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Self-configurable Mobile Robot Swarms with Hole Repair Capability

Geunho Lee and Nak Young Chong

Abstract— We address the problem of deploying a swarm of
autonomous mobile robots toward building an ad hoc network
of robotic sensors with spatial uniform density. For the purpose,
each of the robots configures themselves into an area with
geographical constraints through local interactions with two
adjacent neighboring robots. The basic idea underlying this
work is that robots can be thought of as liquid particles
that change their positions conforming to the shape of the
container they occupy. The main challenge is how to cope
with the accuracy limitations of sensors and possible holes
in the configuration. Considering such realistic conditions, the
convergence of the proposed method is proved using Lyapunov’s
theorem. The proposed method is verified to be effective
through the simulation for the secure deployments of robotic
sensor network.

I. INTRODUCTION

Recently, there has been increasing attention paid to
swarm robotics, because it is possible to have a swarm
of robots cover an area of interest for such applications
as environmental or habitat monitoring, search-and-rescue,
and exploration [1]. These applications require that robots
adaptively configure themselves into the area controlling the
individual robot’s motion in a decentralized way [2], and
be dispersed in a uniform spatial density without holes.
Toward the end, we propose a geometric approach to self-
configuration that enables a swarm of robots to adapt its
shape to the geographically constrained plane with equilat-
eral triangle lattices. Based on a partially connected mesh
topology [14], the proposed approach can take advantage
of the redundancy provided by a fully connected topology
without the expense and complexity of networking processes.

What is important from the practical point of view is that
we consider the problem of limitations in sensor technology
and holes in the configuration process and/or node failure.
Our main contribution lies in providing an effective approach
against the measurement errors employing the Kalman filter
[16], and the self-repair capability. By increasing the number
of neighboring robots positioned at the uniform distance, the
swarm repairs the holes and improves the network connectiv-
ity. Regarding the convergence of the proposed algorithms,
Lyapunov’s theorem is utilized, leading to asymptotic stabil-
ity of the desired configuration from an arbitrary distribution.
Both individual behavior of robots and overall shape of the
swarm can be coordinated with scalability in this work.

Decentralized control for robot swarms can be broadly
classified into global and local strategies according to
whether sensors have range limits. Global strategies [3]
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may provide fast, accurate, and efficient deployment, but are
technically non-feasible and lack scalability as the number
of robots increases. On the other hand, local strategies are
based on interactions between individual robots inspired by
colonies of ants or schools of fish, or physical phenomena
such as crystallization. Local strategies can further be di-
vided into biological emergence [4][5], behavior-based [6],
and virtual physics-based [7]-[13] approaches. Many of the
behavior-based and virtual physics-based approaches used
such physical phenomena as electric charges [7], gravita-
tional forces [8], spring forces [9][12][13], potential fields
[10], van der Waals forces [11], and other virtual models.

Robot swarm configurations achieved by the above-
mentioned local interactions may result in lattice-type net-
works. These configurations offer high level coverage and
multiple redundant connections ensuring maximum reliabil-
ity and flexibility from the standpoint of topology. Depending
on whether there are interactions among all robots, the
network can be classified into fully and partially connected
topologies [14]. The fully connected topologies have each
robot interact with all of other robots simultaneously within
a certain range. Thus, those approaches might over-constrain
individual robots and frequently lead to deadlocks. On
the contrary, using the partially connected topology, robots
interact selectively with other robots, but are connected
to all robots in the formation. For example, robots may
choose to exert forces in a certain direction [12], where
this selective interaction helps prevent them from being too
tightly constrained. Due to similar reason, robots are enabled
to achieve faster formation without deadlocks [13]. Using
the partially connected topology, our work is to enable robot
swarms to construct uniformly spaced equilateral triangles
with a minimum number of interacting robots in an area
with geographical constraints.

