattern test set Ty that propagates the
errors caused by 1 to its all reachable primary outputs

Objective: Minimizing |Ty|
To solve this problem, we derive the following formula-
tion.

3.2 ILP Formulation

The upper bound of |Ty| is |O|, where O represents all
the primary outputs reachable from f, because one test is
enough to propagate the error of f to each reachable pri-
mary output. We make use of this upper bound to formulate
an ILP problem. Here, we prepare |O| copies of the given
circuit, and associate ILP constraints to detect f with each
copy (Figure 4). This implies that, for f, |Oy| vector pairs
can be generated simultaneously. Notice that the constraint
for the first vector of a two-pattern test can commonly be
used by all the copies. If we identify useless copies of them
as much as possible, we will finally obtain a minimum test
set for f. To achieve this, we consider additional constraints
in the following. Note that the following additional con-
straints are used instead of the constraint for fault detection,
i.e., the last constraint of the previous section.

For each i (1 < i< |Oy|)and j (1 < j < |Oyl), we intro-
duce a 0-1 variable ¢; ;. Variable e; ; takes ‘1° if the error of
f is propagated to the j-th primary output in C;, otherwise
it takes ‘0.” In general, there is a redundant primary output

at which the error of f never reaches for any vector pair.
For such a primary output, we prepare a 0-1 variables r; for
each j. Equation r; = 1 indicates the error of f does not
reach at the j-th primary output of any copy of the circuit,
and r; = 0 indicates the error of f reaches at the j-th pri-
mary output of at least one copy. By using this variable, we
have the following constraints for each ;.

[Or]
Sej+ri>1 (1)

i=1

This means that the error of f must be propagated to the
Jj-th primary output of at least one copy, or the j-th primary
output of every copy must be redundant. Since e; ; =r; =1
never happen for all i, j, we also have the following con-
straints.

e;,j—{—rjgl (2)

Now, we introduce a variable u; for each i to identify
copies of the circuit that are mandatory. Variable ; takes
‘1’ if the error of f is propagated to at least one primary
input of the i-th copy, otherwise it takes ‘0.” This state can
be expressed by the following constraint.

—eij+u; >0 3)

Since at least one u; has to take ‘1’ if f is testable, i.e.,
a test is generated in at least one copy, we also have the
following constraint.

|0yl

Du>1 @
i=1

Finally, we have to minimize the following equation for
test minimization.

O] 0yl

> oui+l0s]- Y 7 ®)
i=1 j=1

The first term counts the number of copies that are used
for propagating the errors to all the reachable primary out-
puts. From inequality (1), it can be seen that r; can be set
to ‘1’ freely. To prevent 7; from being ‘1’ freely, the term is
multiplied by |O| in the second term of the above equation.
Therefore, after running an ILP solver, r; will take ‘1’ if and
only if the error of f never reaches at the j-th primary out-
put of any copy, i.e., the j-th primary output of the circuit is
redundant.

By using the values assigned to the primary inputs of
copies whose u; take ‘1,” we can form a minimum test set
for f.

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on October 28, 2009 at 04:12 from IEEE Xplore. Restrictions apply.

Table 2: Values of ¢; ;

j=11j=21j=3|j=4]/j=5
i=1] 0 1 0 0 0
i=2] 0 1 0 0 1
i=3] 0 0 0 0 0
i=41 1 0 0 0 1
i=5] 0 1 1 0 0

Table 3: Values of u;

i=1]1
i=2 |1
i=3]0
i=4 |1
i=5]|1

3.3 Example

To clarify our ILP formulation, we give an example here.
We use a combinational circuit C with five primary out-
puts as an example circuit. To generate a minimum test
set for a fault f in C, five copies C;,C3,...,Cs of C need
to be prepared. Now, let us consider a situation where ILP
constraints for the test generation were provided for an ILP
solver, and, during solving the ILP problem, the temporary
feasible assignment shown in Tables 2—4 was obtained.

