Title: A Dynamic Attribute-Based Group Signature Scheme and its Application in an Anonymous Survey for the Collection of Attribute Statistics

Author(s): Emura, Keita; Miyaji, Atsuko; Omote, Kazumasa

Citation: International Conference on Availability, Reliability and Security, 2009. ARES '09.: 487-492

Issue Date: 2009-03

Type: Conference Paper

URL: http://hdl.handle.net/10119/8484

Rights: Copyright (C) 2009 IEEE. Reprinted from International Conference on Availability, Reliability and Security, 2009. ARES '09., 487-492. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of JAIST's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.
A Dynamic Attribute-Based Group Signature Scheme and its Application in an Anonymous Survey for the Collection of Attribute Statistics

Keita Emura, Atsuko Miyaji, and Kazumasa Omote

School of Information Science,
Japan Advanced Institute of Science and Technology,
1-1, Asahidai, Nomi, Ishikawa, 923-1292, Japan

Abstract—Recently, cryptographic schemes based on the user’s attributes have been proposed. An Attribute-Based Group Signature (ABGS) scheme is a kind of group signature schemes, where a user with a set of attributes can prove anonymously whether she has these attributes or not. An access tree is applied to express the relationships among some attributes. However, previous schemes do not provide the changing an access tree. In this paper, we propose a Dynamic ABGS scheme that enables an access tree to be changed. Our ABGS is efficient in that re-issuing of the attribute certificate previously issued for each user is not necessary. Moreover, calculations depending on the number of attributes are calculated on the domain of a pairing. Therefore, the number of calculations in a pairing does not depend on the number of attributes associated with a signature. Finally, we discuss how our ABGS can be applied to an anonymous survey for collection of attribute statistics.

Organization: The paper is organized as follows. Definitions are given in Section II. Our scheme is described in Section III. Security analysis is performed in Section IV. Efficiency comparisons are presented in Section V. The application of our ABGS in an anonymous survey for the Collection of Attribute Statistics is demonstrated in Section VI.

II. DEFINITIONS

A. Bilinear Groups

Definition 1: (Bilinear Groups) We use bilinear groups and a bilinear map defined as follows:
1) G_1, G_2 and G_3 are cyclic groups of prime order p.
2) g_1 and g_2 are generators of G_1 and G_2, respectively.
3) ψ is an efficiently computable isomorphism $\psi: G_2 \rightarrow G_1$ with $\psi(g_2) = g_1$.
4) e is an efficiently computable bilinear map $e: G_1 \times G_2 \rightarrow G_3$ with the following properties.
 - Bilinearity: for all $u, u' \in G_1$ and $v, v' \in G_2$, $e(uu', v) = e(u, v)e(u', v)$ and $e(u, vv') = e(u, v)e(u, v')$.
 - Non-degeneracy: $e(g_1, g_2) \neq 1_{G_3}$ (1_{G_3} is the G_3’s unit).

B. Access Tree

Let $\text{Att} = \{\text{att}_1, \ldots, \text{att}_m\}$ be a set of attributes. For $\Gamma \subseteq 2^{\text{Att}} \setminus \{\emptyset\}$, Γ satisfies the monotone property: if $\forall B, C \subseteq \text{Att}, B \in \Gamma$ and $B \subseteq C$, then $C \in \Gamma$ holds. Let access structures for Att be a set of Γ which satisfies the monotone property. An access tree $[8], [9], [10] T$ is used for expressing an access structure by using a tree structure. An access tree is a tree, where threshold gates are defined on each interior node of the tree, and the leaves are associated with attributes. These attributes are subsets of Att. Let ℓ_x be the number of children of node x, and k_x ($0 < k_x \leq \ell_x$) be the threshold value on the
threshold gate of node \(x \). We call the threshold gate “OR gate” when \(k_2 = 1 \), and “AND gate” when \(k_2 = \ell_x \). The notation \(\text{Leaves} \models T \) expresses the fact that a set of attributes \(\text{Leaves} \) satisfies the access tree \(T \).

