Regular Paper

Revisited (Hyper)-Elliptic Curve Scalar Multiplication with a Fixed Point

ATSUKO MIYAJI† and KENJI MIZOSOE†

Elliptic curve cryptosystems can be constructed over a smaller definition field than the ElGamal cryptosystems or the RSA cryptosystems. This is why elliptic curve cryptosystems have begun to attract notice. This paper explores an efficient fixed-point-scalar-multiplication algorithm for the case of a definition field \(F_p \) (\(p > 3 \)) and adjusts coordinates to the algorithm proposed by Lim and Lee. Our adjusted algorithm can give better performance than the previous algorithm in some sizes of the pre-computed tables.

1. Introduction

An elliptic curve cryptosystem, which is constructed on the group of points of an elliptic curve over a finite field, can provide a small and fast public key cryptosystem if the elliptic curve is chosen appropriately\(^2\),\(^15\). This is why elliptic curve cryptosystems have been widely used in various applications. An elliptic curve cryptosystem consists of an elliptic curve scalar multiplication \(kP \).

There are two approaches for an efficient elliptic curve scalar multiplication \(kP \). One is the scalar multiplication for a randomly given point \(P \), which is executed in a signature verification, an encryption, or a decryption. The other is that for a fixed point \(P \), which is executed in a signature generation or an encryption. Both are usually studied independently and evaluated from slightly different viewpoints. From the point of view of the computational amount, the random-point-scalar-multiplication algorithm is evaluated by the total computational complexity of both making a pre-computed table and the main computation with the pre-computed table. This is because the input point is not given beforehand. On the other hand, the fixed-point-scalar-multiplication algorithm is evaluated by the computational amount of only the main computation with the pre-computed table. This is because the input point is given beforehand and consequently every scalar multiplication can start with the main computation by making the pre-computed table beforehand. From the viewpoint of the memory, both are evaluated by the size of the pre-computed table.

Many researches on the random-point-scalar-multiplication algorithm have been proposed so far\(^1\),\(^7\),\(^18\). On the other hand, two researches on the fixed-point scalar multiplication algorithms have been proposed so far, the BGMW\(^3\)- and LL\(^14\)-algorithms, which are each based on different concepts. The BGMW-algorithm uses the base of \(2^w \), holds the precomputed points based on \(2^w P \), and computes \(kP \) by repeating only additions. The LL-algorithm divides \(k \) into blocks of \(h \times v \) (1 division) or \(h_1 \times v_1 + h_2 \times v_2 \) (2 divisions), holds the precomputed points based on each block, and computes \(kP \) by repeating additions and doubling. The LL-algorithm is more flexible and can give a wider range of time-memory tradeoffs than the BGMW-algorithm. This paper focuses on the LL-algorithm over an elliptic curve.

The implementation time of elliptic curve scalar multiplications depends on three different factors: the definition field, the coordinate systems, and the algorithm itself such as BGMW- or LL-algorithm. This paper focuses on two factors: the coordinate systems and the efficient fixed-point scalar multiplication. There are several coordinates systems, affine (\(A \)), Jacobian (\(J \)), modified Jacobian, projective, and mixed Jacobian coordinates of the combination between \(A \) and \(J \)\(^7\). All of these are defined in the Weierstrass form. In addition to the Weierstrass form, the Edward form was proposed\(^10\). In the Edward form, affine coordinates (\(E_A \)), homogeneous coordinates (\(E \)), and mix Edward coordinates of the combination between \(E_A \) and \(E \) can be considered, however, \(E_A \) is not usually discussed since it is rather slow. Note that the doubling and addition of Edward coordinates are faster than those of Jacobian coordinates, however, mixed Edward coordinates are slower than mixed Jacobian coordinates. We also note that addition in \(A \) is not necessarily slower than that in \(E \) or in mixed coordinates of \(A \) and \(J \).

