
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Protection and Recovery of Disk Encryption Key

Using Smart Cards

Author(s) Omote, Kazumasa; Kato, Kazuhiko

Citation

Fifth International Conference on Information

Technology: New Generations, 2008. ITNG 2008.:

106-111

Issue Date 2008-04

Type Conference Paper

Text version publisher

URL http://hdl.handle.net/10119/8481

Rights

Copyright (C) 2008 IEEE. Reprinted from Fifth

International Conference on Information

Technology: New Generations, 2008. ITNG 2008.,

106-111. This material is posted here with

permission of the IEEE. Such permission of the

IEEE does not in any way imply IEEE endorsement

of any of JAIST's products or services. Internal

or personal use of this material is permitted.

However, permission to reprint/republish this

material for advertising or promotional purposes

or for creating new collective works for resale

or redistribution must be obtained from the IEEE

by writing to pubs-permissions@ieee.org. By

choosing to view this document, you agree to all

provisions of the copyright laws protecting it.

Description

Protection and Recovery of Disk Encryption Key using Smart Cards

Kazumasa Omote and Kazuhiko Kato
Department of Computer Science, Graduate School of ISE,

University of Tsukuba

Abstract
Information leakage has recently become a serious
problem. Because a user's disk might contain a lot of
confidential information, it should be encrypted and the
encryption key protected securely. Disk security has been
improved by storing the encryption key in a hardware
token such as a smart card or USB device. There must be
some way to recover the encryption key when the token is
lost, but to prevent information leakage the encryption
key should not be known by the system administrator and
should not be able to be recovered by malicious users
inside the system.
Here we describe a scheme that can limit key recovery
when the user’s smart card is lost and can do so without
the administrator knowing the key. The smart card is used
for generating the key and for improving the user
authentication.

1. Introduction

Information leakage has recently become a serious
problem and most often a result of actions inside rather
than outside the system that should be protecting the
information. Although system administrators have high
access authority, they should not know the disk
encryption keys of users because they may not be
authorized to read a user's sensitive information.

Information leakage from a disk in a managed network
(e.g., an enterprise network) is generally prevented by
encrypting either the entire disk or just the confidential
files stored on it. Since this encryption uses highly secure
symmetric-key encryption algorithms, however, it is not
easy for a user to memorize the random numbers
constituting the disk encryption key. So it is important not
only to encrypt the disk data but also to store the disk
encryption key securely. This can be done by storing the
key in a hardware token such as smart card or USB
device, but there must also be some way to recover the it
if the token is lost. For example, it is necessary to keep a
backup copy in a safe place such as another key
management server.

The encryption key should not be known by the system
administrator, however, nor should it be possible for
malicious users within the system to recover a user’s
encryption key.

In this paper we present a scheme that can limit key
recovery when a user loses his smart card and can do so

without the administrator knowing the key. In our scheme
the disk encryption key is not preserved anywhere and
only someone who has a user’s smart card and knows the
user’s password can decrypt that user’s disk data. The
smart card is used for generating the key and for
improving the user authentication.

This paper is organized as follows. In Section 2 we
briefly review some related work. We then in Section 3
explain our basic policy, in Section 4 describe our
protocol in detail, and in Section 5 present the results of
an experimental evaluation of our scheme. In Section 6
we discuss our scheme and in Section 7 we conclude by
briefly summarizing the paper.

2. Related work

There are two kinds of disk encryption: full disk
encryption, in which all the byte data on the disk is
encrypted; and filesystem-level encryption, in which what
are encrypted are the files or directories on the disk [1].

The BitLocker feature of the Windows Vista OS is a
popular tool for full disk encryption [2]. It works in
combination with a TPM chip that encrypts the key used
in encryption and saves the encrypted key on the disk.
The Secure File System [3], on the other hand, provides
filesystem-level encryption.

A lot of authentication schemes based on smart cards
have been proposed recently [4], [5], [6], [7], [8]. In them
a user’s secret information that is shared with servers is
stored in the user’s smart card. It is protected by a
password and by the difficulty of computing discrete
logarithms. There is also a scheme that improves security
by combining the use of a smart card and the Virtual
Machine Monitor (VMM) [9].