II. PROBLEM STATEMENT

A. Robot Model

We consider a swarm of mobile robots denoted as
r1, · · · , rn. It is assumed that an initial distribution of all
robots is arbitrary and distinct. Each robot autonomously
moves on a 2-D plane. They have no leader and no identifiers,
and do not share any common coordinate system, and do
not retain any memory of past actions [3]. Due to limited
sensing range, they can detect the position of other robots
only within a certain range. In addition, each robot does not
communicate explicitly with other robots. Let the position
pi of a robot ri be denoted as a state vector

pi = [pi,x pi,y]T . (1)
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We can also define ri’s kinematics by ṗi,x = uicosθi, ṗi,y =
uisinθi, where ui and θi are the translational and angular
velocity of ri, respectively. In addition, to provide an optimal
estimation of noisy sensor measurements, a Kalman filter is
employed [16]. Let’s consider the system state vector pik

,
[pi,1k

· · · pi,nk
]T , defined as the positions of other robots at

time k. The Kalman filter model describes the state transition
from k to k + 1 as follows:

pik+1
= Aik

pik
+ ωik

(2)

where Aik
is the state transition matrix given by an identity

matrix and ωik
means the system random noise ωik

∼
N(0,Wik

). The predicted estimate covariance can be ob-
tained as follows:

Pik+1|k
= Aik

Pik|k
AT

i k
+ Wik

(3)

where Wik
= wik

I . (Do not confuse the notation for the
ri’s position pi in (1) with that for the error covariance Pi.)
Then, when ri detects the position of rj with respect to ri’s
local coordinate system, the measurement zi,jk

is given by

zi,jk
= pi,jk

− pi,ik
+ vi,jk

(4)

where vi,jk
is zero-mean white Gaussian random process.

The estimated measurement would be ẑi,jk
= p̂i,jk

−
p̂i,ik

. Since pi,ik
and p̂i,ik

becomes zero, the error for the
measurement z̃i,jk

is given by

z̃i,jk
= zi,jk

− ẑi,jk
= p̃i,jk

+ vi,jk
(5)

where p̃i,jk
= pi,jk

− p̂i,jk
. Therefore, if ri measures the

position of other robots, the measurement error equations
can be written as

z̃ik
= Hik

p̃ik
+ vik

(6)

where vik
is the measurement random noise vik

∼
N(0,Mik

) and Hik
is the measurement relation function

matrix given by an identity matrix. The innovation covari-
ance by the measurement sensor error is given by

Sik
= Hik

Pik|k−1
HT

i k
+ Mik

(7)

where Mik
is the covariance of the relative state measure-

ments expressed as mik
I . Thus, the filtered state estimate

and the error covariance are obtained as follows:

Kik+1
= Pik+1|k

HT
i k+1

S−1

i k+1

p̂ik+1|k+1
= p̂ik+1|k

+ Kik+1
zik+1

Pik+1|k+1
= Pik+1|k

− Kik+1
Sik+1

KT
i k+1

(8)

where Kik+1
, p̂ik+1|k+1

, and Pik+1|k+1
are an optimal

Kalman gain, an updated state estimate, and an updated
estimate covariance, respectively.

B. Notations and Problem Definitions

The distance between the robot ri’s position pi and the
robot rj’s position pj is denoted as dist(pi, pj). We define
a uniform interval du, the desired distance between each
robot in the configuration. ri detects the position {p1, p2, · · ·}
of other robots located within its sensing boundary SB,

tip

ctp

ip

id

rd

1sp

2sp

iα

(a) range and bearing

ud

1sp

2sp

ri dd =

ip
°=60iα

(b) equilateral triangle

Fig. 1. Two control parameters in local interaction

yielding a set of the positions Oi with respect to its local
coordinates. Next, ri can select two robots rs1 and rs2 within
ri’s SB that we call the neighbors of ri and denote their
positions, {ps1, ps2}, as Ni. Given pi and Ni, the Triangular
Configuration, denoted by Ti, is defined as a set of three
distinct positions {pi, ps1, ps2} =Ti, where the internal angle
∠ps1pips2 of ri is denoted by αi. Now we define the
Equilateral Configuration, denote by Ei, as a configuration
that all the distance permutations of Ti are equal to du. We
need a measure indicating to which degree Ti is configured
into Ei. Given Ti, we can express the distance permutations
with respect to ri as the following matrix Di.

