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A Dynamic Attribute-Based Group Signature
Scheme and its Application in an Anonymous

Survey for the Collection of Attribute Statistics
Keita Emura, Atsuko Miyaji, and Kazumasa Omote

School of Information Science,
Japan Advanced Institute of Science and Technology,

1-1, Asahidai, Nomi, Ishikawa, 923-1292, Japan

Abstract—Recently, cryptographic schemes based on the user’s
attributes have been proposed. An Attribute-Based Group Sig-
nature (ABGS) scheme is a kind of group signature schemes,
where a user with a set of attributes can prove anonymously
whether she has these attributes or not. An access tree is applied
to express the relationships among some attributes. However,
previous schemes do not provide the changing an access tree. In
this paper, we propose a Dynamic ABGS scheme that enables an
access tree to be changed. Our ABGS is efficient in that re-issuing
of the attribute certificate previously issued for each user is not
necessary. Moreover, calculations depending on the number of
attributes are calculated on the domain of a pairing. Therefore,
the number of calculations in a pairing does not depend on the
number of attributes associated with a signature. Finally, we
discuss how our ABGS can be applied to an anonymous survey
for collection of attribute statistics.

Index Terms—Attribute-based system, Group signature,
Anonymous Authentication, Anonymous survey

I. INTRODUCTION

Recently, cryptographic schemes based on the user’s at-
tributes have been proposed. Attribute-Based Group Signature
(ABGS) schemes [9], [10] are a kind of Group Signature (GS)
schemes [7], [11], where a user with a set of attributes can
prove anonymously whether she has these attributes or not.
ABGS schemes have been proposed by Khader [9], [10] using
Goyal’s attribute-based encryption scheme [8] and Boneh’s
GS scheme [5]. To the best of our knowledge, these are the
only proposals for an ABGS. Usually, users have many kinds
of attributes, and there exist some relationships among these
attributes. An access tree [8], [9], [10] is applied to express
these relationships. However, [9] and [10] schemes do not
provide the changing of the relationships among attributes.
This means that attributes and relationships among these
attributes can be determined only once. This is not practical.
Moreover, in all previous ABGSs [9], [10], the number of
calculations in a pairing depends on the number of attributes
associated with a signature.
Our Contribution : In this paper, we propose a Dynamic
ABGS scheme that enables an access tree to be changed.
Our ABGS is efficient in that re-issuing of the attribute
certificate previously issued for each user is not necessary.

Moreover, calculations depending on the number of attributes
are calculated on the domain of a pairing. Therefore, the
number of calculations in a pairing does not depend on the
number of attributes associated with a signature. Finally, we
discuss how our ABGS can be applied to an anonymous survey
for collection of attribute statistics.
Organization : The paper is organized as follows. Definitions
are given in Section II. Our scheme is described in Section
III. Security analysis is performed in Section IV. Efficiency
comparisons are presented in Section V. The application of our
ABGS in an anonymous survey for the Collection of Attribute
Statistics is demonstrated in Section VI.

II. DEFINITIONS

A. Bilinear Groups

Definition 1: (Bilinear Groups) We use bilinear groups
and a bilinear map defined as follows:

1) G1, G2 and G3 are cyclic groups of prime order p.
2) g1 and g2 are generators of G1 and G2, respectively.
3) ψ is an efficiently computable isomorphism ψ : G2 →

G1 with ψ(g2) = g1.
4) e is an efficiently computable bilinear map e : G1 ×

G2 → G3 with the following properties.
• Bilinearity : for all u, u′ ∈ G1 and v, v′ ∈

G2, e(uu′, v) = e(u, v)e(u′, v) and e(u, vv′) =
e(u, v)e(u, v′).

• Non-degeneracy : e(g1, g2) �= 1G3 (1G3 is the G3’s
unit).

