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Abstract

We formulate semantic parsing as a parsing problem on
a synchronous context free grammar (SCFG) which is auto-
matically built on the corpus of natural language sentences
and the representation of semantic outputs. We then present
an online learning framework for estimating the synchro-
nous SCFG grammar. In addition, our online learning
methods for semantic parsing problems are also extended
to deal with the case, in which the semantic representation
could be represented under λ− calculus. Experimental re-
sults in the domain of semantic parsing show advantages in
comparison with previous works.

1 Introduction

Semantic parsing is the task of mapping a natural lan-
guage sentence into a complete, formal meaning represen-
tation. This task is an interesting problem in Natural Lan-
guage Processing (NLP) as it would very likely be part of
any interesting NLP applications [2]. For example, the ne-
cessity of semantic parsing for most NLP applications and
the ability to map natural language to a formal query or
command language, are critical for developing more user-
friendly interfaces.

There have been a significant amount of previous works
on learning to map sentences to semantic representa-
tion. Zelle and Mooney [22] and Tang [19] proposed the
empirically-based method using a corpus of natural lan-
guage(NL) sentences and their formal representation for
learning by inductive logic programming (ILP). The dis-
advantage of the ILP approach is that it is quite complex,
and slow to acquire parsers for mapping long sentences to

logical form such as the Robocup corpus.
To overcome this problem, [12] proposed a method that

used transformation rules estimating from the corpus of
NL and logical form, to transform NL sentences to logi-
cal forms. This method does not use any prior knowledge
about language, but its performance is still not high enough
for using in a real application.

In order to improve semantic parsing accuracy, Ge and
Mooney (2005) presented a statistical method [9] by merg-
ing syntactic and semantic information. However the dis-
tinction of this method in comparison with the other meth-
ods is that the training data is required to have Semantic
Augmented Parsing trees (SAPTs) annotation 1

Similar to Ge and Mooney (2005), the approach by
Nguyen, Shimazu, and Phan (2006) also uses the corpus of
SAPTs tree to estimate their semantic parsing model. This
approach uses structured SVMs [11] and learns ensemble
learning of semantic parsers.

Unlike those methods using SAPTs, the works proposed
by [23][24] map an NL sentence to its logical form using a
Combinatory Categorial Grammar (CCG) with structured
learning models. They have indicated that using online
structured prediction along with CCG could lead to the state
of the art results on several domains (i.e ATIS and Query
language). However, their methods still require NL-specific
templates for building CCG grammars. Kate and Mooney
(2006) proposes a method using string kernel function to
learn the transformation rules automatically from NL and
logical forms. Wong and Mooney (2006) proposed a syn-
chronous context free grammar frame work (SCFG)(Aho
and Ullman, 1972) to transform NL language sentence to
semantic representation. The system was extended to work

1SAPT is a syntactic tree with semantic augmented at each non-
terminal node.
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when the formal language are in λ-calculus (Wong and
Mooney, 2007) to deal with logical variables.

A major advantage of [21] over methods such as [9][15]
and [24] is that it does not require any prior knowledge of
the NL syntax for training. This is easily employed the
method to other languages than English.

Our goal is to construct a semantic parser which does not
require any prior knowledge for training, while ensure the
accurate of semantic parsing’s performance. In order to do
that we propose a method by combining the advantage of
online structured prediction and the use synchronous con-
text free grammar. We then formulate the process of trans-
forming an NL sentence into its logical form as a structured
prediction, which assigns a given NL sentence to a semantic
representation. To adapt the structured learning to the prob-
lem of semantic parsing domain, there are two fundamental
problems as follows.

• How to represent the structure of the semantic parsing
problem.

• How to select a suitable structured prediction algo-
rithm for that representation.

Even if we have a good structure for representing the in-
put and output of semantic parsing, we might have a prob-
lem in that we do not know exactly the correspondence of
each word in the input to each token in the semantic out-
put. This is very different from syntactic parsing and tag-
ging problems.

To solve the problem mentioned above, we formulate
the representation of semantic parsing problem using a
probabilistic synchronous context free grammar (SCFG) [1]
which is built on the grammar of natural language sentences
and the grammar for representation of semantic output. For
the semantic output using logical variable such as prolog
representation, we used the λ−calculus synchronous gram-
mar (λ−SCFG) which have introduced for semantic parsing
problem [21].

