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Abstract— Humans or animals exhibit natural adaptive 
motions against unexpected disturbances or environment 
changes. In this paper, we focus on periodic, rhythmic arm 
motions that can be achieved by using a controller based on 
neural oscillators. The challenge of this work is to determine 
appropriate parameters of neural oscillators coupled to a robot 
arm, accomplishing a given task as well as self-sustaining 
natural rhythms. For this, an enhanced simulated annealing 
(SA) algorithm is developed. This work also demonstrates how 
to technically implement the proposed control scheme to a real 
robot. Exploiting the entrainment property of neural oscillators 
coupled to the joints of the arm, we verify that the arm traces a 
trajectory in such a way that the total energy consumption is 
minimized, responding to external disturbances.    

I. INTRODUCTION 
TUDIES on human-like movement of robot arms have been 
paid increasing attention, since humans are able to 

adaptively behave against unknown environment conditions. 
In particular, human rhythmic movements such as turning a 
steering wheel, rotating a crank, etc. are self-organized 
through the interaction of the musculoskeletal system and 
neural oscillators. In the musculoskeletal system, limb 
segments connected to each other with tendons are activated 
like a mechanical spring by neural signals. Thus neural 
oscillators may offer a reliable and cost efficient solution for 
rhythmic movement of robot arms. Incorporating a network 
of neural oscillators, we expect to realize human nervous and 
musculoskeletal systems in various types of robots.  

The mathematical description of a neural oscillator was 
presented in Matsuoka’s works [1]. He proved that neurons 
generate the rhythmic patterned output and analyzed the 
conditions necessary for the steady state oscillations. He also 
investigated the mutual inhibition networks to control the 
frequency and pattern [2], but did not include the effect of the 
feedback on the neural oscillator performance. Employing 
Matsuoka’s neural oscillator model, Taga et al. investigated 
the sensory signal from the joint angles of a biped robot as 
feedback signals [3], [4], showing that neural oscillators 
made the robot robust to the perturbation through entrainment. 
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This approach was applied later to various locomotion 
systems [5], [6], [7]. 

Besides the examples of locomotion, various efforts have 
been made to strengthen the capability of robots from 
biological inspiration. Williamson created a humanoid arm 
motion based on postural primitives. The spring-like joint 
actuators allowed the arm to safely deal with unexpected 
collisions sustaining cyclic motions [8]. He also proposed the 
neuro-mechanical system that was coupled with the neural 
oscillator for controlling rhythmic arm motions [9]. Arsenio 
[10] suggested the multiple-input describing function 
technique to control multivariable systems connected to 
multiple neural oscillators.  

Even though natural adaptive motions were accomplished 
by the coupling between the arm joints and neural oscillators, 
the correctness of the desired motion was not guaranteed. 
Specifically, robot arms are required to exhibit complex 
behaviors or to trace a trajectory for certain type of tasks, 
where the substantial difficulty of parameter tuning emerges. 
The authors have presented encouraging simulation results in 
controlling the arm trajectory incorporating neural oscillators 
[11], [12]. This work addresses how to control the trajectory 
of a real robot arm whose joints are coupled to neural 
oscillators for a desired task. For achieving this, real-time 
feedback from sensory information is implemented to exploit 
the entrainment feature of neural oscillators against unknown 
disturbances.  

In the following section, a neural controller is briefly 
explained. An optimization procedure is described in Section 
III to design the parameters of the neural oscillator for a 
desired task. Details of dynamic responses and simulation and 
experimental verification of the proposed method are 
discussed in Section IV and V, respectively. Finally, 
conclusions are drawn in Section VI. 

II. RHYTHMIC MOVEMENT USING A NEURAL OSCILLATOR 
We use Matsuoka’s neural oscillator consisting of two 

simulated neurons arranged in mutual inhibition as shown in 
Fig. 1. If gains are properly tuned, the system exhibits limit 
cycle behaviors. Now we propose the control method for 
dynamic systems that closely interacts with the environment 
exploiting the natural dynamics of Matsuoka’s oscillator.  
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(1) 
 
 
 
where xe(f)i is the inner state of the i-th neuron which 
represents the firing rate; ve(f)i represents the degree of the 
adaptation, modulated by the adaptation constant b , or 
self-inhibition effect of the i-th neuron; the output of each 
neuron ye(f)i is taken as the positive part of xi, and the output of 
the whole oscillator as Y(out)i; wij (0 for i≠j and 1 for i=j) is the 
weight of inhibitory synaptic connection from the j-th neuron 
to the i-th neuron, and wei, wfi are also weights from the 
extensor neuron to the flexor neuron, respectively; wijyi 
represents the total input from the neurons inside the network; 
the input is arranged to excite one neuron and inhibit the other, 
by applying the positive part to one neuron and the negative 
part to the other; Tr and Ta are time constants of the inner state 
and the adaptation effect of the i-th neuron, respectively; si is 
the external input, and gi indicates the sensory input from the 
coupled system which is scaled by the gain ki. 