Several papers about key recovery have been published
[10], [11], [12], [13], [14]. Of the four kinds of key
recovery methods (key escrow, trusted third party,
commercial key backup, and key encapsulation) key
encapsulation is the only one in which the key is not
known to the administrator [11], [12]. When key
encapsulation is used, however, it is hard to confirm that
the recovered key is the legitimate user’s key because the
administrator does not know the key in advance. This
means that the encryption key can be recovered by a
malicious user. Although we can easily devise a method
that uses the key with a certificate, in that case the key
would be known to the administrator in advance. Key-

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.195

106

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.195

106

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.195

106

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.195

106

Fifth International Conference on Information Technology: New Generations

978-0-7695-3099-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ITNG.2008.195

106

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on October 29, 2009 at 21:52 from IEEE Xplore. Restrictions apply.

recovery methods using a smart card have been proposed
[13], [14], but they are fundamentally different from the
one in our scheme.

There is also a method in which secret keys are
managed safely by using blind signatures and passwords
[15]. In that method a user’s secret key is encrypted by
the value of the blind signature and the source of the
signature is encrypted by the password. Both the
encrypted key and the encrypted source are kept on a
local disk. This double encryption protects the password
from brute force attacks.

3. Basic policy

In this section we describe basic policy for constructing
our scheme. We assume that the scheme is used in
managed network such as an enterprise network.

3.1. Realization of full disk encryption

An advantage of full disk encryption (encrypting all
byte data on the disk) is that everything, including the
swap space and the temporary files, is encrypted and the
decision of which files to encrypt is not left to users [1].
Our scheme uses a symmetric-key encryption algorithm
such as AES because it is a high-security algorithm and
can encrypt/decrypt a disk quickly.

In a full disk encryption, the OS is encrypted in a hard
disk. So some program would start up the OS by
decrypting the hard disk data.

3.2. Use of a Virtual Machine Monitor

For a full disk encryption, it is necessary for a program
to decrypt the disk data before starting up the OS. We use
a Virtual Machine Monitor (VMM) as this program. The
VMM encrypts/decrypts the disk data by using it own
encryption engine by which the disk access data is
compulsorily hooked. The VMM first authenticates the
smart card locally by using the public key authentication
method. When the card is authenticated, the VMM can
acquire the disk encryption key and load it into the VMM
memory. Note that we do not put secret information such
as the disk encryption key directly into the VMM. The
validity of the signature calculation in the smart card can
be guaranteed at the same time that the card is being
authenticated.

3.3. Use of smart card

The smart card is used for generating the key and for
improving the authentication. Because we use a
symmetric-key encryption algorithm, it is difficult for a
user to memorize the disk encryption key (e.g., a 128-bit
random number). Our scheme therefore generates the

encryption key with the help of a smart card. We assume
that the smart card is also an identification card (ID card),
so the encryption key is linked to the user's identity. Thus
only a specific user who has the smart card is able to start
up the OS in the user’s client PC. We also assume that a
PKI such as remote authentication is used with the smart
card. The private key, the public key, the public key
certificate, and the signature calculation software in the
public key cryptosystem are stored in this card.

3.4. Use of Semi-Trusted Third Parties

The administrator and the trusted management server
together constitute a semi-trusted third party (STTP) that
issues legitimate identification and smart cards, recovers
lost encryption keys, and prevents the information stored
in its database from being falsified. It need not, however,
prevent the leakage of a user’s secret information, such as
the encryption key, because it does not have any of the
user’s confidential information. The only secret
information that the STTP has is its own private key.

3.5. Recovery of disk encryption key

If you have lost your smart card, you might not be able
to decrypt your disk data because the disk encryption key
is stored in your smart card. We therefore need to have
some way to recover the key when the smart card is lost.
One drawback of most key recovery methods, however, is
that they require the STTP to know the user’s key.
Although there are also some methods in which the user's
key need not be known to the STTP, with them it is
difficult to ensure that a key can be recovered only by the
legitimate user. This means that the encryption key can be
recovered by a malicious user. We therefore want to
recover the key without letting the STTP know what the
key is.

4. Our scheme

In this section we explain the detailed protocol of a
scheme following the basic policy described in Section 3.

4.1. Premises

The premises of our scheme are these:

1. The STTP issues the public key certificate and the

certificate revocation list, and it prevents this
information from being falsified while it is in the
STTP’s database.

2. The smart card is tamper resistant, and the
confidential information is not stolen from the smart
card itself or while it is being transferred between
the smart card and the client PC.

107107107107107

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on October 29, 2009 at 21:52 from IEEE Xplore. Restrictions apply.

3. The calculation algorithms (e.g., signature genera-
tion) in the smart card are not falsified.

4. The STTP can freely alter the data in user’s smart
card by using the STTP’s privileged password, but
the STTP cannot read that data.

5. The user can read data other than his private key in
his smart card by using his password, but he cannot
alter it.

6. The code of the VMM in the client PC is not
falsified, and the STTP does not steal the user’s
private information in the VMM.