We then present a novel online learning algorithm to es-
timate the SCFG. The method can be used for any represen-
tation of NL input sentence and its semantic representation
in the the synchronous grammars. Our method has the ad-
vantage that it can fully learn SCFG and λ−SCFG from
the corpus of sentences and their semantic representation.
In addition, the use of large-margin methods which directly
reduce error by using a loss function are sensitive to the per-
formance of our semantic parsing’s systems. Our method is
different from [21] and [24] at this point.

The rest of this paper is organized as follows: Section
2 describes an online-large margin learning method for se-
mantic parsing using SCFG and λ−SCFG grammars. Sec-
tion 3 shows experimental results and Section 4 discusses
the advantage of our method and describes future work.

2 Online Large-Margin Structured Learning
for Semantic Parsing

This section will present an online structured prediction
method for a semantic parsing problem. First, we consider
the semantic parsing problem as structured classification us-
ing online large-margin learning. We then exploit it in the
structured domain of SCFG and λ-SCFG grammars.

2.1 Semantic Parsing as structured classi-
fication

Semantic parsing can be seen as a structured classifica-
tion task, in which the goal is to learn a mapping from an in-
put (NL) sentence x to a meaning representation (MR) y in a
meaning representation language (MRL) . Given this setup,
discriminative methods allow us to define a broad class of
features Φ that operate on (x, y).

However, the semantic parsing task in this framework
differs from traditional applications of discriminative struc-
tured classification such as POS tagging. Whereas in POS
tagging, there is a one-to-one correspondence between the
words x and the tags y, the correspondence between x and y
in semantic parsing is unknown. This is due to the fact that
one word in x might correspond to some lexical meaning in
y and vice visa.

To deal with this problem, we introduce a hidden corre-
spondence structure h and work with the feature over input
sentences and output semantic representation.

In this model the correspondence h is a synchronous
parse tree including the scores of various productions used
in the tree. Given features Φ and a corresponding set of pa-
rameters w, a standard classification rule f is to return the
highest scoring output sentence y, maximizing over corre-
spondences h:

f(x;w) = arg max
y,h

(wt · Φ(x, y, h))

The learning task is to induce a set of SCFG rules (or
λ−SCFG rules), which we call a lexicon, and a probabilistic
model for derivations. A lexicon defines the set of deriva-
tions that are possible, so the induction of a probabilistic
model first requires a lexicon. Therefore, the learning task
can be separated into two sub-tasks:

• The induction of a lexicon

• The induction of a probabilistic model

The learning task requires a training set, {xi, yi}, where
each training example < xi, yi > is an NL sentence, xi,
paired with its correct MR, yi. Lexical induction also re-
quires an unambiguous Context Free Grammar(CFG) of the
MRL.
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2.2 Lexical Induction

Given the training set S = (xi; yi), i = 1, 2, ..., N , the
main learning task is to construct a synchronous grammar
using the training set. Similar to [20][21], we would like to
use a word alignment to obtain a bilingual lexicon consist-
ing of NL substrings coupled with their translations in the
target MRL. Unlike [20, 21], (they used the word alignment
system, GIZA++ [18]), in this paper we used the Berkeley
Word Aligner [8] as it is claimed that more accurate than
GIZA++.

As formal languages, MRLs frequently contain many
purely syntactic tokens such as parentheses or brackets,
which are difficult to align with words in NL. In order to
solve this problem, the lexical induction is conducted as fol-
lows.

• Parse each semantic representation into a tree using the
MRL grammar.

• Extract a tree to a sequence of MRL productions.

• Using word alignment technique to obtain N to 1
alignment between the word within NL sentence and
a sequence of MRL productions using corresponds to
the top-down, left-most derivation of an MR.

• Generate a set synchronous rules using a bottom-up
strategy as follows. The process starts with produc-
tions whose right hand side (RHS) is all terminals.
Then those productions whose RHS contains non-
terminals, i.e. predicates with arguments.

For our experiment, we obtained K-best (10 best) output
of the word alignment, and these outputs are intergraded
into the estimating procedure for each rules within our syn-
chronous grammar model.

Once a lexicon is acquired, the next task is to learn a dis-
criminative model for the semantic parser. For the purpose
of easy understanding, we show an alignment example in
Figure 1.

