
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
A Secure RFID Authentication Protocol with Low

Communication Cost

Author(s)
Rahman, Mohammad Shahriar; Soshi, Masakazu;

Miyaji, Atsuko

Citation
International Conference on Systems, 2009. CISIS

'09.: 559-564

Issue Date 2009-03

Type Conference Paper

Text version publisher

URL http://hdl.handle.net/10119/8486

Rights

Copyright (C) 2009 IEEE. Reprinted from

International Conference on Systems, 2009. CISIS

'09., 559-564. This material is posted here with

permission of the IEEE. Such permission of the

IEEE does not in any way imply IEEE endorsement

of any of JAIST's products or services. Internal

or personal use of this material is permitted.

However, permission to reprint/republish this

material for advertising or promotional purposes

or for creating new collective works for resale

or redistribution must be obtained from the IEEE

by writing to pubs-permissions@ieee.org. By

choosing to view this document, you agree to all

provisions of the copyright laws protecting it.

Description

A Secure RFID Authentication Protocol with Low
Communication Cost

Mohammad Shahriar Rahman1 , Masakazu Soshi2, Atsuko Miyaji1
1 School of Information Science, Japan Advanced Institute of Science and Technology

1-1 Asahidai, Nomi, Ishikawa, Japan 923-1292
Email: {mohammad, miyaji}@jaist.ac.jp

2 School of Information Sciences, Hiroshima City University
3-4-1, Ozuka-higashi Asa-Minami-Ku, Hiroshima, Japan 731-3194

Email: soshi@hiroshima-cu.ac.jp

Abstract—Gene Tsudik proposed a Trivial RFID Authenti-
cation Protocol (YA-TRAP*), where a valid tag can become
incapacitated after exceeding the prestored threshold value and is
thus vulnerable to DoS attack. Our scheme solves the problem by
allowing a tag to refresh its prestored threshold value. Moreover,
our scheme is forward secure and provides reader authentication,
resistance against timing, replay, tracking attacks. We show the
use of aggregate hash functions in our complete scheme to reduce
the reader to server communication cost. The reader uses partial
authentication to keep the rougue tags out of the aggregate
function.

I. INTRODUCTION

Radio-Frequency IDentification (RFID) is an automatic
identification method, relying on storing and remotely retriev-
ing data using devices called RFID tags or transponders. An
RFID tag is an object that can be applied to or incorporated
into a product, animal, or person for the purpose of iden-
tification using radio waves. Some tags can be read from
several meters away and beyond the line of sight of the reader.
RFID tags has opened the door to previously unexplored
applications. For example in supply chains as suggested by
the EPC Global Inc. [1], to locate people in amusement parks,
to combat the counterfeiting of expensive items [2], to trace
livestock, to label books in libraries [3], etc.

A goal of researchers in RFID tag development is to see
them serve ubiquitously as a replacement for barcodes. This
change promises more flexible and intelligent handling of
consumer goods and devices. The imminent ubiquity of RFID
tags, however, also poses a potentially widespread threat to
consumer privacy.

If RFID tags are easily readable, then tagged items will be
subject to indiscriminate physical tracking, as will their owners
and bearers. Today, RFID is used in enterprise supply chain
management to improve the efficiency of inventory tracking
and management. RFID has seen a swirl of attention in the
past few years. One important reason for this is the effort of
large organizations, such as Wal-Mart, Procter and Gamble,
and the U.S. Department of Defense, to deploy RFID as a
tool for automated oversight of their supply chains [4].

In such an environment, it is required to read and authen-
ticate a large number of tags within a small period of time.
A key to safe and secure supply chain is the emphasis on

authenticating the objects as well as tracking them efficiently
[[5] chapter 12] where unauthorized tracking of RFID tags is
viewed as a major privacy threat. Moreover, the computational
and communication complexity are two prime factors related
to energy consumptions of an RFID system where the tags are
highly resource constrained.

Our Contribution: In this paper, we introduce a two-way
message authentication protocol where both tag and reader
authenticate each other. Compared to the previous RFID
authentication protocol named YA-TRAP* [6], our protocol
has improved from the efficiency’s point of view specially
for batch-mode; our protocol satisfies security requirements
better and the required computation is kept at a minimum.
Moreover, we show the use of aggregate function for the reader
to server communication. The reader to server communication
cost is reduced through introducing aggregate hash function.
Again, the YA-TRAP* protocol has a limitation- where a
valid tag becomes non-operative after the tag is read equal
to the prestored threshold timestamp value. In our two-way
authentication protocol, a reader helps a tag to recover from
the non-operative state. Furthermore, our scheme is forward
secure and provides reader authentication, resistance against
timing, replay, tracking attacks. In the extended version of
our scheme, the reader uses partial authentication to keep the
rougue tags out of the aggregate function. This increases a
tag’s computation by one hash function and also the tag to
reader communication by b bits. We consider this as a trade-
off between security and efficiency.