7. We do not deal with the situation in which the user
who has lost his smart card forgets his password.

4.2. Notations

In this description of the notations used in our scheme,

|| n and || in are assumed to be more than 1024 bits.

SHA1) (e.g.function Hash :)(
 ofkey encryptionDisk :

Challenge:
list revocation eCertificat:

STTP of ecertificatkey Public:
 of ecertificatkey Public:

)2|n|(numbers Random:,
|)n|(numbers Random:,

 of keysRSA :),,(
STTP of keysRSA :),,(

password s':
User :

⋅

≤
≤

h
Usk

c
CRL
CERT

Ucert
ba
rR

Unde
nde

Upw
iU

ii

ii

ii

i

iiii

ii

i

Smart Card STTP

icert Make

ipwSelect

ii ne ,

icert

ipwset

ipw Change
R

idR) (mod in

iii

iii

nde
nde

,, Store
,, Make

icert Store
icert Store

) (mod in

idR Store

()iU

i
d certR i with Link

Figure 1: Registration phase (1) (Smart Card -- STTP)

VMM STTP

iaR

iibaR

e
iiba)(Store

iibaR Store

RCRLCERT ,,

) (mod in

e
ib

ia
CRLCERT

Select
, Store

iiba

i

R

b

Get

Select

) (mod in) (mod in

) (mod in

) (mod n

ia Discard iiba
i Rb , Discard

) (mod n

()iU

e
i

e
i

e
ii baba ⋅=)(

) (mod n

Figure 2: Registration phase (2) (VMM -- STTP)

4.3. Protocol

The protocol in our scheme is composed of the
following six phases.

A. Initial phase
The STTP generates its RSA keys, CERT, and CRL. It
also generates the random numbers R that are the
common public information of the system.

B. Registration phase (1)
The user connects his smart card with the STTP and
initializes the card (see Figure 1). In this part of the
registration phase the user iU sets his RSA keys, icert ,
and ipw in his smart card. The STTP makes each user's
public information) mod(i

d nR i by using iU ’s smart card
and preserves the value along with icert .

C. Registration phase (2)

iU connects the client PC (VMM) to the STTP with a
secure channel, and makes information that is necessary
for the key recovery in the VMM (see Figure 2). In this
part of the registration phase the VMM generates both

) mod(i
ba nR ii and) mod()(nba e

ii in cooperation
with the STTP. Note that neither the VMM nor the STTP
knows the value of iiba .

D. Local authentication phase
The client PC (VMM) confirms the validity of the smart
card in a local network. We can confirm that the smart
card was legitimately issued by the STTP. In this phase
we use a blind signature for both the generation of the
disk encryption key and the authentication. The procedure
is shown in Figure 3.

108108108108108

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on October 29, 2009 at 21:52 from IEEE Xplore. Restrictions apply.

Smart Card VMM

ipwCheck

)(

Select
)(

Verify

iiii pwhbae
i

i

ii

i
e

i

i

Rrc

r
pwpwh

certe

cert
CERTe

←

←
←

←

ipw

icert

c) (mod in

idc) (mod in

c
cc ii de

Verify
←

()iU

Figure 3: Local-authentication phase

VMM STTP

e
iiba)(

) (mod in

) (mod n)(ipwh

()iU

e
ii

d
ii baba)(←

) (mod n

idRSelect

)()(iiii pwhbad
i Rsk ←

) (mod in
iii badR)(

Figure 4: Key-recovery phase

E. Disk encryption key generation phase
When a local authentication succeeds, the VMM executes
the following procedure.

1. The VMM derives the legitimate disk encryption

key isk of size || in by calculating i
d rc i) mod(in :

()i

dpwhba
i nRsk iiii mod)(= .

2. The VMM divides the disk encryption key isk by

the block size of the symmetric-key encryption
algorithm, and then uses some chopped keys from
the head of byte data of isk . For instance, when the
symmetric-key encryption algorithm is AES-128,
you can get eight disk encryption keys because

bits 1024|| =in . In this case you use only the first
key, 1isk .

|| 21 iii sksksk =

F. Key-recovery phase
When you accidentally lose your smart card, you execute
the key-recovery phase by connecting your client PC
(VMM) to the STTP with a secure channel (see Figure 4).
After recovering the key, you discard it and start from
registration phase (2) again.

5. Experiment

5.1. Purpose

Our scheme uses a smart card with a low processing
ability, so its processing time might be long because two
kinds of phases (the local authentication phase and the
disk encryption key generation phase) are executed every
time the client PC is used. We therefore measured the
processing time required for each function in both phases
in order to confirm that the smart card can complete the
processing within a reasonable time.