\section*{C. Model and Security Definitions}

In this subsection, we define the model of an ABGS. An ABGS is a kind of GS, where a user \(U_i \) with a set of attributes \(\Gamma_i \subseteq \text{Att} = \{\text{att}_1, \ldots, \text{att}_m\} \) can prove anonymously whether she has these attributes or not. \(U_i \) has a membership certificate \(A_i \) and a set of attribute certificates \(\{T_{i,j}\}_{j \in \Gamma_i} \). \(U_i \) makes a group signature associated with \(\zeta \subseteq \Gamma_i \). Usually, for a set of attributes \(\text{Att} \), we construct an access tree to consider all relationships among these attributes. However, the access tree is changed when some threshold values are changed, or some attributes are deleted. Therefore, we define the model of the ABGS accepting a change of an access tree. We do not provide for the fact that a new attribute \(\text{att} \notin \text{Att} = \{\text{att}_1, \ldots, \text{att}_m\} \) is added in an access tree. In this case, we have to re-issue an attribute certificate for users with \(\text{att} \) to execute the Join algorithm again. Let \(\text{GM} \) be the group manager, \(k \) the security parameter, \(\text{params} \) the system parameter, \(\text{Att} = \{\text{att}_1, \ldots, \text{att}_m\} \) the universe of attributes, \(T_r \) the \(r \)-th access tree with a set of attributes \(\{\text{att}\} \), where \(\text{att} \in \text{Att} \) is assigned on each leaf, \(T_r \) the public values associated with \(T_r \), \(\text{gpk} \) the group public key, \(ik \) the group secret key which is used for issuing a membership certificate and making \(T_r \), \(ok \) the opening key which is used for the opening procedure to reveal the signers’ identification from the group signature, \((\text{upk}, \text{usk}_1) \) the verification/signing key of a signature scheme \(\text{DSig}, sk_i \) the member secret key for \(U_i \) \((i = 1, 2, \ldots, n)\), \(\Gamma_i \subseteq \text{Att} \) attributes of \(U_i \), and \(\text{reg} \) be the registration table for Open algorithm. Note that \(sk_i \) includes both \(A_i \) and \(\{T_{i,j}\}_{j \in \Gamma_i} \). In Join algorithm, we use the notation \(\text{Join}(\text{input of } \text{GM}, \text{input of user}) \).

\begin{definition} \text{ABGS} \end{definition}

- **Setup** \(\{k^1\} \): This algorithm takes as input \(k \), and returns \(\text{params} \).

- **KeyGen**(\(\text{params} \)): This algorithm takes as input \(\text{params} \), and returns \(\text{gpk}, \text{ik}, \text{ok}, \text{and } \text{reg} = \emptyset \).

- **BuildTree**(\(\text{params, ik, } T_r \)): This algorithm takes as input \(\text{params, ik} \) and \(T_r \) whose leaves are associated with a subset of \(\text{Att} \), and returns \(T_r \).

- **Join**(\(\text{params, gpk, ik, upk}_i, \Gamma_i \), \(\text{params, gpk, upk}_i, \text{usk}_i \)): This algorithm takes as input \(\text{params, gpk, ik, upk}_i \), and \(\Gamma_i \) from \(\text{GM} \), and \(\text{params, gpk, upk}_i \) and \(\text{usk}_i \) from \(U_i \), and returns \(sk_i \) and \(\text{reg} \).

- **Sign**(\(\text{params, gpk, sk}_i, M, \zeta, T_r \)): Let \(\zeta \subseteq \Gamma_i \) be a set of attributes such that \(\zeta \models T_r \). This algorithm takes as input \(\text{params, gpk, sk}_i \), a message \(M \), \(\zeta \) and \(T_r \), and returns \(\sigma \) associated with \(\zeta \).

- **Verify**(\(\text{param, gpk, } M, \sigma, \zeta, T_r \)): This algorithm takes as input \(\text{params, gpk, } \sigma, M, \zeta \) and \(T_r \), and returns \(1 \) if and only if \(\sigma \) is a valid signature.

- **Open**(\(\text{param, gpk, ok, } \sigma, \zeta, T_r, M, \text{reg} \)): This algorithm takes as input \(\text{params, gpk, ok, } \sigma, \zeta, T_r, M \) and \(\text{reg} \), and returns the signer’s identity \(i \). If the signer is not included in \(\text{reg} \), then this algorithm returns \(0 \).

If the access tree \(T_r \) is changed to \(T_{r+1} \), then \(\text{GM} \) runs **BuildTree**(\(\text{params, ik, } T_{r+1} \)), and opens \(T_{r+1} \), which is the public information associated with \(T_{r+1} \).

Definition 3: Anonymity: Anonymity requires that for all PPT \(A \), the advantage of \(A \) on the following game, is negligible.

- **Setup**: Let \(T_0 \) be the initial access tree. The challenger runs **KeyGen**(\(\text{params} \)), and obtains \(\text{gpk}, \text{ik} \) and \(\text{ok} \). Moreover, the challenger runs **BuildTree**(\(\text{params, ik, } T_0 \)), and obtains \(T_0 \). \(A \) is given \(\text{params, gpk, } T_0 \) and \(\text{ik} \).

- **Phase1**: \(A \) can send these queries as follows:
 - **Join**: \(A \) requests the join procedure for honest member \(U_i \). \(A \) plays the role of corrupted \(\text{GM} \) on these queries.
 - **Signing**: \(A \) requests a group signature \(\sigma \) for all messages \(M_i \) and all members \(U_i \) with a set of attributes \(\zeta_i \subseteq \Gamma_i \).
 - **Corruption**: \(A \) requests the secret key \(sk_i \) for all members \(U_i \).
 - **Open**: \(A \) requests the signer’s identity with a message \(M \) and a valid signature \(\sigma \).
 - **Re-BuildTree**: \(A \) sends an access tree \(T_r \). The challenger returns public values \(T_r \).