Fig. 2 shows two types of mechanical systems connected to 
the neural oscillator. The desired torque signal to the i-th joint 
can be given by 

 

,)( iiiviii bk θθθτ −−=                                                           (2) 
 

where ki is the stiffness of the joint, bi the damping coefficient, 
θi the joint angle, and θvi is the output of the neural oscillator 
that produces rhythmic commands of the i-th joint. The neural 
oscillator follows the sensory signal from the joints, thus the 
output of the neural oscillator may change corresponding to 
the sensory input. This is what is called “entrainment” that  
can be considered as the tracking of sensory feedback signals 
so that the mechanical system can exhibit adaptive behavior 
interacting with the environment.  
 

 

III. OPTIMIZATION OF NEURAL OSCILLATOR PARAMETERS 
The neural oscillator is a non-linear system, thus it is 

generally difficult to analyze the dynamic system when the 
oscillator is connected to it. Therefore a graphical approach 
known as the describing function analysis has been proposed 
earlier [13]. The main idea is to plot the system response in 
the complex plane and find the intersection points between 
two Nyquist plots of the dynamic system and the neural 
oscillator. The intersection points indicate limit cycle 
solutions. However, even if a rhythmic motion of the dynamic 
system is generated by the neural oscillator, it is usually 
difficult to obtain the desired motion required by the task.  
This is because many oscillator parameters need to be tuned, 
and different responses occur according to the inter-oscillator 
network. Hence, we describe below how to determine the 
parameters of the neural oscillator using the Metropolis 
method [11], [12] based on simulated annealing (SA) [14], 
which guarantees convergence to the global extremum [15].   

For the process of minimizing some cost function E, X=[Tr, 
Ta, w, s, ···]T is selected as the parameters of the neural 
oscillator to be optimized; the initial temperature T0 is the 
starting parameter; the learning rate ν is the step size for X. 
Specifically, the parameters are replaced by a random number 
N in the range [-1,1] given by; 

 

(3) 
 

If the change in the cost function ∆E is less than zero, the new 
state Xi is accepted and stored at the i-th iteration. Otherwise, 
another state is drawn with the transition probability, 
Probi(E) given by  

 
(4) 

 
where γ is a random value uniformly distributed between 0 
and 1. The temperature cooling schedule is ci=k·ci-1 (k is the 
Boltzmann constant or effective annealing gain) and Z(T) is a 
temperature-dependant normalization factor.  If ∆E is 
positive and Probi(E) is less than γ or equal to zero, the new 
state Xi is rejected. Here the lower cost function value and 
large difference of ∆E indicate that Xi is the better solution. If 
temperature approaches zero, the optimization process 
terminates. 

Even though SA has several potential advantages over 

Fig. 1.  Schematic diagram of Matsuoka Neural Oscillator 

 
Fig. 2.  Mechanical system coupled to the neural oscillator
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conventional algorithms, it may be faced with a crucial 
problem. When searching for optimal parameters, it is not 
known whether the desired task is performed correctly with 
the selected parameters or not. We therefore added the task 
completion judgment and cost function comparison steps as 
shown in Fig. 3 by thick-lined boxes. If the desired task fails, 
the algorithm reloads previously stored parameters and 
selects the parameters that give the lowest cost function value. 
Then the optimization process is restarted with the selected 
parameters until it finds the parameters of the lowest cost 
function that allow the task to be done correctly. 

IV. CRANK ROTATION OF TWO LINK PLANAR ARM 
To validate the proposed control scheme, we evaluate the 

crank rotation task with a two-link planar arm whose joints 
are coupled to neural oscillators as shown in Fig. 4. The 
inter-oscillator network is not established, because the initial 
condition of the same sign will be equivalent to the excitatory 
connection between two oscillators. We focus on the 
entrainment property of the arm. 

The crank rotation is modeled by generating kinematic 
constraints and an appropriate end-effector force. The crank 
has the moment of inertia I and the viscous friction at the joint 
connecting the crank and the base. If the arm end-effector 
position is defined as (x, y) in a Cartesian coordinate system 
whose origin is at the center of the crank denoted as (x0, y0), 
the coordinates x and y can be expressed as 
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where J is the Jacobian matrix of [x, y]T. φ and θi are the crank 
angle and the i-th joint angle, respectively. li is the length of 
the i-th link. c1, c12, s1 and s12 denote cos θ1, cos(θ1+ θ2), sin θ1 
and sin(θ1+ θ2), respectively. r is the radius of the crank. 
Eq. (5) can be rearranged as follows: 
 

),)()((),()( 2φφφφθθθθθ vurJJ −=+                                      (6) 
 

where u is the tangential unit vector and v is the normal unit 
vector at the outline of the crank as shown in Fig. 4, 
respectively. 