B. Access Tree

Let Att = {att1, . . . , attm} be a set of attributes. For Γ ⊆
2Att \{∅}, Γ satisfies the monotone property: if ∀B,C ⊆ Att,
B ∈ Γ and B ⊆ C, then C ∈ Γ holds. Let access structures
for Att be a set of Γ which satisfies the monotone property. An
access tree [8], [9], [10] T is used for expressing an access
structure by using a tree structure. An access tree is a tree,
where threshold gates are defined on each interior node of
the tree, and the leaves are associated with attributes. These
attributes are subsets of Att. Let �x be the number of children
of node x, and kx (0 < kx ≤ �x) be the threshold value on the
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threshold gate of node x. We call the threshold gate “OR gate”
when kx = 1, and “AND gate” when kx = �x. The notation
Leaves |= T expresses the fact that a set of attributes Leaves
satisfies the access tree T .

C. Model and Security Definitions

In this subsection, we define the model of an ABGS. An
ABGS is a kind of GS, where a user Ui with a set of attributes
Γi ⊆ Att = {att1, . . . , attm} can prove anonymously
whether she has these attributes or not. Ui has a membership
certificate Ai and a set of attribute certificates {Ti,j}attj∈Γi

.
Ui makes a group signature associated with ζ ⊆ Γi. Usually,
for a set of attributes Att, we construct an access tree to
consider all relationships among these attributes. However,
the access tree is changed when some threshold values are
changed, or some attributes are deleted. Therefore, we define
the model of the ABGS accepting a change of an access
tree. We do not provide for the fact that a new attribute
att �∈ Att = {att1, . . . , attm} is added in an access tree.
In this case, we have to re-issue an attribute certificate for
users with att to execute the Join algorithm again. Let GM
be the group manager. k the security parameter, params the
system parameter, Att = {att1, . . . , attm} the universe of
attributes, Tr the r-th access tree with a set of attributes {att},
where att ∈ Att is assigned on each leaf, Tr the public values
associated with Tr, gpk the group public key, ik the group
secret key which is used for issuing a membership certificate
and making Tr, ok the opening key which is used for the
opening procedure to reveal the signers’ identification from
the group signature, (upki, uski) the verification/signing key
of a signature scheme DSig, ski the member secret key for
Ui (i = 1, 2, . . . , n), Γi ⊆ Att attributes of Ui, and reg
be the registration table for Open algorithm. Note that ski

includes both Ai and {Ti,j}attj∈Γi
. In Join algorithm, we use

the notation Join(〈input of GM〉, 〈input of user〉).
Definition 2: ABGS

• Setup(1k): This algorithm takes as input k, and returns
params.

• KeyGen(params): This algorithm takes as input
params, and returns gpk, ik, ok and reg = ∅.

• BuildTree(params, ik, Tr): This algorithm takes as input
params, ik and Tr whose leaves are associated with a
subset of Att, and returns Tr.

• Join(〈params, gpk, ik, upki,Γi〉, 〈params, gpk, upki,
uski〉): This algorithm takes as input params, gpk, ik,
upki and Γi from GM , and params, gpk, upki and uski

from Ui, and returns ski and reg.
• Sign(param, gpk, ski,M, ζi, Tr): Let ζi ⊆ Γi be a set

of attributes such that ζi |= Tr. This algorithm takes as
input params, gpk, ski, a message M , ζi and Tr, and
returns σ associated with ζi.

• Verify(param, gpk,M, σ, ζ, Tr): This algorithm takes as
input params, gpk, σ, M , σ, ζ and Tr, and returns 1 if
and only if σ is a valid signature.

• Open(param, gpk, ok, σ, ζ,Tr,M, reg): This algorithm
takes as input params, gpk, ok, σ, ζ, Tr, M and reg,

and returns the signer’s identity i. If the signer is not
included in reg, then this algorithm returns 0.

If the access tree Tr is changed to Tr+1, then GM runs
BuildTree(params, ik, Tr+1), and opens Tr+1, which is the
public information associated with Tr+1.

Definition 3: Anonymity : Anonymity requires that for
all PPT A, the advantage of A on the following game, is
negligible.

• Setup: Let T0 be the initial access tree. The
challenger runs KeyGen(params), and obtains
gpk, ik and ok. Moreover, the challenger runs
BuildTree(params, ik, T0), and obtains T0. A is
given params, gpk, T0 and ik.