Table 2 represents that the errors of f reach at the 2nd
primary output of Cj, at the 2nd and 5th primary outputs of
(3, at the 1st and 5th primary outputs of C4, and at the 2nd
and 3rd primary outputs of Cs, respectively. Note that, in
C3, no test is generated Since, in any of Cy, C,, C4 and Cs,
the error appears at least one primary output, each u; except
u3 takes ‘1’ as shown in Table 3. Notice that it is possi-
ble for u3 to take ‘1’ because it also satisfies inequality (3).
However, in the final solution after solving the ILP problem,
such an assignment will be rejected. Table 4 shows that the
4th primary output of any copies has no error.

3.4 Sizes of variables and constraints

Here, we estimate the sizes of variables and constraints
in our test generation problem. Let # be the number of sig-
nal lines in a combinational circuit. It is enough to prepare
2n variables for fault detection (Figure 3). As mentioned
in Section 3.2, since |Oy| copies of the original circuit are
produced, totally 27 - |Oy| variables are required for fault
detection. Since the additional variables of 7; and u;, where
1<i< |0yl and 1 < j < |Oyl, are used to derive a mini-
mum test set, totally 2|Oy| variables are also needed. Thus,
we need to prepare at most 2n-|Oy| +2|Oy| variables. The
number of constraints for fault detection and for test set
minimization can roughly be estimated as O(n - |Oy|) and
0(|0y|?), respectively.

Table 4: Values of r;

J=1]j=2]/=3]j=4]j=
0 0 0 1 0

4 Case study

To show the feasibility of our proposed method, we per-
formed a case study using one ISCAS ’85 benchmark cir-
cuit (c2670). Our case study was done on a Linux work-
station (CPU: AMD Opteron 250 2.4 GHz x2, Memory:
8 GB), and CPLEX (version 11.01) from ILOG and Galena
from [10] were used as ILP solvers. In the case study, sev-
eral slow-to-rise faults in the circuit were chosen as target
faults, and, for each fault, its ILP model was obtained by
using a Perl program.

Table 5 shows the test generation results for the faults.
Columns “Signal name” and “#reachable” represent the sig-
nal name of each fault site and the number of primary out-
puts reachable from the fault site, respectively. Columns
“#variables” and “#constraints” list the number of variables
and constraints in the ILP model for each fault, respectively.
Columns “#tests,” “#unobservable” and “CPU time” give
the number of two-pattern tests generated by CPLEX or
Galena, the number of redundant primary outputs reachable
from the fault site and computation time including model
construction time, respectively. From the results, the fol-
lowing remarks can be made:

o [fthe error of a fault can be propagated to all the reach-
able primary outputs with one test, its computation
time can be short, otherwise its computation time can
increase.

o The presence of redundant primary outputs for a fault
can make the computation time large.

The results also show that CPLEX did not work well for
almost all instances. From this point of view, our ILP prob-
lems seem to be hard. However, Galena solved them suc-
cessfully. This is because Galena is tuned specifically for 0-
1 ILP problems where all variables take ‘0’ or ‘1.” It is con-
ceivable that our method is applicable for larger instances if
we use a tuned 0-1 ILP solver.

In the future, we should verify the above remarks for var-
ious benchmark circuits. If the remarks are true, we can use
those facts to improve our ILP model. For example, if we
identify redundant primary outputs by using a preprocess-
ing technique, we can remove the variables and constraints
for them in our ILP model. Furthermore, this can also re-
duce the number of duplicated circuit copies used in our ILP
model.

5 Conclusions and Future Work

In this paper, we presented an integer programming for-
mulation to generate high quality transition tests for com-

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on October 28, 2009 at 04:12 from IEEE Xplore. Restrictions apply.

