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Abstract—In IEEE ISI 2008, an anonymous attribute authenti-
cation scheme has been proposed using a self-blindable certificate
scheme. This scheme enables the anonymity and certificate
revocation. A Certificate Revocation List (CRL) is used in the
revocation check. Even if an attacker can obtain a CRL, the
attacker cannot execute the revocation check. This means that
this scheme enables the designated revocation. However, this
scheme is not secure, namely, a user can make a forged proof
using a public value. In this paper, we propose a certificate revo-
cable anonymous authentication scheme with designated verifier.
Our scheme enables the anonymity and certificate revocation.
Moreover, our scheme enables a designated verification and
revocation.
Index Terms—Anonymous Authentication, Certificate Revoca-

tion, Designated Verifier Signature

I. INTRODUCTION
Recently, cryptographic protocols requiring the users’

anonymity have been proposed. In [15], an anonymous at-
tribute authentication scheme has been proposed using a self-
blindable certificate scheme [18]. The purpose of this scheme
is to apply an attribute authentication with some modules (e.g.,
mobile phones, smart cards and so on) for some services (a
dispenser, a ticket gate, and so on) without exposing any extra
personal information. Therefore, anonymity (which requires
the unlinkability between two authentication executions) is
indispensable. Entities in this scheme are a user, a Service
Provider (SP), and an Attribute Authority (AA). The AA issues
an attribute certificate for a user. Moreover, the AA sends a
SP a Certificate Revocation List (CRL) which includes the
set of an attribute certificate of a revoked user. First, a user
sends a request to a SP. The SP generates a random number,
and returns this random value and his public key with the
public key certificate PKCSP to the user. The user verifies
PKCSP , and sends a proof. The SP verifies whether the
user has a valid attributes certificate or not using the public
values and the CRL. Moreover, the SP also verifies whether
the certificate including the proof has already revoked or
not using the SP’s secret key. This means that a previous
scheme [15] provides the designated revocation. Even if an
attacker can obtain the CRL from the AA, the attacker cannot
execute the revocation check. These are the different point
of other anonymous authentication schemes. For example, in

group signature schemes [1], [3], [5], [14], all entities can
verify a group signature. In group signature with verifier-local
revocation schemes [5], [14], if an attacker can obtain a CRL,
the attacker can execute the revocation check. However, a
previous scheme [15] is not secure, namely, a user with the
AA’s public key can make a forged proof. This is a serious
problem. Moreover, a previous scheme [15] does not provide
the designated verification.
In [10], [11], designated verifier signature schemes have

been proposed which enables the signer’s anonymity from the
view point of a third party. If an attacker can obtain a message
and a designated verifier signature, then the attacker cannot
determine a signer. On the verification phase, a designated
verifier verifies a signature with a message, a public key of a
signer and a secret key of the designated verifier. This means
that these schemes do not provide the signer’s anonymity from
the view point of the designated verifier.
In [7], a designated verifier signature scheme for electronic

voting (e-voting) has been proposed. This scheme is based
on a linkable ring signature scheme proposed in [12]. The
linkability is used to provide the uniqueness for the e-voting.
Therefore, this scheme does not provide the unlinkability from
the view point of a designated verifier.
In [9], a ring signature scheme with designated linkability

has been proposed. A ring signature can only be linked
by a designated verifier, although the ring signature remain
anonymous from the view point of undesignated verifiers.
Therefore, this scheme does not provide the unlinkability from
the view point of the designated verifier.
Some revocable group signature schemes have been pro-

posed [3], [5], [14]. However, these revocable schemes do not
provide the designation property.

Our Contribution : In this paper, we propose a certificate
revocable anonymous authentication scheme with designated
verifier. Our scheme enables the anonymity and certificate
revocation. Moreover, our scheme enables a designated ver-
ification and revocation.

Organization : The paper is organized as follows. Definitions
are given is Section II. A previous work proposed by [15] is
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described in Section III. Our scheme is presented in Section I
V. Security analysis is performed in Section V.

