
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Revisited (Hyper)-Elliptic Curve Scalar

Multiplication with a Fixed Point

Author(s) Miyaji, Atsuko; Mizosoe, Kenji

Citation IPSJ Journal, 49(9): 2975-2988

Issue Date 2008-09-15

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/8514

Rights

社団法人　情報処理学会, Atsuko Miyaji, Kenji

Mizosoe, IPSJ Journal, 49(9), 2008, 2975-2988.　

ここに掲載した著作物の利用に関する注意: 本著作物

の著作権は（社）情報処理学会に帰属します。本著作

物は著作権者である情報処理学会の許可のもとに掲載

するものです。ご利用に当たっては「著作権法」なら

びに「情報処理学会倫理綱領」に従うことをお願いい

たします。 Notice for the use of this material:

The copyright of this material is retained by the

Information Processing Society of Japan (IPSJ).

This material is published on this web site with

the agreement of the author (s) and the IPSJ.

Please be complied with Copyright Law of Japan

and the Code of Ethics of the IPSJ if any users

wish to reproduce, make derivative work,

distribute or make available to the public any

part or whole thereof. All Rights Reserved,

Copyright (C) Information Processing Society of

Japan.

Description

IPSJ Journal Vol. 49 No. 9 2975–2988 (Sep. 2008)

Regular Paper

Revisited (Hyper)-Elliptic Curve Scalar Multiplication

with a Fixed Point �1

Atsuko Miyaji†1 and Kenji Mizosoe†1

Elliptic curve cryptosystems can be constructed over a smaller definition field
than the ElGamal cryptosystems or the RSA cryptosystems. This is why elliptic
curve cryptosystems have begun to attract notice. This paper explores an
efficient fixed-point-scalar-multiplication algorithm for the case of a definition
field Fp (p > 3) and adjusts coordinates to the algorithm proposed by Lim and
Lee. Our adjusted algorithm can give better performance than the previous
algorithm in some sizes of the pre-computed tables.

1. Introduction

An elliptic curve cryptosystem, which is constructed on the group of points
of an elliptic curve over a finite field, can provide a small and fast public key
cryptosystem if the elliptic curve is chosen appropriately 2),15). This is why elliptic
curve cryptosystems have been widely used in various applications. An elliptic
curve cryptosystem consists of an elliptic curve scalar multiplication kP .

There are two approaches for an efficient elliptic curve scalar multiplication
kP . One is the scalar multiplication for a randomly given point P , which is
executed in a signature verification, an encryption, or a decryption. The other
is that for a fixed point P , which is executed in a signature generation or an
encryption. Both are usually studied independently and evaluated from slightly
different viewpoints. From the point of view of the computational amount, the
random-point-scalar-multiplication algorithm is evaluated by the total computa-
tional complexity of both making a pre-computed table and the main computa-
tion with the pre-computed table. This is because the input point is not given

†1 Japan Advanced Institute Science and Technology
�1 This study is partly supported by Grant-in-Aid for Scientific Research (B), 17300002, and

Yazaki Memorial Foundation for Science and Technology.

beforehand. On the other hand, the fixed-point-scalar-multiplication algorithm
is evaluated by the computational amount of only the main computation with
the pre-computed table. This is because the input point is given beforehand and
consequently every scalar multiplication can start with the main computation by
making the pre-computed table beforehand. From the viewpoint of the memory,
both are evaluated by the size of the pre-computed table.

Many researches on the random-point-scalar-multiplication algorithm have
been proposed so far1),7),18). On the other hand, two researches on the fixed-
point scalar multiplication algorithms have been proposed so far, the BGMW 3)-
and LL 14)-algorithms, which are each based on different concepts. The BGMW-
algorithm uses the base of 2w, holds the precomputed points based on 2wiP ,
and computes kP by repeating only additions. The LL-algorithm divides k into
blocks of h × v (1 division) or h1 × v1 + h2 × v2 (2 divisions), holds the pre-
computed points based on each block, and computes kP by repeating additions
and doubling. The LL-algorithm is more flexible and can give a wider range of
time-memory tradeoffs than the BGMW-algorithm. This paper focuses on the
LL-algorithm over an elliptic curve.

The implementation time of elliptic curve scalar multiplications depends on
three different factors: the definition field, the coordinate systems, and the algo-
rithm itself such as BGMW- or LL-algorithm. This paper focuses on two factors:
the coordinate systems and the efficient fixed-point scalar multiplication. There
are several coordinates systems, affine (A), Jacobian (J), modified Jacobian, pro-
jective, and mixed Jacobian coordinates of the combination between A and J 7).
All of these are defined in the Weierstrass form. In addition to the Weierstrass
form, the Edward form was proposed 10). In the Edward form, affine coordi-
nates (EA), homogeneous coordinates (E), and mix Edward coordinates of the
combination between EA and E can be considered, however, EA is not usually
discussed since it is rather slow. Note that the doubling and addition of Edward
coordinates are faster than those of Jacobian coordinates, however, mixed Ed-
ward coordinates are slower than mixed Jacobian coordinates. We also note that
addition in A is not necessarily slower than that in E or in mixed coordinates of
A and J .

Generally, the Jacobian coordinate system has been adopted for the random-

2975 c© 2008 Information Processing Society of Japan

2976 Revisited (Hyper)-Elliptic Curve Scalar Multiplication with a Fixed Point

point-scalar multiplication so far 1),7) since doublings become the dominant part.
This is why Edward coordinates are expected to give a faster random-point-
scalar multiplication. On the other hand, the dominant part of the LL-algorithm
is rather different. There would be two ways to execute the LL-algorithm over
an elliptic curve, both of which assume that the points in the pre-computed table
are given in affine coordinates. One way adopts Jacobian/Edward coordinates
and its mixed coordinates. The other adopts affine coordinates in the entire algo-
rithm. In the former case, the dominant factor is the computational complexity
of addition in mixed coordinates. In the latter case, the dominant factor is the
computational complexity of addition in affine coordinates. The performance of
the LL-algorithm with 1-division in Jacobian and its mixed coordinates is shown
in Ref. 6), where the optimal division (h, v) is also investigated. However, nei-
ther 2-division in Jacobian and its mixed coordinates nor the LL-algorithm in
Edward and its mixed coordinates have been investigated in any paper so far.
Furthermore, the applicability of affine coordinates to the LL-algorithm has not
been investigated so far. There is room for further study.

Generally, affine coordinates are avoided for the scalar multiplication in the
case of a definition field Fp (with p larger than 3) since it suffers from the heavy
use of inverses. Recently, a new derivation of the SPA-resistant algorithm with a
fixed point was proposed, which adopts affine coordinates by applying the Mont-
gomery’s trick 17) to reduce the number of inverses 16). Their work cannot be
directly extended to the LL-algorithm because the structure of the precomputed
table is totally different in each case. However, their work inspires us to ex-
plore the possibility of further improvement of a fixed-point-scalar-multiplication
algorithm.

In the present paper, we revisit the LL-algorithm by adopting affine coordi-
nates; applying the Montgomery’s trick to compute several inverses simultane-
ously; and optimizing the table’s structure. We analyze the computational com-
plexity of the proposed algorithm theoretically. Furthermore, we reconsider the
division procedure in the case of h1×v1 +h2×v2 in order to give a tight adjusted
division. We also discuss the efficiency of our proposed algorithm for the cases
of the elliptic curve and the hyper-elliptic curve and show the break-even point
of our algorithm against the previous algorithm. The break-even point means

the ratio of I/M based on the assumption of S = 0.8M when the computational
complexity of our algorithms is equal to that of the previous one, where I, M , or
S expresses the computational complexity of 1 modular inverse, multiplication,
or square on the 160-bit field, respectively. Our algorithm inherits the flexibility
of the original LL-algorithm. In the case of an elliptic curve, our algorithm with
pre-computed points of 18, 26, 34, 42, or 50 can compute kP more efficiently
than the previous algorithm with the best coordinates �1 in the break-even point
of I/M < 12.2, 12.7, 12.7, 12.8, or 12.3, respectively. In fact, the computational
complexity of our algorithm can be reduced to 95%, 93%, 93%, 93%, or 94% of the
previous algorithm with the best coordinate system in the case of I/M = 11. In
the case of a hyper-elliptic curve with genus 2, our algorithm with pre-computed
points of 18 (resp. 28, 30, 42, 46, 58) can compute kP more efficiently than the
previous algorithm in the break-even point of Ihec/Mhec > 2.9 (resp. 3). That is,
our algorithm is usually more efficient than the previous one. Here, Ihec, Mhec,
or Shec expresses the computational complexity of 1 modular inverse, multipli-
cation, or square on the 80-bit field, respectively. In the case of Ihec = 11Mhec,
the computational complexity of our algorithm with a pre-computed table of 18,
28, 30, 42, 46, or 58 can be reduced to 92%, 92%, 93%, 87%, 93%, or 88% of the
previous algorithm, respectively.