• Phase1: A can send these queries as follows:

– Join : A requests the join procedure for honest
member Ui. A plays the role of corrupted GM on
these queries.

– Signing : A requests a group signature σ for all
messages M , and all members Ui with a set of
attributes ζi ⊆ Γi.

– Corruption : A requests the secret key ski for all
members Ui.

– Open : A requests the signer’s identity with a mes-
sage M and a valid signature σ.

– Re-BuildTree : A sends an access tree Tr. The
challenger returns public values Tr.

• Challenge: A outputs M∗, non-corrupted users Ui0 , Ui1

and ζ. Note that ζ ⊆ Γi0 , ζ ⊆ Γi1 and ζ |= T ∗ , where T ∗

is the access tree on the challenge phase. The challenger
uniformly selects b ∈R {0, 1}, and responds with a group
signature on M∗ by group member Uib

.
• Phase2: A can make the Signing, Corruption, Open, Join

and Re-BuildTree queries. Note that Corruption queries
include both Ui0 and Ui1 .

• Output: A outputs a bit b′, and wins if b′ = b.

The advantage of A is defined as Advanon(A) = |Pr(b =
b′) − 1

2 |.
In Join queries, A can play the role of corrupted GM (the

same as in SndToU oracle, which is defined in [2]). More-
over, we consider the Anonymity for Key-Exposure, namely,
corruption queries for Ui0 and Ui1 can be admitted in Phase
2. Even after a secret key is exposed, signatures produced
by the member before Key-Exposure remain anonymous. A
similar definition of our Key-Exposure has been given in [3]
for the ring signature scheme. Moreover, our definition is the
CCA-Anonymity model [5], [7], namely, open queries in the
Anonymity game can be admitted.

Definition 4: Traceability requires that for all PPT A, the
probability that A wins the following game is negligible.

• Setup: Let T0 be the initial access tree. The
challenger runs KeyGen(params), and obtains
gpk, ik and ok. Moreover, the challenger runs
BuildTree(params, ik, T0), and obtains T0. A is
given params, gpk, T0 and ok.
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• Queries: A can issue the Signing, Corruption, Join and
Re-BuildTree queries. All queries are the same as in the
Anonymity game, except Join.

– Join : A requests the Join procedure for corrupted
member Ui.

• Output: A outputs a message M∗, σ∗ and ζ∗. Moreover,
T ∗ is the access tree in this phase, and T ∗ is the public
information associated with T ∗.

A wins if (1) Verify(params, gpk,M∗, σ∗, ζ∗, T ∗) = 1,
(2) Open(params, gpk, ok, σ∗, ζ∗, T ∗,M∗, reg) = 0, and
(3) A has not obtained σ∗ in Signing queries on M∗, ζ∗ and
T ∗. The advantage of A is defineed as the probability of A
wins.

In Join queries, A can play the role of corrupted users (the
same as in SndToI oracle, which is defined in [2]).

Definition 5: Collusion-Resistance requires that for all PPT
A, the probability that A wins the following game is negligi-
ble.

• Setup: Let T0 be the initial access tree. The
challenger runs KeyGen(params), and obtains
gpk, ik and ok. Moreover, the challenger runs
BuildTree(params, ik, T0), and obtains T0. A is
given params, gpk and T0.

• Queries: A can issue the Signing, Corruption, Join and
Re-BuildTree queries. All queries are the same as in the
Anonymity game.

• Output: Finally, A outputs M∗, σ∗ and ζ∗. T ∗ is the
access tree in this phase, and T ∗ is the public information
associated with T ∗.

A wins if (1) Verify(params, gpk,M∗, σ∗, ζ∗, T ∗) = 1,
and (2) A has not obtained attribute certificates associated
with ζ∗ corresponding to a single user.