Table 5: Test generation results for slow-to-rise faults in c2670

])) #tests #unobservable CPU time [s]

Signal name || #reachable | #variables | #constraints CPLEX Galena | CPLEX Galena | CPLEX _ Galena
“139” 5 7,171 17,292 1 1 0 0 8.00 1.00
“100” 6 8,551 20,624 1 1 0 0 9.78 0.58
“104” 7 10,606 25,545 1t 1 1 1| >3,600 2.49
“g2” 8 11,185 27,098 1 1 0 0 4.89 0.69
“246” 10 14,111 34,232 1 1 2 2 63.18 1.55
“1068” 11 16,748 40,413 1t 1 1t 1| >3,600 7.03
“78” 12 18,613 44,822 2t 2 1t 1| >3,600 7.32
“1065” 13 20,273 48,760 2t 2 1t 1| >3,600 5.91
“92” 15 23,851 57,482 3t 3 1t 1|>3,600 3257
“1075” 18 32,457 78,576 2t 2 2t 1| >3,600 74.02
“1042” 21 36,690 89,088 2f 1 2t 1|>3,600 7423
“227” 28 58,017 142,074 —3 2 —1 1| >3,600 19573

+ Temporary solution within 3,600 seconds
1 No feasible solution within 3,600 seconds

binational circuits. When a combinational circuit and a
transition fault in the circuit are given, our method always
generates a minimum test set that propagates the errors of
the fault to all the primary outputs reachable from the fault
site. In addition to theoretical interests, we believe that our
discussion can be useful if one investigates a new heuristic
technique for test minimization or evaluates existing heuris-
tic techniques such as [5, 6].

In the future, we should evaluate the proposed method
for various benchmark circuits, and should consider im-
proving our ILP model and adopting heuristic techniques.
Moreover, from a practical point of view, it should be im-
portant to discuss minimizing tests for not one but all faults
in a circuit in our future work.

Acknowledgments

The authors would like to thank the reviewers of this pa-
per for their helpful comments. This work was supported in
part by the research promoting expenses for assistant pro-
fessors of JAIST.

References

[1] S. C. Ma, P. Franco and E. J. McCluskey, “An exper-
imental chip to evaluate test techniques: experimental
results,” Proc. International Test Conference, pp. 663—
672, 1995.

C.-W. Tseng and E. J. McCluskey, “Multiple-output
propagation transition fault test,” Proc. International
Test Conference, pp. 358-366, 2001.

(2]

[3] B. Benware, C. Schuermyer, N. Tamarapalli, K.-H.
Tsai, S. Ranganathan, R. Madge, J. Rajski and P. Kr-

ishnamurthy, “Impact of multiple-detect test patterns

(4]

(5]

(6]

(71

(8]

(]

[10]

on product quality,” Proc. International Test Confer-
ence, pp. 1031-1040, 2003.

H. Tang, G. Chen, S. M. Reddy, C. Wang, J. Rajski
and 1. Pomeranz, “Defect aware test patterns,” Proc.
Design, Automation and Test in Europe, pp. 450455,
2005.

B. Vaidya and M. B. Tahoori, “Delay testing based on
transition faults propagated to all reachable outputs,”
Proc. International Workshop on Defect Based Test-
ing, pp. 67-75 2004.

I. Park, A. Al-Yamani and E. J. McCluskey, “Effec-
tive TARO pattern generation,” Proc. VLSI Test Sym-
posium, pp. 161-166 2005.

N. K. Jha and S. Gupta, Testing of digital systems,
Cambridge University Press, 2003.

J. P. M. Silva, “Integer programming models for op-
timization problems in test generation,” Proc. Asia
and South Pacific Design Automation Conference, pp.
481-487, 1998.

P. F. Flores, H. C. Neto and J. P. M. Silva, “An ex-
act solution to the minimum size test pattern prob-
lem,” ACM Transactions on Design Automation of
Electronic Systems, Vol. 6, Issue 4, pp. 629—-644, Oct.
2001.

D. Chai and A. Kuehlmann, “A fast pseudo-boolean
constraint solver,” Design Automation Conference, pp.
830-835, 2003.

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on October 28, 2009 at 04:12 from IEEE Xplore. Restrictions apply.

