
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Performance Evaluation of Parallel Processing

Environment for Molecular Dynamics

Author(s)

Satou, Kenji; Konno, Kenri; Ohta, Osamu; Mikami,

Kazunori; Teranishi, Keita; Yamada, Yoichi; Ohki,

Shin-Ya

Citation
WSEAS Transactions on Biology and Biomedicine,

5(7): 173-182

Issue Date 2008-07

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/8504

Rights

Copyright (C) 2008 World Scientific and

Engineering Academy and Society. Kenji Satou,

Kenri Konno, Osamu Ohta, Kazunori Mikami, Keita

Teranishi, Yoichi Yamada, Shin-Ya Ohki, WSEAS

Transactions on Biology and Biomedicine, 5(7),

2008, 173-182.

Description

Performance Evaluation of Parallel Processing Environment for

Molecular Dynamics

KENJI SATOU
1
, KENRI KONNO

2
, OSAMU OHTA

3
, KAZUNORI MIKAMI

4
,

KEITA TERANISHI
5
, YOICHI YAMADA

1
, SHIN-YA OHKI

6

1 Graduate School of Natural Science and Technology, Kanazawa University

Kakuma-machi, Kanazawa 920-1192, JAPAN

ken@t.kanazawa-u.ac.jp http://bioinfo.ec.t.kanazawa-u.ac.jp/~ken/

2 Graduate School of Materials Science

3 Graduate School of Information Science

6 Center for Nano Materials and Technology

Japan Advanced Institute of Science and Technology

1-1 Asahidai, Nomi, Ishikawa 923-1292, JAPAN

4 Cray Japan Inc.,

1-2-2 Uchisaiwaichou, Chiyoda-ku, Tokyo 100-0011, JAPAN

5 Cray Inc.

Mendota Heights, Minnesota 55120, U.S.A.

Abstract: - Molecular dynamics (MD) is one of the popular applications in the research field of high performance

computing. Since it requires large amount of CPU time basically proportional to the square of the number of atoms

simulated, acceleration of MD is essential to simulation of large biomolecules like proteins. Therefore,

parallelization of MD has been actively studied long time. However, most of the studies of parallel MD report

modified or newly developed algorithms specialized to some computer architectures like vector-parallel

supercomputer, and an end-user of MD software cannot implement them to popular MD software developed by

other ones. In this study, we evaluated performance of four kinds of computer architectures: 1) vector-parallel

supercomputer, 2) multi-processor machine with shared memory, 3) multi-processor machine with distributed

memory, and 4) PC cluster. Various compiler options for parallelization and optimization were tested.

Experimental results revealed that if MD software is not parallelized nor vectorized in source level, use of normal

PC cluster with maximum use of optimization options in compilation is the best way.

Key-Words: - Molecular dynamics software, Computer architecture, Parallel processing, Optimization

1 Introduction
As the success of Folding@Home project [1]

demonstrates, there is a great demand of biomolecule

analysis through molecular dynamics (MD) and

efforts have been concentrated on the development of

improved algorithm and software [2]. There exist

many MD tools: AMBER [3] and CHARMM [4] are

the most famous software suites, Tinker [5] and

Gromacs [6] are relatively more simple and

easy-to-use, myPresto [7] and Peach [8] were

developed in Japan, and so on. These software tools

are useful for both of commercial development of new

pharmaceuticals and academic research in structure

and function of biomolecules [9]. Except CHARMm,

the tools above are free of charge or distributed at

fairly low cost for the purpose of academic research.

So, it is popular to personally install one of them and

use it also personally or share it in a laboratory.

However, even with today’s computers dramatically

improved in performance, it is still tough computation

to solve the structure of large biomolecule like protein

with huge amount of water molecules as solvent

WSEAS TRANSACTIONS on BIOLOGY
and BIOMEDICINE

KENJI SATOU, KENRI KONNO, OSAMU OHTA
KAZUNORI MIKAMI,KEITA TERANISHI,
YOICHI YAMADA, SHIN-YA OHKI

ISSN: 1109-9518 173 Issue 7, Volume 5, July 2008

surrounding it. Therefore, acceleration techniques for

MD have been actively studied.