This paper is organized as follows. Section 2 summarizes the known facts on
(hyper-) elliptic curves. Section 3 reviews some known algorithms such as the
LL-algorithm and the Montgomery trick. Section 4 presents our new scalar multi-
plication algorithm with a fixed point and analyzes the computational complexity
theoretically. Section 5 provides the cases where our results are better than the
previous results. It also describes the performance of the previous algorithm with
Jacobian and Edward coordinates for comparison. Appendix A.1 summarizes the
addition formulae in Edward coordinates.

�1 The best coordinate system for the previous algorithm is still Jacobian coordinate system as
mentioned in Ref. 6) since mixed Edward coordinate system is slower than mixed Jacobian
coordinate system. The adaptability and performance of Edward coordinate to the previous
algorithm is also investigated in this paper.

IPSJ Journal Vol. 49 No. 9 2975–2988 (Sep. 2008) c© 2008 Information Processing Society of Japan

2977 Revisited (Hyper)-Elliptic Curve Scalar Multiplication with a Fixed Point

2. Preliminaries

This section summarizes some facts on elliptic curves and hyper elliptic curves
such as the coordinate systems.

2.1 Elliptic Curve
Let Fp be a finite field, where p > 3 is a prime. The Weierstrass form of an

elliptic curve over Fp in affine coordinates is described as
E/Fp : y2 = x3 + ax + b (a, b ∈ Fp, 4a3 + 27b2 �= 0).

The set of all points P = (x, y) ∈ Fp×Fp satisfying E with the point of infinity O,
denoted by E(Fp), forms an abelian group. Let P1 = (x1, y1) and P2 = (x2, y2) be
two points on E(Fp) and P3 = P1 +P2 = (x3, y3) be the sum. Then the addition
formula Add (resp. doubling Dbl) in affine coordinates can be described by three
modules of Addp(P1, P2), AddI(α), and AddNI(P1, P2, λ) (resp. Dblp(P1), DblI(α)
and DblNI(P1, λ)) as in Ref. 16). Each module means preparation for 1 inverse,
computation of 1 inverse and computation without any inverse, respectively. The
addition formulae are given as follows.

Add(P1, P2) (P1 �= ±P2)

Addp(P1, P2): α = x2 − x1

AddI(α): λ = 1
α

AddNI(P1, P2, λ): γ = (y2 − y1)λ
x3 = γ2 − x1 − x2

y3 = γ(x1 − x3) − y1

Dbl(P1)

Dblp(P1): α = 2y1

DblI(α): λ = 1
α

DblNI(P1, λ): γ = (3x2
1 + a)λ

x3 = γ2 − 2x1

y3 = γ(x1 − x3) − y1

Let us denote the computational complexity of an addition (resp. a doubling)
by t(A+A) (resp. t(2A)) in affine coordinates and multiplication (resp. inverse,
resp. squaring) in Fp by M (resp. I, resp. S), where A means affine coordinates.
However, it is usual to neglect the addition, the subtraction, or the multiplication
by a small constant in Fp when evaluating the computational complexity. Then
we see that t(A + A) = I + 2M + S and t(2A) = I + 2M + 2S.

Both addition and doubling formulae need one inversion over Fp, which is much
more expensive than a multiplication over Fp. Affine coordinates are transformed
into Jacobian coordinates 7), where the inversion is not used. We set x = X/Z2

and y = Y/Z3, giving the equation
EJ : Y 2 = X3 + aXZ4 + bZ6.

Then, two points (X, Y, Z) and (r2X, r3Y, rZ) for some r ∈ F
∗
p are recognized

as the same point. The point at infinity is represented by (1, 1, 0). Let P1 =
(X1, Y1, Z1), P2 = (X2, Y2, Z2), and P3 = P1 + P2 = (X3, Y3, Z3). The addition
formulae have gradually been improved after they were introduced widely 6). Here
we show the latest addition formulae 4). The total number of S and M in the latest
addition formulae is the same as before, however, they decrease M and increase
S. Therefore, they usually reduce the total computational complexity since S <

M . For comparison, Appendix A.1 shows the previous addition formulae. The
doubling and addition formulae in Jacobian coordinates can be represented as
follows.

AddJ (P1, P2) (P1 �= ±P2)

U1 = X1Z
2
2 , U2 = X2Z

2
1 ,

S1 = Y1Z
3
2 , S2 = Y2Z

3
1 ,

H = U2 − U1, R = 2(S2 − S1),
I = (2H)2, J1 = IH, J2 = IU1

X3 = R2 − J1 − 2J2,
Y3 = R(J2 − X3) − 2S1J1,
Z3 = ((Z1 + Z2)2 − Z2

1 − Z2
2)H.

DblJ (P1)
S = 2((X1 + Y 2

1)2 − X2
1 − Y 4

1)
M = 3X2

1 + aZ4
1

X3 = M2 − 2S

Y3 = M(S − X3) − 8Y 4
1

Z3 = (Y1 + Z1)2 − Y 2
1 − Z2

1

The computation times in Jacobian coordinates are t(J +J) = 11M +5S and
t(2J) = 2M + 8S, where J means Jacobian coordinates.

There are several coordinate systems, affine (A), Jacobian (J), and their com-
bination, called mixed coordinates 7). In addition to the Weierstrass form, the
Edward form was proposed 10), which is described in Appendix A.1. In the Ed-
ward form, affine coordinates (EA) and homogeneous coordinates (E) can be
considered as usual, however, EA is not usually discussed since both addition and
doubling in EA are rather slower than those in E as well as those in A. We can also
consider mix coordinates of EA and E . These performances are summarized in
Table 1. Note that the doubling and addition of Edward coordinates are faster
than those of Jacobian coordinates, however, for mixed Edward coordinates they
are slower than for mixed Jacobian coordinates since S < M .

There are two ways to execute the LL-algorithm, both of which assume points
in the pre-computed table are given in affine coordinates. One way adopts Ja-

IPSJ Journal Vol. 49 No. 9 2975–2988 (Sep. 2008) c© 2008 Information Processing Society of Japan

2978 Revisited (Hyper)-Elliptic Curve Scalar Multiplication with a Fixed Point

Table 1 Comparison of elliptic-curve coordinates.

computation amount

t(A + A) 2M + S + I
t(2A) 2M + 2S + I

t(J + J) 11M + 5S
t(J + A = J) 7M + 4S

t(2J) 2M + 8S

t(E + E) 11M + S
t(E + AE = E) 10M + S

t(2E) 3M + 4S

cobian/Edward coordinates and its mix coordinates. The other adopts affine
coordinates in the entire algorithm. In the former case, the dominant factor
of computational complexity is the computational complexity in mixed coordi-
nates. In the latter case, the dominant factor of computational complexity is the
computational complexity of addition in affine coordinates. As a result, affine
coordinates A or mixed coordinates of J and A are faster than mixed coordi-
nates of E and EA when executing the LL-algorithm. These adaptability will be
discussed in Section 4.

2.2 Hyper-Elliptic Curve
A hyper-elliptic curve C/Fp(p > 3) with genus 2 is described as

C : Y 2 = F (X) = X5 + f4X
4 + f3X

3 + f2X
2 + f1X + f0,

where F (X) is in Fp[X]. In the case of p �= 5, we can set f4 = 0. The divisors of a
hyper-elliptic curve are defined as the free abelian group of points P1, . . . , Pr ∈ C,
D =

∑
Pi∈C miPi, mi ∈ Z. The degree of D is defined as

∑
Pi∈C mi and the

order at Pi in C is defined as mi = ordPi
(D). The Jacobian variety JC is defined

as D0/Dl, where D0 is a group of divisors with degree 0 and Dl is a group of
divisors of functions. Any divisor D ∈ JC is equivalent to a divisor called a
reduced divisor modulo Dl,

D ∼
∑

Pi∈C

m′′
i Pi − rP∞ (r =

∑
Pi∈C

m′′
i ≤ g),

where g is a genus of C. To compute an addition of divisors, Mumford-
representation is useful. In Mumford-representation, D ∈ C with the genus 2
is described by D = (u1, u0, v1, v0), where

Table 2 Comparison of hyper-elliptic-curve coordinates.

computation amount

t(Ahec + Ahec) 22Mhec + 3Shec + Ihec

t(2Ahec) 22Mhec + 5Shec + Ihec

t(Jhec + Jhec) 40Mhec + 6Shec

t(2Jhec) 47Mhec + 4Shec

U =
∏
Pi

(X − xi)m′′
i = X2 + u1X + u0 ∈ Fp[X],

V = v1X + v0 ∈ Fp[X],
V 2 ≡ F (X) (mod U(X)).