- **Challenge**: \(A \) outputs \(M^* \), non-corrupted users \(U_{i_0}, U_{i_1} \) and \(\zeta \). Note that \(\zeta \subseteq \Gamma_{i_0}, \zeta \subseteq \Gamma_{i_1} \), and \(\zeta \models T^* \), where \(T^* \) is the access tree on the challenge phase. The challenger uniformly selects \(b \in \{0, 1\} \), and responds with a group signature on \(M^* \) by group member \(U_{i_0} \).

- **Phase2**: \(A \) can make the Signing, Corruption, Open, Join and Re-BuildTree queries. Note that Corruption queries include both \(U_{i_0} \) and \(U_{i_1} \).

- **Output**: \(A \) outputs a bit \(b' \), and wins if \(b' = b \).

The advantage of \(A \) is defined as \(\text{Adv}'_{\text{anon}}(A) = |\text{Pr}(b = b') - \frac{1}{2}| \).

In Join queries, \(A \) can play the role of corrupted \(\text{GM} \) (the same as in \(\text{SndToU} \) oracle, which is defined in [2]). Moreover, we consider the Anonymity for Key-Exposure, namely, corruption queries for \(U_{i_0} \) and \(U_{i_1} \) can be admitted in Phase 2. Even after a secret key is exposed, signatures produced by the member before Key-Exposure remain anonymous. A similar definition of our Key-Exposure has been given in [3] for the ring signature scheme. Moreover, our definition is the CCA-Anonymity model [5], [7], namely, open queries in the Anonymity game can be admitted.

Definition 4: Traceability: requires that for all PPT \(A \), the probability that \(A \) wins the following game is negligible.

- **Setup**: Let \(T_0 \) be the initial access tree. The challenger runs **KeyGen**(\(\text{params} \)), and obtains \(\text{gpk}, \text{ik} \) and \(\text{ok} \). Moreover, the challenger runs **BuildTree**(\(\text{params, ik, } T_0 \)), and obtains \(T_0 \). \(A \) is given \(\text{params, gpk, } T_0 \) and \(\text{ik} \).
• Queries: \(A > \) can issue the Signing, Corruption, Join and Re-BuildTree queries. All queries are the same as in the Anonymity game, except Join.
 - Join: \(A > \) requests the Join procedure for corrupted member \(U_r \).
 - Output: \(A > \) outputs a message \(M^*, \sigma^* \) and \(\zeta^* \). Moreover, \(T^* \) is the access tree in this phase, and \(T^* \) is the public information associated with \(T^* \).

 \(A > \) wins if (1) \(\text{Verify}(\text{params}, gpk, M^*, \sigma^*, \zeta^*, T^*) = 1 \), (2) \(\text{Open}(\text{params}, gpk, ok, \sigma^*, \zeta^*, T^*, M^*, \text{reg}) = 0 \), and (3) \(\rho > \) has not obtained \(\sigma^* \) in Signing queries on \(M^*, \zeta^* \) and \(T^* \). The advantage of \(A > \) is defined as the probability of \(A > \) wins.

In Join queries, \(A > \) can play the role of corrupted users (the same as in SndToI oracle, which is defined in [2]).

Definition 5: Collusion-Resistance requires that for all PPT \(A > \), the probability that \(A > \) wins the following game is negligible.

• Setup: Let \(T_0 \) be the initial access tree. The challenger runs KeyGen(\(\text{params} \)), and obtains \(gpk, ik \) and \(ok \). Moreover, the challenger runs BuildTree(\(\text{params}, ik, T_0 \)), and obtains \(T_0 \). \(A > \) is given \(\text{params}, gpk \) and \(T_0 \).

• Queries: \(A > \) can issue the Signing, Corruption, Join and Re-BuildTree queries. All queries are the same as in the Anonymity game.

• Output: Finally, \(A > \) outputs \(M^*, \sigma^* \) and \(\zeta^* \). \(T^* \) is the access tree in this phase, and \(T^* \) is the public information associated with \(T^* \).

\(A > \) wins if (1) \(\text{Verify}(\text{params}, gpk, M^*, \sigma^*, \zeta^*, T^*) = 1 \), and (2) \(\rho > \) has not obtained attribute certificates associated with \(\zeta^* \) corresponding to a single user.

This property indicates that, for example, there are two users \(U_{i_0} \) and \(U_{i_1} \) with \(\langle T_{i_0,j} \rangle_{\text{att}\in\Gamma_{i_0}} \) and \(\langle T_{i_1,j} \rangle_{\text{att}\in\Gamma_{i_1}} \), respectively. We assume that \(\Gamma_{i_0} \subset \zeta^* \wedge \Gamma_{i_0} \neq \zeta^* \), \(\Gamma_{i_1} \subset \zeta^* \wedge \Gamma_{i_1} \neq \zeta^* \), and that \(\zeta^* \neq \Gamma_{i_0} \cup \Gamma_{i_1} \). Then \(U_{i_0} \) and \(U_{i_1} \) cannot make a valid group signature with \(\zeta^* \) even if \(U_{i_0} \) and \(U_{i_1} \) collude with each other.