II. OPERATING ENVIRONMENT

In an RFID environment, an RFID system consists of three
components: tags, reader(s) and server. Tags consist of an
integrated circuit with a small antenna and are placed on each
object that should be identified (e.g. the medicines). Each tag
will send its corresponding information when interrogated by
a valid reader. Reader(s) communicate with a server and with
the tags. They are responsible of performing the queries to the
tags. They also have computational and storage capabilities.
A server is a trusted entity that knows and maintains all
information about tags, such as their assigned keys. It is
assumed to be physically secure and not subject to attacks.

International Conference on Complex, Intelligent and Software Intensive Systems

978-0-7695-3575-3/09 $25.00 © 2009 IEEE

DOI 10.1109/CISIS.2009.162

559

International Conference on Complex, Intelligent and Software Intensive Systems

978-0-7695-3575-3/09 $25.00 © 2009 IEEE

DOI 10.1109/CISIS.2009.162

559

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 3, 2009 at 21:47 from IEEE Xplore. Restrictions apply.

Multiple readers might be assigned to a single server. A server
only engages in communication with its constituent readers.
All communication between a server and a reader is assumed
to be over private and authentic channel. We assume that
the adversary can be either passive or active. It can corrupt
or attempt to impersonate or incapacitate any entity or track
RFID tags. Namely, an adversary succeeds to trace a tag if it
has a non-negligible probability to link multiple authentication
and/or state update sessions of the same tag. Compromise of
a set of tags should not lead to the adversary’s ability to track
other tags. Furthermore, the possibility of Denial of Service
(DoS) attack, i.e., attacks that aim to disable the tags should be
in a minimum level. Both reader and server have ample storage
and computational capabilities. We assume that an RFID tag
has no clock and small amounts of ROM to store a key and
non-volatile RAM to store temporary timestamp. With power
supplied by reader, a tag can perform a modest amount of
computation and change its permanent state information stored
in its memory. The messages which are in plaintext, are fully
accessible by the adversary.

In batch mode, a reader scans numerous tags, collects
the replies, and sometimes, performs their identification and
authentication later in bulk. The batch mode is appropriate
when circumstances prevent or inhibit contacting the back-end
server in real time. An inventory control system, where readers
are deployed in a remote warehouse and have no means of
contacting a back-end server in real time is such an application.

Each tag RFIDi is initialized with at least the following
values: ki, T0, Tmaxi

; where ki is a tag-specific value that
serves two purposes: (1) tag identifier, and (2) cryptographic
key. Thus, the size (in bits) of ki is required to serve as
sufficiently strong cryptographic key for the purposes of
Message Authentication Code (MAC) computation. A new
hash SQUASH proposed by Shamir [7] is the underlying hash
function since it executes in fewest gates and operates in
single block which are very important for resource constrained
devices like RFID. In practice, a 128-bit ki will most probably
suffice. T0 is the initial timestamp assigned to the tag. This
value does not have to be a discrete counter. For example,
T0 can be the time-stamp of manufacture. T0 need not be tag
unique; an entire batch of tags can be initialized with the same
value. Tmaxi

can be viewed as the highest possible time-stamp.
Tmaxi

is a tag specific secret value. This threshold value can
be changed in case a tag becomes inactive due to exceeding the
value. Each tag is further equipped with a sufficiently strong,
uniquely seeded pseudo-random number generator (PRNG).
For a tag RFIDi, PRNGj

i denotes the j-th invocation of the
(unique) PRNG of tag i. Given a value PRNGj

i , no entity
(including a server) can recover ki or any other information
identifying RFIDi. Similarly, given two values PRNGj

i and
PRNGk

j , deciding whether i = j must be computationally
infeasible.

III. PREVIOUS WORKS

We consider only related works relevant for comparison
with our approach, i.e., protocols that emphasize involving

secure minimal 2-round reader-tag interaction, aim to reduce
tag requirements and computation, and address the communi-
cation complexity.