Generally, the Jacobian coordinate system has been adopted for the random-
The ratio of I/M based on the assumption of $S = 0.8M$ when the computational complexity of our algorithms is equal to that of the previous one, where I, M, or S expresses the computational complexity of 1 modular inverse, multiplication, or square on the 160-bit field, respectively. Our algorithm inherits the flexibility of the original LL-algorithm. In the case of an elliptic curve, our algorithm with pre-computed points of 18, 26, 34, 42, or 50 can compute kP more efficiently than the previous algorithm with the best coordinates*1 in the break-even point of $I/M < 12.2, 12.7, 12.7, 12.8, \text{ or } 12.3$, respectively. In fact, the computational complexity of our algorithm can be reduced to 95%, 93%, 93%, 93%, or 94% of the previous algorithm with the best coordinate system in the case of $I/M = 11$. In the case of a hyper-elliptic curve with genus 2, our algorithm with pre-computed points of 18 (resp. 28, 30, 42, 46, 58) can compute kP more efficiently than the previous algorithm in the break-even point of $I_{hec}/M_{hec} > 2.9$ (resp. 3). That is, our algorithm is usually more efficient than the previous one. Here, I_{hec}, M_{hec}, or S_{hec} expresses the computational complexity of 1 modular inverse, multiplication, or square on the 80-bit field, respectively. In the case of $I_{hec} = 11M_{hec}$, the computational complexity of our algorithm with a pre-computed table of 18, 28, 30, 42, 46, or 58 can be reduced to 92%, 92%, 93%, 87%, 93%, or 88% of the previous algorithm, respectively.

This paper is organized as follows. Section 2 summarizes the known facts on (hyper-)elliptic curves. Section 3 reviews some known algorithms such as the LL-algorithm and the Montgomery trick. Section 4 presents our new scalar multiplication algorithm with a fixed point and analyzes the computational complexity theoretically. Section 5 provides the cases where our results are better than the previous results. It also describes the performance of the previous algorithm with Jacobian and Edward coordinates for comparison. Appendix A.1 summarizes the addition formulae in Edward coordinates.

*1 The best coordinate system for the previous algorithm is still Jacobian coordinate system as mentioned in Ref.6) since mixed Edward coordinate system is slower than mixed Jacobian coordinate system. The adaptability and performance of Edward coordinate to the previous algorithm is also investigated in this paper.
2. Preliminaries

This section summarizes some facts on elliptic curves and hyper elliptic curves such as the coordinate systems.

2.1 Elliptic Curve

Let \(\mathbb{F}_p \) be a finite field, where \(p > 3 \) is a prime. The Weierstrass form of an elliptic curve over \(\mathbb{F}_p \) in affine coordinates is described as

\[
E/\mathbb{F}_p : y^2 = x^3 + ax + b \quad (a, b \in \mathbb{F}_p, 4a^3 + 27b^2 \neq 0).
\]

The set of all points \(P = (x, y) \in \mathbb{F}_p \times \mathbb{F}_p \) satisfying \(E \) with the point of infinity \(\mathcal{O} \), denoted by \(E(\mathbb{F}_p) \), forms an abelian group. Let \(P_1 = (x_1, y_1) \) and \(P_2 = (x_2, y_2) \) be two points on \(E(\mathbb{F}_p) \) and \(P_3 = P_1 + P_2 = (x_3, y_3) \) be the sum. Then the addition formulae are given as follows.

Let us denote the computational complexity of an addition (resp. a doubling) into Jacobian coordinates as \(\text{Add}(P_1, P_2) \) (resp. \(\text{Dbl}(P_1) \)). Then, two points \((X, Y, Z) \) and \((r^2X, r^3Y, rZ) \) for some \(r \in \mathbb{F}_p^* \) are recognized as the same point. The point at infinity is represented by \((1, 1, 0)\). Let \(P_1 = (X_1, Y_1, Z_1) \), \(P_2 = (X_2, Y_2, Z_2) \), and \(P_3 = P_1 + P_2 = (X_3, Y_3, Z_3) \). The addition formulae have gradually been improved after they were introduced widely \(^6\). Here we show the latest addition formulae \(^4\). The total number of \(S \) and \(M \) in the latest addition formulae is the same as before, however, they decrease \(M \) and increase \(S \). Therefore, they usually reduce the total computational complexity since \(S < M \). For comparison, Appendix A.1 shows the previous addition formulae. The doubling and addition formulae in Jacobian coordinates can be represented as follows.