 There are many previous works on the acceleration

of MD computation. They can be roughly classified

into two categories: reduction of computation and

parallel computation. In general, application of a

technique in the former is limited since there must be a

trade-off between reduction and precision of

computation. The latter can be divided into finer

categories: 1) parallel computing by vector processor,

2) parallel computing on a computer with multiple

CPUs, 3) parallel computing on multiple computers

connected with LAN (i.e. PC cluster), and 4) parallel

computing on multiple computers connected with

WAN (i.e. Grid computing).These are also in the

historical order of trends in research and development

of MD acceleration techniques. Once a PC was too

poor to perform MD, and it was studied to make the

best use of a supercomputer with one or a few vector

processors for this purpose. After that, a

multi-processor machine which has shared or

distributed memory and multiple scalar processors

connected with high-speed channel and switch became

common. As a result, MD acceleration techniques by

multiprocessing and/or multithreading were actively

studied. Though a programming completely different

from vector-parallel processing is required, this

approach achieved considerable success by the

high-speed communication mechanism and large

memory capacity. Utilization of PC cluster can be a

natural extension of this approach in significantly

lower cost. To hide the latency of LAN, it is popular to

use Myrinet instead of Ethernet and high-performance

network communication library like SCore. Parallel

processing on PC cluster via MPI library is also

popular in other application domains [10,11].

 Though there are various previous works, it is

difficult to compare experimental results to each other

since they were measured on different computer

architectures. In addition, most of the acceleration

techniques reported in papers require source-level

modification of MD software tools, and unable to be

reproduced without deep understanding of source code

and parallel programming. Therefore, there is no clear

guideline for a biochemist to choose best computer

architecture for MD computation. Furthermore, in

case of a MD software tool provided as source code

(e.g. AMBER), choice of optimization options in

compilation of the source code might greatly affect to

the speed of MD computation.

 Based on the above backgrounds, in this study we

measured and compared performances of MD

computation with various combinations of machine

architectures, parallelization techniques, and

optimization options. Except an architecture which

definitely requires minimum modification to run the

code, the same MD software tool was used without

source code modification in the experiment. By

avoiding source code modification as much as

possible, the experimental results in this paper

revealed a guideline for a biochemist to choose the

best machine architecture for MD.

2 myPresto and cosgene
In this study, we adopted myPresto Version 3 as MD

software tool for performance measurement. myPresto

is distributed free of charge for non-commercial use at

University. Among programs in myPresto, cosgene

performs MD computation. myPresto is provided as

source code and executables precompiled in some

platforms. To compile cosgene from source code,

Fortran 90 is needed. From one source code, an

executable for serial computation or an executable for

parallel computation via MPI library can be generated

depending on configuration parameter. Hereinafter,

we call the executables for serial and parallel

computations cosgene_serial and cosgene_MPI,

respectively.

 About vectorization, it was reported that Presto, the

predecessor of myPresto, was originally vectorized

and achieved high performance on supercomputers

like NEC SX series and Fujitsu VP series. However,

source code of myPresto is basically independent from

Presto and does not include vectorized codes.

3 Computer Platforms

We used the following four computer platforms with

different architectures and operating systems.

NEC SX-8
 This machine (Fig.1) is a descendant of SX-5 which

share almost the same vector processors with the Earth

Simulator [12]. SX-8 realizes peak vector

performance of 16Gflops per CPU (vector processor).

In the experiment, we used a model of SX-8 with 8

CPUs and 64GB memory. In case of interactive use,

all the 8 CPUs are available, while 6 CPUs in batch

processing via a queueing system NQSII. Operating

system is SUPER-UX.