Di =

{
(dist(pm, pn) − du)2 if m �= n

0 otherwise
(9)

where {{pm, pn}| pm, pn ∈ Ti = {pi, ps1, ps2}}. We will
denote (dist(pm, pn) − du)2) for simplicity as (dk − du)2.
Using Ti and Ei, we can formally define the local
interaction as follows: Given Ti, Local Interaction is to
have ri maintain du with Ni at each time instant toward
forming Ei. Based on the local interaction, we formally
address the ADAPTIVE SELF-CONFIGURATION PROBLEM.

Given a swarm of robots with arbitrarily distinct positions
in a 2-D plane, how to enable the robots to configure
themselves into Ei while conforming to the plane border.

III. LOCAL INTERACTION

The local interaction algorithm enables three neighboring
robots to generate an equilateral triangle of side length du,
consisting of the function ϕinteraction whose arguments are
pi and Ni at each time. Consider ri and its two neighbors rs1

and rs2 located within ri’s SB. As shown in Fig. 1-(a), three
robots are configured into Ti whose vertices are pi, ps1, and
ps2, respectively. First, ri finds the centroid pct of the triangle
�pips1ps2 with respect to its local coordinates, and measures
the angle φ between the line connecting two neighbors and
ri’s horizontal axis. Using pct and φ, ri calculates the target
point pti = (pti,x, pti,y) by the following equations

(pct,x + du cos(φ+π/2)/
√

3, pct,x + du sin(φ+π/2)/
√

3).

ri attempts to form an isosceles triangle with its two neigh-
bors at each time. By repeatedly doing this, three robots
configure into Ei as illustrated in Fig. 1-(b).
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(a) detecting the border (b) approaching the border

Fig. 2. Robots on the boundary of the swarm interact with the border

Now let’s consider the circumscribed circle of an equilat-
eral triangle whose center is pct of �pips1ps2 and radius is
dr. The position of robots can be modeled by the distance
from pct and the internal angle (see Fig. 1-(b)). The distance
is controlled by the following equation

ḋi(t) = −a(di(t) − dr), (10)

where a is a positive constant and dr represents du/
√

3.
Indeed, the solution of (10) is di(t) = |di(0)|e−at + dr that
converges exponentially to dr as t approaches infinity. Next,
the internal angle is controlled by the following equation

α̇i(t) = k(βi(t) + γi(t) − 2αi(t)), (11)

where k is a positive constant. Because the total internal
angle of a triangle is 180◦, (11) can be re-written as

α̇i(t) = k′(60◦ − αi(t)), (12)

where k′ is 3k. The solution of (12) is αi(t) = |αi(0)|e−k′t+
60◦ that converges exponentially to 60◦ as t approaches
infinity.

Note that (10) and (12) imply that three robots eventually
form an equilateral triangle of side length du. In order to
show the convergence, we will take advantage of Lyapunov
stability theory [15]. Consider the following scalar function

fl,i =
1

2
(di − dr)

2 +
1

2
(60◦ − αi)

2 (13)

that is always positive definite except di �= dr and αi �= 60.
The derivative of the scalar function is given by

ḟl,i = −(di − dr)
2 − (60◦ − αi)

2, (14)

which is obtained using (10) and (12). Eq. (14) is negative
definite. The scalar function fl,i is radially unbounded since
it tends to infinity as ‖ x ‖→ ∞. Therefore, the equilibrium
state is asymptotically stable, implying that ri reaches a
vertex of Ei.

IV. ADAPTIVE SELF-CONFIGURATION

Adaptive self-configuration is decomposed into self-
configuration and uniform conformation, each of which is
solved based on the local interaction. If detecting the plane
border within its SB as illustrated in Fig. 2-(a), ri defines a
point pe projected from pi onto the surface with the minimum
distance de and then computes the tangent e′(t) to the surface

( )

( )riri

A

C

B
E

D

2sr 2sr

1sr 1sr

(a)

riri

A

C

B

E

D

2sr 2sr

( )

( )

1sr 1sr

(b)

Fig. 3. Dynamically changing neighbors (a) ri moves toward pti, (b) ri

selects new neighbors according to the minimum perimeter condition)

at pe. (For convenience, le will be used instead of e′(t).) It
is obvious that le is perpendicular to the vector −−→pipe, termed
the surface direction. Let A(le) denote the area between the
border and the line passing through pi and parallel to le
within SB. In order to determine whether ri needs to interact
with the surface, ri checks if no neighbors exist in A(le)

or if de ≤
√

3du

2
. If the condition is satisfied, ri executes

the uniform conformation algorithm, otherwise, executes the
self-configuration algorithm.