5.2. Circumstances

We used as the client PC a ThinkPad X60 (CPU: Core
2 Duo 2GHz, Memory: 1GB), used as the smart card an
eLWISE (NTT Communications), and used as the smart
card reader an ASE drive IIIE (Athena Smartcard
Solutions). This smart card is equipped with a CPU,
RAM, and ROM and corresponds to PKCS#11.

The software we used was the OS Linux Fedora Core
6, a smart card library group, the encryption library
OpenSSL 0.9.8b, the multiple-precision arithmetic library
GMP 4.1.4-9, and the virtual machine monitor QEMU
0.8.2.

5.3. Method and Results

In the local authentication phase and the disk
encryption key generation phase, we measured the
processing time for the six items listed in Table 1. Items 1
and 4 were executed in the smart card, and the others
were executed in the VMM. The measurement was
conducted by inserting the gettimeofday function in the
source code.

Table 1: Experimental results
Measurement items Time
1. Acquisition of user’s public key certificate 2140 ms
2. Verification of user's public key certificate 19.4 ms
3. Generation of challenge 19.2 ms
4. Generation of blind signature 420 ms
5. Verification of blind signature 11.7 ms
6. Generation of disk encryption key 0.202 ms
Total time 2610 ms

109109109109109

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on October 29, 2009 at 21:52 from IEEE Xplore. Restrictions apply.

Each of the times for the items listed in Table 1 is the
average of five measurements. The total time is discussed
in subsection 6.5.

The processing times for acquiring the user’s public
key certificate and for generating the blind signature were
both comparatively long, and that for acquiring the public
key certificate was the longest. Additionally, the
processing time for generating the blind signature
contains not only the calculation but also the transfer of
the signature data. That is, the transfer between the smart
card and the client PC took longer than the signature
calculation in the smart card.

6. Discussion

6.1. Limitation of recovered key

The value of) mod(i
d nR i can be calculated only from

iU 's smart card because that is the only place where the
private key id is stored. That is, the value of

) mod(i
d nR i is link to iU through icert (see Figure 1).

And the recovered disk encryption key iiii dpwhbaR)(
) mod(in is calculated from the) mod(i

d nR i that the
STTP stores (see Figure 4). That is, the recovered
encryption key is link to the value of) mod(i

d nR i . The
recovered encryption key is therefore linked to iU . This
means that the STTP can limit iU ’s recovered encryption
key to the value of iiii dpwhbaR)() mod(in if the STTP
authenticates iU who lost his smart card.

6.2. Impersonation attack by STTP

The RSA private key id , the hash value of the
password)(ipwh , and the value of iiba —all
corresponding to iU —are needed to generate the disk
encryption key, but neither the STTP nor an attacker
knows these values. The STTP does not maintain any of
the user's secret information.

The STTP can get the values of) mod(i
ba nR ii and

) mod(i
d nR i in the registration phase but, because of the

secrecy of the RSA cryptosystem, it cannot get iiba or
id from these values. Therefore neither the STTP nor an

attacker impersonating the STTP can get the user’s disk
encryption key

iU cannot get iiba or id . So the user cannot get the
disk encryption key without using his smart card.

6.3. Revocation of disk encryption key

When the disk encryption key of some user is revoked,
the user must not be able to freely use his encryption key.
The STTP can revoke the RSA private key id by using
the CRL. The disk encryption key includes user's private
key id . Therefore the STTP can revoke iU ’s disk

encryption key by revoking id . As a result, the user
whose encryption key is revoked cannot decrypt his disk
data even with his smart card. Of course he is also unable
to use the PKI authentication with the same card after
revocation. Note that it is necessary to have the CRL
stored in the VMM updated.

6.4. Protection of recovered key

The disk encryption key should not be known by
anybody even after it is recovered. In our scheme the
STTP cannot derive iU ’s encryption key after it is
revoked because the STTP does not know the hash value

)(ipwh . Also, the person other than STTP does not know
)(ipwh by the same token. The encryption key is thus

kept secret even after the key recovery phase.

6.5. Time until the OS has booted up

The time until the OS has booted up is the total time
required for the local authentication phase, the disk
encryption key generation phase, and the OS booting. Our
experimental results showed that execute both the local
authentication phase and the disk encryption key
generation phase took about 2.6 seconds. On the other
hand, booting up the OS (Windows XP) on the QEMU
took about 60 seconds on the same machine. So the
processing time for both phases was less than 5% of the
time required for booting up the OS. We therefore think
that the time which is required for both phases is short
enough to be practical.