The addition formulae in the case of the genus 2 are proposed in Ref. 13), on
which the efficiency of our proposal is discussed. The computational complexity
of addition formulae is presented in Table 2. We may note that the size of the
definition field of a secure elliptic curve is about g times as large as that of a
secure hyper-elliptic curve and that affine coordinates are usually faster Jacobian
coordinates. Therefore, in the case of the genus 2, the size of the definition
field of a hyper-elliptic curve is about half that of an elliptic curve. In order to
distinguish between each definition field, let us use the following notation: we
denote the affine coordinates (resp. Jacobian coordinates) by Ahec (resp. Jhec)
and represent the multiplication (resp. inverse, resp. squaring) in the definition
field by Mhec (resp. Ihec, resp. Shec).

2.3 Inversion over a Prime Field
This subsection briefly describes a ratio of I/M . A ratio of I/M depends on the

algorithm used and the size of the field. The well-known fast algorithms are the
extended Euclid algorithm due to Lehmer 15) and the Montogomery inverse 11),12).
A ratio is estimated between 3 and 10 in the literature 2) or 4 and 10 8). In fact,
some software implementations without the Montgomery inversion yield a ratio
of 3.8 or 4.8 for a 160-bit or 256-bit prime field, respectively 9). On the other
hand, some hardware implementations with the Montgomery inversion yield a
ratio of 4.18, 5.00, 5.42, or 6.23 for a prime field with 160, 192, 224, or 256 bits,
respectively 12). A discussion on the ratio can be found in Ref. 5).

IPSJ Journal Vol. 49 No. 9 2975–2988 (Sep. 2008) c© 2008 Information Processing Society of Japan

2979 Revisited (Hyper)-Elliptic Curve Scalar Multiplication with a Fixed Point

3. Previous Work

3.1 Lim-Lee Algorithm
We briefly review the LL-algorithm 14), one of previous scalar multiplication

algorithms with precomputation. The efficiency in the case of the elliptic curve
is re-discussed 6). Let us assume that the size of the underlying field and the scalar
k are n bits. The LL-algorithm consists of two phases: the pre-computation phase
and the main computation phase. The pre-computation makes (2h−1)×v points
P [i, s] ((i, s) ∈ {0, · · · , v − 1} × {1, · · · , 2h − 1}),

P [i, s] =
h−1∑
j=0

sj2bi+ajP,

where a = �n
h � and b = �a

v � and s0, · · · , sh−1 is a representation of s in radix
2, that is s =

∑h−1
j=0 sj2j . On the other hand, the main computation divides k

into h × v blocks and computes kP by repeating v additions of pre-computed
points P [i, s] and 1 doubling. Note that the (v − 1)-th block may not be full
since the bv − a bits are empty (see Fig. 1). Therefore, 1 addition can be saved
for the first bv − a rounds. The LL-algorithm focuses on the case where P is
given beforehand such as a basepoint; it assumes that the precomputed points
are given beforehand, and, thus, it does not take the computational complexity
of the pre-computation into account.

Algorithm 1
Input: k =

∑n−1
i=0 k[i]2i, P, {P [i, j]}

Output: kP

0. ki,j =
∑h−1

�=0 k[a� + j + bi]2�

((i, j) ∈ {0, · · · , v − 1} × {0, · · · , b − 1}).
1. If bv − a > 0, then �e = v − 1.

Else �e = v.

2. T =
∑�e−1

i=0 P [i, ki,b−1].
3. For j = b − 2 to 0 by −1
4. If j ≥ b − (bv − a), then �e = v − 1.

Else �e = v.

Fig. 1 Division of n with (h, v).

5. main loop: T = 2T +
∑�e−1

i=0 P [i, ki,j].
6. Output T.

The memory and the computational complexity of Algorithm 1 are (2h − 1) · v
points and (b − 1)D + (a − 1)A, respectively. Here, A (resp. D) represents the
computational complexity of addition (resp. doubling).

The following is an example of Algorithm 1.
Example: Let k = 100010 001000 (12-bit number) and (h, v) = (2, 3). Then,
kP is computed as follows. First, (a, b) = (6, 2) and precomputed points are given
by P [0, 1] = P , P [0, 2] = 26P , P [0, 3] = P + 26P , P [1, 1] = 22P , P [1, 2] = 28P ,
P [1, 3] = 22P + 28P , and P [2, 1] = P 4, P [2, 2] = 210P , P [2, 3] = 24P + 210P .
Indexes of k are given by k0,0 = 0, k0,1 = 2, k1,0 = 0, k1,1 = 1, k2,0 = 0, and
k2,1 = 2. Then, kP is computed by

T = P [0, 2] + P [1, 1] + P [2, 2],
T = 2T + P [0, 0] + P [1, 0] + P [2, 0].

Algorithm 1 can be applied to two divisions (h1, v1)×(h2, v2). Here we describe
the division procedure of k faithfully from the original as seen in Fig. 2. Let
(h1, v1) × (h2, v2) be a division of n with h1v1 < h2v2. Then, an n-bit k is
divided into two blocks of v1 × h1 block with b1 bits and v2 × h2 block with b2

bits as follows.
b2 = � n

v1h1+v2h2
�, a2 = b2v2,

b1 = �n−b2v2h2
h1v1

�, a1 = b1v1.
(1)

The pre-computed points, {P1[i1, s1], P2[i2, s2]} ((i1, s1) ∈ {0, · · · , v1 − 1} ×

IPSJ Journal Vol. 49 No. 9 2975–2988 (Sep. 2008) c© 2008 Information Processing Society of Japan

2980 Revisited (Hyper)-Elliptic Curve Scalar Multiplication with a Fixed Point

Fig. 2 Division of n with (h1, v1) × (h2, v2).

{1, · · · , 2h1 − 1}, (i2, s2) ∈ {0, · · · , v2 − 1} × {1, · · · , 2h2 − 1}), consist of(
(2h

1 − 1) × v1 + (2h
2 − 1) × v2

)
points, which are defined as

P1[i1, s1] =
h1−1∑
j=0

s1,j2b1i1+a1jP,

P2[i2, s2] =
h2−1∑
j=0

s2,j2b2i2+a2j+b1v1h1P,

where s1,0, · · · , s1,h1−1 (resp. s2,0, · · · , s2,h2−1) is a representation of s1 (resp.
s2) in radix 2, that is s1 =

∑h1−1
j=0 s1,j2j (resp. s2 =

∑h2−1
j=0 s2,j2j). On the other

hand, the main computation divides n-bit k into two divisions of v1 × h1 blocks
with b1 bits and v2×h2 blocks with b2 bits and, then, computes kP by repeating
v1 + v2 additions to pre-computed points P1[i1, s1] or P2[i2, s2] and 1 doubling.
If (a1h1 + a2h2) − n bits are empty or b2 > b1, then 1 addition is saved for the
first n − (a1h1 + a2h2) bits in the second division or v1 additions are saved for
the first b2 − b1 bits in the first division. The detailed algorithm with 2 divisions
(h1, v1) × (h2, v2) with v1 + v2 ≥ 2 is given as follows.

Algorithm 2
Input: k =

∑n−1
i=0 k[i]2i, P, {P1[i, j], P2[i, j]}

Output: kP

0. k1,i,j =
∑h1−1

�=0 k[a1� + j + b1i]2�((i, j) ∈ {0, · · · , v1 − 1} × {0, · · · , b1 − 1}),

k2,i,j =
∑h2−1

�=0 k[a2�+j+b2i+b1v1h1]2�, ((i, j)∈{0, · · ·, v2−1}×{0, · · ·, b2−1}).
1. j = b2 − 1
2. If b2 > b1, then T =

∑v2−1
i=0 P2[i, k2,i,j].

Else if b1 = b2 and (a1h1 + a2h2) > n,

then

T =
∑v1−1

i=0 P1[i, k1,i,j] +
∑v2−2

i=0 P2[i, k2,i,j].
Else, then T =

∑v1−1
i=0 P1[i, k1,i,j] +

∑v2−1
i=0 P2[i, k2,i,j].