Definition 6: Non-Frameability requires that for all PPT \(A > \), the probability that \(A > \) wins the following game is negligible.

• Setup: Let \(T_0 \) be the initial access tree. The challenger runs KeyGen(\(\text{params} \)), and obtains \(gpk, ik \) and \(ok \). Moreover, the challenger runs BuildTree(\(\text{params}, ik, T_0 \)), and obtains \(T_0 \). \(A > \) is given \(\text{params}, gpk \), \(T_0 \), \(ik \) and \(ok \).

• Queries: \(A > \) can issue the Signing, Corruption, Join and Re-BuildTree queries. All queries are the same as in the Anonymity game.

• Output: Finally, \(A > \) outputs a message \(M^*, \sigma^* \) and \(\zeta^* \). \(T^* \) is the access tree in this phase, and \(T^* \) is the public information associated with \(T^* \).

\(A > \) wins if (1) \(\text{Verify}(\text{params}, gpk, M^*, \sigma^*, \zeta^*, T^*) = 1 \), (2) \(\sigma^* \) opens to an honest member \(U_{i_r} \), (3) \(\rho > \) has not obtained \(\sigma^* \) in Signing queries on \(M^*, U_{i_r} \) and \(\zeta^* \), and (4) \(\rho > \) has not obtained \(sk_{i_r} \) in Corruption queries on \(U_{i_r} \). The advantage of \(A > \) is defined as the probability of \(A > \) wins.

III. PROPOSED SCHEMES

In this section, an ABGS together with an assignment of secret values to access trees is presented.

A. Assignment of Secret Values to Access Trees

The previous schemes [10], [9] use a “Top-Down” construction for access trees (when threshold gates are defined on each interior node of the tree and the leaves are associated with attributes) as follows:

• A secret value of the root node is chosen.
• A polynomial \(q_{\text{root}}(x) \) of degree “threshold value – 1” is defined such that \(q_{\text{root}}(0) \) equals the secret value of the root node.
• A secret value of a child node is defined as \(q_{\text{root}}(\text{index(child)}) \).
• Secret values of all nodes can be defined to execute this procedure recursively.

If the access tree is changed, then the above Top-Down Approach construction has to be executed again. This means that the secret values that are associated with attributes have to be re-issued to corresponding users, because these values have to be changed. In our proposal, a “Bottom-Up Approach” construction is introduced. The order of our construction is different from that of the Top-Down Approach construction, namely, first all secret values are chosen for each attribute associated with each leaf. These secret values of leaves will not be changed when the access tree is changed.

Idea: For a node \(x \) associated with the threshold value \(k_x \), \(\ell_x - k_x \) dummy nodes will be opened, where \(\ell_x \) is the number of children of \(x \). Next, the threshold value is changed from \(k_x \) to \(\ell_x \). Then, all threshold gates become AND gates. Children with \(k_x \) or more can compute the secret value of their parent node by using the number of \(\ell_x - k_x \) public dummy nodes. We define functions AddDummyNode which adds dummy nodes to the access tree, AssignedValue which assigns secret values for nodes on the access tree, and MakeSimplifiedTree which makes a simplified tree associated with a set of leaves. Let \(\text{index} \) be the function which returns the index of the node, and \(p \) be a prime number. We assume that \(T \) includes \(\text{Att} \).

AddDummyNode(\(T \)): This algorithm takes as input \(T \), and returns the extended access tree \(T^{\text{ext}} \).

1) For an interior node \(x \) of \(T \), the number of dummy nodes \(\ell_x - k_x \) is added to \(x \)’s children.
2) The threshold value defined in \(x \) is changed from \(k_x \) to \(\ell_x \).
3) All nodes are assigned unique index numbers.
4) The resulting tree, called \(T^{\text{ext}} \), is outputted.

Let \(D_T \) be a set of dummy nodes determined by AddDummyNode. We assume that \(T^{\text{ext}} \) includes \(D_T \). Moreover, let \(s_j \in \mathbb{Z}_p \) be a secret value for an attribute \(\text{att}_j \in \text{Att} \). Let \(S = \{s_j\}_{\text{att}_j \in \text{Att}} \).

AssignedValue(\(p, S, T^{\text{ext}} \)): This algorithm takes as input \(p, S \) and \(T^{\text{ext}} \) and returns a secret value \(s_x \in \mathbb{Z}_p \) for each node.
let ℓ_x be the set of node x’s children except the dummy nodes, and $\{d\}_x$ be the set of node x’s dummy nodes.