\[
\begin{align*}
\text{Add}^J(P_1, P_2) \quad (P_1 \neq \pm P_2) & \quad \text{Dbl}^J(P_1) \\
\text{Add}_a(P_1, P_2): & \quad \alpha = x_2 - x_1 \\
\lambda & = \frac{y_2 - y_1}{x_2 - x_1} \\
x_3 & = x_1^2 - x_2^2 \\
y_3 & = \gamma(x_1 - x_3) - y_1
\end{align*}
\]

Let us denote the computational complexity of an addition (resp. a doubling) by \(t(A + A) \) (resp. \(t(2A) \)) in affine coordinates and multiplication (resp. inverse, resp. squaring) in \(\mathbb{F}_p^* \) by \(M \) (resp. \(I \), resp. \(S \)), where \(A \) means affine coordinates. However, it is usual to neglect the subtraction, the multiplication, or the addition by a small constant in \(\mathbb{F}_p \). The computational complexity then we see that \(t(A + A) = I + 2M + S \) and \(t(2A) = I + 2M + 2S \).

For a given point \(P = (x, y) \) of \(E/\mathbb{F}_p \), the point \(2P = (X, Y) \) is computed by\(^5\) the following formulas:

\[
\begin{align*}
X &= (3x^2 + a)\lambda^2 - 2x \\
y &= (x^2 - 2a)\lambda^2 - y
\end{align*}
\]

The computation times in Jacobian coordinates are \(t(J + J) = 11M + 5S \) and \(t(2J) = 2M + 8S \), where \(J \) means Jacobian coordinates.

There are several coordinate systems, affine (\(A \)), Jacobian (\(J \)), and their combination, called mixed coordinates \(^7\). In addition to the Weierstrass form, the Edward form was proposed \(^10\), which is described in Appendix A.1. In the Edward form, affine coordinates (\(E_A \)) and homogeneous coordinates (\(E \)) can be considered as usual, however, \(E_A \) is not usually discussed since both addition and doubling in \(E_A \) are rather slower than those in \(E \) as well as those in \(A \). We can also consider mix coordinates of \(E_A \) and \(E \). These performances are summarized in Table 1. Note that the doubling and addition of Edward coordinates are faster than those of Jacobian coordinates, however, for mixed Edward coordinates they are slower than for mixed Jacobian coordinates since \(S < M \).

There are two ways to execute the LL-algorithm, both of which assume points in the pre-computed table are given in affine coordinates. One way adopts Ja-
coordinates. The other adopts affine coordinates in the entire algorithm. In the former case, the dominant factor of computational complexity is the computational complexity in mixed coordinates in the entire algorithm. In the latter case, the dominant factor of computational complexity is the computational complexity of addition in affine coordinates. As a result, affine coordinates A or mixed coordinates of J and A are faster than mixed coordinates of E and $F_{\mathcal{E}}$ when executing the LL-algorithm. These adaptability will be discussed in Section 4.

2.2 Hyper-Elliptic Curve

A hyper-elliptic curve $C/F_p(p > 3)$ with genus 2 is described as

$$C : Y^2 = F(X) = X^5 + f_4 X^4 + f_3 X^3 + f_2 X^2 + f_1 X + f_0,$$

where $F(X)$ is in $F_p[X]$. In the case of $p \neq 5$, we can set $f_3 = 0$. The divisors of a hyper-elliptic curve are defined as the free abelian group of points $P_1, \ldots, P_r \in C$, $D = \sum_{P_i \in C} m_i P_i$, $m_i \in \mathbb{Z}$. The degree of D is defined as $\sum_{P_i \in C} m_i$, and the order at P_i in C is defined as $m_i = \text{ord}_{P_i}(D)$. The Jacobian variety J_C is defined as D^0/D^1, where D^0 is a group of divisors with degree 0 and D^1 is a group of divisors of functions. Any divisor $D \in J_C$ is equivalent to a divisor called a reduced divisor modulo D^1,

$$D \sim \sum_{P_i \in C} m_i'' P_i - r P_\infty \ (r = \sum_{P_i \in C} m_i'' \leq g),$$

where g is a genus of C. To compute an addition of divisors, Mumford-representation is useful. In Mumford-representation, $D \in C$ with the genus 2 is described by $D = (u_1, u_0, v_1, v_0)$, where

Table 1 Comparison of elliptic-curve coordinates.