MSW protocols by Molnar, et al. [8] use hierarchical tree
based keying. But they have a security flaw shown by Avoine,
et al. [9] whereby an adversary who compromises one tag,
is able to track/identify other tags that belong to the same
families (tree branches) as the compromised tag. Zhu et.al.
showed the security of aggregate function for RFID tags [10].
But they do not show the use of the aggregate function in
a complete authentication protocol. Moreover, it is not clear
how to find out individual rougue tags by the verifier.

We mainly consider YA-TRAP* to compare our work with.
Before going to state the original YA-TRAP* algorithm, we
are describing the parameters used here. For the sake of
simplicity and better understandability, we will continue to
use same notations related to most of these parameters in
our scheme. Tri

, Rri
, ETri

: timestamp, random challenge,
epoch token sent by the reader to a tag i. ETri

allows a tag
to ascertain that the reader-supplied Tri

is not too far into
the future. This token changes over time, but its frequency of
change (epoch) is generally much slower than the unit of Tri

.
Due to spcae limitation, we omit the detail of the protocol.
The following Algorithm (YA-TRAP*) shows authentication
between a Tagi and a reader, and, between a reader and a
server at time j.

Algorithm 1 (YA-TRAP*):
[1]Tag ← Reader: T j

ri
, Rj

ri
, ETri

[2] Tagi:
[2.1] δ = T j

ri
− T j

ti

[2.2] ν = �T j
ri

/INT � − �T j
ti

/INT �
[2.3] If (δ ≤ 0) or T j

ri
> Tmaxi

or Hν(ETti
) �= ETri

[2.3.1] Hidi
= PRNGi

j

[2.3.2] Hauthi
= PRNGi

j+1

[2.3.2] Hauthi
= PRNGi

j+2

[2.4] else T j
ti

= T j
ri

, ETti
= ETri

[2.4.1] Hidi
= HMACki

(Tt)
[2.4.2] Rti

= PRNGj+1
i

[2.4.3] Hauthi
= HMACki

(Rti
, Rri

)
[3] Tag → Reader: Hidi

, Rti
,Hauthi

[4] Reader → Server: Hidi
, Rri

, Rti
, T j

ri
,Hauthi

[5] Server:
[5.1] s = LOOKUP (HASHTABLETri

,Hidi
)

[5.2] if(s == −1)
[5.2.1] MSG = TAG-ID-ERROR

[5.3] else if (HMACKs
(Rti

, Rri
) �= Hauth)

[5.3.1] MSG=TAG-AUTH-ERROR
[5.4] else MSG=TAG-VALID

[6] Server → Reader: MSG
The protocol is vulnerable to DoS attacks. DoS resistance

in YA-TRAP* is limited by the magnitude of the system-
wide INT parameter. An adversary can incapacitate tags for
at most the duration of INT if it queries each victim tag with
the current epoch token and the maximum possible Tri

value
within the current epoch. A tag needs to compute 4 keyed hash
operations and a PRNG. In addition, a tag needs to compute

560560

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 3, 2009 at 21:47 from IEEE Xplore. Restrictions apply.

ν hashes over ETt. The communication cost of Tag to Reader
is 3 messages (2 HMAC, 1 Rti

) per Tag. The communication
cost of Reader to Server is 5 messages (2 HMAC, 1 Rti

, 1 Rri
,

1 Tri
) per Tag. That means, for n number of tags, a total of 2n

HMAC, n Rti
, n Rri

, n Tri
messages are sent to the server.

This needs a huge amount of resource for communication in
case of batchmode authentication. Moreover, eventhough a tag
is valid, it becomes nonoperative when Tri

exceeds Tmaxi
.

That means, after being read for several times, when the
valid timestamp value Tri

sent by the reader becomes higher
than the Tmaxi

stored in a valid tag, this valid tag no longer
responds correctly to the reader.

IV. OUR SECURE AND LOW COST SCHEME

We mainly divide our scheme into two parts. The protocol
we describe below reduces the communication costs between
tag to reader and between reader to server. Then in subsection
A, we extend the protocol into a more secure one which
provides partial authentication of the tags. But the extended
version increases a tag’s computation by one hash function
and also the tag to reader communication by b bits. We use
one-time pad and aggregate hash function in our scheme.