1) For an interior node x of T_{ext}, a polynomial q_x of degree $\ell_x - 1$ is assigned as follows:
 a) For $att_j \in \{child\}_x$, let q_x be a polynomial of degree at most $\ell_x - 1$ which passes through $(\text{index}(att_j), s_j)$, where $s_j \in S$ ($j = 1, 2, \ldots, \ell_x$).
 b) For a dummy node $d_j \in \{d\}_x$, the secret value $s_{d_j} := q_x(\text{index}(d_j))$ ($j = 1, 2, \ldots, \ell_x - k_x$) is assigned.
 c) For x, $s_x := q_x(0)$ is assigned.
2) Repeat the above procedure up to the root node, $s_T := q_{root}(0)$ is the secret value of T.
3) Output $\{s_{d_j}\}_{d_j \in D_T}$ and s_T.

\textit{BuildTree}(Leaves, T_{ext}) : This algorithm takes as input the set of attributes $\text{Leaves} \subseteq \text{Att}$ satisfying $\text{Leaves} = T$, and returns the simplified access tree T_{Leaves} (which is the access tree associated with Leaves) and a product of Lagrange coefficients Δ_{leaf}.

1) The set of attributes $\{att\}_{att \in Att \backslash \text{Leaves}}$ are deleted from T_{ext}.
2) An interior node x has children less than the threshold value (namely, ℓ_x), and is deleted from T_{ext} along with x’s descendants.
3) Let D_{Leaves} be the set of dummy nodes which have remained after (1) and (2), and T_{Leaves} be the access tree after (1) and (2).
4) For all nodes x of T_{Leaves} except root, we define L_x as follows:
 a) For x, define the depth 2 subtree of T_{Leaves} with x as leaf node. Let c_x be the set of indices of leaves.
 b) Compute $L_x := \prod_{c_x \in (\text{index}(x) - k)}^{k} s_{c_x}$.
5) Let $leaf \in \{att \in \text{Leaves}\} \cup \{d \in D_{Leaves}\}$ be a leaf node of T_{Leaves}. For leaf, we define Δ_{leaf} as follows:
 a) Let $\text{Path}_{\text{leaf}} := \{\text{leaf}, \text{parent}_{\text{leaf}}, \ldots, \text{parent}_{\text{root}} = \text{root}\}$ be the set of nodes that appears in the path from leaf to root node.
 b) Compute $\Delta_{leaf} := \prod_{\text{node} \in \text{Path}_{\text{leaf}} \backslash \text{root} L_{\text{node}}}$.
6) Output T_{Leaves}, Δ_{j} (att $j \in \text{Leaves}$), Δ_{d_j} (d $j \in D_{Leaves}$).

Clearly, $\sum_{att \in \text{Leaves}} \Delta_{s_j} + \sum_{d_j \in D_{Leaves}} \Delta_{d_j} s_{d_j} = s_T$ holds.

\textbf{B. Proposed Attribute-Based Group Signature Scheme}

In this subsection, we propose the ABGS by using our assignment (Section III-A). Our ABGS uses the Cramer-Shoup encryption scheme [6] for both CCA-Anonymity and Key-Exposure properties, and a concurrently secure Join algorithm proposed in [7]. Let $NIZK$ be a Non-Interactive Zero-Knowledge proof, SPK be a Signature of Proof of Knowledge, and $Ext\text{-Commit}$ be an extractable commitment scheme. Let T_0 be the initial access tree. Note that if an access tree is changed, then GM runs $\text{BuildTree}(\text{params}, ik, T_{r+1})$, and opens T_{r+1}, which is the public information associated with T_{r+1}.

\textbf{Setup(1^k)}

1) GM selects cyclic groups of G_1, G_2, and G_3 with prime order p, an isomorphism $\psi : G_1 \rightarrow G_2$, a bilinear map $\varepsilon : G_1 \times G_2 \rightarrow G_3$, and a hash function $H : \{0, 1\}^* \rightarrow \mathbb{Z}_p$.
2) GM selects a generator $g_\pi \in G_2$ and $g_1, g_1 \in R G_1$, and sets $g_1 = \psi(g_\pi)$.
3) GM defines $\text{Att} = \{att_1, att_2, \ldots, att_m\}$.
4) GM outputs $\text{params} = (G_1, G_2, G_3, \psi, H, g_1, g_2, g_3, Att)$.

\textbf{KeyGen(params)}

1) GM selects $\gamma \in R \mathbb{Z}_p$ and computes $\omega = g_2^\gamma$.
2) GM selects $x_1, x_2, x_1, y_1, y_2, z \in R \mathbb{Z}_p$ and computes $c = g_2^{x_1^2} g_3^{y_1^2}, d = g_2^{x_2^2} g_3^{y_2^2}$ and $e = g_2^z$.
3) For $att_j \in Att$, GM selects $s_j \in R \mathbb{Z}_p$, sets $S = \{s_j\}_{att \in Att}$, and computes $g_{att_j} = g_2^{s_j} (att_j \in Att)$.
4) For $att_j \in Att$, GM selects $h_j \in R G_2$, and sets $h_j = \psi(h_j)$.
5) GM outputs $ok = (z)$, $gpk = (\omega, C, D, E, \{h_j\}_m^{\gamma = 1}, \{g_{att_j}\}_{att \in Att})$ and $ik = \{\gamma, \{s_j\}_{att \in Att}\}$.