<table>
<thead>
<tr>
<th>$t(A + A)$</th>
<th>$t(2A)$</th>
<th>$t(J + J)$</th>
<th>$t(J + A = J)$</th>
<th>$t(J + J_\mathcal{E})$</th>
<th>$t(J_\mathcal{E} + \mathcal{E})$</th>
<th>$t(2J_\mathcal{E})$</th>
<th>$t(3J_\mathcal{E})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2M + S + I$</td>
<td>$2M + 2S + I$</td>
<td>$11M + 5S$</td>
<td>$7M + 4S$</td>
<td>$2M + 8S$</td>
<td>$11M + S$</td>
<td>$10M + S$</td>
<td>$3M + 4S$</td>
</tr>
</tbody>
</table>

Table 2 Comparison of hyper-elliptic-curve coordinates.

<table>
<thead>
<tr>
<th>$t(A_{\text{hec}} + A_{\text{hec}})$</th>
<th>$t(2A_{\text{hec}})$</th>
<th>$t(J_{\text{hec}} + J_{\text{hec}})$</th>
<th>$t(J_{\text{hec}} + J_{\text{hec}})$</th>
<th>$t(J_{\text{hec}} + J_{\text{hec}})$</th>
<th>$t(2J_{\text{hec}})$</th>
<th>$t(3J_{\text{hec}})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$22M_{\text{hec}} + 35_{\text{hec}} + 3_{\text{hec}}$</td>
<td>$22M_{\text{hec}} + 52_{\text{hec}} + 5_{\text{hec}}$</td>
<td>$40M_{\text{hec}} + 65_{\text{hec}} + 8_{\text{hec}}$</td>
<td>$47M_{\text{hec}} + 45_{\text{hec}} + 10_{\text{hec}}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$$U = \prod_{P_i} (X - x_i)^{m_i''} = X^2 + u_1 X + u_0 \in F_p[X],$$

$$V = v_1 X + v_0 \in F_p[X],$$

$$V^2 \equiv F(X) \pmod{U(X)}.$$
3. Previous Work

3.1 Lim-Lee Algorithm

We briefly review the LL-algorithm\(^4\), one of previous scalar multiplication algorithms with precomputation. The efficiency in the case of the elliptic curve is re-discussed\(^6\). Let us assume that the size of the underlying field and the scalar \(k\) are \(n\) bits. The LL-algorithm consists of two phases: the pre-computation phase and the main computation phase. The pre-computation makes \((2^h - 1) \times v\) points \(P[i, s]\) \(((i, s) \in \{0, \ldots, v - 1\} \times \{1, \ldots, 2^h - 1\}\),

\[
P[i, s] = \sum_{j=0}^{h-1} s_j 2^{h+j} P,
\]

where \(a = [\frac{n}{2}]\) and \(b = [\frac{n}{2}]\) and \(s_0, \ldots, s_{h-1}\) is a representation of \(s\) in radix 2, that is \(s = \sum_{j=0}^{h-1} s_j 2^j\). On the other hand, the main computation divides \(k\) into \(h \times v\) blocks and computes \(kP\) by repeating \(v\) additions of pre-computed points \(P[i, s]\) and 1 doubling. Note that the \((v - 1)\)-th block may not be full since the \(bv - a\) bits are empty (see Fig. 1). Therefore, 1 addition can be saved for the first \(bv - a\) rounds. The LL-algorithm focuses on the case where \(P\) is given beforehand such as a basepoint; it assumes that the precomputed points are given beforehand, and, thus, it does not take the computational complexity of the pre-computation into account.