1) One-time pad: The one-time pad is a simple, classical
form of encryption (See, e.g., [11] for discussion). We briefly
recall the underlying idea. If two parties share a secret one-
time pad p, namely a random bitstring, then one party may
transmit a message m secretly to the other via the ciphertext
p⊕m, where ⊕ denotes the XOR operation. It is well known
that this form of encryption provides information theoretic
secrecy. Suppose, for instance, that pads from two different
verifier-tag sessions are XORed with a given tag value in
order to update it. Then even if the adversary intecepts the
pad used in one session, it may be seen that she will learn
no information about the updated value. Application of a
one-time pad requires only the lightweight computational
process of XORing. Indeed, one-time padding results in less
communications efficiency than that achievable with standard
cryptographic encryption tools like block or stream ciphers.
The problem is that, standard cryptographic primitives require
more computational power than is available in a low-cost RFID
tag. This is the real motivation behind our use of one-time
pads.

2) Aggregate Function: An aggregate function follows that
if we are able to compress the size of all hash functions
HASHi, then the communication complexity between the
reader and the server can be reduced accordingly. This leaves
an interesting research problem - is it possible to aggregate
tags’ attestations so that the size of the resulting aggregate
attestation (i.e., H) is approximate to that of the original
case (i.e., non-aggregate model). That is, given Hidi

=
HASH(Rti

, Rri
), where HASH is a cryptographic one-way

hash function, and Rti
and Rri

are random challenges of
tag and reader respectively, we ask whether there exists
an efficient polynomial time algorithm such that on input
Hidi

= HASH(Rti
, Rri

), it outputs an aggregate of hash
functions such that the size of ⊕(Hid1 ,Hid2 , ...,Hidn

) is

approximate to an individual Hidi
; moreover, the validity

of individual attestations can be checked efficiently given
⊕(Hid1 ,Hid2 , ...,Hidn

). We derive an aggregate function
from [10] as a tuple of probabilistic polynomial time algo-
rithms (HASH,Aggregate,Verify) such that: The authentication
algorithm HASH takes as input random numbers Rti

and
Rri

and outputs an attestation Hid; The aggregate function
Aggregate takes as input Hid1 ,Hid2 , ...,Hidn

and outputs a
new attestation H; The verification algorithm verify takes as
input (Rt1 , Rr1), (Rt2 , Rr2),..., (Rtn

, Rrn
) and an attestation

H, outputs a MSG with Accept denoting acceptance or Error
denoting rejection.

As we have seen previously, the data on a genuine tag can
be easily scanned and copied by a malicious RFID reader and
the copied data can be embedded onto a fake tag. Malicious
readers may also try to corrupt and snoop on genuine tags.
These threats are nullified by incorporating a RFID reader
authentication by a tag. To authenticate itself to a tag, a
reader sends Hash(T j−1

ri
, Tmaxi

). If the received hash value
matches with the computed hash value, then it proceeds. Other-
wise it rejects by generating pseudo-random numbers(PRNG).
PRNGs are generated as becuase they are required for the
respective times taken by hash function computations and the
rejection as close as possible. This is needed to thwart obvious
timing attacks by malicious readers aimed at distinguishing
among the two cases. The random number generated must be
indistinguishable from Hash(T j−1

ri
, Tmaxi

). That means, the
adversary has to face the decision problem of distinguising
the Hash(T j−1

ri
, Tmaxi

) from a random value. This indistin-
guishability feature is required to protect against narrowing
attack [6] which leads into tracing the tag by an adversary. The
use of PRNGs to obfuscate the tag identity was first introduced
in [12].

The server keeps the table of valid tags and the last issued
timestamp Tri

for each of the tags. So, it can easily findout
a valid tag when it becomes after exceeding the threshold
Tmaxi

. The new timestamp threshold value Tmaxinew
is stored

in memory erasing the existing Tmaxi
only after the reader

authenticates itself to the tag. However, the reader generates
Tmaxinew

only when the tag makes sure that itself is a dead
tag (unexpected output from a valid tag can be an indicator).
The reader sends the value Tr by XOR-ing the Tmaxi

and
Tmaxinew

. Generating Tmaxinew
works as one-time padding

as it is freshly computed everytime a tag requires to update
its Tmaxi

; and the value Tri
also cannot be revealed by the

adversary as the adversary cannot distinguish the tag’s actual
response from a PRNG. Before XOR-ing, the reader must
make sure that the value of Tmaxinew

is strictly greater than
Tmaxi

. Eventhough exceeding the Tmaxi
value is considered

to be a feature of YA-TRAP*, we take into account a dif-
ferent scenario: when an item is brought from the store, the
reader/server may want to incapacitate the attached RFID tag,
for example. In this case, our protocol only needs to send an
arbitrary future timestamp value to the tag to incapacitate. On
the other hand, in YA-TRAP*, the reader/server needs to send
several ETri

values to eventually reach Tmaxi
-which is not

561561

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 3, 2009 at 21:47 from IEEE Xplore. Restrictions apply.

suitable in cases like the example above.
After the reader authentication, a tag compares whether

the received T j
ri

is greater than Tmaxi
. If so, it computes

Tmaxinew
and verifies whether the Tmaxinew

is strictly greater
than Tmaxi

. A tag then refreshes its Tmaxi
value. Then the

tag computes hash of Rri
and Rti

.
After receiving responses from the tags, the reader chekcs

the Rri
whether it matches with any other previous value.