This property indicates that, for example, there are two
users Ui0 and Ui1 with {Ti0,j}attj∈Γi0

and {Ti1,j}attj∈Γi1
,

respectively. We assume that Γi0 ⊂ ζ∗ ∧ Γi0 �= ζ∗, Γi1 ⊂
ζ∗ ∧ Γi1 �= ζ∗, and that ζ∗ ⊆ Γi0 ∪ Γi1 hold. Then Ui0 and
Ui1 cannot make a valid group signature with ζ∗ even if Ui0

and Ui1 collude with each other.
Definition 6: Non-Frameability requires that for all PPT A,

the probability that A wins the following game is negligible.
• Setup: Let T0 be the initial access tree. The

challenger runs KeyGen(params), and obtains
gpk, ik and ok. Moreover, the challenger runs
BuildTree(params, ik, T0), and obtains T0. A is
given params, gpk, T0, ik and ok.

• Queries: A can issue the Signing, Corruption, Join and
Re-BuildTree queries. All queries are the same as in the
Anonymity game.

• Output: Finally, A outputs a message M∗, an honest
member Ui∗ , σ∗ and ζ∗. T ∗ is the access tree in this
phase, and T ∗ is the public information associated with
T ∗.

A wins if (1) Verify(params, gpk,M∗, σ∗, ζ∗, T ∗) = 1,
(2) σ∗ opens to an honest member Ui∗ , (3) A has not obtained
σ∗ in Signing queries on M∗, Ui∗ and ζ∗, and (4) A has not

obtained ski∗ in Corruption queries on Ui∗ . The advantage of
A is defined as the probability of A wins.

III. PROPOSED SCHEMES

In this section, an ABGS together with an assignment of
secret values to access trees is presented.

A. Assignment of Secret Values to Access Trees

The previous schemes [10], [9] use a “Top-Down Approach”
construction for access trees (when threshold gates are defined
on each interior node of the tree and the leaves are associated
with attributes) as follows:

• A secret value of the root node is chosen.
• A polynomial qroot(x) of degree “threshold value −1” is

defined such that qroot(0) equals the secret value of the
root node.

• A secret value of a child node is defined such as
qroot(index(child)).

• Secret values of all nodes can be defined to execute this
procedure recursively.

If the access tree is changed, then the above Top-Down
Approach construction has to be executed again. This means
that the secret values that are associated with attributes have
to be re-issued to corresponding users, because these values
have to be changed. In our proposal, a “Bottom-Up Approach”
construction is introduced. The order of our construction is
different from that of the Top-Down Approach construction,
namely, first all secret values are chosen for each attribute
associated with each leaf. These secret values of leaves will
not be changed when the access tree is changed.
Idea : For a node x associated with the threshold value kx,
�x−kx dummy nodes will be opened, where �x is the number
of children of x. Next, the threshold value is changed from kx

to �x. Then, all threshold gates become AND gates. Children
with kx or more can compute the secret value of their parent
node by using the number of �x−kx public dummy nodes. We
define functions AddDummyNode which adds dummy nodes
to the access tree, AssignedValue which assigns secret values
for nodes on the access tree, and MakeSimplifiedTree which
makes a simplified tree associated with a set of leaves. Let
index be the function which returns the index of the node,
and p be a prime number. We assume that T includes Att.
〈AddDummyNode(T )〉 : This algorithm takes as input T , and
returns the extended access tree T ext.

1) For an interior node x of T , the number of dummy nodes
�x − kx is added to x’s children.

2) The threshold value defined in x is changed from kx to
�x.

3) All nodes are assigned unique index numbers.
4) The resulting tree, called T ext, is outputted.
Let DT be a set of dummy nodes determined by AddDum-

myNode. We assume that T ext includes DT . Moreover, let
sj ∈ Zp be a secret value for an attribute attj ∈ Att. Let
S = {sj}attj∈Att.
〈AssignedValue(p, S, T ext)〉 : This algorithm takes as input p,
S and T ext and returns a secret value sx ∈ Zp for each node
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x of T ext. Let {child}x be the set of node x’s children except
the dummy nodes, and {d}x be the set of node x’s dummy
nodes.

1) For an interior node x of T ext, a polynomial qx of degree
�x − 1 is assigned as follows:

a) For attj ∈ {child}x, let qx be a polyno-
mial of degree at most �x − 1 which passes
though (index(attj), sj), where sj ∈ S (j =
1, 2, . . . , �x).

b) For a dummy node dj ∈ {d}x, the secret value
sdj

:= qx(index(dj)) (j = 1, 2, . . . , �x − kx) is
assigned.

c) For x, sx := qx(0) is assigned.