2.3 Semantic Parsing using Synchronous
Grammars

Aho and Ullman (1972) originally developed a theory
of compilers in which syntax analysis and code generation
are combined into a single phase. According to this theory,
a semantic parser defines a translation, as a set of pairs of
strings in which each pair is an NL sentence coupled with its
MR. To finitely specify a potentially infinite translation, we
use a synchronous context-free grammar (SCFG) for gen-
erating the pairs in a translation. Each SCFG rule consists
of a single non-terminal on the left-hand side (LHS). The
right-hand side (RHS) of an SCFG rule is a pair of strings,

Figure 1. Alignment between NL sentence and its MR.
Partial parse trees for the CLANG statement and its English
gloss

Figure 2. Synchronous rules are extracted using the top-
down and left-most strategy. Given the alignment in Figure
1, we can extract synchronous rules.

< α, β > , where the non-terminals in β are a permutation
of the non-terminals in α. Figure 1 shows some rules for
generating the parse trees.

Each production rule X →< α, β > is the combination
of a semantic rule X → α and a production of an MRL
grammar X → β. Following their terminology, we call
the string α a pattern, and the string β a template. Non-
terminals are indexed to show their association between a
pattern and a template. Each step of a derivation involves
the rewriting of a pair of associated non-terminals in both
the NL and MRL streams.

The conventional SCFG works well for target MRLs that
are free of logical variables such as CLANG (Wong and
Mooney, 2006), however it cannot easily handle various
kinds of logical forms used in computational semantics,
such as predicate logic [21]. Wong and Mooney (2007)
claimed that WASP lacks a principled mechanism to han-
dle logical variables. In order copy with the problem, they
have extended the WASP algorithm by adding a variable-
binding mechanism based on λ−calculus. The details of
using λ−SCFG are sketched in [21]. The formulation of
λ−SCFG is different from SCFG is that each rule in the
grammar has a form

137137137
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X →< α, λx1...λxk.β > (1)

where α is an NL phrase and β is the MR translation of α.
The variable-binding operator λ binds occurrences of the
logical variables x1, .., xk in α, which makes x1...xk in β
a λ-function of arity k. The interesting point of using λ-
SCFG grammar is that when using it to represent outputs of
parsing NL sentences, we have several constraints to check
the correctness of an output.

Figure 3. Parse trees for NL sentence in Query language
using Lambda-SCFG rules.

Figure 3 showed an example of using λ-SCFG grammar
to parse the NL sentence in query language.

2.4 Online Large-Margin structured
Learning

This section introduce an online-large margin learning
for semantic parsing. It is an extended version of the
passive-aggressive learning (PA) [4] to structure prediction
using synchronous grammar representation. We also show
that Perceptron learning [5] and MIRA learning [14] could
be used in our framework in a straightforward manner.

We introduce a hidden correspondence structure h and
work with the feature over NL sentences and semantic rep-
resentation. Here, in this model the correspondence h is a
synchronous parse tree including the scores of various pro-
ductions used in the tree. We modify the PA algorithm for
the problem of structured prediction by learning a discrim-
inant function that maps an input sentence x to a semantic
output y with a hidden parameter h. In addition, we will
address the problem of how PA learning algorithm can esti-
mate the weight wi associated with a feature fi in the train-
ing data.

Assume that we are given a set of sentences
xi and their semantic representation yi where i =
1, ..., N . Let the feature mapping between a sentence
x and a semantic representation y be: Φ(x, y, h) =
Φ1(x, y, h),Φ2(x, y, h), ...,Φd(x, y, h) where each feature
mapping Φj maps (x, y, h) to a real value. For example
Φ1(x, y, h) is the number of a synchronous rules for map-
ping x to y. We assume that each feature Φ(x, y, h) is asso-
ciated with a weight value w. The goal of PA learning for
semantic parsing is to obtain a parameter w that minimizes
the hinge-loss function and the margin of learning data.

Input: S = (xi; yi), i = 1, 2, ..., N in which xi is the1

sentence and yi is a semantic representation
Alignment information and a set of SCFG (or2

λ-SCFG) rules
Output: the PA learning model3

Initialize: w1 = (0, 0, ..., 0)4

for t=1, 2... T do5

for i=1, 2... N do6

Receive a sentence and its semantic7

representation xi, yi

Predict8

hi = arg maxh(wt · Φ(xi, yi, h))
y∗

i , h∗
i = arg maxy,h(wt · Φ(xi, y, h))

Set: lt = wt · Φ(xi, y
∗
i , h∗

i ) − wt ·9

Φ(xi, yi, hi) +
√

ρ(yi, y∗
i )

Set : τt = lt
||Φ(xi,y∗

i
,h∗

i
)−Φ(xi,yi,hi)||210

Update:11

wt+1 = wt + τt(Φ(xi, yi, hi) − Φ(xi, y
∗
i , h∗

i ))
end12

v = v + wt+113

end14

w = v
T15

return w16

Algorithm 1: The Passive-Aggressive algorithm for
Semantic Parsing.