As the tags responses are collected over multiple time
intervals, the reader marks the responses according to the Tri

values used.
Then reader aggregates all the Hidi

by XOR-ing them. The
security of aggregate hash functions has been shown in [13].
After that, it concatenates all the Rti

into one message Rt.
The reader forwards H , Rt to server.

Upon receiving them, the server looksup its database for
the marked tags, computes their corresponding hash values
and matches their XOR-ed value with the received H . It
sends MSG= TAG-V ALID back to reader to end the whole
process.

The Algorithm 2 below is the secure and low cost authen-
tication protocol:

Algorithm 2 (Low Cost and Secure Authentication Scheme):

[1]Tag ← Reader: T j
ri

, Rj
ri

,Hash(T j−1
ri

, Tmaxi
)

[2] Tagi:
[2.1]While Hash(T j

t , Tmaxi
) �= Hash(T j−1

ri
, Tmaxi

),
Rj

ti
= PRNGi

1, Hidi
= PRNGi

2, kj+1
i = PRNGi

3

[2.2] δ = T j
ri
− T j

ti

[2.3]While T j
ri

> Tmaxi
, then

Tmaxinew
= T j

ri
⊕ Tmaxi

,
if Tmaxinew

> Tmaxi
, then set Tmaxi

= Tmaxinew
,

else Reject
[2.4] if (δ ≤ 0) then
Rj

ti
= PRNGi

1, Hidi
= PRNGi

2, kj+1
i = PRNGi

3

else T j
ti

= T j
ri

, Rj
ti

= PRNGi, Hidi
= HASH(Rj

ti
, Rj

ri
)

[2.5] kj+1
i = H(kj

i)
[3] Tag → Reader: Hidi

, Rj
ti

[4] Reader:
[4.1] If Rj

ti
matches with any of the

previously generated Rti
, then REJECT

else mark each Hidi
, Rj

ti

[4.2] H =
⊕n

i=1 Hidi
,

Rt = Rt1 ‖ Rt2 ‖ Rt3 ‖ ‖ Rtn

[5] Reader → Server: H,Rt

[6] Server:
[6.1] lookup accepted Tr according to marked Rti

;
if

⊕n
i=1 HASH(Rri

, Rti
) �= H ,

then MSG=TAG-AUTH-ERROR
else MSG=TAG-VALID
[6.2] update each ki

[7] Server → Reader: MSG

A. Extending the Protocol

The aggregate function enables a server only to find out the
anomaly of the resultant XOR operations of the hash values.

That means, if the computed aggregate hash value does not
match with the received H , the server cannot find out the
specific tag for which the result is an oddity.

To alleviate such incident, we use a one-way hash for the
partial authentication of a tag. One-wayness means that, having
seen the hash value, it is not possible to extract the contents
on the hash. For this purpose, we need to add the following
step to compute an authencation token(AT) as step [2.5] before
renewing the key ki:

[2.5]AT j
ti

= Hash(Tmaxi
, kj

i)
A tag i has its secret value Tmaxi

and key kj
i . Generating kj

i

for every read operation also ensures forward security. So, to
partially authenticate itself to server, a tag sends the computed
AT j

ti
value to the reader. So, the step [3] is rewritten as:

[3]′ : Tagi → Reader : Hidi
, Rj

ti
, AT j

ti

Upon receiving AT j
ti

from a tag i, the reader finds a match
with the desired AT j

si
for tag i, which the reader had received

from the server for that particular tag i for the j-th read
interaction. This requires us to modify the step [4.1] as [4.1]’
like below:

[4.1]′ If Rj
ti

matches with any of the previously generated
Rti

, then REJECT
else if AT j

ti
�= AT j

si
, then exclude

else mark each AT j
ti

,Hidi
, Rj

ti

The reader has a table consisting of the expected identifica-
tion token AT j

si
values corresponding to each tag (each tag’s

Tri
). So, the reader checks the hash value of a tag and if a

tag is found legitimate, its authentication message is included
into the reader’s aggregate function.