2) Repeat the above procedure up to the root node, sT :=
qroot(0) is the secret value of T .

3) Output {sdj
}dj∈DT

and sT .
〈MakeSimplifiedTree(Leaves, T ext)〉 : This algorithm takes as
input the set of attributes Leaves ⊆ Att satisfying Leaves |=
T , and returns the simplified access tree TLeaves (which is the
access tree associated with Leaves) and a product of Lagrange
coefficients Δleaf .

1) The set of attributes {attj}attj∈Att\Leaves are deleted
from T ext.

2) An interior node x has children less than the threshold
value (namely, �x), and is deleted from T ext along with
x’s descendants.

3) Let DLeaves be the set of dummy nodes which have
remained after (1) and (2), and TLeaves be the access
tree after (1) and (2).

4) For all nodes x of TLeaves except root, we define Lx

as follows:

a) For x, define the depth 2 subtree of TLeaves with x
as leaf node. Let cx be the set of indices of leaves.

b) Compute Lx :=
∏

k∈cx\{index(x)}
−k

index(x)−k .

5) Let leaf ∈ {attj ∈ Leaves}∪{dj ∈ DLeaves} be a leaf
node of TLeaves. For leaf , we define Δleaf as follows:

a) Let Pathleaf := {leaf, parent1, . . . ,
parentnleaf

= root} be the set of nodes
that appears in the path from leaf to root node.

b) Compute Δleaf :=
∏

node∈Pathleaf\root Lnode.

6) Output TLeaves, Δj (attj ∈ Leaves), Δdj
(dj ∈

DLeaves).
Clearly,

∑
attj∈Leaves Δjsj +

∑
dj∈DLeaves Δdj

sdj
= sT

holds.

B. Proposed Attribute-Based Group Signature Scheme

In this subsection, we propose the ABGS by using our
assignment (Section III-A). Our ABGS uses the Cramer-
Shoup encryption scheme [6] for both CCA-Anonymity
and Key-Exposure properties, and a concurrently secure
Join algorithm proposed in [7]. Let NIZK be a Non-
Interactive Zero-Knowledge proof, SPK be a Signature of
Proof of Knowledge, and Ext-Commit be an extractable

commitment scheme. Let T0 be the initial access tree.
Note that if an access tree is changed, then GM runs
BuildTree(params, ik, Tr+1), and opens Tr+1, which is the
public information associated with Tr+1.

• Setup(1k)
1) GM selects cyclic groups of G1, G2, and G3 with

prime order p, an isomorphism ψ : G2 → G1, a
bilinear map e : G1×G2 → G3, and a hash function
H : {0, 1}∗ → Zp.

2) GM selects a generator g2 ∈ G2 and g3, g4 ∈R G1,
and sets g1 = ψ(g2).

3) GM defines Att = {att1, att2, . . . , attm}.
4) GM outputs params =

(G1,G2,G3, e, ψ,H, g1, g2, g3, g4, Att).
• KeyGen(params)

1) GM selects γ ∈R Zp, and computes ω = gγ
2 .

2) GM selects x′1, x
′
2, y

′
1, y

′
2, z ∈R Zp, and computes

C = g
x′
1

3 g
x′
2

4 ,D = g
y′
1

3 g
y′
2

4 and E = gz
3 .

3) For attj ∈ Att, GM selects sj ∈R Z
∗
p, sets

S = {sj}attj∈Att, and computes gattj
= g

sj

2

(attj ∈ Att).
4) For attj ∈ Att, GM selects hj ∈R G2, and sets

ĥj = ψ(hj).
5) GM outputs ok = (z), gpk =

(ω,C,D,E, {hj}m
j=1, {gattj

}attj∈Att) and
ik = (γ, {sj}attj∈Att).

• BuildTree(params, ik, T0)

1) GM runs T ext
0 = AddDummyNode(T0) and

AssignedValue(p, S, T ext
0 ), and gets {sdj

}dj∈DT0

and sT0 .
2) GM computes gdj

= g
sdj

2 (dj ∈ DT0) and v0 =
g

sT0
2 .