A. Self-configuration

Self-configuration is related to deploying a swarm of
robots into equilateral triangle lattices based on the local
interaction. In order to form a triangle, ri selects the first
neighbor rs1 located the shortest distance from itself. The
second neighbor rs2 is selected such that the total distance
from ps1 to pi passing through ps2 is minimized. Then, ri

forms Ti with Ni, and computes the target point pti by
ϕinteraction. Self-configuration enables a robot swarm to
have a multitude of equilateral triangular lattices, denoted by∑n

i=1
Ei. Specifically, ri dynamically changes the neighbors

within SB at each time, enabling the robots to configure
themselves without having adjacent triangles partly overlap-
ping each other (see Fig. 3).

Now we examine the effect of changing neighbors in
configuring Ei. We use Lyapunov’s theory with a scalar
function given by

fsc,i =
∑
Ti

(dk − du)2 + fl,i (15)

where fl,i is given by (13) and
∑

Ti
(dk − du)2 is defined

as the constant value associated with Ti at each time (see
(9)). Thus, from (13), the scalar function of (15) is always
positive definite except di �= dr and αi �= 60. (If Ti is equal
to Ei, it is easily seen that

∑
Ti

(dk−du)2 reaches 0, resulted
from dr = du/

√
3.) The derivative of the scalar function is

given by

ḟsc,i = ḟl,i = −(di − dr)
2 − (60◦ − αi)

2. (16)

Eq. (16) is negative definite. Finally, the scalar function fsc,i

is radially unbounded since it tends to infinity as ‖ x ‖→
∞. Therefore, the equilibrium state is asymptotically stable,
implying that ri reaches a vertex of Ei from an arbitrary Ti.
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Fig. 4. Illustration of the self-reparation algorithm

Now we show the convergence property for a swarm of n
robots. The n-order scalar function Fsc is defined as

Fsc =

n∑
i=1

fsc,i =

n∑
i=1

∑
Ti

(dk − du)2 +

n∑
i=1

fl,i. (17)

It is straightforward to verify that Fsc is positive definite
and Ḟsc is negative definite. Fsc is radially unbounded since
it tends to infinity as t approaches infinity. Consequently, a
swarm of n robots converges into Ei for their Ni.

B. Uniform Conformation

Now we describe how to enable a swarm of robots to
conform to the plane border. This means that the positions
on the border (or the virtual static robots) need to be
incorporated into Ti. If the border is detected by ri, it defines
rs1 located at the shortest distance and check the conditions
whether no other neighbors exist in A(le) or de ≤

√
3du

2
. If

the condition is satisfied, ri computes the midpoint pm of
pips1 that is projected onto le and defined as pv (see Fig.
2-(b)). Now pv is considered as ps2, and Ni is defined as
{ps1, pv}. It is readily evident that ri can compute pti by
ϕinteraction.

Note that pv is a virtual, static point. Furthermore, it is
difficult to identify the border since each robot has their SB.
Therefore, it is almost impossible for them to exactly form
Ei. To take this effect into account, we introduce another
measure for Ti given by

Di,e =

[
0 (dist(pi, ps1) − du)2

(dist(pi, ps2) − du)2 0

]
.

(18)
Di,e is applied only when any robots located in close to the
plane border interact with pv .