\textbf{BuildTree(params, ik, T_0)}

1) GM runs $T_{0}^{ext} = \text{AddDummyNode}(T_0)$ and $\text{AssigneValue}(p, S_0, T_0^{ext})$, and gets $\{s_{d_j}\}_{d_j \in D_{T_0}}$ and s_{T_0}.
2) GM computes $g_{d_j} = g_2^{s_{d_j}} (d_j \in D_{T_0})$ and $v_0 = g_2^{s_{T_0}}$.
3) GM outputs $T_0 = \{(g_{d_j})_{d_j \in D_{T_0}}, v_0, T_0^{ext}\}$.

\textbf{Join($\text{params}, gpk, ik, upk_i, T_i, \{\text{params}, gpk, upk_i, usk_i\}$)}

U_i gets $s_{k_i} = \{\{A_i, x_i, y_i\}, \{T_{i,j}\}_{att \in E_i}\}$, where (A_i, x_i, y_i) is a member certificate and $\{T_{i,j}\}_{att \in E_i}$ is the set of attribute certificates as follows:

1) U_i picks $y_i \in R \mathbb{Z}_p$, and computes $c_i = \text{Ext\text{-Commit}}(y_i)$, $F_i = E^{\psi}$ and $\pi_1 = NIZK(y_i)$.
2) U_i's sends F_i, c_i and π_1 to GM.
3) GM checks π_1. If π_1 is not valid, then abort.
4) GM selects $x_i \in R \mathbb{Z}_p$, and computes $A_i = (g_1 F_i)^{1/(\gamma + x_i)}$, $B_i = e(g_1, F_i, g_2)/e(A_i, w)$, $D_i = e(A_i, g_2)$, $T_{i,j} = A_i^{\pi_2} (att_j \in \Gamma_i)$ and $\pi_2 = NIZK(x_i, s_j$ ($att_j \in \Gamma_i$) $): B_i = D_i^{x_j}$ and $T_{i,j} = A_i^{\pi_2} (att_j \in \Gamma_i)$.
5) GM sends $A_i, B_i, D_i, \{T_{i,j}\}_{att \in E_i}$, and π_2 to U_i.
6) U_i checks π_2. If π_2 is not valid, then abort.
7) U_i makes S_{i,A_i} with respect to upk_i and A_i. If S_{i,A_i} is valid, then GM sends x_i to U_i, and adds (U_i, A_i) to reg.
8) GM verifies S_{i,A_i} with respect to upk_i and A_i. If S_{i,A_i} is valid, then GM sends x_i to U_i, and adds (U_i, A_i) to reg.
9) U_i checks the relation $A_i^{\text{r}(x_i)\alpha} \cdot g_1 \cdot E_0$ to verify whether $e(A_i, g_2)^{x_i} \cdot e(A_i, w) \cdot e(E, g_2)^{-y_i} = e(g_1, g_2)$.

- **Sign(param, gpk, sk_i, M, \zeta_i, T_r)**

A signer U_i signs a message $M \in \{0, 1\}^*$ as follows:

1) U_i chooses $\zeta_i \equiv T_r \equiv T_r$ to associate ζ_i with a group signature. Let $[\zeta_i] = \phi$.

2) U_i runs MakeSimplifiedTree(\zeta_i, T_r), and gets T_r^ζ, Δ_j (att_j \in \zeta_i) and Δ_d_j (d_j \in D_y).

3) U_i computes $g_d = \prod_{d_j \in D_y} \hat{\Delta}_{d_j}$.

4) U_i selects $\alpha, \delta \in \mathbb{Z}_p$, and computes $C_1 = A_c \cdot E_0$, $C_2 = g_2 \cdot \hat{\alpha}$ and $C_4 = (CD)^\delta$, where $\beta = H(C_1, C_2, C_3)$.

5) U_i computes $CT_r = T_r \cdot \hat{h}_{i}^{\alpha}$ (att_j \in \zeta_i).

6) U_i sets $\tau = \alpha x_i + y_i$, and computes $V = SPK(x_i, \tau, \delta) : e(C_1 \cdot \hat{h}_{i}^{\alpha}, C_2 \cdot \hat{\alpha}) = e(E, g_2)^{x_i} \cdot e(E, \omega)^{y_i} \land e(C_2, \hat{\alpha}) = g_2 \cdot \hat{\alpha}$ and $e(C_4, \hat{\delta}) = (CD)^\delta$.