3) GM outputs T0 = ({gdj
}dj∈DT0

, v0, T
ext
0 ).

• Join(〈params, gpk, ik, upki,Γi〉, 〈params, gpk, upki, uski〉)
Ui gets ski = ((Ai, xi, yi), {Ti,j}attj∈Γi

), where
(Ai, xi, yi) is a member certificate and {Ti,j}attj∈Γi

is
the set of attribute certificates as follows:

1) Ui picks yi ∈R Zp, and computes ci = Ext-
Commit(yi), Fi = Eyi and π1 = NIZK{yi :
Fi = Eyi ∧ ci = Ext-Commit(yi)}.

2) Ui sends Fi, ci and π1 to GM .
3) GM checks π1. If π1 is not valid, then abort.
4) GM selects xi ∈R Zp, and computes Ai =

(g1Fi)1/(γ+xi), Bi = e(g1Fi, g2)/e(Ai, w), Di =
e(Ai, g2), Ti,j = A

sj

i (attj ∈ Γi) and π2 =
NIZK{xi, sj (attj ∈ Γi) : Bi = Dxi

i ∧ Ti,j =
A

sj

i (attj ∈ Γi) ∧ gattj
= g

sj

2 (attj ∈ Γi)}.
5) GM sends Ai, Bi,Di, {Ti,j}attj∈Γi

and π2 to Ui.
6) Ui checks π2. If π2 is not valid, then abort.
7) Ui makes Si,Ai

= DSiguski
(Ai), and sends Si,Ai

to GM .
8) GM verifies Si,Ai

with respect to upki and Ai. If
Si,Ai

is valid, then GM sends xi to Ui, and adds
(Ui, Ai) to reg.
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9) Ui checks the relation A
(xi+γ)
i =g1Eyi to ver-

ify whether e(Ai, g2)xie(Ai, w)e(E, g2)−yi
?=

e(g1, g2).

• Sign(param, gpk, ski,M, ζi, Tr)
A signer Ui signs a message M ∈ {0, 1}∗ as follows:

1) Ui chooses ζi ⊆ Γi (ζi |= Tr) to associate ζi with
a group signature. Let |ζi| = φ.

2) Ui runs MakeSimplifiedTree(ζi, T ext
r ), and gets T ζi

r ,
Δj (attj ∈ ζi) and Δdj

(dj ∈ Dζi
r ).

3) Ui computes gd =
∏

dj∈D
ζi
r
g
Δdj

dj
.

4) Ui selects α, δ ∈R Zp, and computes C1 = AiE
α,

C2 = gα
3 , C3 = gα

4 and C4 = (CDβ)α, where
β = H(C1, C2, C3).

5) Ui computes CTj = Ti,j ĥ
δ
j (attj ∈ ζi).

6) Ui sets τ = αxi + yi, and computes V =
SPK{(α, xi, τ, δ) : e(C1,ω)

e(g1,g2)
= e(E,g2)

τ ·e(E,ω)α

e(C1,g2)xi
∧

C2 = gα
3 ∧ C3 = gα

4 ∧ C4 = (CDβ)α ∧
e(
∏

attj∈ζi
CT

Δj
j ,g2)

e(C1,vr/gd) =
e(
∏

attj∈ζi
ĥ
Δj
j ,g2)

δ

e(E,vr/gd)α }(M).
Concretely, Ui computes V as follows:

a) Ui selects rα, rxi
, rτ , rδ ∈R Zp.

b) Ui computes R1 = e(E,g2)
rτ e(E,ω)rα

e(C1,g2)
rxi

, R2 = grα
3 ,

R3 = grα
4 , R4 = (CDβ)rα and RAtt =

e(
∏

attj∈ζi
ĥ
Δj
j ,g2)

rδ

e(E,vr/gd)rα .
c) Ui computes c =

H(gpk,M, {Ci}4
i=1, {CTi}φ

i=1, {Ri}4
i=1, RAtt).

d) Ui computes sα = rα + cα, sxi
= rxi

+ cxi,
sτ = rτ + cτ and sδ = rδ + cδ.