3. For j = b2 − 2 to 0 by −1 {
4. If j ≥ b1, then T = 2T +

∑v2−1
i=0 P2[i, k2,i,b2−1].

Else if j ≥ b2 − 1 − (a1h1 + a2h2 − n),
then T = 2T +

∑v1−1
i=0 P1[i, k1,i,b1−1] +

∑v2−2
i=0 P2[i, k2,i,b2−1].

Else, then T = 2T +
∑v1−1

i=0 P1[i, k1,i,b1−1] +
∑v2−1

i=0 P2[i, k2,i,b2−1]. }
5. Output T.

3.2 Montgomery’s Trick
The computational complexity of an inverse is more expensive than that of a

multiplication over Fp. The Montgomery’s trick works efficiently when several
inverses are executed simultaneously, denoted by Minv[n] in this paper. The
algorithm is briefly given as follows.

Algorithm 3 (Minv[n]) Montgomery’s trick

Input: α0, · · · , αn−1, p

Output: α−1
0 mod p, · · · , α−1

n−1 mod p

1. λ0 = α0

2. For i = 1 to n − 1
3. λi = λi−1αi mod p. I = λ−1

n−1 mod p

4. For i = n − 1 to 0
5. λi = Iλi−1 mod p. I = Iαi mod p

6. Output {λ0, · · · , λn−1}
Minv[n] computes n inverses with 3(n − 1) multiplications and 1 inverse. We
will apply the Montgomery trick to compute � additions simultaneously in affine
coordinate, which will be shown in Section 4.

3.3 Mishra-Sarkar Algorithm
Mishra and Sarkar proposed an SPA-resistant scalar multiplication kP with a

IPSJ Journal Vol. 49 No. 9 2975–2988 (Sep. 2008) c© 2008 Information Processing Society of Japan

2981 Revisited (Hyper)-Elliptic Curve Scalar Multiplication with a Fixed Point

fixed point 16), which adopts affine coordinate, and applies Montgomery’s trick
to reduce the computational complexity. Their algorithm expresses k in the
base 2w such as k =

∑t
i=0 ci2wi =

∑t
i=0

(∑w−1
j=0 ai,j2j

)
2wi, where t = �n/w�,

ci ∈ {0, · · · , 2w−1}, ci =
∑w−1

j=0 ai,j2j , and ai,j ∈ {0, 1}. The pre-computed table
consists of {P [j] = 2jwP |0 ≤ j ≤ t−1}. The algorithm then computes ci2wiP =∑w−1

j=0 ai,j2jP [i] for 0 ≤ i ≤ t with the binary method from LSB in parallel and
adds each result simultaneously to get kP . Each process requires an inverse in
affine coordinate independently and simultaneously, to which Montgomery trick
can be applied. However, it is rather inefficient in the paradigm of an ordinary
fixed-point scalar multiplication.

4. Improved Scalar Multiplication with a Fixed Point

In this section, we improve a scalar multiplication with a fixed point by applying
Montgomery’s trick to the LL-algorithm and adjusting the division procedure in
(v1, h1) × (v2, h2).

4.1 Algorithm Intuition
The LL-algorithm in Section 3.1 consists of two phases: the pre-computation

phase and the main computation phase. The pre-computation phase is done be-
forehand, which gives a set of pre-computed points in affine coordinates. Only
the main computation phase is done online, which repeats v or v1+v2 additions of
pre-computed points and 1 doubling. There are two ways of executing the main
computation in elliptic curves. One way adopts Jacobian/Edward coordinates
and its mix coordinates. The other adopts affine coordinates in the entire algo-
rithm. In the former case, the dominant factor is the computational complexity
of mixed coordinates. In the latter case, the dominant factor is the computa-
tional complexity of affine coordinates. The performance of the LL-algorithm
with 1-division in Jacobian and its mix coordinates is shown in Ref. 6), where
the optimal division (h, v) is also investigated. However, neither 2-division in
Jacobian and its mix coordinates nor the LL-algorithm in Edward and its mix
coordinates have been investigated in any paper so far �1. Furthermore, in the

�1 The Edward form cannot be applied into the paradigm of its affine coordinates with the
Montgomery trick since the computational complexity of its affine coordinates is rather
slower than that of affine coordinates in the Weierstrass form.

case of the Weierstrass form, affine coordinates with the Montgomery trick may
work more efficiently in some cases since the main computation consists of an
iteration that can be fitted to parallel processing. In fact, the optimal (h, v) in
affine coordinates would be different from that in Jacobian/Edward coordinates
since the performance of each coordinates is different, in fact: t(J +A) > t(2J)
(or t(E + EA) > t(2E)) and t(A + A) < t(2A).

4.2 Our Scalar Multiplication Algorithm with 1 Division
Here we show our scalar multiplication algorithm, Algorithm 4, which optimizes

Algorithm 1 in such a way that the Montgomery trick Minv[�] is applied efficiently.
A sketch of the algorithm is described as follows.
(1) Use formulae of (Dblp, DblI, DblNI) and (Addp, AddI, AddNI) as affine coordi-

nates in Section 2, where only DblI and AddI require 1 inverse.
(2) TournamentAdd[�e] is the summation algorithm, for input of �e points

T1, · · · , T�e
, it arranges them in the tournament structure (Fig. 3), and

outputs the result of T1 + · · · + T�e
, which is used at the beginning of

Algorithm 4 and the end of the main loop.
(3) DblAddMinv[�], the 1-doubling-and-(� − 1)-addition algorithm, for input of

1 doubling point T0 and 2(� − 1) addition points T1, · · · , T2�−2, it uses
the Montgomery trick Minv[�] to compute � inverses simultaneously, and
outputs 2T0, T1 + T2, · · · , T2�−3 + T2�−2, which are used at the beginning
of the main loop.

(4) AddMinv[�], the �-addition algorithm, for input of 2� addition points
T1, · · · , T2�, it uses the Montgomery trick Minv[�] to compute � inverses

Fig. 3 Tournament structure.

IPSJ Journal Vol. 49 No. 9 2975–2988 (Sep. 2008) c© 2008 Information Processing Society of Japan

2982 Revisited (Hyper)-Elliptic Curve Scalar Multiplication with a Fixed Point

simultaneously, and outputs T1 +T2, · · · , T2�−1 +T2�, which are used in the
function of TournamentAdd[·].

Let (h, v) be a division of n. Let us use the same notation as in Section 3.1
such as a = �n

h �, and b = �a
v �. The pre-computed points are constructed in

the same way as Algorithm 1 by using the above parameters, which consist of(
(2h − 1) × v

)
points {P [i, s]}, where P [i, s] =

∑h−1
j=0 sj2b·i+a·jP with a represen-

tation of s in radix 2. Then, the detailed algorithm for (h, v) with v ≥ 2 is given
as follows. (see Fig. 1). Note that the main loop in Algorithm 1 corresponds to
steps 6-8 in Algorithm 4.

Algorithm 4
Input: k =

∑n−1
i=0 k[i]2i, P, {P [i, j]}

Output: kP

0. ki,j =
∑h−1

�=0 k[a� + j + bi]2� ((i, j) ∈ {0, · · · , v − 1} × {0, · · · , b − 1}).
1. If bv − a > 0, then �e = v − 1.

Else �e = v.

2. T = TournamentAdd[�e](P [0, k0,b−1], · · · , P [�e − 1, k�e−1,b−1]).

3. For j = b − 2 to 0 by −1 {
4. If j ≥ b − (bv − a), then �e = v + 1.

Else �e = v + 2.

5. � = � �e
2
�.

6. (T1, · · · , T�) = DblAddMinv[�](T,P [0, k0,j], · · · , P [2(� − 1) − 1, k2(�−1)−1,j]).

7. If �e ≡ 1 (mod 2), then T�+1 = P [2(� − 1), k2(�−1),j] and �e = � + 1.

Else �e = �.

8. T = TournamentAdd[�e](T1, · · · , T�e)}.
9. Output T.

Algorithm 5 (TournamentAdd[�e])
Input: T1, · · · , T�e

Output: T1 + · · · + T�e

1. While �e ≥ 4 {
2. � = � �e

2
�.

3. (T1, · · · , T�) = AddMinv[�](T1, · · · , T2�).

4. If �e ≡ 1 (mod 2), then T�+1 = T2l+1 and �e = � + 1.

Else �e = �. }.