Concretely, U_i computes V as follows:

a) U_i selects $r_{\alpha}, r_{x_i}, r_{\tau}, r_{\delta} \in \mathbb{Z}_p$.

b) U_i computes $R_1 = e(C_2 \cdot \hat{\alpha}, g_2 \cdot \hat{\alpha}) \cdot R_2 = g_2 \cdot \hat{\alpha}$, $R_3 = g_2 \cdot \hat{\alpha}$, $R_4 = (CD)^\delta$ and $R_{Att} = e(C_4, \hat{\delta})$. U_i computes $c = \mathcal{H}(gpk, M, \{C_1\}_{i=1}^{n}, \{CT_r\}_{i=1}^{n}, \{R_i\}_{i=1}^{n}, R_{Att}$).

7) U_i outputs $\sigma = \left(\{C_1\}_{i=1}^{n}, \delta, s_x, s_{x_i}, s_\tau, s_\delta, \{CT_r\}^{\phi}_{i=1}\right)$.

A signer U_i proves the knowledge of $(\alpha, x_i, \tau, \delta)$ which satisfies the above relations described in SPK V.

The first relation captures whether a signer has a valid membership certificate issued by the Join algorithm or not. The last relation captures whether a signer has a valid attribute certificate associated with the set of attributes $\zeta_i \equiv T_r$ or not.

- **Verify(param, gpk, M, \sigma, \zeta_i, T_r)**

A verifier verifies a group signature σ associated with the set of attributes ζ_i.

1) The verifier runs MakeSimplifiedTree(\zeta_i, T_r), and gets T_r^ζ, Δ_j (att_j \in \zeta_i) and Δ_d_j (d_j \in D_y). Let $[\zeta_i] = \phi$.

2) The verifier computes $g_d = \prod_{d_j \in D_y} \hat{\Delta}_{d_j}$ and $\beta = \mathcal{H}(C_1, C_2, C_3)$.

3) The verifier computes $\frac{e(C_1 \cdot \hat{h}_{i}^{\alpha}, g_2)}{e(C_1 \cdot \hat{h}_{i}^{\alpha}, g_2) \cdot e(E, g_2)^{x_i}}$ \cdot $\frac{e(C_1 \cdot \hat{h}_{i}^{\alpha}, g_2)}{e(C_1 \cdot \hat{h}_{i}^{\alpha}, g_2) \cdot e(E, g_2)^{x_i}}$.

4) The verifier checks $c = \mathcal{H}(gpk, M, gpk, M, \{C_1\}_{i=1}^{n}, \{CT_r\}_{i=1}^{n}, \{R_i\}_{i=1}^{n}, R_{Att}$).

- **Open(param, gpk, ok, \sigma, \zeta_i, T_r, M, reg)**

1) GM verifies the validity of σ by using Verify(param, gpk, M, \sigma, \zeta_i, T_r). If σ is not a valid signature, then GM outputs \bot.

2) GM computes $A_i = \xi_i \cdot C_3$.

3) GM searches A_i from reg, and outputs identity i.

If there is no entry in reg, then GM outputs 0.

IV. SECURITY

Let p, q and q_2 be order of bilinear groups, and the number of hash queries and signature queries, respectively. Our scheme is based on the discrete logarithm (DL), external Diffie-Hellman (XDH) [5] (it is the Decision Diffie-Hellman (DDH) assumption over \mathbb{G}_1), and q-strong Diffie-Hellman (q-SDH) [4] assumptions.

Theorem 1: The proposed scheme satisfies Anonymity under the XDH assumption (namely DDH assumption over \mathbb{G}_1), i.e., $Adv_{\text{anon}}(A) \leq \frac{2q_2}{p} + m \cdot \epsilon_{\text{ddh}}$, holds, where ϵ_{ddh} is the DDH-advantage of some algorithms and $m = |\text{Att}|$.

Theorem 2: We suppose an adversary A breaks the Traceability of the proposed scheme with the advantage ϵ. Then, we can construct an algorithm B that breaks the q-SDH assumption with the advantage $\frac{1}{\sqrt{\lambda}}(1 - \frac{1}{\lambda}) \cdot \epsilon$.

Theorem 3: We suppose an adversary A breaks the Non-Framability of the proposed scheme with the advantage ϵ. Then, we can construct an algorithm B that breaks the DL assumption with the advantage $\frac{1}{\sqrt{\lambda}}(1 - \frac{1}{\lambda}) \cdot \epsilon$.

Theorem 4: The probability that a signature by forged attribute certificates passes the verification, $Pr(\text{Verify(param, gpk, M, \sigma, \zeta_i, T_r)} = 1 \land \zeta_i \neq T_r)$, is $\frac{e^{\alpha^{x_i} - 1}}{p} = \frac{1}{p} \left(\frac{1}{p} - \frac{p}{p^2}\right)$, where ϕ is the number of attributes associated with a signature.