Algorithm 1 shows the PA learning for semantic pars-
ing. It shows (line 8) the prediction methods for computing
argmax as well as an update formulations in line 11. Line
9 shows p(yi, y

∗
i ) is a real-valued loss for the tree y∗

i rela-
tive to the correct tree yi. This loss function is similar to
one-zero loss function by computing the difference of each
node in yt in comparison with a corresponding node in y.
An auxiliary weight vector v is maintained that accumulates
the values of w after each iteration, and the returned weight
vector is the average of all the weight vectors throughout
training to help reduce overfitting [5].

Like the method for statistical machine translation de-
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scribed in [17], the significant difference for our semantic
parsing problem is that for a given example (the pair of NL
sentence and its logical form) we might have some different
ways to induce an NL sentence to a logical form. In super-
vised training, there is only one to one mapping between
the input and the output. Therefore the updating process in
the online learning mechanism is simpler than our consid-
eration here. Algorithm 1 shows we need to determine the
correspondence hi for each update step. This is easy for
supervised learning since we can obtain it from the training
data. In this case, we obtain hi by finding the correspon-
dence that gave the induction from xi to yi with the highest
score.

hi = arg maxh(wt · Φ(xi, yi, h))
As mentioned above, the difference of PA learning in

comparison with Perceptron learning are an update proce-
dure. For Perceptron learning, the update score sketched in
Algorithm 1 is replaced by using the formulation as below.

Update : wt+1 = wt + (Φ(xi, yi, hi) − Φ(xi, y
∗
i , h∗

i ))

So, we do not need to compute the τt in the Perceptron
learning. For the MIRA, the line from 8 to line 10 are re-
placed by solving the optimization as below.

min ‖wt+1 − wt‖
s.t.wt+1 ◦ Φ(xi, yi, hi) − wt+1 ◦ Φ(xi, y

∗
i , h∗

i )
≥ ρ(yi, y

∗
i )

However, to solve the optimization we used an optimiza-
tion procedure, namely Hidreth’s algorithm [7]. Generaly
speaking, the behavior of PA algorithm is similar to the
MIRA algorithm, which is based on the online mechanism
of Perceptron learning, and maximizes the margin of the
training data. Each online update of MIRA requires solving
a complex optimization problem, but each update of PA has
a simple closed-form expression, and is thus much faster
and easier to implement.

The main drawback of the Perceptron-style algorithm is
that it uses a simple update function to approximate the
global optimization (i.e attaining the maximize margin of
the training data). So, it may be difficult to obtain high accu-
racy in dealing with hard learning data. The structured sup-
port vector machine [11] and the maximize margin model
[3] can gain a maximize margin value for a given training
data by solving an optimization problem (i.e quadratic pro-
gramming). It is obvious that using such an optimization
algorithm requires much computational time. In contrast to
the previous method, this paper presents an online algorithm
for semantic parsing in which we can attain the maximize
margin of the training data without using an optimization
technique. It is thus much easier to implement.

2.5 Features

In this part, we would like to present the features we used
in our online learning framework. We describe the way to
represent Φ(x, y, h) in the feature space. The following set
of features are carefully selected from our online models.

• The first set of features is simply using a set of rules
generated by using the synchronous grammar. In ad-
dition, similar to [20] for each word w within NL sen-
tence we used a feature function that returns the num-
ber of times w is generated from word gaps. Genera-
tion of unseen words is modelled using an extra feature
whose value is the total number of words generated
from word gaps.

• The second set of features is two-level rules which are
borrowed from Collins and Koo (2005). These two-
level rules give the number of times a given rule is used
to expand a non-terminal in a given parent rule.

• For the λ − calculus representation we used the fea-
tures of type checking such as the type mismatch errors
in the MR translation.

For example in the type of mismatch feature, a ”state” can-
not possibly be a ”river” in the semantic parsing of the sen-
tence.