7) Ui outputs σ =
({Ci}4

i=1, c, sα, sxi
, sτ , sδ, {CTi}φ

i=1)

A signer Ui proves the knowledge of (α, xi, τ, δ) which
satisfies the 5 above relations described in SPK V .
The first relation captures whether a signer has a valid
membership certificate issued by the Join algorithm or
not. The last relation captures whether a signer has valid
attribute certificates associated with the set of attributes
ζi |= Tr or not.

• Verify(param, gpk,M, σ, ζ, Tr)
A verifier verifies a group signature σ associated with the
set of attributes ζ.

1) The verifier runs MakeSimplifiedTree(ζ, T ext
r ), and

gets T ζ
r , Δj (attj ∈ ζ) and Δdj

(dj ∈ Dζ
r ). Let

|ζ| = φ.

2) The verifier computes gd =
∏

dj∈Dζ
r
g
Δdj

dj
and β =

H(C1, C2, C3).
3) The verifier computes R̃1 =

e(E,g2)
sτ ·e(E,ω)sα

e(C1,g2)
sxi

(
e(g1,g2)
e(C1,ω)

)c

, R̃2 =

gsα
3

(
1

C2

)c

, R̃3 = gsα
4

(
1

C3

)c

,

R̃4 = (CDβ)sα

(
1

C4

)c

and R̃Att =

e(
∏

attj∈ζi
ĥ
Δj
j ,g2)

sδ

e(E,vr/gd)sα

(
e(C1,vr/gd)

e(
∏

attj∈ζi
CT

Δj
j ,g2)

)c

.

4) The verifier checks c
?= H(gpk,M, gpk,M,

{Ci}4
i=1, {CTi}φ

i=1, {R̃i}4
i=1, R̃Att).

• Open(param, gpk, ok, σ, ζ,Tr,M, reg)

1) GM verifies the validity of σ by using
Verify(param, gpk,M, σ, ζ,Tr). If σ is not a
valid signature, then GM outputs ⊥.

2) GM computes Ai = C1/C
z
2 .

3) GM searches Ai from reg, and outputs identity i.
If there is no entry in reg, then GM outputs 0.

IV. SECURITY

Let p, qH and qS be order of bilinear groups, and the
number of hash queries and signature queries, respectively.
Our scheme is based on the discrete logarithm (DL), eXternal
Diffie-Hellman (XDH) [5] (it is the Decision Diffie-Hellman
(DDH) assumption over G1), and q-strong Diffie-Hellman (q-
SDH) [4] assumptions.

Theorem 1: The proposed scheme satisfies Anonymity un-
der the XDH assumption (namely DDH assumption over G1),
i.e., Advanon(A) ≤ qSqH

p +m · εddh holds, where εddh is the
DDH-advantage of some algorithms and m = |Att|.

Theorem 2: We suppose an adversary A breaks the Trace-
ability of the proposed scheme with the advantage ε. Then,
we can construct an algorithm B that breaks the q-SDH
assumption with the advantage 1

6 (1 − 1
p )(1 − qSqH

p )ε.
Theorem 3: We suppose an adversary A breaks the Non-

Frameability of the proposed scheme with the advantage ε.
Then, we can construct an algorithm B that breaks the DL
assumption with the advantage 1

12 (1 + 1
n )(1 − qSqH

p )ε.
Theorem 4: The probability that a signature by

forged attribute certificates passes the verification,
Pr(Verify(params, gpk,M, σ, ζ,T ) = 1 ∧ ζ �|= T ), is
pφ−1−1

pφ = 1
p (1 − 1

pφ−1 ), where φ is the number of attributes
associated with a signature.

Theorem 5: Even if some malicious participants
Ui1 , . . . , Uik

(k > 1) with the set of attributes ζi1 , . . . , ζik

collude, they cannot make a valid signature associated with
an attribute tree Tr, where (∪k

j=1ζij
) |= Tr and ζij

�|= Tr

(j = 1, . . . , k) with non-negligible probability.
We omit these proofs, and put them in the full version of

this paper.