Algorithm 1

Input: \(k = \sum_{i=0}^{n-1} k[i] 2^i\), \(P\), \(\{P[i, j]\}\)
Output: \(kP\)

\[\begin{align*}
0. & \quad k_{i,j} = \sum_{j=0}^{h-1} k[\ell j + j 2^\ell] \\
& \quad ((i, j) \in \{0, \ldots, v - 1\} \times \{0, \ldots, b - 1\}). \\
1. & \quad \text{If } bv - a > 0, \text{ then } \ell_v = v - 1. \\
& \quad \text{Else } \ell_v = v. \\
2. & \quad T = \sum_{i=0}^{\ell_v-1} P[i, k_i, b_i - 1]. \\
3. & \quad \text{For } j = b - 2 \text{ to } 0 \text{ by } -1 \\
4. & \quad \text{If } j \geq b - (bv - a), \text{ then } \ell_v = v - 1. \\
& \quad \text{Else } \ell_v = v.
\end{align*}\]

5. **main loop:** \(T = 2T + \sum_{i=0}^{\ell_v-1} P[i, k_i, j]\).
6. **Output** \(T\).

The memory and the computational complexity of Algorithm 1 are \((2^h - 1) \cdot v\) points and \((b - 1)D + (a - 1)A\), respectively. Here, \(A\) (resp. \(D\)) represents the computational complexity of addition (resp. doubling).

The following is an example of Algorithm 1.

Example: Let \(k = 100010001000\) (12-bit number) and \((h, v) = (2, 3)\). Then, \(kP\) is computed as follows. First, \((a, b) = (6, 2)\) and precomputed points are given by \(P[0, 1] = P\), \(P[0, 2] = 2P\), \(P[0, 3] = P + 2P\), \(P[1, 1] = 2^2P\), \(P[1, 2] = 2^3P\), \(P[1, 3] = 2^2P + 2^3P\), and \(P[2, 1] = 2^4P\), \(P[2, 2] = 2^{10}P\), \(P[2, 3] = 2^4P + 2^{10}P\). Indexes of \(k\) are given by \(k_{0,0} = 0\), \(k_{0,1} = 2\), \(k_{1,0} = 0\), \(k_{1,1} = 1\), \(k_{2,0} = 0\), and \(k_{2,1} = 2\). Then, \(kP\) is computed by

\[
T = P[0, 2] + P[1, 1] + P[2, 2] = 2T + P[0, 0] + P[1, 0] + P[2, 0].
\]

Algorithm 1 can be applied to two divisions \((h_1, v_1) \times (h_2, v_2)\). Here we describe the division procedure of \(k\) faithfully from the original as seen in Fig. 2. Let \((h_1, v_1) \times (h_2, v_2)\) be a division of \(n\) with \(h_1 v_1 < h_2 v_2\). Then, an \(n\)-bit \(k\) is divided into two blocks of \(v_1 \times h_1\) block with \(b_1\) bits and \(v_2 \times h_2\) block with \(b_2\) bits as follows.

\[
\begin{align*}
 b_2 & = \lceil \frac{n}{v_1 h_1 + v_2 h_2} \rceil, & a_2 & = b_2 v_2, \\
 b_1 & = \lfloor \frac{n - b_2 v_2}{h_2 v_2} \rfloor, & a_1 & = b_1 v_1.
\end{align*}
\]

(1)

The pre-computed points, \(\{P_1[i_1, s_1], P_2[i_2, s_2]\}\) \(((i_1, s_1) \in \{0, \ldots, v_1 - 1\} \times \{0, \ldots, v_2 - 1\}\).
\begin{align*}
{1, \cdots, 2^{h_1} - 1}, \ (i_2, s_2) \in \{0, \cdots, v_2 - 1\} \times \{0, \cdots, 2^{h_2} - 1\},
\end{align*}