The tag sends a one-way hash value of the random numbers
to the reader to authenticate itself. As the reader is not capable
of too much computaions like computing hash values of a huge
number of tags, it forwards the hash values for authentication
to the server.

The server also needs to do some computation after it
matches the aggregated value received from the reader. After
updating each key kj

i of the corrsponding tags to kj+1
i , the

server computes their respective authentication token values
(AT j+1

si
) for the next (j + 1)-th read operation. This step is

added to the protocol as step [6.3]:
[6.3]compute AT j+1

ti
= Hash(Tmaxi

, kj+1
i)

Furthermore, the server to reader communication is required
to include the newly generated AT j+1

si
values. So, step [7] can

be modified like:
[7]′ Server → Reader: MSG, all AT j+1

si

One significant point here to note that, the extended version
of the protocol increases communication cost for both the tag
to reader and server to reader interactions. However, sacrificing
a part of communication cost strengthens the security. We
consider this tradeoff between cost and security to be a feature
of our protocol. The partial authentication by the reader helps
filter out malicious tags. This erases inclusion of any rougue
tag in the aggregate function, which leads into no anomaly
when the server verifies the aggregate value.

We emphasize that, for a batch mode environment where
validating a number of tags in a very small amount of time,

562562

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 3, 2009 at 21:47 from IEEE Xplore. Restrictions apply.

Algorithm 2 is suitable - where the communication cost is the
least. In such a batch mode environment, tags are authenticated
in a bulk, hence it is enough to verify the authentication of
the whole batch together in a least possible time. Even though
the extended protocol is not much effective for batch mode
environment where validating a number of tags in a small
amount of time is required, it can be used in the settings
where the server is not readily available. In such situations,
the reader can partially authenticate the tags. Moreover, the
extended version is also suitable for small number of tags or
even for individual tag authentications.

V. SECURITY ANALYSIS

• Forward Security: The forward-security property means
that even if the adversary obtains the current secret key, she
still cannot derive the keys used for past time periods. To
ensure this, we have used a forward-secure message authen-
tication scheme which is key-evolving. For each valid read
operation, a tag uses the current key ki for creation and ver-
ification of authentication tags. At the end of each valid read
operation, ki is updated by a one-way hash function H and
previous ki is deleted. An attacker breaking in gets the current
key. But given the current key ki it is still not possible to derive
any of the previous keys. Moreover, due to the one-wayness
of the hash function used in AT j

ti
= Hash(Tmaxi

, kj
i), the

adversary cannot compute kj
i or any other previous keys if

she manages to get kj+1
i .

• Timing Attack: Our protocol is immune to crude timing
attacks that aim to determine the tag’s state or its Tt value.
From the timing perspective, steps 2.1, 2.4 and 2.5 in the
algorithm are indistinguishable since PRNG and HASH are
assumed to execute in the same time. PRNGs are generated
as becuase they are required for the respective times taken
by hash function computations and the rejection as close as
possible. This is needed to thwart obvious timing attacks
by malicious readers aimed at distinguishing among the two
cases.
• Tag Tracking: Tracking a tag means that it is compu-

tationally feasible to infer from the interactions with a tag
information about the identity of the tag or link multiple
authentication sessions of the same tag. Success or failure
of a tag-reader interaction is not observable by the adversary
in the environments where the interaction concludes without
some sort of publicly visible effect. In our protocol, from a
tag’s response PRNGi, no entity (including the server) can
recover ki or any other information identifying that particular
tag. This is due to the reason that, the PRNG values are
indistinguishable from the normal replies (Hash values) and
the hash function used is one-way (given the hash value, it is
not computationally feasible to derive the contents of the hash
function).

It is also not possible for an adversary to track a tag due
to the use of one-time padding. As the adversary cannot
distinguish a normal response from a PRNG, she cannot track
a tag even the tag becomes incapacitated by exceeding the
Tmaxi

value. So when the valid reader forwards a Tri
> Tmaxi

to an incapacitated tag i, the adversary cannot find out the
Tmaxinew

from the value she has seen during the session. As
the Tmaxinew

is freshly generated and the adversary cannot
know for which particular value of Tri

the stored Tmaxi
is

going to be refreshed, the information theoretic security of
one-time padding provides the secrecy of the Tmaxinew