6.6. Length of disk encryption key

The standardization of full disk encryption is discussed
in [16], [17]. In these documents, two kinds of
standardization of narrow-block encryption and wide-
block encryption are advanced at the same time. In these
standardizations, some encryption modes are elected as a
candidate. Among these modes the key length of XTS
mode and TET mode is two block lengths and the key
length of EME* mode is three block lengths. Hence the
mechanism of our scheme is meaningful because it
generates the disk encryption key of two or more block
lengths.

7. Summary

In this paper we described a scheme that can limit the
recovered encryption key without informing the STTP
(effectively, the system administrator) of the user’s key.
Although the STTP maintains none of the user's
confidential information, the user can recover the
encryption key by cooperating with the STTP. Moreover,
we showed in experiments that it took about 2.6 seconds

110110110110110

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on October 29, 2009 at 21:52 from IEEE Xplore. Restrictions apply.

for the smart card to execute both the local authentication
phase and the disk encryption key generation phase. This
is a short time compared with the OS booting time.

Acknowledgements

This work was supported by Special Coordination
Funds for Promoting Science and Technology that were
provided by the Japanese Ministry of Education, Culture,
Sports, Science and Technology. We are also grateful to
the Secure VM project members who advised us and
cooperation in this research.

References

[1] Wikipedia, "Full disk encryption,"http://en.wikipedia.

org/wiki/Full_disk_encryption, 2007.
[2] Niels Ferguson, "AES-CBC +Elephant diffuser: A

Disk Encryption Algorithm for Windows Vista,"
Microsoft Corp., 2006.

[3] J. P. Hughes and C. J. Feist, "Architecture of the
Secure File System," Proceedings of the Eighteenth
IEEE Symposium on Mass Storage Systems and
Technologies (MSS'01), 2001.

[4] W. C. Ku and S. M. Chen, "Weakness and improve-
ments of an efficient password based remote user
authentication scheme using smart cards," IEEE
Trans. on Consumer Electronics, 50(1), 2004.

[5] C. C. Chang and J. S. Lee, "A Smart-Card-Based
Remote Authentication Scheme," Proceedings of the
Second International Conference on Embedded
Software and Systems (ICESS'05), 2005.

[6] E. J. Yoon and K. Y. Yoo, "More Efficient and Secure
Remote User Authentication Scheme Using Smart
Cards," Proceedings of the 11th International
Conference on Parallel and Distributed Systems
(ICPADS'05), 2005.

[7] M. S. Hwang and L. H. Li, "A New Remote User
Authentication Scheme Using Smart Cards,” IEEE
Trans. on Consumer Electronics, 46(1), 2000.

[8] H. M. Sun, "An Efficient Remote User Authenti-
cation Scheme Using Smart Cards,” IEEE Trans. on
Consumer Electronics, 46(4), 2000.

[9] Y. Wang and P. Dasgupta, "Remote User Authen-
tication Using VMM-based Security Manager,”
http://cactus.eas.asu.edu/Partha/Papers-PDF/2006/
authentication_yw.pdf, 2006.

[10] S. Lim, S. Kang, and J. Sohn, "Modeling of Multiple
Agent based Cryptographic Key Recovery Protocol,”
Proceedings of the 19th Annual Computer Security
Applications Conference (ASAC 2003), 2003.

[11] M. J. Markowitz and R. S. Schlafly, "Key Recovery
in SecretAgent,” Digital Signature, 1997.

[12] R. Gennaro et al., "Secure Key Recovery,” IBM
Thomas J. Watson Research Center, 1999.

[13] K. Narimani and G. B. Agnew, "Key Management
and Mutual Authentication for Multiple Field
Records,” Proceedings of the Third International
Conference on Information Technology: New
Generations (ITNG'06), 2006.

[14] M. Blaze, "Key Management in an Encrypting File
System,” Proceedings of the USENIX Summer 1994
Technical Conference, 1994.

[15] M. Kwon and Y. Cho, "Protecting Secret Keys with
Blind Computation Service," Third International
Workshop on Information Security Applications,
2002.

[16] SISWG, "P1619: Standard Architecture for
Encrypted Shared Storage Media," IEEE Project 1619
(P1619), 2007.

[17] SISWG, "P1619.2: Standard for Wide-Block
Encryption for Shared Storage Media," IEEE Project
1619.2 (P1619.2), 2006.

111111111111111

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on October 29, 2009 at 21:52 from IEEE Xplore. Restrictions apply.