WSEAS TRANSACTIONS on BIOLOGY
and BIOMEDICINE

KENJI SATOU, KENRI KONNO, OSAMU OHTA
KAZUNORI MIKAMI,KEITA TERANISHI,
YOICHI YAMADA, SHIN-YA OHKI

ISSN: 1109-9518 174 Issue 7, Volume 5, July 2008

 Fig.1. SX-8

SGI Altix 3700
 This machine (Fig.2) is classified as shared memory

multi-processor computer. The model we used

contains 32 C-blicks connected with NUMAlink3,

where each C-blick has four Itanium2 processors

(1.6GHz) and 24GB memory. In total, this model

provides 128 CPUs and 768GB shared memory.

 Fig.2. Altix 3700

Cray XT3
 This machine (Fig.3) is classified as distributed

memory multi-processor computer. The model we

used contains 90 nodes connected in 3D torus link,

where each node has four Opteron 150 processors

(2.4GHz) and 32GB memory.

 Fig.3. XT3

Appro HyperBlade Mid-Cluster
 This machine (Fig.4) is classified as PC cluster. The

model we used contains 32 PCs connected with

Gigabit Ethernet, where each PC has two Opteron DP

Model 250 processors (2.4GHz) and 4GB memory.

 Fig.4. HyperBlade Mid-Cluster

WSEAS TRANSACTIONS on BIOLOGY
and BIOMEDICINE

KENJI SATOU, KENRI KONNO, OSAMU OHTA
KAZUNORI MIKAMI,KEITA TERANISHI,
YOICHI YAMADA, SHIN-YA OHKI

ISSN: 1109-9518 175 Issue 7, Volume 5, July 2008

4 Parallel Computation Types

We tried the following types of parallel computation

for the platforms described in the previous section.

NEC SX-8
 vector-parallel processing through automatic

vectorization by compiler with -Chopt option.

 process- or thread-parallel processing through

automatic parallelization by compiler with

-Pauto option.

 process- or thread-parallel processing

conducted by cosgene_MPI.

 combination of these types.

SGI Altix 3700
 process- or thread-parallel processing through

automatic parallelization by compiler with

–parallel option.

 process- or thread-parallel processing

conducted by cosgene_MPI.

 combination of these types.

Cray XT3
 process- or thread-parallel processing

conducted by cosgene_MPI (minimum

modification is applied to source code of

cosgene to run it on XT3).

Appro HyperBlade Mid-Cluster
 process- or thread-parallel processing

conducted by cosgene_MPI without

compilation (i.e. provided executable was used

as is).

5 Compilers and Options

In the configuration of cosgene, we typically specified

the following compilers and options for each platform,

where FC and FC_MPI denote the name of Fortran 90

compiler for cosgene_serial and cosgene_MPI,

respectively, and OPT denotes optimization options

passed to compiler. PP=fpp is a special option only for

ifort to invoke preprocessor. For more details about

options, see the manual of each compiler.

NEC SX-8
 FC = f90

 FC_MPI = mpi90

 OPT = -C debug -D_SMALL_SYSTEM

 combinations of -g (debug), -Chopt (full use of

optimization and vectorization upper limits),

-Cnoopt (no vectorization and optimization),

-Cvsafe (very safe use of optimization and

vectorization without side effect), -EP (C

preprocessor activation), -pi auto (automatic

inline expansion), and -Pauto (automatic

parallelization) were tried as additional

options.

SGI Altix 3700
 FC = ifort

 FC_MPI = ifort

 OPT = -O2 -static

 PP = -fpp

 -parallel (automatic parallelization) was tried

as an additional option.

Cray XT3
 FC = ftn

 FC_MPI = ftn

 OPT = -fast -fastsse -O3 -mcmodel=medium

Appro HyperBlade Mid-Cluster
 FC = pgf95

 FC_MPI = mpif90

 OPT = -fast -fastsse -O3

6 Protein Molecule for MD

For MD computation of biomolecule, we adopted a

protein called myosin phosphatase inhibitor CPI-17

with Thr38 replaced with Asp [13]. 1j2m is the PDB

code of this protein containing 99 residues (Fig.5).