V. SELF-REPARATION

Robots attempt to reach a uniform spatial density, but
probably holes remain in a converged distribution. This is
because each robot determines their direction of movement
based on the current position of neighbors. To repair the
holes, ri changes its neighbors. Let Pu denote the set of
robot positions located within the range of du. ri defines
its heading 
h with respect to the local coordinates. Let
ang(
m,
n) denote the angle between two arbitrary vectors

m and 
n. As shown in Fig. 4-(a), ri selects the reference
neighbor pref in Pu such that the value of ang(
h,−−−→pipref )

Fig. 5. ri and rj form
∑

6

m=1
(Ei)m and

∑
2

m=1
(Ej)m, respectively.

is minimized. ri then checks if any neighbor exists in the
area obtained by rotating −−−→pipref 60 degrees clockwise. If
there exists one, ri checks the next neighbor by sweeping
another 60 degree clockwise. ri continues to check until
it finds a hole, then the last neighbor is defined as pln.
Similarly, ri attempts to find neighbors by rotating −−−→pipref

counterclockwise and locate the last neighbor prn. The
reparation area A(r) is defined as the area between −−−→piprn and
−−−→pipln in SB, where no element of Pu exists. As illustrated
in Fig. 4-(b), ri selects the first neighbor located the shortest
distance away from pi in A(r) as ps1. The second position
is defined such that the total distance from ps1 to pi can be
minimized through either prn or pln. As a result, pti can be
determined by ϕinteraction.

Like the surface tension of liquids caused by intermolecu-
lar forces, as illustrated in Fig. 5, the self-reparation will have
each robot attempt to reach the maximum possible number
of desired configurations Ei within SB given by

max[

s∑
m=1

(Ei)m] (19)

where s is greater than or equal to 1 and less than or equal
to 6, as the desired configuration is a hexagon composed
of 6 equilateral triangle lattices. Therefore, a collective
configuration reaches a swarm of robots with max[

∑
(Ei)]

while filling up holes.
To obtain max[

∑s

m=1
(Ei)m], our algorithm changes the

neighbors according to the condition whether ri forms Ei at
any time. Therefore, we can modify (15) as follows:

fsr,i =

{ ∑c

m=1
(fl,i)m + fsc,i if Ti = Ei

fsc,i otherwise
(20)

where fsc,i is given in (15) and c is less than max [s]. Using
(20), (19) can be re-written as

fsr,i = min[

s∑
m=1

(fl,i)m]. (21)

Here, (21) enables ri to reach the minimum energy level by
maximizing the number of Ei.

Next, let the internal energy, increasing or decreasing
during self-configuration, be denoted as qi given by

qi =
c∑

m=1

(fl,i)m. (22)
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When Ti is equal to Ei, qi forces ri to locally interact toward
forming another equilateral triangular lattice by changing
neighbors. We assume that qi starts with any nonnegative
value qi(0) and evolves according to the following equation:

q̇i =
c∑

m=1

(ḟl,i)m. (23)

Note that qi forces ri to minimize fsc,i. If qi decreases, we
can predict that ri moves toward min[

∑s

m=1
(fl,i)m]. By

doing this repeatedly, the holes will get eliminated.
To show that each robot converges into max[

∑s

m=1
(Ei)m]

while increasing the number of neighboring robots after a
finite number of activation steps, we use Lyapunov’s theory
and show the convergence of ri using (20) and (22), with a
scalar function defined as:

fsr,i = fsc,i + qi. (24)

Recall that qi(0) is initialized to a nonnegative value and
evolves according to (23). Moreover, qi is defined in such a
way that it increases when fl,i lacks. Whenever Ti = Ei, qi

is set to qi(0). On the other hand, fsc,i is positive definite
by (15). Since fsc,i > 0 and qi > 0, it is clear that fsr,i > 0.
Next, differentiating fsr,i gives

ḟsr,i = ḟsc,i + q̇i. (25)

(ḟsr,i = ḟsc,i +
∑c

m=1
(ḟl,i)m = ḟl,i +

∑c

m=1
(ḟl,i)m)

which can be simplified to

ḟsr,i =

s∑
m=1

(ḟl,i)m. (26)

It is easy to see that ḟsr,i is negative definite. Moreover,
the scalar function fsr,i is radially unbounded since it tends
to infinity as ‖ x ‖→ ∞ even though qi remains a positive
constant. Therefore, based on Lyapunov’s theory, the position
of ri converges into

∑s

m=1
(Ei)m.