5. If �e = 3, then T = Add(Add(T1, T2), T3).

6. If �e = 2, then T = Add(T1, T2).

7. If �e = 1, then T = T1.

8. Output T.

Algorithm 6 (DblAddMinv[�])
Input: T0, T1, · · · , T2(�−1)

Output: 2T0, T1 + T2, · · · , T2�−3 + T2�−2

1. Compute (λ0, λ1, · · · , λ�−1) = Minv[�](Dblp(T0),

Addp(T1, T2), · · · , Addp(T2�−3, T2�−2))

2. Compute T0 = DblNI(T0, λ0) and Ti = AddNI(T2i−1, T2i, λi) (1 ≤ ∀i ≤ � − 1).

3. Output {T0, T1, · · · , T�−1}.
Algorithm 7 (AddMinv[�])

Input: T1, · · · , T2�

Output: T1 + T2, · · · , T2�−1 + T2�

1. Compute (λ1, · · · , λ�) = Minv[�](Addp(T1, T2), · · · , Addp(T2�−1, T2�))
2. Compute Ti = AddNI(T2i−1, T2i, λi) for i ∈ {1, · · · , �}.
3. Output {T1, · · · , T�}.

4.3 Our Scalar Multiplication Algorithm with 2 Divisions
Now we apply the idea of Algorithm 4 to Algorithm 2 and revisit the division

procedure carefully. Let (h1, v1) × (h2, v2) be a division of n with h1v1 < h2v2.
Then, an n-bit k is divided into two blocks of v1 × h1 block with b1 bits and
v2 × h2 block with b2 bits in the optimal division between Eq. (1) and Eq. (2).

b1 = � n
v1h1+v2h2

�, a1 = b1v1,

a2 = �n−b1v1h1
h2

�, b2 = �a2
v2
�.

(2)

Figure 4 shows the division procedure of Eq. (2). This division procedure is said
to be optimal for n when the redundant part of computation, | a1h1 + a2h2 −
n |, is minimal. The redundant part of computation results from �n−b2v2h2

v1h1
� or

�n−b1v1h1
h2

� and �a2
v2
� in the case of Eq. (1) or Eq. (2), respectively. Therefore, the

redundant part in Eq. (2) seems to be less than or equal to that in Eq. (1). In
fact, in our experimental results, the division procedure of Eq. (2) was optimal.

Then, the pre-computed points are constructed in the same way
as in Algorithm 2 by using the above parameters, which consist

IPSJ Journal Vol. 49 No. 9 2975–2988 (Sep. 2008) c© 2008 Information Processing Society of Japan

2983 Revisited (Hyper)-Elliptic Curve Scalar Multiplication with a Fixed Point

Fig. 4 Revised division of n with (h1, v1) × (h2, v2).

of
(
(2h1 − 1) × v1 + (2h2 − 1) × v2

)
points {P1[i1, s1], P2[i2, s2]} ((i1, s1) ∈

{0, · · · , v1 − 1} × {1, · · · , 2h1 − 1}, (i2, s2) ∈ {0, · · · , v2 − 1} × {1, · · · , 2h2 − 1}).
The detailed algorithm in 2 divisions (h1, v1)×(h2, v2) with v1+v2 ≥ 2 is given as
follows. Note that step 4 in Algorithm 2 corresponds to steps 4-6 in Algorithm 8
and that b1 ≥ b2 (resp. b2 ≥ b1) holds in our algorithm (resp. Algorithm 8).

Algorithm 8
Input: k =

∑n−1
i=0 k[i]2i, P, {P1[i, j], P2[i, j]}

Output: kP

0. k1,i,j =
∑h1−1

�=0 k[a1� + j + b1i]2
�((i, j) ∈ {0, · · · , v1 − 1} × {0, · · · , b1 − 1}),

k2,i,j =
∑h2−1

�=0 k[a2�+j+b2i+b1v1h1]2
�,((i, j) ∈ {0, · · · , v2−1}×{0, · · · , b2−1}).

1. j = b1 − 1.

2. If b1 > b2, then �e = v1.

T = TournamentAdd[�e](P1[0, k1,0,j], · · · , P1[v1 − 1, k1,v1−1,j]).

Else if b1 = b2 and a1h1 + a2h2 > n, then �e = v1 + v2 − 1 and

T = TournamentAdd[�e](P1[0, k1,0,j], · · · , P1[v1 − 1, k1,v1−1,j], P2[0, k2,0,j], · · · ,

P2[v2 − 2, k2,v2−2,j]).

Else, then �e = v1 + v2 and

T = TournamentAdd[�e](P1[0, k1,0,j], · · · , P1[v1 − 1, k1,v1−1,j], P2[0, k2,0,j], · · · ,

P2[v2 − 1, k2,v2−1,j]).

3. For j = b1 − 2 to 0 by −1 {
4. If j ≥ b2, then �e = v1 + 2. � = � �e

2
�, and

(T1, · · · , T�) = DblAddMinv[�](T,P1[0, k1,0,j], · · · , P1[2(� − 1) − 1, k1,2(�−1)−1,j]).

Else If j ≥ b2 − 1 − (a1h1 + a2h2 − n), then �e = v1 + v2 + 1, � = � �e
2
�, and

(T1, · · · , T�) = DblAddMinv[�](T,P1[0, k1,0,j], · · · ,

P1[v1 − 1, k1,v1−1,j], P2[0, k2,0,j], · · · , P2[2(� − 1) − v1, k2,2(�−1)−v1,j]).

Else, �e = v1 + v2 + 2, � = � �e
2
�, and

(T1, · · · , T�) = DblAddMinv[�](T,P1[0, k1,0,j], · · · ,

P1[v1 − 1, k1,v1−1,j], P2[0, k2,0,j], · · · , P2[2(� − 1) − v1, k2,2(�−1)−v1,j]).

5. If �e ≡ 0 (mod 2), then �e = �.

Else if j ≥ b2, then T�+1 = P1[2(� − 1), k1,2(�−1),j] and �e = � + 1.

Else, then T�+1 = P2[2(� − 1) − v1 + 1, k2,2(�−1)−v1+1,j] and �e = � + 1.

6. T = TournamentAdd[�e](T1, · · · , T�e).}
7. Output T.

4.4 Performance
This section shows the computational complexity of Algorithms 4 and 8 the-

oretically after investigating the computational complexity for the computation
of all inverses in the summation algorithm, TournamentAdd[�e], in affine coor-
dinates �1. The computational complexity, denoted by Inv [�e] in this paper, is
shown in the next theorem.

Theorem 1 Let Inv [�e] be the computational complexity for the computa-
tion of inverses in the �e-point-summation algorithm, TournamentAdd[�e] in affine
coordinates. Then the following holds:

(1) Inv [�e] =

⎧⎪⎨
⎪⎩

0 (if �e = 1)
3(�e − t − 1)M + tI (if �e = 2t)
3(�e − t − 2)M + (t + 1)I (if 2t < �e < 2t+1)

(2) Inv [�e + 1] = Inv [�e] + 3M, if 2t < �e < �e + 1 ≤ 2t+1,

where M (resp. I) represents the computational complexity of the modular
multiplication (resp. inverse) on the definition field.
proof: Regarding (1), it follows from the fact that the Montgomery’s trick
Minv[n] computes �e inverses with I + 3(�e − 1)M . As for (2), it immediately
follows from (1).

By using Theorem 1, the total computational complexity Comp1 of Algorithm 4
with (h, v) (v ≥ 2) can be computed as follows:

�1 The number of input points for doubling is doubled. That is, the number of input points
of summation of 2T0 + T1 + · · · + T�e−2 is �e.

IPSJ Journal Vol. 49 No. 9 2975–2988 (Sep. 2008) c© 2008 Information Processing Society of Japan

2984 Revisited (Hyper)-Elliptic Curve Scalar Multiplication with a Fixed Point

Theorem 2 Let Comp1 be the total computational complexity of Algorithm 4
with (h, v). Then Comp1 can be computed as follows:

Comp1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(b − 1)Dni + (a − 1)Ani + Inv [v − 1] + (r − 1)Inv [v + 1]
+(b − bv + a)Inv [v + 2] (if r > 0)

(b − 1)Dni + (a − 1)Ani + (b − 1)Inv [v + 2] + Inv [v]
(if r = 0),

where a = �n
h �, b = �a

v �, r = bv − a, Ani (resp. Dni) represents the total
computational complexity of Addp and AddNI (resp. Dblp and DblNI).
proof: The proof easily follows from Algorithm 4.

From Theorem 1, the computational complexity of Inv [�e] is most efficient when
�e is a power of 2. Therefore, the cases of v = 2, 6, 14, 30, · · · would yield efficient
performance of Algorithm 4.

The total computational complexity Comp2 of Algorithm 8 with (h1, v1) ×
(h2, v2) (v1 + v2 ≥ 2) is given by the following theorem.