Figure 4. Example of type mismatch.

2.6 Argmax Algorithm

One of the important components for applying online
structured prediction is how well we design an argmax algo-
rithm. Algorithm 1 sketches a kind of argmax algorithms.
As shown in Algorithm 1, there are two argmax algorithms
we need to design as follows.

y∗, h∗ = arg max
y,h

(w · Φ(xi, y, h)) (2)

hi = arg max
h

(w · Φ(xi, yi, h)) (3)

As mentioned in previous subsection, for each xi and yi

we might have several set of correspondent features h for
mapping xi to yi. The argmax algorithm finds an appropri-
ate correspond hi among all possible h to transform xi to
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yi. To solve this matter, we used a bottom up strategy that
finds a maximal score in each sub-tree up to the full tree.

In the equation (2), we need to find the one with highest
the score of (w ·Φ(x, y, h)). To solve this matter, we simply
used a version of Earley parsing algorithm [1].

Note that the argmax decoding could be used for oth-
ers online prediction learning algorithms such as Perceptron
and MIRA leaning. Like MIRA, our PA model can utilize
the strength of k-best argmax by a simple strategy that finds
among k-best output τt that minimize the loss function lt.

3 Experimental Results

For the purpose of testing our models for semantic pars-
ing, we used the CLANG corpus which is the RoboCup
Coach Language (www.robocup.org). In the Coach Compe-
tition, teams of agents compete on a simulated soccer field
and receive advice from a team coach in a formal language.
The average length of an NL sentence in the CLANG [13]
corpus is 22.52 words.

We also evaluated our online learning framework on
the λ-SCFG grammar in the GEOQUERY domain. The
larger GEOQUERY corpus consists of 880 English ques-
tions gathered from various sources (Wong and Mooney,
2006). The questions were manually translated into Pro-
log logical forms. The average length of a sentence is 7.57
words. The statistics information of these two corpora are
shown in Table 1.

Table 1. Statistics on CLANG and GEO880 corpus. The
average length of the MRs is large in the CLANG corpus.

Statistics CLANG GEO880
No.of. Examples 300 880
Avg. NL sentence length 22.5 7.48
Avg. MR length (tokens) 13.42 6.47
No. of non-terminals 37 44
No. of productions 102 133
No. of unique NL tokens 337 270

In the scope of this paper, we used the prediction based
argmax algorithm and the PA update strategy for training
model. We believe that other kinds of prediction base algo-
rithms such as in [16] can be used in our semantic parsing
framework.

We take into account the use of the standard 10-fold
cross validation test for evaluating the methods (we used
a single run in our experiment.). We used 270 sentences for
training and 30 sentences for testing. To evaluate the pro-
posed methods in parsing NL sentences to logical form, we
measured the number of test sentences that produced com-
plete logical forms, and the number of those logical forms

that were correct. For the CLANG corpus, a logical form is
correct if it exactly matches the correct representation, up to
reordering of the arguments of commutative operators like
”and”. We used the evaluation method presented in [12], in
which the performance of the parser was then measured in
terms of precision and recall as in the formula below.

Precision = #correct−representation
#completed−representation

Recall = #correct−representation
#sentences

F − measure =
2 × Precision × Recall

Precision + Recall

Table 2. Experimental results with CLANG corpus. The
λ − SCFG could not be used because the CLANG is free
logic variable. We set the k-best parameter used in Algo-
rithm 1 equal to 5, and the number of iterations is 10.

Methods Precision Recall F-measure
KRIP (2006) 85.2% 61.9% 71.7
WASP 88.9% 61.39% 73.0
PA-structured 89.2% 68.9% 75.1

Table 2 shows the results of the KRIP system [13], the
WASP system [20], and the PA-structured system on the
CLANG corpus, respectively. We only compare our method
with some other methods which does not use SAPT anno-
tation like the method of [9][15]. Since the CCG methods
of [23, 24] were not tested on the CLANG corpus, so we
could not compare our methods with their methods. Ta-
ble 2 shows that our system (PA-structured) is better than
the KRIP system. It is comparable to the WASP system in
terms of precision. But, it significantly improves previous
works (WASP and KRIP ) in terms of recall. This shows
that the use of loss functions directly with the mechanism of
online-large margin, can lead to a better performance. Our
experimental results and other systems on CLANG showed
that precision is high, while the recall is not. After observ-
ing the outputs, we found a problem that some NL sentences
are not able to produce semantic representation. This seems
that improving generation of learning models could lead a
better performance. We believe that this problem will be
solved when the size of training corpus becomes large.