.
• DoS resistance: Our protocol also has DoS resistance

capability. By feeding an arbitrary future timestamp Tri
, an

adversary can incapacitate a tag. As only the server can
distinguish a tag i’s normal reply from a random reply, and it
has the Tri

and Tmaxi
in its database, the server can generate

and new threshold timestamp value for the tag to replace the
old threshold. As discussed earlier, generating and sending the
new threshold value to the tag works as one-time pad. And
the adversary is not able to keep the tag incapacitated for a
long time (infact, the tag will generate PRNG on the next
immediate valid interaction only).
• Tag Cloning: Tag cloning means that, the data on a valid

tag is scanned and copied by a malicious RFID reader and
the copied data is embedded onto a fake tag. Authentication
of RFID reader prevents this cloning attack. In our protocol, a
tag never generates genuine replies unless it verifies the reader
first. This verification thwarts the cloning attack.
• Replay Attack: Assuming that the random challanges sent

by the reader and the tag are same in two different sessions,
an adversary can launch replay attack by snooping the random
numbers. In our protocol, the reader matches the random
numbers it receives from the tags to make sure that no two
random numbers from two defferent sessions with a same tag
are equal. This prevents the replay attack.
• Tag Non-operative: In our scheme, the server can help an

incapacitated tag to become operative by sending a renewed
Tmaxi

which is strictly greater than the previous one. This
renewing capability also enables a server to willingly inca-
pacitate a tag whenever it wants (consumer goods which are
not needed to be authenticated any more after they are sold).

VI. COMPARISON OF PERFORMANCE

As discussed earlier, MSW protocol has a vulnerability that
compromising of a tag makes the other tags of the same family
compromised also. This concern does not arise in our protocol
since no two tags share any secrets between them. In other
words, in our work, it is not possible for an adversary to derive
secrets of other tags even if she gets a tag’s secrets - which
feature is absent in MSW protocol.

Zhu et.al’s aggregate function is shown to be secure, but
they do not provide any complete protocol to show the use
of aggregate function; it also can not find out an individual
rouge tag- rather can only find out that the aggregate function
has some rogue tag’s information by detecting the oddity
of the aggregated output. Our protocol uses the aggregate
function to reduce the communication cost. Moreover, to
indentify a rougue tag, we introduce partial authentication by
the reader. This works as a filter to reject any possible fake
tags. This partial authentication helps an aggregate function
to be correctly verified by the server, hence authenticating

563563

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 3, 2009 at 21:47 from IEEE Xplore. Restrictions apply.

the corresponding tags. But this increases the server-reader
communication, which we consider to be a trade off between
security and performance.

The comparison of our work with the YA-TRAP* is shown
in tables below. For the clearity of comparison, we provide the
same environment to the YA-TRAP*, i.e., aggregate function
is also applied there. Even if the YA-TRAP* implements
aggregate function, our protocol achieves lower communica-
tion cost. We compare our extended version with YA-TRAP*.
The reason behind is the concern of security. The extended
version provides security through partial authentication which
is not present in our initial scheme(Algorithm 2). We use
the partial authentication to keep the rougue tags out of the
aggregate function. The partial authentication requires a tag
to compute one more hash function (computing AT j

ti
) and

contain b more bits (AT j
ti

) while communicating with the
reader. As we discussed earlier, we consider this as a feature of
our scheme; i.e., a trade-off between security and performance.
So, to maintain the same level of security while achieving a
lower communication cost, we need the same number of tag
computations compared with YA-TRAP*.

TABLE I
PERFORMANCE COMPARISON (SECURITY)

For. Sec. DoS rest. Rep Atk. Tag NOp Rd. Au.
YA-TRAP* yes no no yes no
Our Scheme yes yes yes no yes

TABLE II
PERFORMANCE COMPARISON (COST)
Tag comp TtoR comm (bits) RtoS comm (bits)

YA-TRAP* 4 HASH 3 b (3n+2)b
1 PRNG

Our Scheme 4 HASH 3 b (n+1)b
1 PRNG

• n = total number of tags.
• b = bit length of HASH, Rti , Rri , Tri (assuming all are equal in bit size)

Table 1 shows the comparison of security features like
Reader Authentication (Rd Au), Forward Security(For Sec),
DoS resistance (DoS res), Replay Attack resistance (Rep
Atk) and whether tag bocomes non-operative (Tag NOp). Our
scheme achieves better performance considering DoS, replay,
cloning attack resistances compared to YA-TRAP*. The DoS
resistance capability is one of the main achievements of our
scheme. In YA-TRAP*, by feeding an arbitrary future times-
tamp Tri

, an adversary can incapacitate a tag, thus launching a
DoS attack. As only the server can distinguish a tag i’s normal
reply from a random reply, and it has the Tri

and Tmaxi
in its

database, the server can generate a new threshold timestamp
value for the tag to replace the old threshold. As discussed
earlier, generating and sending the new threshold value to the
tag works as one-time pad. And the adversary is not able to
keep the tag incapacitated for a long time. Moreover, unlike
YA-TRAP*, our scheme does not allow a tag to become non-
operative. Rather whether a tag will become non-operative or
not can be controlled by the reader. One more security feature
provided by our scheme is ‘reader authentication’. Reader
authentication is required to prevent cloning attack.