II. DEFINITIONS
A. Bilinear Groups and Complexity Assumptions
Definition 1: (Bilinear Groups) We use bilinear groups

and a bilinear map defined as follows:
1) G1, G2 and G3 are cyclic groups of prime order p.
2) P and Q are generators of G1 and G2, respectively.
3) e is an efficiently computable bilinear map e : G1 ×

G2 → G3 with the following properties.
• Bilinearity : for all P,P ′ ∈ G1 and Q,Q′ ∈ G2,
e(PP ′, Q) = e(P,Q)e(P ′, Q) and e(P,QQ′) =
e(P,Q)e(P,Q′).

• Non-degeneracy : e(P,Q) �= 1G3 (1G3 is the G3’s
unit).

Our scheme is based on the Discrete Logarithm (DL), Com-
putational Diffie-Hellman (CDH), q-Strong Diffie-Hellman
(q-SDH) [2], and Symmetric eXternal Diffie-Hellman
(SXDH) [1], [4] assumptions. For the security parameter k, let
ε = ε(k) be a negligible function, namely for every polynomial
poly(·) and for sufficiently large k, ε(k) < 1/poly(k).

Definition 2: (DL assumption) The DL problem in G1

is defined as follows: given a (Q = ξQ′, Q′) ∈ G2
1 as

input, where ξ ∈ Z
∗
p, which outputs a value ξ. An algorithm

A has advantage ε in solving the DL problem in G1 if
Pr[A(Q,Q′) = ξ] ≥ ε. We say that the DL assumption holds
in G1 if no PPT algorithm has an advantage of at least ε in
solving the DL problem in G1.

Definition 3: (q-SDH assumption) The q-SDH prob-
lem in (G1,G2) is defined as follows: given a (q + 2) tuple
(P,Q, ξQ, · · · , ξqQ) as input, where P ∈ G1, Q ∈ G2 and
ξ ∈ Z

∗
p, which outputs a tuple (x, 1

(ξ+x)Q), where x ∈ Z
∗
p. An

algorithm A has an advantage ε in solving the q-SDH problem
in (G1,G2) if Pr[A(P,Q, ξQ, · · · , ξqQ) = (x, 1

(ξ+x)Q)] ≥ ε.
We say that the q-SDH assumption holds in (G1,G2) if no
PPT algorithm has an advantage of at least ε in solving the
q-SDH problem in (G1,G2).

Definition 4: (CDH assumption) The CDH problem in
G2 is as follows: given a tuple (Q, uQ, vQ) as input, where
Q ∈ G2 and u, v ∈ Z

∗
p, which outputs uvQ. An algorithm

A has advantage ε in solving the CDH problem in G2 if
|Pr[A(Q, uQ, vQ) = uvQ]| ≥ ε. We say that the CDH
assumption holds in G2 if no PPT algorithm has an advantage
of at least ε in solving the CDH problem in G2.

Definition 5: (DDH assumption) The DDH problem in
G2 is as follows: given a tuple (Q,Q′, uQ, vQ′) as input,
where Q,Q′ ∈ G2 and u, v ∈ Z∗p, which outputs 1 if
u = v or 0 otherwise. An algorithm A has advantage ε in
solving the DDH problem in G2 if |Pr[A(Q,Q′, uQ, uQ′) =
0] − Pr[A(Q,Q′, uQ, vQ′) = 0]| ≥ ε. We say that the DDH
assumption holds in G2 if no PPT algorithm has advantage at
least ε in solving the DDH problem in G2.

Definition 6: (SXDH assumption) Let (G1,G2) be a
bilinear group. The SXDH assumption requires that the DDH
problem is hard in both G1 and G2. This implies that the
efficiency computable isomorphisms ψ : G2 → G1 and
ψ−1 : G1 → G2 do not exist.
Note that the SXDH assumption is a reasonable assump-

tion [4], [8]. We can use a MNT curve [13] implementation,
where no efficient isomorphism between G1 to G2 [19].
In this paper, we use the notation according to which, if

S is a set, then x ∈R S denotes the operation of picking an
element x of S uniformly at random.

III. A PREVIOUS WORK

In this section, we show a previous work [15].