Now the dynamic equations of the crank and the arm are 
given in the following form. 
 

(7) 
(8) 
(9) 

 

where M is the inertia matrix, V is the Coriolis/centripetal 
vector, and G is the gravity vector, k and b denotes the joint 
stiffness and viscosity matrixes, respectively [16],  θv is the 
output of the neural oscillator (see Eq. (2)), F is the contact 
force vector interacting between the crank and the end-efector. 

By solving Eqs. (7) and (8) simultaneously using Eq. (6), F is 
obtained as 
 

1 2 1 1

1 1

{ ( ) ( ) ( ) ( ) ( ) }
{ ( ) ( ) ( ( )) ( , ) ( ( ) ( ))}

T TF J M J r I u u
J M V J r v CI u

θ θ θ φ φ

θ θ τ θ θ θ θ φ φ φ φ

− − −

− −

= +

⋅ − + + +
     (10) 

 

 

Fig. 3 Flowchart of the upgraded SA for task based parameter 
optimization. 
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Fig. 4. (a) Schematic robot arm model and (b) real robot arm coupled with 
the neural oscillator for experimental test  
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It is very hard to properly tune parameters of the neural 
oscillator for attaining the desired rotation task. Moreover, 
this dynamic model is tightly coupled to crank dynamics as 
described in Eq. (10). Thus, the proposed parameter tuning 
approach is divided into the following two steps: 

 1) Step 1: Find initial parameters of the neural oscillator 
corresponding to desired inputs of each joint using the cost 
function given by: 

 
 (10) 

 
subject to 
                i) 
                ii) 
 

where C=(Amax+Amin)/2, B=(Amax-Amin)/2; Ad is the desired 
amplitude of the neural oscillator for the rotation task, Amax 
and Amin are the maximum and minimum amplitude 
constraints, respectively; T and TG denote the desired and 
measured natural frequencies of the output generated by the 
neural oscillator, respectively. v is the performance gain. 

 2) Step 2: Using the initial parameters obtained by Step1, 
run the proposed SA algorithm as illustrated in Fig. 3. The 
cost function for the crank rotation includes the velocity of 
the rotation, torque, and consumed energy. 

 Implementing Step 1 and Step 2 in sequence, we are able 
to acquire the appropriate initial and tuned parameters as seen 
in Table II. Figure 5 (a) indicates a cooling state in terms of 
cooling schedule. Cooling or annealing gain K is set as 0.95. 
It can be observed in Fig. 5 (b) that the optimal process was 
well operated and a better solution at the lowest cost function 
was obtained iteratively. As expected, when the tuned 
parameters are employed to perform the given task, a stable 
motion could be accomplished as shown in Fig. 5. It is 
evident in Fig. 5 (c) that initial transient responses disappear 
due to the entrainment property of the neural oscillator. This 
property enables the arm to sustain the given task against 
changes in parameters of arm kinematics and dynamics as 
well as disturbances.  

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V. EXPERIMENTS WITH A REAL ROBOT ARM 
To validate the proposed control scheme described in 

Section IV, we employed a real robot arm with 6 degrees of 

TABLE II 
INITIAL AND TUNED PARAMETERS OF THE NEURAL OSCILLATOR WITH ROBOT 

ARM MODEL 
Initial parameters 
   Inhibitory weight (w)                 2.0 
   Time constant (Tr)                      0.25 
                          (Ta)                      0.5 
   Sensory gain (k)                         1 
   Tonic input (s)                           60 

Optimized parameters 
Inhibitory weight (w)          4.012 
Time constant (Tr)               1.601

                           (Ta)               3.210 
Sensory gain (k)                 10.010
Tonic input (s)                  57.358 

Robot Arm Model 
  Mass 1 (m1), Mass 2 (m2) 
  Inertia 1 (I1), Inertia 2 (I2) 
  Length 1 (l1), Length 2 (I2) 

 
2.347kg,        0.834kg 
0.0098kgm2,  0.0035kgm2 
0.224m,         0.225m 

maxmin AAA d ≤≤
BCAd ≤−

)0,1max( −
−

⋅+
−

=
B

CA
T

TT d

G

G νϕ

(d) 
Fig. 5. (a) Temperature transition for cooling schedule, (b) A transition of total 
cost function level, (c) The end-effector trajectory of two-link arm (d) The 
output of joint angle. The red dash line is the first joint angle and the second 
joint angle is drawn by the blue thin line 
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freedom (see Fig. 4 (b)) and constructed a real time control 
system. This arm controller runs at 200 Hz and is connected 
via IEEE 1394 for data transmission at 4 kHz. ATI industrial 
automation’s Mini40 sensor was fitted to the wrist joint of the 
arm to detect external disturbances. The optimized 
parameters in Table II were used for the neural oscillator.   