Now we show the convergence property for a swarm of n
robots. The n-order scalar function Fsr is defined as

Fsr =

n∑
i=1

fsr,i =

n∑
i=1

fsc,i +

n∑
i=1

qi. (27)

It is straightforward to verify that Fsc is positive definite.
Next, differentiating Fsc gives

Ḟsr =

n∑
i=1

ḟsc,i +

n∑
i=1

q̇i. (28)

Ḟsr is negative definite and radially unbounded since it tends
to infinity as t approaches infinity. Consequently, a swarm
of n robots converges into

∑n

i=1
(max[

∑s

m=1
(Ei)m]).

VI. SIMULATION RESULTS

We performed simulations to investigate the convergence
and robustness properties of the proposed algorithm. The
standard deviation of the error in the sonar readings is as-
sumed to be 10%. Our algorithm terminates when all robots
converge into the distance du ± 1% with their neighbors.

initial

Fig. 6. Dispersion of 100 robots over a flat surface

initial

Fig. 7. Dispersion of 120 robots over a curved surface

initial

Fig. 8. Dispersion of 100 robots over a curved surface with an obstacle

Fig. 6 shows that 100 robots configure themselves into a
uniform density pattern over a flat surface. It is observed that
the robots could converge into Ei conforming to the surface.
Fig. 7 demonstrates that 120 robots configured themselves
into a curved surface. Most of the robots that do not detect
the surface conformed to it through the local interaction.
Fig. 8 presents a more complex geographic condition with
a circular obstacle. It is also observed that the robots could
converge into Ei, conforming to the surfaces of the obstacle
as well as the border.

Fig. 9 shows the mean values of distance between 120
robots and their Ni in Fig. 7 according to the iteration
step. Here, the black bold line, the blue line, and the red
dashed line indicate the case of no sensor error, the Kalman
filtered sensor readings, and non-filtered sensor readings,
respectively. As can be seen from the figure, each robot could
converge into Ei in spite of measurement errors.

Finally, robustness is verified against robot failures under
the same surface condition as Fig. 7. Five robots unexpect-
edly failed in Fig. 10-(a), and the same number of holes
appeared in the deployment. Each robot checks the existence
of holes within SB. If there are holes around it, the algorithm
allows each of the robots change their position to fill the
holes. Fig. 10-(b) presents the results of redeployment with
95 robots. In addition, the lost robots were replaced by
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(a) distance variation between ri and rs1

(b) distance variation between ri and rs2

Fig. 9. Distance variations between ri and Ni during self-configuration
(’A’-line: no sensor error, ’B’-line: non-filtered, ’C’-line: Kalman filtered)

(a) loss of 5 robots (b) redeployment with 95 robots

(c) replaced 5 robots (d) redeployment with 100 robots

Fig. 10. Robustness against loss of 5 robots over a curved surface

the same number of new robots in Fig. 10-(c). Fig. 10-(d)
shows the results of redeployment with 100 robots. From the
results, the adaptive self-configuration algorithm has proven
effective in improving the robustness of uniform coverage
over a designated area.

VII. CONCLUSION

The adaptive self-configuration problem was addressed to
disperse a swarm of robots in a geographically constrained
plane. From the practical point of view, we did not use

robot identifiers, common coordinates, global orientation,
and direct communication. Robots computed their position
without requiring memories of past actions or states, helping
cope with transient errors. Also, sensors were subject to
strict range and accuracy limitations. Under such conditions,
we proposed distributed algorithms that enable robots to
configure themselves into triangular lattices adapting to the
environment. Among all the possible types of regular poly-
gons, the equilateral triangle lattice can reduce the computa-
tional burden and is highly scalable, and less influenced by
neighboring robots. The proposed local interaction, where
robots were allowed to interact with only two dynamically
selected neighbors, is computationally efficient, as they uti-
lize only position information of other robots. By collecting
such local behavior of each robot, a uniformly spaced swarm
of robots was organized to fill in the environment. Moreover,
the proposed algorithm improved the robustness of uniform
coverage control over a designated area against robot failures.
The convergence of the algorithm was proven mathemati-
cally, and also verified through extensive simulations.
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