A. a previous scheme [15]
Let (G1,G2) be a bilinear group, where G1 = 〈P 〉 and

G2 = 〈Q〉. Let z ∈ Zp be the AA’s secret key, zP the AA’s
public key associated with an attribute, (x1, x2) ∈ Zp × Zp a
user’s secret key, (x1+x2)P a user’s public key, z(x1+x2)P a
user’s attribute certificate, y ∈ Zp a SP’s secret key, yP a SP’s
public key, and PKCSP a public key certificate. Note that x1

and x2 are chosen for each user. To simplify, a user index is
omitted. A certificate revocation list CRL = {Certi, RKi},
where Certi = z(x1 + x2)P and RKi = x1P . A previous
scheme [15] is described in Fig. 1: Note that a bilinear map
e is symmetric (namely G1 = G2) because e(Certi, Sig1),
where Sig1 = fx1ryP ∈ G1 has to be computed on the
revocation check phase. This means the DDH problem on G1

and G2 are easy.

B. Problems of a previous scheme [15]
In this subsection, we show that two problems of a previous

scheme [15] as follows:
1) A user with the AA’s public key zP can make a forged
proof.

2) The DDH problem is easy although the hardness of the
DDH problem is required.

The problem 1 is as follows: Let c = ryP is a challenge of
a SP. A user (with the AA’s public key zP and his private key
x1, x2 ∈ Zp) selects f ∈R Z∗p and x′1, x′2 ∈R Zp \ {x1, x2},
and computes TPK ′ = f(x′1 + x′2)P , TCert′ = fz(x′1 +
x′2)P = fx′1(zP )+fx′2(zP ), Sig′1 = fx′1c and Sig′2 = fx′2c.
Then π = (TPK ′, TCert′, Sig′1, Sig

′
2) is a valid proof. More-

over, π does not be rejected on the revocation check because
(z(x′1 + x′2)P, x′1P ) �∈ CRL. Therefore, any users with the
AA’s public key zP can make a forged proof. Although
the prover’s secret key (x1, x2) is stored on tamper resistant
devices such as a self-blindable certificate scheme [18], the
probability of (z(x′1 + x′2)P, x

′
1P ) �∈ CRL is non-negligible,

where x′1, x′2 ∈R Zp.
The problem 2 is as follows: The hardness of the DDH

problem is required in [15] (See Section II and IV of [15]).
However, the DDH problem is easy in both G1 and G2 because
a symmetric pairing is applied.
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User: SP:
x1, x2, (x1 + x2)P, z(x1 + x2)P, zP y, yP, PKCSP , zP, CRT

r ∈R {0, 1}k

r, yP, PKCSP←−−−−−−−−−−
Verify PKCSP

c← ryP
f ∈R Z∗p
TPK ← f(x1 + x2)P
TCert← fx(x1 + x2)P
Sig1 ← fx1c
Sig2 ← fx2c

TPK, TCert, Sig1, Sig2−−−−−−−−−−−−−−−−−→
(1) Verification
e(TPK, zP ) ?= e(TCert, P )
c′ ← ryP

e(Sig1, P )e(Sig2, P ) ?= e(TPK, c′)

(2) Revocation Check
For ∀(Certi, RKi) ∈ CRL do
e(Certi, Sig1)

?= e(TCert, ryRKi)

Fig. 1. A previous scheme [15]

IV. THE PROPOSED SCHEME

In this section, we propose a certificate revocable anony-
mous authentication scheme with designated verifier to modify
a previous scheme [15].