consist of \((2^{h_1} - 1) \times v_1 + (2^{h_2} - 1) \times v_2\) points, which are defined as
\begin{align*}
P_1[i_1, s_1] &= \sum_{j=0}^{h_1-1} s_{1,j} 2^{h_1-1} + a_1 i_1 P, \\
P_2[i_2, s_2] &= \sum_{j=0}^{h_2-1} s_{2,j} 2^{h_2-1} + a_2 i_2 + b_1 v_1 P,
\end{align*}

where \(s_{1,0}, \cdots, s_{1,h_1-1}\) (resp. \(s_{2,0}, \cdots, s_{2,h_2-1}\)) is a representation of \(s_1\) (resp. \(s_2\)) in radix 2, that is \(s_1 = \sum_{j=0}^{h_1-1} s_{1,j} 2^j\) (resp. \(s_2 = \sum_{j=0}^{h_2-1} s_{2,j} 2^j\)). On the other hand, the main computation divides \(n\)-bit \(k\) into two divisions of \(v_1 \times h_1\) blocks with \(b_1\) bits and \(v_2 \times h_2\) blocks with \(b_2\) bits and, then, computes \(kP\) by repeating \(v_1 + v_2\) additions to pre-computed points \(P_1[i_1, s_1]\) or \(P_2[i_2, s_2]\) and 1 doubling. If \((a_1 h_1 + a_2 h_2) - n\) bits are empty or \(b_2 > b_1\), then 1 addition is saved for the first \(n - (a_1 h_1 + a_2 h_2)\) bits in the second division or \(v_1\) additions are saved for the first \(b_2 - b_1\) bits in the first division. The detailed algorithm with 2 divisions \((h_1, v_1) \times (h_2, v_2)\) with \(v_1 + v_2 \geq 2\) is given as follows.

\textbf{Algorithm 2}
\begin{enumerate}
\item Input: \(k = \sum_{i=0}^{n-1} k[i] 2^i, \ P, \ \{P_1[i, j], P_2[i, j]\}\)
\item Output: \(kP\)
\item \(k_{1, i, j} = \sum_{\ell=0}^{h_1-1} k[a_1 \ell + j + b_1 v_1 h_1] 2^\ell, ((i, j) \in \{0, \cdots, v_1 - 1\} \times \{0, \cdots, b_1 - 1\})\),
\item \(j = b_2 - 1\)
\item If \(b_2 > b_1\), then \(T = \sum_{i=0}^{v_2-1} P_2[i, k_{2,i,j}]\).
\item Else if \(b_1 = b_2\) and \((a_1 h_1 + a_2 h_2) > n\), then \(T = \sum_{i=0}^{v_1-1} P_1[i, k_{1,i,j}] + \sum_{j=0}^{v_2-1} P_2[i, k_{2,i,j}]\).
\item Else, then \(T = \sum_{i=0}^{v_1-1} P_1[i, k_{1,i,j}] + \sum_{i=0}^{v_2-1} P_2[i, k_{2,i,j}]\).
\item For \(j = b_2 - 2\) to 0 by \(-1\) \{ \item If \(j \geq b_1\), then \(T = 2T + \sum_{i=0}^{v_2-1} P_2[i, k_{2,i,j,b_1-1}]\).
\item Else if \(j > 2 - 1 - (a_1 h_1 + a_2 h_2 - n)\), then \(T = 2T + \sum_{i=0}^{v_1-1} P_1[i, h_1] + \sum_{j=0}^{v_2-2} P_2[i, k_{2,i,j,b_2-1}]\).
\item Else, then \(T = 2T + \sum_{i=0}^{v_1-1} P_1[i, h_1] + \sum_{i=0}^{v_2-1} P_2[i, k_{2,i,j,b_2-1}]\).
\}\item Output \(T\).
\end{enumerate}

3.2 Montgomery’s Trick

The computational complexity of an inverse is more expensive than that of a multiplication over \(\mathbb{F}_p\). The Montgomery’s trick works efficiently when several inversions are executed simultaneously, denoted by \(\text{Minv}[n]\) in this paper. The algorithm is briefly given as follows.