After energy minimization, a new conformation

1j2m_min was prepared and input to cosgene_serial

and cosgene_MPI (Fig.6). In MD computation, a force

field parameter C99_aa.tpl was adopted, which

contains topology information for all amino acid

monomers for the AMBER96 force field. 100ps MD

simulation was performed in each experiment. Fig.7

shows an example of conformation after 100ps

simulation.

WSEAS TRANSACTIONS on BIOLOGY
and BIOMEDICINE

KENJI SATOU, KENRI KONNO, OSAMU OHTA
KAZUNORI MIKAMI,KEITA TERANISHI,
YOICHI YAMADA, SHIN-YA OHKI

ISSN: 1109-9518 176 Issue 7, Volume 5, July 2008

 Fig.5. Conformation of 1j2m

 Fig.6. Conformation of 1j2m_min

 Fig.7. Conformation of 1j2m_min after 100ps MD

simulation

7 Experimental Results

As a control point, in each platform we measured

computation time of cosgene_serial compiled with

only the typical options listed in section 5 (i.e. without

any additional options for parallelization and

optimization). The number of CPUs allocated for

computation was one. Table 1 shows the result of

computation, where HBMC denotes Appro

HyperBlade Mid-Cluster. In Table 1, HBMC is

significantly faster than others. In contrast, SX-8 is

very slow, however, it is not surprising since a

vector-processor has only a poor scalar performance in

general. Though Itanium2 and Opteron are CPUs with

different characteristics, computation times in Altix

and XT3 can be explained in terms of CPU clocks

(1.6GHz and 2.4GHz).

Table 1. Computation time of typical cosgene_serial

with 1CPU

Computation

time (second)

with 1 CPU

SX-8 cosgene_serial 135823

Altix cosgene_serial 20452

XT3 cosgene_serial 14141

HBMC cosgene_serial 4357

Next, various combinations of parallel processing and

options were tested on each platform. Fig.8 illustrates

the effect of –parallel option and/or MPI parallel

processing in Altix. From this figure, we can see the

following:

 –parallel option causes indispensable overhead.

From 1 to 3 CPUs, only the overhead was

observed. In case of 4 CPUs, it causes some

speed-up in comparison with 1~3 CPUs,

however, still slower than 1CPU without

–parallel option.

 MPI parallel processing seems to work well,

however, -parallel option cannot achieve

further acceleration in combination with it.

WSEAS TRANSACTIONS on BIOLOGY
and BIOMEDICINE

KENJI SATOU, KENRI KONNO, OSAMU OHTA
KAZUNORI MIKAMI,KEITA TERANISHI,
YOICHI YAMADA, SHIN-YA OHKI

ISSN: 1109-9518 177 Issue 7, Volume 5, July 2008

 Fig.8. Effect of MPI and –parallel option in Altix

For SX-8, also various options were tested but

cosgene_serial and cosgene_MPI were executed only

with 1CPU and 4CPUs, respectively (Fig.9). From this

figure, we can see the following:

 –Chopt and –Cvsafe are effective to reduce the

computation time. However, since these

options perform both of optimization and

vectorization, ratio of their contribution is

unclear.

 MPI parallel processing seems to work well.

Moreover, –Cvsafe is also effective with MPI.

 In contrast to –parallel that is not effective in

Altix, -Pauto in SX8 is significantly effective.

However, it does not accelerate cosgene_MPI.

 –Pauto and –Chopt seems to be interfering to

each other.

 Optimization by automatic inline expantion

(-pi auto) is quite effective in both of

cosgene_serial and cosgene_MPI though it

does not perform any vectorization.

Unlike Altix and SX-8, we used only typical options

for XT3 and HBMC since there were no vectorization

and parallelization options for them.