A. The proposed scheme
Let (G1,G2) be a bilinear group, where G1 = 〈P 〉 and

G2 = 〈Q〉. Let z ∈ Zp be the AA’s secret key,W = zQ ∈ G2

the AA’s public key associated with an attribute, x ∈ Zp a
user’s secret key, 1

z+xP a user’s attribute certificate, y ∈ Zp a
SP’s secret key, yQ a SP’s public key, PKCSP a public key
certificate, H : {0, 1}∗ → Zp a hash function, and NIZK
a Non-Interactive Zero-Knowledge proof. A certificate revo-
cation list CRL = {Certi, RKi} such that Certi = α

z+xP
for some user and RKi = αP , where α ∈R Z∗p. Note that
α is chosen for each user. The attribute certificate 1

z+xP is a
membership certificate of a group signature scheme proposed
in [5]. The proposed scheme is shown in Fig. 2:

The proposed scheme :
1) A user sends a request to a SP.
2) The SP generates a random number r ∈ {0, 1}k,
computes c = ryQ and πr = NIZK{(r) : c = r(yQ)},
and returns c and his public key yQ with public key
certificate PKCSP to the user. Concretely, compute πr

as follows:
a) Select rr ∈R Z∗p.
b) Compute R = rr(yQ), C = H(yQ,R) and sr =

rr − Cr.
c) πr = (sr, C)

3) The user verifies PKCSP .
4) The user verifies πr as follows:

a) Compute R′ = srQ+ C(yQ).
b) Check C ?= H(yQ,R′).

5) The user selects f ∈R Z∗p, and computes TCert =
f

z+xP , Sig1 = fW , Sig2 = fxc, Sig3 = fc and
Sig4 = fP .

6) The user sends a proof (TCert, Sig1, Sig2, Sig3, Sig4)
to the SP.

7) [Verification] : The SP verifies that e(Sig4,W ) ?=
e(P, Sig1), e(Sig4, c)

?= e(P, Sig3) and
e(TCert, rySig1 + Sig2)

?= e(Sig4, Sig3).
8) [Revocation Check] : The SP verifies that

e(Certi, ryWSig1 + Sig2)
?= e(RKi, Sig3), where

∀(Certi, RKi) ∈ CRL.
Note that both the verification and the revocation check

have to be used the SP’s secret key y. Therefore, both the
verification and the revocation check are only executed by the
designated SP.

B. Efficiency
Our scheme uses pairing computations. Recently, an effi-

cient paring computation on power restricted modules (e.g.,
mobile phones) has been proposed such as [17]. Let |CRL| =
R. Our scheme requires 7 scalar multiplications and 1 multipli-
cation as a user, and 3 scalar multiplications, 1 multiplication
and 6 + 2R paring computations as a SP. The computational
costs of a SP depends on the number of revoked members
R. There is room for argument regarding the revocation
costs. This is a common problem concerning some revocable
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User: SP:
x, 1

z+xP,W = zQ y, yQ, PKCSP ,W = zQ, CRT

r ∈R {0, 1}k

c← ryQ
πr ← NIZK{(r) : c = r(yQ)}

c, yQ, PKCSP , πr←−−−−−−−−−−−−
Verify PKCSP , πr

f ∈R Z∗p
TCert← f

z+xP

Sig1 ← fW
Sig2 ← fxc
Sig3 ← fc
Sig4 ← fP

TCert, Sig1, Sig2, Sig3, Sig4−−−−−−−−−−−−−−−−−−−−−→
(1) Verification
e(Sig4,W ) ?= e(P, Sig1)
e(Sig4, c)

?= e(P, Sig3)
e(TCert, rySig1 + Sig2)

?= e(Sig4, Sig3)

(2) Revocation Check
For ∀(Certi, RKi) ∈ CRL do
e(Certi, rySig1 + Sig2)

?= e(RKi, Sig3)

Fig. 2. The proposed scheme

authentication schemes such as a revocable group signature
scheme [5], [14].

V. SECURITY ANALYSIS
In this section, we consider the security of our scheme. The

correctness is easy confirmed.

e(Sig4,W ) = e(P, Sig1) (1)
e(Sig4, c) = e(P, Sig3) (2)

e(TCert, rySig1 + Sig2) = e(Sig4, Sig3) (3)