Theorem 3 Let Comp2 be the total computational complexity of Algorithm 8
with (h1, v1) × (h2, v2). Then Comp2 can be computed as follows:

Comp2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(b1−1)Dni+(a1+a2−1)Ani+(b2−r2)Inv [v1+v2 + 2]+Inv [v1]
+(b1 − b2 − 1)Inv [v1 + 2] + r2Inv [v1 + v2 + 1]

(if b1 > b2)

(b1−1)Dni+(a1+a2−1)Ani+(b1−r2)Inv [v1+v2+2]
+Inv [v1 + v2 − 1] + (r2 − 1)Inv [v1 + v2 + 1]

(if b1 = b2 and r2 > 0)

(b1−1)Dni+(a1+a2−1)Ani+(b1−1)Inv [v1+v2+2]+Inv [v1+v2]
(if b1 = b2 and r2 = 0)

where b1 = � n
v1h1+v2h2

�, a1 = b1v1, a2 = �n−b1v1h1
h2

�, b2 = �a2
v2
�, r2 = b2v2 − a2,

and Ani (resp. Dni) represents the total computational complexity of Addp and
AddNI (resp. Dblp and DblNI).
proof: The proof easily follows from Algorithm 8.

For the same reason as Comp1, the cases where v1+v2+2 is a power of 2 would
yield an efficient performance of Algorithm 8. That is, v1 + v2 = 2, 6, 14, 30, · · · .

Table 3 Performance of Algorithms 4 and 8 (elliptic curve).

division
(h, v), (h1, v1) × (h2, v2) Computational complexity # points

(1, 2) 713M + 317S + 159I (2715.6M) 2
(1, 3) 583M + 265S + 159I (2544M) 3

(2, 1) × (1, 1) 469M + 211S + 106I (1803.8M) 4
(2, 2) 353M + 157S + 79I (1347.6M) 6
(2, 3) 288M + 131S + 79I (1261.8M) 9

(3, 1) × (2, 1) 281M + 125S + 63I (1074.0M) 10
(2, 4) 313M + 117S + 59I (1055.6M) 12
(3, 2) 236M + 105S + 53I (903M) 14
(2, 6) 334M + 105S + 42I (880M) 18
(3, 3) 191M + 87S + 53I (843.6M) 21

(4, 1) × (3, 1) 200M + 89S + 45I (766.2M) 22
(3, 2) × (2, 4) 288M + 89S + 34I (733.2M) 26

(3, 4) 207M + 79S + 41I (721.2M) 28
(4, 2) 173M + 77S + 39I (663.6M) 30

(2, 2) × (3, 4) 250M + 77S + 30I (641.6M) 34
(3, 5) 219M + 73S + 32I (629.4M) 35

(2, 1) × (3, 5) 235M + 74S + 30I (624.2M) 38
(3, 6) 224M + 69S + 27I (576.2M) 42

(4, 1) × (3, 5) 209M + 66S + 27I (558.8M) 50
(4, 2) × (3, 4) 198M + 61S + 24I (510.8M) 58
(4, 3) × (3, 3) 188M + 59S + 24I (499.2M) 66
(3, 2) × (4, 4) 184M + 57S + 22I (471.6M) 74

(4, 5) 158M + 53S + 24I (464.4M) 75
(3, 1) × (4, 5) 172M + 53S + 21I (445.4M) 82

(4, 6) 162M + 51S + 21I (433.8M) 90
(5, 1) × (4, 5) 157M + 50S + 21I (428M) 106

(4, 8) 158M + 47S + 19I (404.6M) 120
(5, 2) × (4, 4) 153M + 48S + 19I (400.4M) 122
(4, 3) × (5, 3) 146M + 45S + 18I (380M) 138

(4, 10) 162M + 45S + 16I (374M) 150
(5, 4) × (4, 2) 139M + 43S + 17I (360.4M) 154

(5, 6) 126M + 41S + 18I (356.8M) 186
(3, 2) × (4, 12) 179M + 45S + 12I (347M) 194
(4, 13) × (2, 1) 174M + 44S + 12I (341.2M) 198

(4, 14) 169M + 43S + 12I (335.4M) 210
(4, 15) 175M + 43S + 10I (319.4M) 225

(5, 4) × (4, 10) 154M + 40S + 12I (318.0M) 274
(4, 20) 170M + 41S + 10I (312.8M) 300

(5, 6) × (4, 8) 149M + 39S + 12I (312.2M) 306
(5, 7) × (4, 7) 147M + 38S + 11I (298.4M) 322
(5, 8) × (4, 6) 142M + 37S + 11I (292.6M) 338

(5, 11) 129M + 35S + 12I (289.0M) 341
(5, 15) 159M + 35S + 2I (209.0M) 465

IPSJ Journal Vol. 49 No. 9 2975–2988 (Sep. 2008) c© 2008 Information Processing Society of Japan

2985 Revisited (Hyper)-Elliptic Curve Scalar Multiplication with a Fixed Point

Table 4 Performance of Algorithms 4 and 8 (hyper-elliptic curve).

division
(h, v), (h1, v1) × (h2, v2) Computational complexity # points

(1, 2) 5473Mhec + 872Shec + 159Ihec (1979.9M) 2
(1, 3) 4823Mhec + 742Shec + 159Ihec (1791.4M) 3

(2, 1) × (1, 1) 3629Mhec + 580Shec + 106Ihec (1314.8M) 4
(2, 2) 2713Mhec + 432Shec + 79Ihec (981.9M) 6
(2, 3) 2388Mhec + 367Shec + 79Ihec (887.65M) 9

(3, 1) × (2, 1) 2161Mhec + 344Shec + 63Ihec (782.3M) 10
(3, 2) 1816Mhec + 289Shec + 53Ihec (657.55M) 14

(4, 1) × (2, 1) 1791Mhec + 286Shec + 52Ihec (647.95M) 18
(3, 3) 1591Mhec + 244Shec + 53Ihec (592.3M) 21

(4, 1) × (3, 1) 1540Mhec + 245Shec + 45Ihec (557.75M) 22
(3, 4) 1527Mhec + 224Shec + 41Ihec (539.3M) 28
(4, 2) 1333Mhec + 212Shec + 39Ihec (482.9M) 30
(3, 6) 1444Mhec + 199Shec + 27Ihec (475.05M) 42
(4, 3) 1183Mhec + 182Shec + 39Ihec (439.4M) 45

(5, 1) × (4, 1) 1195Mhec + 190Shec + 35Ihec (433M) 46
(4, 2) × (3, 4) 1278Mhec + 176Shec + 24Ihec (420.7M) 58

(4, 4) 1113Mhec + 162Shec + 29Ihec (390.4M) 60
(5, 2) 1057Mhec + 168Shec + 31Ihec (383.1M) 62
(4, 5) 1078Mhec + 152Shec + 24Ihec (365.9M) 75
(4, 6) 1062Mhec + 147Shec + 21Ihec (352.65M) 90
(5, 3) 932Mhec + 143Shec + 31Ihec (346.9M) 93

(5, 1) × (4, 5) 1037Mhec + 144Shec + 21Ihec (345.8M) 106
(4, 8) 1018Mhec + 137Shec + 19Ihec (334.15M) 120

(5, 2) × (4, 4) 993Mhec + 138Shec + 19Ihec (328.1M) 122
(5, 4) 881Mhec + 128Shec + 23Ihec (309.1M) 124

(4, 2) × (5, 4) 921Mhec + 127Shec + 18Ihec (305.15M) 154
(5, 5) 865Mhec + 123Shec + 20Ihec (295.9M) 155

(4, 1) × (5, 5) 896Mhec + 124Shec + 18Ihec (298.3M) 170
(5, 6) 846Mhec + 118Shec + 18Ihec (284.6M) 186
(5, 7) 824Mhec + 113Shec + 17Ihec (275.4M) 217
(5, 8) 805Mhec + 108Shec + 15Ihec (264.1M) 248

(5, 8) × (4, 6) 842Mhec + 109Shec + 11Ihec (262.6M) 338
(5, 11) 789Mhec + 103Shec + 12Ihec (250.9M) 341
(5, 15) 819Mhec + 103Shec + 2Ihec (230.9M) 465

Tables 3 and 4 show the performances of various cases of Algorithms 4 and 8
in the case of an elliptic curve over a 160-bit definition field and a hyper-elliptic
curve with genus 2 over an 80-bit definition field, respectively. Let M (resp. S,
resp. I) represent a modular multiplication (resp. squaring, resp. inverse) on the
160-bit field. Let Mhec (resp. Shec, resp. Ihec) represent a modular multiplication
(resp. squaring, resp. inverse) on the 80-bit field.