 Besides compiler options, Fig.10~13 illustrate

scalability of MPI parallel processing in four

platforms. In all platforms, as the number of CPUs

increases, acceleration effect by adding CPU

decreases. It shows that at least this version of

cosgene_MPI cannot achieve linear speed-up.

 Fig.9. Effect of MPI and various options in SX-8

 Fig.10. Effect of MPI in SX-8 (with typical

parameters only)

 Fig.11. Effect of MPI in Altix

WSEAS TRANSACTIONS on BIOLOGY
and BIOMEDICINE

KENJI SATOU, KENRI KONNO, OSAMU OHTA
KAZUNORI MIKAMI,KEITA TERANISHI,
YOICHI YAMADA, SHIN-YA OHKI

ISSN: 1109-9518 178 Issue 7, Volume 5, July 2008

 Fig.12. Effect of MPI in XT3

 Fig.13. Effect of MPI in HBMC

 Finally, Table 2 summarizes ratio of control point

(1CPU, cosgene_serial, typical options only) and best

performance (4CPUs, cosgene_MPI, additional

options allowed). Here we see that acceleration was

possible in SX-8, Altix, and XT3, however their best

performances were lower than the control point of

HBMC.

Table 2. Accerelation ratio

Control (second) Best (second) ratio

SX-8 135823 14803 (-Cvsafe) 9.18

Altix 20452 8301 2.46

XT3 14141 4700 3.01

HBMC 4357 1306 3.34

8 Computation Characteristics in XT3
Among four architectures studied in this paper, a more

detailed analysis was conducted on XT3. In this

analysis, we used sample2 included in the source

distribution of myPresto. The protein used in this MD

simulation is 1lza, a hen egg-white lysozyme

containing 129 residues (Fig.14). After energy

minimization, a new conformation lys_1_min was

prepared and input to cosgene_serial and

cosgene_MPI (Fig.15). The topology file lys_1.tpl is

also provided and used in MD computation. Fig.16

shows an example of conformation after MD

simulation.

 Fig.14. Conformation of 1lza

 Fig.15. Conformation of lys_1_min

 Fig.16. Conformation of lys_1_min after MD

simulation

WSEAS TRANSACTIONS on BIOLOGY
and BIOMEDICINE

KENJI SATOU, KENRI KONNO, OSAMU OHTA
KAZUNORI MIKAMI,KEITA TERANISHI,
YOICHI YAMADA, SHIN-YA OHKI

ISSN: 1109-9518 179 Issue 7, Volume 5, July 2008

 First, hardware performance counter statistics was

measured by using CrayPat tool. Tables 3 and 4 show

the statistics in the execution of cosgene_serial by 1

CPU and cosgene_MPI by 8 CPUs, respectively. In

Table 3, it can be seen that the power of single Opteron

processor in XT3 is well utilized since MIPS around

1390, MFLOPS 574.16, 12% peak, and D1 cache hit

ratio 99.3% are substantially high. In Table 4,

execution time was improved from around 52 seconds

to 14. However, MFLOPS per CPU was decreased to

309.16. It implies that due to some bottlenecks in

parallel processing, the power of each CPU was not

fully utilized. Possible reasons are as follows: 1) load

of communication for parallel processing, 2) load of

MPI data transfer is higher than that of computation in

MD algorithm, and 3) synchronization wait caused by

imbalance of computation load in each CPU.