Fig. 6 shows the arm kinematics. Since the crank motion is 
generated in the horizontal plane, q1and q3 are set to 90°. The 
initial values of q5 and q6 are set to 0°, respectively. q2 and q4, 
corresponding to θ1 and θ2 in Fig. 4 (a), respectively, are 
controlled by the neural oscillators and the constraint force 
given in Eq. (10). The constraint force enables the end- 
effector to trace the outline of the (virtual) crank. Hence, the 
end-effector can draw the circles as shown in Fig. 7 (see the 
overlapping circles in the center part of the figure).  

Now, we will examine what happens in the arm motion if 
additive external disturbances exist. Arbitrary forces are 
applied to the end-effector at 15s, 28s, 44s, 57s, 73s and 89s 
sequentially as shown in Fig. 8. We first pushed the 
end-effector along the minus x direction. The force sensor 
value in the x and y direction are added to Eq. (10). Then, the 
joint angles change according to the direction of the applied 
force, which makes the neural oscillators entrain the joint 
angles as shown in Fig. 9. The solid line is the output of the 
neural oscillator connected to the first joint (q2) and the 
dashed line indicates that of the neural oscillator connected to 
the second one (q4). Hence a change in the output of the 
neural oscillator causes a change in the joint torque. Finally 
the joint angles are modified as shown in Fig. 10, where the 
bottom plot is the output of q2 and the top one is the output of 
q4. Fig. 11 shows the snap shots of the simulated crank 
motion by the robot arm, where we can observe that the 
end-effector traces the circle well, and adapts its motion when 
an external force is applied to it.  

Table III compares the power consumption of the robot 
arm performing the above task with different parameters of 
the neural oscillator. The parameters were drawn arbitrary 
among the ones that guarantee a successful completion of the 
task. If the optimized parameters (set D) were employed, the 
most energy-efficient motion was realized. 

 

 

 

 
 
 
 
 
 
 
 

TABLE III 
POWER CONSUMPTION ACCORDING TO THE SELECTED PARAMETER SET OF THE

NEURAL OSCILLATOR 
 Parameter set  

A 
Parameter set 

B 
Parameter set

C 
Parameter set
D (optimized)

Inhibitory 
weight (w) 

Time 
constant (Tr) 

(Ta) 
Sensory gain 

(k) 
Tonic 

input (s) 

 
2.0 
 
0.25 
0.5 
 
1.0 
 

60.0 

 
2.503 
 
0.896 
5.0 
 
1.241 
 

60.660 

 
4.012 
 
1.601 
3.210 
 

15.010 
 

57.358 

 
4.012 
 
1.601 
3.210 
 

10.010 
 

57.358 
Measured 

current [A] 1.871 0.794 0.591 0.572 

Power [W] 
Consumption 89.808 38.112 28.368 27.456 
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Fig. 7. The trajectory drawn by the end-effector of the arm

 
Fig. 6. Kinematic parameters of the robot arm 
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VI. CONCLUSION 
We have presented an example of human-like behavior of a 

planar robot arm whose joints were coupled to neural 
oscillators. In contrast to existing works that were only 
capable of rhythmic pattern generation, our approach allowed 
the robot arm to trace a trajectory correctly through 
entrainment. For achieving this, we proposed an optimization 

approach for obtaining the parameters of the neural oscillator 
modifying the simulated annealing method. Simulation and 
experimental results showed the effectiveness of the 
proposed approach. Moreover, it was demonstrated that the 
robot arm could adaptively behave responding to external 
disturbances keeping the shape of the trajectory unchanged. 
This approach will be extended to a more complex behavior 
toward the realization of biologically inspired robot control 
architectures.  
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Fig. 9. The output of the neural oscillator coupled to the joints of the arm

0 10 20 30 40 50 60 70 80 90 1000

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Time[s]

A
m

pl
itu

de
[r

ad
]

2q

4q

0 10 20 30 40 50 60 70 80 90 1000

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Time[s]

A
m

pl
itu

de
[r

ad
]

2q

4q

Fig. 10. The output of the first joint (q2) and the second joint (q4) 
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