In order to make the comparison easier, the computational amount is also
estimated in terms of M by assuming that S = 0.8M , I = 11M , Shec = 0.8Mhec,
I = 11Mhec, and M = 4Mhec. A ratio of inversion to multiplication in the case
of a prime field Fp can be estimated between 3 and 10 as described in Section 2.3,
however, we adopt an even bigger ratio of 11 since our algorithm is efficient when
the ratio is small.

5. Comparison

In this section, we compare performances of our algorithms 4 and 8 with those of
the previous algorithm 7),14) in each case of an elliptic curve and a hyper-elliptic
curve. In the case of an elliptic curve, the previous algorithm uses the mixed
coordinate, that is, points of the pre-computed table are given as affine (resp.
Edward affine) coordinate and the main computation is done in Jacobian (resp.
Edward) coordinate. In the case of a hyper-elliptic curve, the previous algorithm
uses affine coordinate without using Montgomery’s method. Tables 5 and 6
show divisions that our algorithms are better than the previous algorithm and
their performances in the cases of an elliptic curve and a hyper-elliptic curve,
respectively. Both Tables present the computational complexity based on the
number of modular multiplications, squares, and inverses over the definition field
as well as the estimation based on the assumption that S = 0.8M , I = 11M ,
Shec = 0.8Mhec, I = 11Mhec, and M = 4Mhec. The reduction ratio of our
algorithm to the previous algorithm is computed under the estimation. The
break-even point shows I/M or Ihec/Mhec when the computational complexity
of our algorithms is equal to that of previous ones, where S = 0.8M is assumed.

In the case of an elliptic curve, we see that our algorithm with a pre-
computed table of 18, 26, 34, 42, or 50 can compute kP more efficiently than
the previous algorithm with Jacobian coordinate (resp. Edward coordinate) if
I/M < 12.2, 12.7, 12.7, 12.8, or 12.3 (resp. 12.6, 13.2, 13.2, 13.3, or 12.7). In the
case of I = 11M , the computational complexity of our algorithm with a pre-
computed table of 18, 26, 34, 42, or 50 can be reduced to 95%, 93%, 93%, 93%,
or 94% (resp 93%, 91%, 91%, 91%, or 93%) of that of the previous algorithm with
Jacobian (resp. Edward) coordinate. Our experimental results also indicate that
affine coordinate with Montgomery’s trick or mixed coordinate with Jacobian

IPSJ Journal Vol. 49 No. 9 2975–2988 (Sep. 2008) c© 2008 Information Processing Society of Japan

2986 Revisited (Hyper)-Elliptic Curve Scalar Multiplication with a Fixed Point

Table 5 Comparison of performance (elliptic curve).

(h, v) # points Computational complexity BE-point†
(h1, v1) × (h2, v2) Ours Previous results (J /E) reduction ratio

(2, 6) 18 334M + 105S + 42I (J) 582M + 421S + I 12.2
(418M + 42I) (918.8M + I) 0.95

(I = 11M : 880.0M) (E) 831M + 131S + I 12.6
(935.8M + I) 0.93

(3, 2) × (2, 4) 26 288M + 89S + 34I (J) 494M + 357S + I 12.7
359.2M + 34I (779.6M + I) 0.93

(I = 11M : 733.2M) (E) 705M + 111S + I 13.2
(793.8M + I) 0.91

(2, 2) × (3, 4) 34 250M + 77S + 30I (J) 434M + 309S + I 12.7
311.6M + 30I (681.2M + I) 0.93

(I = 11M : 641.6M) (E) 619M + 95S + I 13.2
(695M + I) 0.91

(3, 6) 42 224M + 69S + 27I (J) 390M + 277S + I 12.8
279.2M + 27I (611.6M + I) 0.93

(I = 11M : 576.2M) (E) 556M + 85S + I 13.3
(624M + I) 0.91

(4, 1) × (3, 5) 50 209M + 66S + 27I (J) 369M + 265S + I 12.3
261.8M + 27I (581M + I) 0.94

(I = 11M : 558.8M) (E) 526M + 82S + I 12.7
(591.6M + I) 0.93

†: the break-even point is the value of I/M for which our result becomes the same efficiency
as the previous result.

Table 6 Comparison of Performance (hyper-elliptic curve).

(h, v) Computational complexity BE-point†
(h1, v1) × (h2, v2) Ours Previous results reduction

points ratio
(4, 1) × (2, 1) 1791Mhec + 286Shec + 52Ihec 1716Mhec + 286Shec + 78Ihec 2.9

18 (648.0M) (700.7M) 0.92
(3, 4) 1527Mhec + 224Shec + 41Ihec 1452Mhec + 224Shec + 66Ihec 3
28 (539.3M) (589.3M) 0.92

(4, 2) 1333Mhec + 212Shec + 39Ihec 1276Mhec + 212Shec + 58Ihec 3
30 (482.9M) (520.9M) 0.93

(3, 6) 1444Mhec + 199Shec + 27Ihec 1342Mhec + 199Shec + 61Ihec 3
42 (475.1M) (543.1M) 0.87

(4, 3) 1183Mhec + 182Shec + 39Ihec 1144Mhec + 182Shec + 52Ihec 3
46 (433.0M) (467.0M) 0.93

(4, 2) × (3, 4) 1278Mhec + 176Shec + 24Ihec 1188Mhec + 176Shec + 54Ihec 3
58 (420.7M) (480.7M) 0.88

†: the break-even point is the value of Ihec/Mhec for which our result becomes the same
efficiency as the previous result.

coordinate are better than mixed coordinate with Edward coordinate.
In the case of a hyper-elliptic curve, we see that our algorithm with a pre-

computed table of 18 (resp. 28, 30, 42, 46, 58) can compute kP more efficiently
than the previous algorithm if Ihec/Mhec > 2.9 (resp. 3). That is, our algorithm
is usually more efficiently than the previous one. In the case of Ihec = 11Mhec,
the computational complexity of our algorithm with a pre-computed table of 18,
28, 30, 42, 46, or 58 can be reduced to 92%, 92%, 93%, 87%, 93%, or 88% of
the previous algorithm, respectively. We note that hyper-elliptic curves in our
algorithm give a better performance than elliptic curves in any size of a pre-
computed table.

6. Conclusion

In this paper, we have explored an efficient scalar multiplication with a fixed
point and improved the LL-algorithm by applying affine coordinate to it and
adjusting the division procedure. We have also investigated the previous algo-
rithm with Edward coordinate as well as Jacobian coordinate. Our algorithm
can improve the computational complexity of the previous algorithm with the
best coordinate in some sizes of the pre-computed table. We have also given the
formulae of the computational complexity of the proposed algorithm with any
division theoretically, which helps developers to choose the best division suitable
for the storage available.

Acknowledgments The authors express their gratitude to anonymous ref-
erees for invaluable comments.

References

1) Avanzi, R.M.: On multi-exponentiation in cryptography, Cryptology ePrint
Archive, Report 2002/154 (2002). Available at http://eprint.iacr.org/2002/154/

2) Blake, I.F., Seroussi, G. and Smart, N.P.: Elliptic Curves in Cryptology, LMS,
Vol.265, Cambridge University Press (1999).

3) Brickell, E.F., Gordon, D.M., McCurley, K.S. and Wilson, D.B.: Fast exponen-
tiation with preocomputation, Advances in Cryptology—Proc. EUROCRYPT’92,
Lecture Notes in Computer Science, Vol.658, pp.200–207, Springer-Verlag (1993).

4) Bernstein, D.J. and Lange, T.: Fast addition and doubling on elliptic curves, Ad-
vances in Cryptology-Proc. ASIACRYPT’07, Vol.4833, pp.29–50 (2007).

5) Ciet, M., Joye, M., Lauter, K. and Montgomey, P.L.: Trading inversions for multi-

IPSJ Journal Vol. 49 No. 9 2975–2988 (Sep. 2008) c© 2008 Information Processing Society of Japan

2987 Revisited (Hyper)-Elliptic Curve Scalar Multiplication with a Fixed Point

plications in elliptic curve cryptography, Designs, Codes and Cryptography, Vol.39,
No.2, pp.189–206, Springer Netherlands (2006).

6) Cohen, H., Miyaji, A. and Ono, T.: Efficient elliptic curve exponentiation, Proc.
Information and communications security, ICICS’97, Lecture Notes in Computer
Science, Vol.1334, pp.282–290, Springer-Verlag (1997).