Table 3. Hardware counter statistics of cosgene_serial

Attribute Value

Time% 100.0%

Time 51.910235

Calls 404

PAPI_TOT_INS 1389.963M/sec, 72151638848

PAPI_L1_DCA 491.549M/sec, 25515840364

PAPI_FP_OPS 574.160M/sec, 29804104404

DC_MISS 3.439M/sec, 178489608 misses

User time 51.909 secs, 124581673855

Utilization rate 100.0%

Instr per cycle 0.58 inst/cycle

HW FP Ops / Cycles 0.24 ops/cycle

HW FP Ops / User

time

574.160M/sec, 29804104404

ops, 12.0%peak
HW FP Ops / WCT 574.147M/sec

HW FP Ops / Inst 41.3%

Computation intensity 1.17 ops/ref

MIPS 1389.963M/sec

Instructions per LD 2.83 inst/ref

LD & ST per D1 miss 142.95 refs/miss

D1 cache hit ratio 99.3%

LD ST per 35.4%

Table 4. Hardware counter statistics of cosgene_MPI

(8CPUs)

Attribute Value

Time% 100.0%

Time 14.120283

Imb.Time 0.022806

Imb.Time% 0.2%

Calls 404

PAPI_TOT_INS 2174.807M/sec, 30708193764

PAPI_L1_DCA 883.885M/sec, 12480427080

PAPI_FP_OPS 309.160M/sec, 4365321986 ops

DC_MISS 10.265M/sec, 144941315

User time 14.120 secs, 33887906726

Utilization rate 100.0%

Instr per cycle 0.91 inst/cycle

HW FP Ops / Cycles 0.13 ops/cycle

HW FP Ops / User

time

309.160M/sec, 4365321986

ops, 6.4%peak
HW FP Ops / WCT 309.153M/sec

HW FP Ops / Inst 14.2%

Computation intensity 0.35 ops/ref

MIPS 2174.807M/sec

Instructions per LD 2.46 inst/ref

LD & ST per D1 miss 86.11 refs/miss

D1 cache hit ratio 98.8%

LD ST per 40.6%

 Then, we examined hot spots in cosgene program.

Table 5 shows the result of level 0~1 analysis of time

consumption. It clearly shows that more than half of

execution time is consumed by MPI data transfer and

MPI synchronization wait.

 Besides overheads in MPI data transfer and

synchronization, the result of detailed analysis on the

subroutines in USER category for MD computation is

shown in Table 6. In this table, time consumption of

level 2 subroutines is also reported. Subroutines with

Time% lower than 1% are omitted. The most time

consuming subroutine is written in bold face and

occupies 40.9% of MD computation. Hardware

counter statistics of the subroutine is shown in Table 7.

Table 5. Breakdown of total hardware counter statistics into three categories (USER, MPI_SYNC, and MPI)

Level Time % Time
Imb. (load
imbalance
)

FLOPs MFLOPS Calls Group

0 100.0% 19.252263 -- 4348227192 225.83 1611002 Total
1 48.2% 9.288503 -- 4348172210 468.02 1599209 USER
1 37.0% 7.119652 -- 0 0 2511 MPI_SYN
1 14.8% 2.844108 -- 54982 0.02 9282 MPI

WSEAS TRANSACTIONS on BIOLOGY
and BIOMEDICINE

KENJI SATOU, KENRI KONNO, OSAMU OHTA
KAZUNORI MIKAMI,KEITA TERANISHI,
YOICHI YAMADA, SHIN-YA OHKI

ISSN: 1109-9518 180 Issue 7, Volume 5, July 2008

Table 6. Hardware counter statistics of time consuming subroutines for MD computation

Level Time % Time
Imb. (load

imbalance)
FLOPs

MFLOP

S
Calls Group or Function

0 100.0% 19.2523 -- 4348227192 225.83 1611002 Total

1 48.2% 9.2885 -- 4348172210 468.02 1599209 USER

2 40.9% 3.794393 14.8% 3785336107 997.69 1156
fast_nonbonded_calc_vdwhyd

dependelecutoff_
2 23.3% 2.168139 4.9% 0 0 3 communicate_method_broadcast_mddata_

2 9.3% 0.866093 17.9% 438123097 505.7 1 child_process_exec_minloop_

2 4.2% 0.39278 18.6% 0 0 845643 communicate_method_trans_bufferint_

2 4.2% 0.38561 100.0% 105769 0.27 0 input_common_input_commonfile_

2 3.4% 0.31959 26.0% 133958 0.42 222762 interacttable_method_register_residueatoms_