For the purpose of testing our model in Prolog logical
form, we used a 10-fold cross validation, and measured the
performance of the learned parsers using precision and re-
call measurements. We used the same evaluation method
described in [13] and [21] to compare our system with oth-
ers. Note that in this evaluation method, a translation is con-
sidered correct if it retrieves the same answer as the correct
logical form [21].

140140140
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The results of testing our online learning framework
shown in Table 3 indicate that the proposed framework
works well on the GEOQUERY domain. Our method
archived the best F-measure result in comparison with pre-
vious works.

Table 3. Experimental results with GEOQUERY corpus.
We set the k-best parameter using in Algorithm 1 equal to
5, and the number of iterations is 15.

Methods Precision Recall F-measure
KRIP (2006) 93.3% 71.7% 81.01
WASP(2006) 87.2% 74.77% 80.5
λ−WASP(2007) 92.0% 86.6% 89.2
CCG(2007) 95.5% 83.20% 88.9
λ-PA-structured 96.20% 88.1% 91.9

Using the λ − SCFG representation also improves the
accuracy in comparison with MRL representation. This in-
dicates why our method shows improved results in compar-
ison with WASP in the GEOQUERY domain. Table 3 also
shows that we can obtain an improvement on the state of the
art results by using a structured prediction methods, differ-
ence from the method of (W+R) [21] and (CCG) [24]. The
advantage of our methods is the combination of using rich
features with a loss function through a synchronous gram-
mar.

In order to illustrate the accuracy of the PA-structured
learning on semantic parsing, we have estimated the pro-
posed models with respect to the size of training data. In
addition, we used the same measure method in evaluation
showing in Figure 5 and 6 for the two corpora. It means
a logical form output is correct if it is the same with the
gold-standard output.

Figure 5 and 6 showed the F-measure of the PA-
structured with the size of training data (i.e 10, 20, ...). It
showed that in both corpora, F-measure values are increas-
ing with respect to the size of training data. It is also showed
that there is a room to improve our results on these corpora.
The F-measure of using 792 sentence for training is approx-
imately to 0.75, while it is 0.91 by using the F-Measure
method in [21]. We check these logical form outputs and
found that there are several outputs having the same struc-
ture with the gold-standard but its order is different. This
suggests that using a reordering method to correct the or-
der of logical forms output may lead to an improvement. In
addition, Figure 6 showed that the system’s performance of
using 640 sentences for training are similar to that of us-
ing 672 sentences for training on the GEO880 corpus. This
suggested us that using an active learning mechanism to
select suitable training examples for our framework seems
promising to explore in the future work.

Figure 5. F-measure of the PA-structured on the CLANG
corpus. F-measure values are with the size of training data
(10, 20, 40, 80, 160, 270)

Figure 6. F-measure of the PA-structured on the GEO880
corpus. F-measure values are with the size of training data
(10, 20, 40, 80,..,640, 792)

4 Conclusions

We have proposed a novel online structured prediction
algorithm for semantic parsing using synchronous gram-
mars for both meaning

representation and λ-calculus representation. We intro-
duce an online learning algorithm with the use of hidden
features to effectively estimate the semantic parsing models
with a discriminative learning method. The advantages of
our method are that it can incorporate a lot of features to
a fine property model using a loss function to estimate the
weights corresponding to features. In addition, our online
learning algorithm is simple and easy to implement.

Experimental results on the two standard corpora show
that the proposed models achieve the best result in CLANG
corpus in term of F-measure, and attain a significant im-
provement on the state of the art results in the Prolog logical
form corpus(GEO880).

There are some open directions for our methods. First,
syntactic and semantic information of source language
could be used in order to improve the current performance.
In addition, in a real application there are some cases in
which one natural language sentence can be mapped to sev-
eral semantic representation. In order to deal with such
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kinds of data, we would like to extend our current frame-
works using multi-instance learning models. In future work,
we also plan to use other kinds of the synchronous parsing
framework such as CCG and TAG, in order to handle long-
distance dependencies that occur in open-domain text. We
also plan to exploit the proposed models on the more larger
corpus such as presented in [10]
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