V. COMPARISONS

Let ζ (|ζ| = φ) be the set of attributes which is as-
sociated with a signature, Dζ be the set of dummy nodes
which is defined as ζ, and |Att| = m. Moreover, let r be
the number of revoked members [9]. We assume that the
computational estimations are made according to [11]. In our
scheme, Verification costs are the lowest, because the number
of calculations in a pairing does not depend on the number
of attributes associated with a signature. There is room for
argument regarding the Signing costs. Moreover, our scheme
provides Dynamic property,
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Table 1. Comparisons

[10] [9] Our Scheme
Dynamic property no no yes
CCA-Anonymity no no yes
Non-Frameability no no yes

Key-Exposure no no yes
Signature Length 1633 + 171φ 1192 + 1191φ 1634 + 171φ

Signing (12 + 2φ)G1 + 5G3 + e (7 + 2φ)G1 + (5 + φ)G3 + (φ + 1)e (9 + 3φ)G1 + (φ + 1)G2 + 8G3 + 3e
Verification 12G1 + (φ + 8)G3 + (φ + 1)e (6 + 2r)G1 + (8 + 2φ)G3 + (φ + 2r + 1)e (11 + 2φ)G1 + (φ + 1)G2 + 14G3 + 6e

VI. APPLICATION OF ABGS IN ANONYMOUS SURVEY

FOR COLLECTION OF ATTRIBUTE STATISTICS

In this section, we discuss how our ABGS can be applied to
an anonymous survey for collection of attribute statistics. An
anonymous survey is used as follows: When we apply the GS
to a business system offering some services to group members,
each member’s personal information is not exposed. Moreover,
a service provider can verify whether each user is valid or
not. However, it is difficult for a service provider to obtain a
collection of user’s attribute statistics to improve service con-
tents. In [13], an anonymous survey has been proposed which
is a protocol executed among trusted third parties (TTPs).
Moreover, the relationships among some attributes, e.g., (fe-
male ∧ 20s), can be handled in the statistics information.
However, a distributor cannot verify whether users properly
construct the ciphertext or not. In [12], an anonymous survey
has been proposed using the Open algorithm of Ateniese et. al.
GS [1]. A distributor can verify whether users properly make
the ciphertext or not, to verify the validity of group signatures.
Because one attribute certificate is issued for an attribute type,
it is difficult as the relationships among some attributes to
be handled in the statistics information. There is an obvious
solution: new attribute types such as attC = attA ∧ attB
are defined. However, the number of all attribute types are
represented by O(2m), where m is the number of all attributes.
We solve this attribute increase problem to apply an ABGS.

1) A user makes a group signature σ associated with the
set of attributes ζ to use our ABGS.

2) The user encrypts ζ to use the public key of a distributor,
and sends both σ and the encrypted ζ to the distributor.

3) The distributor decrypts ζ, and verifies whether σ is valid
or not.

4) The statistics information is the collection of ζ.

To collect the set of attributes ζ, the distributor can obtain
the statistics of attributes without any other information,
because the distributor does not know the opening key which
is used for the opening procedure to reveal the signer’s iden-
tification from the group signature. Moreover, the distributor
can verify whether users properly made the ciphertext or not,
to verify that the validity of group signatures is the same as
in [12]. Moreover, the relationships among some attributes can
be handled in the statistics information in the same way as
in [13], without increasing the number of attribute certificates
of each user. Indeed, the number of attribute certificates of
each user is represented by O(m). Of course, relationships

among some attributes which one wants to reflect with the
statistics information are different in each case. Our scheme
is suitable for use in the anonymous survey because the change
of relationships is indispensable in the anonymous survey for
the collection of attribute statistics.

VII. CONCLUSION

In this paper, we propose a Dynamic ABGS scheme that
enables an access tree to be changed. Our ABGS is efficient
in that re-issuing of the attribute certificate previously issued
for each user is not necessary. Moreover, the number of
calculations in a pairing does not depend on the number
of attributes associated with a signature. A service provider
obtains a collection of anonymous user’s attribute statistics to
improve service contents by using our ABGS.
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