7) Cohen, H., Miyaji, A. and Ono, T.: Efficient elliptic curve exponentiation using
mixed coordinates, Advances in Cryptology—Proc. ASIACRYPT’98, Lecture Notes
in Computer Science, Vol.1514, pp.51–65, Springer-Verlag (1998).

8) Doche, C., Icart, T. and Kohel, D.R.: Efficient scalar multiplication by isogeny
decompositions, Proc. PKC2006, LNCS, Vol.3958, pp.191–206 (2006).

9) Eisenträger, K., Lauter, K. and Montgomey, P.L.: Fast elliptic curve arithmetic and
improved Weil pairing evaluation, Proc. CT-RSA2003, LNCS, Vol.2612, pp.343–
354, Springer-Verlag (2003).

10) Edwards, H.M.: A normal form for ellipticcurves, Bulletin of the American Math-
ematical Society, Vol.44, pp.393–422 (2007).

11) Kaliski Jr., B.S.: The Montgomery inverse and its applications, IEEE Trans. Com-
puters, Vol.44, pp.1064–1065 (1995).

12) Koç, Ç.K. and Savaş, E.: Architectures for unified field inversion with applications
in elliptic curve cryptography, 9th IEEE Interntional Conference on Electronics,
Circuits and Systems, ICECS 2002, Vol.3, pp.1155–1158 (2002).

13) Lange, T.: Formulae for Arithmetic on Genus 2 Hyperelliptic curve. Available at
http://www.ruhr-uni-bochum.de/itsc/tanja/preprints.html

14) Lim, C.H. and Lee, P.J.: More flexible exponentiation with precomputation, Ad-
vances in Cryptology-Proc. Crypto’94, Lecture Notes in Computer Science, Vol.839,
pp.95–107, Springer-Verlag (1994).

15) Menezes, A., Oorschot, P.C. and Vanstone, S.: Handbook of applied cryptography,
CRC Press, Inc. (1996).

16) Mishra, P.K. and Sarkar, P.: Application of Montgomery’s trick to Scalr Multi-
plication for EC and HEC Using Fixed Base Point, PKC2004, Lecture Notes in
Computer Science, Vol.2947, pp.41–57 (2004).

17) Montgomery, P.L.: Speeding the Pollard and elliptic curve methods for factoriza-
tion, Mathematics of Computation, Vol.48, pp.243–264 (1987).

18) Okeya, K., Samoa, K.S., Spahn, C. and Takagi, T.: Signed Binary Representations
Revisited, CRYPTO 2004, Lecture Notes in Computer Science, Vol.3152, pp.123–
139 (2004).

19) Standard for efficient cryptography group, specification of standards for efficient
cryptography. Available from: http://www.secg.org

Appendix

A.1 Other Coordinates
This annex summarizes addition formulae in Edward coordinates and the pre-

vious addition formulae in Jacobian coordinates.
A.1.1 Edward Coordinates
Recently, a new coordinate system, called Edward Coordinates, has been pro-

posed 10), whose comparison with other coordinate systems is investigated 4). One
of the weak points in Edward coordinates is that no prime-order elliptic curve
can be represented in Edward coordinates with the same definition field since it
must have a point with order 4 whereas a prime-order elliptic curve is usually
recommended in standards 19). Here we simply summarize Edward coordinates
and its performance.

Let Fp be a finite field, where p > 3 is a prime. The Edward form of an elliptic
curve over Fp in homogeneous coordinates is described as

EE : (X2 + Y 2)Z2 = Z4 + dX2Y 2.

Then, two points (X, Y, Z) and (rX, rY, rZ) for some r ∈ F
∗
p are recognized as the

same point. The point at infinity, which performs the zero element, is represented
with (0, 1, 1). Let P1 = (X1, Y1, Z1), P2 = (X2, Y2, Z2), and P3 = P1 + P2 =
(X3, Y3, Z3). The doubling and addition formulae in Edward coordinates can be
represented as follows.

AddE(P1, P2) (P1 �= ±P2)

U1 =Z1Z2, U2 =X1X2, U3 =Y1Y2,
S1 =(X1 + Y1)(X2 + Y2), S2 =dU2U3,
H =U2

1 − S2, R=U2
1 + S2,

X3 =U1H(S1 − U2 − U3),
Y3 =U1R(U3 − U2), Z3 = HR.

DblE(P1)

U1 =X2
1 , U2 =Y 2

1 , U3 =Z2
1 ,

S1 =(X1+Y1)
2, S2 =U1+U2, H =S2−2U3,

X3 =(S1−S2)H, Y3 =S2(U1−U2), Z3 =S2H.

The computation times in Edward coordinates are t(E + E) = 11M + S and
t(2E) = 3M +4S, where E means Edward coordinates. In this paper, the compu-
tation time of multiplication by d is not considered as special. This is due to the
fact that the limitation on d damages the flexibility of elliptic curves over a defini-
tion filed, which is exactly an advantage over RSA or DLP-based cryptosystems.

IPSJ Journal Vol. 49 No. 9 2975–2988 (Sep. 2008) c© 2008 Information Processing Society of Japan

2988 Revisited (Hyper)-Elliptic Curve Scalar Multiplication with a Fixed Point

Furthermore, such a limitation does not seem to be used in general �1.
A.1.2 Traditional Jacobian Coordinates
The traditional Jacobian coordinates 7) have been referred in many publications

so far. To compare with the addition formulae in Section 2, this section describes
the traditional Jacobian coordinates. Let P1 = (X1, Y1, Z1), P2 = (X2, Y2, Z2),
and P3 = P1 + P2 = (X3, Y3, Z3). The doubling and addition formulae in the
traditional Jacobian coordinates can be represented as follows.

Add(P1, P2) (P1 �= ±P2)
U1 =X1Z

2
2 , U2 =X2Z

2
1 , H =U2−U1,

S1 =Y1Z
3
2 , S2 =Y2Z

3
1 , R=S2 − S1,

X3 =−H3−2U1H
2+R2,

Y3 =−S1H
3+R(U1H

2−X3), Z3 =Z1Z2H.

Dbl(P1)
S =4X1Y

2
1 , M =3X2

1 +aZ4
1 ,

X3 =M2−2S,
Y3 =−8Y 4

1 +M(S−X3), Z3 =2Y1Z1.

The computation times of addition and doubling in the traditional Jacobian
coordinates are 12M + 4S and 4M + 6S, respectively.

(Received December 3, 2007)
(Accepted June 3, 2008)

(Original version of this article can be found in the Journal of Information Pro-
cessing Vol.16, pp.176–189.)

�1 The computation time in coordinates is investigated in three cases 4) (S/M, (multiplication
by d)/M) = (1, 1), (0.8, 0.5), (0.8, 0), however, the cases may not be natural since
(S/M, (multiplication by d)/M) = (0.8, 1) is usually assumed from the point of view of
practicality and flexibility.

Atsuko Miyaji received the B. Sc., the M. Sc., and the Dr. Sci.
degrees in mathematics from Osaka University, Osaka, Japan in
1988, 1990, and 1997 respectively. She joined Matsushita Electric
Industrial Co., LTD from 1990 to 1998 and engaged in research
and development for secure communication. She was an associate
professor at the Japan Advanced Institute of Science and Technol-
ogy (JAIST) in 1998. She has joined the computer science depart-

ment of the University of California, Davis since 2002. She has been a professor
at the Japan Advanced Institute of Science and Technology (JAIST) since 2007
and a director of Library of JAIST since 2008. Her research interests include the
application of number theory into cryptography and information security. She
received the IPSJ Sakai Special Researcher Award in 2002, the Standardization
Contribution Award in 2003, Engineering Sciences Society: Certificate of Appre-
ciation in 2005, the AWARD for the contribution to CULTURE of SECURITY in
2007, IPSJ/ITSCJ Project Editor Award in 2007, the Director-General of Indus-
trial Science and Technology Policy and Environment Bureau Award in 2007, and
Editorial Committee of Engineering Sciences Society: Certificate of Appreciation
in 2007. She is a member of the International Association for Cryptologic Re-
search, the Institute of Electronics, Information and Communication Engineers,
the Information Processing Society of Japan, and the Mathematical Society of
Japan.

Kenji Mizosoe received the B. Eng. degree from the National
Defense Academy in 1999 and the M. Info. Sci. degree from the
Japan Advanced Institute of Science and Technology in 2007. He
is engaged in development and research of the information security
in the government office.

IPSJ Journal Vol. 49 No. 9 2975–2988 (Sep. 2008) c© 2008 Information Processing Society of Japan