Table 2 includes tag’s computaion(Tag comp), Tag to Reader

communication (TtoR comm.) and Reader to Server communi-
cation (RtoS comm.) costs. Considering the extended version
of our scheme, YA-TRAP* and our scheme requires the same
number of computations by a tag; i.e., 4 hash functions and
1 PRNG. Also the tag to reader communication contains 3b
bits for both schemes. The bit length of reader to server
communication is lower in our scheme compared to YA-
TRAP*. For n number of tags, our scheme requires (n + 1)b
bits, whereas YA-TRAP* requires (3n+2)b bits for the reader
to server communication. This clearly reduces the cost by a
significant amount which is very important for batch-mode
communication.

VII. CONCLUSION

In this paper, we have proposed a secure two-way authen-
tication protocol with low communication cost which is more
efficient and secure compared to the previous works. Our
scheme provides reader authentication to thwart tag cloning
and also resists DoS, Replay, Tracking, Timing attacks. We
show the use of aggregate hash functions in our complete
scheme to reduce reader to server communication cost down to
(n+1)b bits for n tags- which is very much suitable for batch
mode authentication environment. In the extended version of
our scheme, the reader uses partial authentication to keep the
rougue tags out of the aggregate function. It also provides
forward security and does not allow a tag to become non-
operative unless explicitly done by the reader.

REFERENCES

[1] Electronic Product Code Global Inc. http://www.epcglobalinc.org.
[2] Ari Juels, Ravikanth Pappu: Squealing euros: Privacy protection in

RFID enabled banknotes. Financial Cryptography-FC 03, pp. 103-121,
Springer-Verlag (2003).

[3] David Molnar and David Wagner: Privacy and security in library RFID:
Issues, practices, and architectures. Conference on Computer and Com-
munications Security- CCS04, pp. 210-219, ACM Press (2004).

[4] A. Juels: RFID security and privacy: A Research Survey. IEEE Journal
on Selected Areas in Communication, Vol. 24, chapter 2,(2006).

[5] Peter H. Cole, Damith C. Ranasinghe: Networked RFID Systems and
Lightweight Cryptography Raising Barriers to Product Counterfeiting.
Springer, e-ISBN 9783540716419(2007).

[6] Gene Tsudik: A Family of Dunces: Trivial RFID Identification and
Authentication Protocols:Privacy Enhancing Technologies- PET, pp. 45-
61, Springer-Verlag(2007).

[7] Adi Shamir: SQUASH - A New MAC with Provable Security Properties
for Highly Constrained Devices Such as RFID Tags. Fast Software
Encryption- FSE, pp. 144-157, Springer-Verlag(2008).

[8] D. Molnar, A. Soppera and D. Wagner: A Scalable, Delegatable
Pseudonym Protocol Enabling Ownership Transfer of RFID Tags, Work-
shop in Selected Areas in Cryptography- SAC, pp. 276-290, Springer-
Verlag(2006).

[9] G. Avoine, E. Dysli, and P. Oechslin: Reducing Time Complexity in
RFID Systems, Workshop on Selected Areas in Cryptography- SAC, pp.
291-306, Springer-Verlag(2006).

[10] H. Zhu and F. Bao: Aggregating Symmetric/Asymmetric Attestations.
IEEE International Conference on RFID,pp. 105-110, IEEE(2008).

[11] A.J. Menezes, van Oorschot, S.A. Vanstone: Handbook of Applied
Cryptography, pp. 192-193, CRC press(1997).

[12] S. Weis, S. Sarma, R. Rivest, D. Engels: Security and Privacy Aspects of
Low- Cost Radio Frequency Identification Systems. Security in Pervasive
Computing Conference- SPC, pp. 201-212, Springer-Verlag(2004).

[13] J. Katz, A.Y. Lindell: Aggregate Message Authentication Codes. Topics
in Cryptology CT-RSA,pp. 155-169, Springer-Verlag(2008).

564564

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 3, 2009 at 21:47 from IEEE Xplore. Restrictions apply.