2 3.0% 0.27452 9.5% 1508 0.01 1156 fast_nonbonded_calc_cutoff15interactenergy_

2 2.4% 0.22192 19.4% 31062159 139.37 59 interacttable_method_update_residuesurfacecutoff_

2 1.9% 0.1761 100.0% 78700396 446.5 0 minimize_method_exec_conjugategradient_

2 1.6% 0.14903 100.0% 7656092 51.37 29 monitoring_monitor_minimize_

2 1.6% 0.14787 34.9% 0.75 0 222762 interacttable_method_reset_flagfixatomorbonded_

2 1.3% 0.12116 20.9% 0 0 240069 communicate_method_trans_bufferreal_

Table 7. Hardware counter statistics of the function

fast_nonbonded_calc_vdwhyddependelecutoff_ in

cosgene_MPI (8CPUs)

Attribute Value

Time% 40.9%

Time 3.794393

Imb.Time 0.562844

Imb.Time% 14.8%

Calls 1156

PAPI_TLB_DM 42.011M/sec, 159395253

PAPI_L1_DCA 622.910M/sec, 2363388747

PAPI_FP_OPS 997.687M/sec, 3785336107

DC_MISS 3.738M/sec, 14183954 misses

User time 3.794 secs, 9105864953 cycles

Utilization rate 100.0%

HW FP Ops / Cycles 0.42 ops/cycle

HW FP Ops / User

time

997.687M/sec, 3785336107

ops, 20.8%peak
HW FP Ops / WCT 997.613M/sec

Computation intensity 1.60 ops/ref

LD & ST per TLB 14.83 refs/miss

LD & ST per D1 miss 166.62 refs/miss

D1 cache hit ratio 99.4%

% TLB misses / cycle 1.8%

 About the most time consuming subroutine shown

in Table 6, we confirmed in practice that 5%

acceleration in this subroutine is possible by

source-level modification. Since the subroutine

occupies around 20% of total execution time (40.9%

of 48.2% equals to 19.7%), this improvement is

around 1% of total execution time. It means that the

original source code of cosgene is sufficiently tuned

and hard to drastically improve.

9 Conclusion
In this study, we tested various combinations of

parallel processing and optimization options on four

different computer architectures, i.e. a vector

supercomputer, multi-processor supercomputer with

shared and distributed memories, and a PC cluster.

Experimental results revealed superiority of PC cluster

against other expensive supercomputers. However,

scalability of MPI parallel was not so promising.

Similarly, automatic vectorization was not so effective

since in comparison with acceleration by -Chopt,

around 80% of it can also be achieved by a simple

optimization, i.e. inline expansion by -pi auto. It

implies that percentage of vectorization by compiler

might be low. In other words, though a supercomputer

with huge memory is still needed to solve a fine

structure of extremely large biomolecules, a common

PC with a dual- or quad-core processor and large

memory (4GB or more) is one of the competitive

alternatives to solve a structure of relatively smaller

biomolecules by using a popular MD software tool

like myPresto.

References:

WSEAS TRANSACTIONS on BIOLOGY
and BIOMEDICINE

KENJI SATOU, KENRI KONNO, OSAMU OHTA
KAZUNORI MIKAMI,KEITA TERANISHI,
YOICHI YAMADA, SHIN-YA OHKI

ISSN: 1109-9518 181 Issue 7, Volume 5, July 2008

[1] S.M. Larson, C.D. Snow, M. Shirts and V.S.

Pande., Folding@Home and Genome@Home:

Using distributed computing to tackle previously

intractible problems in computational biology,

Computational Genomics, Horizon Press, 2002.

[2] S.A. Adcock and J.A. McCammon, Molecular

Dynamics: Survey of Methods for Simulating the

Activity of Proteins, Chem. Rev., Vol.106, No.5,

2006, pp.1589-1615.