Equations (1) and (2) obviously hold. In equation (3),
e(TCert, rySig1 + Sig2) = e( f

z+xP, (ryfz + ryfx)Q) =
e( f

z+xP, ryf(z + x)Q) = e(fP, fryQ) = e(Sig4, Sig3)
holds. Similarly, if the prover has already revoked, then
∃(Cert,RK) = ( α

z+xP,αP ) ∈ CRL such that
e(Cert, rySig1 + Sig2) = e( α

z+xP, (ryfz + ryfx)Q) =
e( α

z+xP, ryf(z+x)Q) = e(αP, ryfQ) = e(RK, Sig3) holds.
Next, we discuss the designatability. Both the verification

and the revocation check have to be used the SP’s secret key
y. Therefore, both the verification and the revocation check
are only executed by the designated SP. If an attacker can
compute rySig1 from the public values ryQ and Sig1, then
the attacker can solve the CDH problem. Therefore, even if an
attacker can obtain a CRL from the AA, the attacker cannot
execute both the verification and the revocation check.
Next, we discuss the unforgeability. From equations (1) and

(2), Sig1 = fW , Sig3 = fc and Sig4 = fP for the same
f ∈ Z∗p. These are the same forms as the BLS signature

scheme [6]. First, an attacker A attempts to forge TCert.
If A can compute a forge attribute certificate (x′, 1

z+x′P ) ∈
Zp×G1, then A can solve the q-SDH probrem [5]. Second, A
attempts to forge Sig2. Let TCert = sP for s ∈R Zp chosen
by A. A also selects f ∈R Z

∗
p, and computes Sig1 = fW ,

Sig3 = fc and Sig4 = fP . From the verification equation,
e(sP, ryfzQ + Sig2) = e(fP, fryQ) and e(P, sryfzQ +
sSig2) = e(P, f2ryQ) hold. Then, sryfzQ+sSig2 = f2ryQ
and Sig2 = s−1f2c− fryzQ hold. So, (TCert, Sig1, Sig2,
Sig3, Sig4) is a valid proof, where Sig2 = s−1f2c− fryzQ.
c is given by a verifier, and (s, f) is chosen by the attacker.
However, ryzQ cannot compute from c = ryQ and W = zQ
under the hardness of the CDH problem. Moreover, any
private values are not exposed from public values included
authentication execution transcripts under the hardness of the
DL problem.

Next, we discuss the anonymity. The anonymity
requires that an adversary A cannot distinguish
whether two signers are same or not from two
authentication executions. This requiremnet is the same
as group signature schemes [1], [3], [5], [14]. Let
(TCert, Sig1, Sig2, Sig3, Sig4) = ( f

z+xP, fW, fxc, fP )
and (TCert′, Sig′1, Sig

′
2, Sig

′
3, Sig

′
4) = ( f ′

z+x′P, f
′W,

f ′x′c′, f ′P ) be two authentication executions. We set
1

z+x := t and 1
z+x′ := t′. Then x = x′ if and only if t = t′.

We set fP := P ′ ∈ G1, f ′P := P ′′ ∈ G1, fc := Q′ ∈ G2 and
f ′c′ := Q′′ ∈ G2. If A can distinguish t = t′ or t �= t′ from
(Sig4, Sig′4, TCert, TCert

′) = (P ′, P ′′, tP ′, t′P ′′) ∈ G4
1,
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then A can solve the DDH problem on G1. Similarly,
if A can distinguish x = x′ or x �= x′ from
(Sig3, Sig′3, Sig2, Sig′2) = (Q′, Q′′, xQ′, x′Q′′) ∈ G4

2,
then A can solve the DDH problem on G2. Note that
Sig1 = fW is not included a user’s secret value x.
Therefore, our scheme satisfies the anonymity under the
SXDH assumption.
From these considerations, the proofs containing some re-

ductions can be constructed easily using a sequence of games
in the same way as in [16].

VI. CONCLUSION

In this paper, we propose a designated verifier anonymous
authentication scheme with certificate revocation. Our scheme
can be applied many kind of services. For example, dispensers
of alcoholic drinks have to check a customer’s age. Then, a dis-
penser does not require other information, e.g., name, address
and so on. We assume that a membership certificate with an
attribute “age” is preserved on a module (e.g., mobile phones,
smart cards and so on). Then, these dispensers can verify a
customer’s age without exposing extra personal information.
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