Theorem 5: Even if some malicious participants U_{i_1}, \ldots, U_{i_k} ($k > 1$) with the set of attributes $\zeta_i, \ldots, \zeta_{i_k}$ collude, they cannot make a valid signature associated with an attribute tree T_r, where $(\bigcup_{i=k+1}^{l} \zeta_i) = \bot$ and $\zeta_i \neq \bot$ ($j = 1, \ldots, k$) with non-negligible probability.

We omit these proofs, and put them in the full version of this paper.

V. COMPARISONS

Let $\zeta_i \equiv [\zeta_i] = \phi$ be the set of attributes which is associated with a signature, D_L be the set of dummy nodes which is defined as ζ_i, and $|\text{Att}| = m$. Moreover, let r be the number of revoked members [9]. We assume that the computational estimations are made according to [11]. In our scheme, Verification costs are the lowest, because the number of calculations in a pairing does not depend on the number of attributes associated with a signature. There is room for argument regarding the Signing costs. Moreover, our scheme provides Dynamic property.
VI. APPLICATION OF ABGS IN ANONYMOUS SURVEY FOR COLLECTION OF ATTRIBUTE STATISTICS

In this section, we discuss how our ABGS can be applied to an anonymous survey for collection of attribute statistics. An anonymous survey is used as follows: When we apply the GS to a business system offering some services to group members, each member’s personal information is not exposed. Moreover, a service provider can verify whether each user is valid or not. However, it is difficult for a service provider to obtain a collection of user’s attribute statistics to improve service contents. In [13], an anonymous survey has been proposed which is a protocol executed among trusted third parties (TTPs). Moreover, the relationships among some attributes, e.g., (female ∧ 20s), can be handled in the statistics information. However, a distributor cannot verify whether users properly construct the ciphertext or not. In [12], an anonymous survey has been proposed using the Open algorithm of Ateniese et al. GS [1]. A distributor can verify whether users properly make the ciphertext or not, to verify the validity of group signatures. Because one attribute certificate is issued for an attribute type, it is difficult as the relationships among some attributes to be handled in the statistics information. There is an obvious solution: new attribute types such as $\text{att}_C = \text{att}_A \land \text{att}_B$ are defined. However, the number of all attribute types are represented by $O(2^m)$, where m is the number of all attributes. We solve this attribute increase problem to apply an ABGS.

1) A user makes a group signature σ associated with the set of attributes ζ to use our ABGS.

2) The user encrypts ζ to use the public key of a distributor, and sends both σ and the encrypted ζ to the distributor.

3) The distributor decrypts ζ, and verifies whether σ is valid or not.

4) The statistics information is the collection of ζ.

To collect the set of attributes ζ, the distributor can obtain the statistics of attributes without any other information, because the distributor does not know the opening key which is used for the opening procedure to reveal the signer’s identification from the group signature. Moreover, the distributor can verify whether users properly made the ciphertext or not, to verify that the validity of group signatures is the same as in [12]. Moreover, the relationships among some attributes can be handled in the statistics information in the same way as in [13], without increasing the number of attribute certificates of each user. Indeed, the number of attribute certificates of each user is represented by $O(m)$. Of course, relationships among some attributes which one wants to reflect with the statistics information are different in each case. Our scheme is suitable for use in the anonymous survey because the change of relationships is indispensable in the anonymous survey for the collection of attribute statistics.

VII. CONCLUSION

In this paper, we propose a Dynamic ABGS scheme that enables an access tree to be changed. Our ABGS is efficient in that re-issuing of the attribute certificate previously issued for each user is not necessary. Moreover, the number of calculations in a pairing does not depend on the number of attributes associated with a signature. A service provider obtains a collection of anonymous user’s attribute statistics to improve service contents by using our ABGS.

REFERENCES

Table 1. Comparisons

<table>
<thead>
<tr>
<th>Dynamic property</th>
<th>[10]</th>
<th>[9]</th>
<th>Our Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature Length</td>
<td>$1634 + 171\phi$</td>
<td>$1192 + 1191\phi$</td>
<td>$1634 + 171\phi$</td>
</tr>
<tr>
<td>Signing</td>
<td>$(12 + 2\phi)G_1 + 5G_3 + e$</td>
<td>$(7 + 2\phi)G_1 + (5 + \phi)G_3 + (\phi + 1)e$</td>
<td>$(9 + 3\phi)G_1 + (\phi + 1)G_2 + 8G_3 + 3e$</td>
</tr>
<tr>
<td>Verification</td>
<td>$12G_1 + (\phi + 8)G_2 + (\phi + 1)e$</td>
<td>$(6 + 2r)G_1 + (8 + 2\phi)G_3 + (\phi + 2r + 1)e$</td>
<td>$(11 + 2\phi)G_1 + (\phi + 1)G_2 + 14G_3 + 6\phi$</td>
</tr>
</tbody>
</table>