[3] D.A. Pearlman, D. A. Case, J. W. Caldwell, W. S.

Ross, T. E. Cheatham III, S. DeBolt and D.

Ferguson, G. Seibel and P. Kollman, AMBER, a

Package of Computer Programs for Applying

Molecular Mechanics, Normal Mode Analysis,

Molecular Dynamics and Free Energy

Calculations to Simulate the Structural and

Energetic Properties of Molecules, Comp. Phys.

Commun., Vol.91, 1995, pp.1-41.

[4] B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J.

States, S. Swaminathan and M. Karplus,

CHARMM: A Program for Macromolecular

Energy, Minimization, and Dynamics Calculations,

J. Comput. Chem., Vol.4, 1983, pp.187-217.

[5] J.W. Ponder and F.M. Richards, An efficient

Newton-like method for molecular mechanics

energy minimization of large molecules, J.

Comput. Chem., Vol.8, 1987, pp.1016–1024.

[6] B. Hess, C. Kutzner, D. van der Spoel and E.

Lindahl, GROMACS 4: Algorithms for Highly

Efficient, Load-Balanced, and Scalable Molecular

Simulation, J. Chem. Theory Comput., Vol.4, No.3,

2008, pp.435-447.

[7] Y. Fukunishi, Y. Mikami and H. Nakamura, The

filling potential method: A method for estimating

the free energy surface for protein-ligand docking,

J. Phys. Chem. B., Vol.107, 2003,

pp.13201-13210.

[8] Y. Komeiji, M. Uebayasi, R. Takata, A. Shimizu,

K. Itsukashi and M. Taiji, Fast and accurate

molecular dynamics simulation of a protein using a

special-purpose computer, Journal of

Computational Chemistry, Vol.18, Issue 12, 1998,

pp.1546-1563.

[9] T. Schröder, A. Quintilla, J. Setzler, E. Birtalan, W.

Wenzel and S. Bräse, Joint experimental and

theoretical investigation of the propensity of

peptoids as drug carriers, WSEAS Transactions on

Biology and Biomedicine, Vol.4, Issue 10, 2007,

pp.145-148.

[10] I. Aziz, N. Haron, L.T. Jung and W.R.W. Dagang,

Parallelization of Prime Number Generation Using

Message Passing Interface, WSEAS Transactions

on Computers, Vol.7, Issue 4, 2008, pp.291-303.

[11] K.L. Hsieh, W. Tsai and N.M. Shih, Applying

PC-cluster into Clustering Analysis for Organism's

Codon Usage Based on MPI Techniques, WSEAS

Transactions on Computers, Vol.6, Issue 8, 2007,

pp.1044-1049.

[12] S. Shingu, H. Takahara, H. Fuchigami, M.

Yamada, Y. Tsuda, W. Ohfuchi, Y. Sasaki, K.

Kobayashi, T. Hagiwara, S. Habata, M. Yokokawa,

H. Itoh and K. Otsuka, A 26.58 Tflops Global

Atmospheric Simulation with the Spectral

Transform Method on the Earth Simulator, Proc.

of the ACE/IEEE SC2002 conference, 2002.

[13] S. Ohki, M. Eto, M. Shimizu, R. Takada, D.L.

Brautigan and M. Kainosho, Distinctive Solution

Conformation of Phosphatase Inhibitor CPI-17

Substituted with Aspartate at the

Phosphorylation-site Threonine Residue,

J.Mol.Biol., Vol.326, Issue 5, 2003, pp.1539-1547.

WSEAS TRANSACTIONS on BIOLOGY
and BIOMEDICINE

KENJI SATOU, KENRI KONNO, OSAMU OHTA
KAZUNORI MIKAMI,KEITA TERANISHI,
YOICHI YAMADA, SHIN-YA OHKI

ISSN: 1109-9518 182 Issue 7, Volume 5, July 2008