\textbf{Algorithm 3 (Minv[n]) Montgomery’s trick}
\begin{enumerate}
\item Input: \(\alpha_0, \cdots, \alpha_{n-1}, p\)
\item Output: \(\alpha_0^{-1} \mod p, \cdots, \alpha_{n-1}^{-1} \mod p\)
\item \(\lambda_0 = \alpha_0\)
\item For \(i = 1\) to \(n - 1\)
\item \(\lambda_i = \lambda_{i-1} \alpha_i \mod p, \ I = \lambda_{n-1}^{-1} \mod p\)
\item For \(i = n - 1\) to \(0\)
\item \(\lambda_i = I \alpha_i \mod p, \ I = I \alpha_i \mod p\)
\item Output \(\{\lambda_0, \cdots, \lambda_{n-1}\}\)
\end{enumerate}

\(\text{Minv}[n]\) computes \(n\) inverses with \(3(n-1)\) multiplications and 1 inverse. We will apply the Montgomery trick to compute \(\ell\) additions simultaneously in affine coordinate, which will be shown in Section 4.3.

3.3 Mishra-Sarkar Algorithm

Mishra and Sarkar proposed an SPA-resistant scalar multiplication \(kP\) with a
fixed point\(^{16}\), which adopts affine coordinate, and applies Montgomery’s trick to reduce the computational complexity. Their algorithm expresses \(k\) in the base \(2^w\) such as \(k = \sum_{i=0}^{t} c_i 2^{wi} = \sum_{j=0}^{t} (\sum_{i=0}^{w-1} a_{i,j} 2^i) 2^{wj}\), where \(t = \lceil n/w \rceil\), \(c_i \in \{0, \ldots, 2^w - 1\}\), \(c_i = \sum_{j=0}^{w-1} a_{i,j} 2^j\), and \(a_{i,j} \in \{0, 1\}\). The pre-computed table consists of \(\{P[j] = 2^{wj} P | 0 \leq j \leq t - 1\}\). The algorithm then computes \(c_i 2^{wi} P = \sum_{j=0}^{w-1} a_{i,j} 2^j P[i]\) for \(0 \leq i \leq t\) with the binary method from LSB in parallel and adds each result simultaneously to get \(kP\). Each process requires an inverse in affine coordinate independently and simultaneously, to which Montgomery trick can be applied. However, it is rather inefficient in the paradigm of an ordinary fixed-point scalar multiplication.

4. Improved Scalar Multiplication with a Fixed Point

In this section, we improve a scalar multiplication with a fixed point by applying Montgomery’s trick to the LL-algorithm and adjusting the division procedure in \((v_1, h_1) \times (v_2, h_2)\).

4.1 Algorithm Intuition

The LL-algorithm in Section 3.1 consists of two phases: the pre-computation phase and the main computation phase. The pre-computation phase is done beforehand, which gives a set of pre-computed points in affine coordinates. Only the main computation phase is done online, which repeats \(v\) or \(v_1 + v_2\) additions of pre-computed points and 1 doubling. There are two ways of executing the main computation in elliptic curves. One way adopts Jacobian/Edward coordinates and its mix coordinates. The other adopts affine coordinates in the entire algorithm. In the former case, the dominant factor is the computational complexity of mixed coordinates. In the latter case, the dominant factor is the computational complexity of affine coordinates. The performance of the LL-algorithm with 1-division in Jacobian and its mix coordinates is shown in Ref.6), where the optimal division \((h, v)\) is also investigated. However, neither 2-division in Jacobian and its mix coordinates nor the LL-algorithm in Edward and its mix coordinates have been investigated in any paper so far\(^{11}\). Furthermore, in the case of the Weierstrass form, affine coordinates with the Montgomery trick may work more efficiently in some cases since the main computation consists of an iteration that can be fitted to parallel processing. In fact, the optimal \((h, v)\) in affine coordinates would be different from that in Jacobian/Edward coordinates since the performance of each coordinate is different, in fact: \(t(J + A) > t(2J)\) (or \(t(E + E_A) > t(2E)\)) and \(t(A + A) < t(2A)\).

4.2 Our Scalar Multiplication Algorithm with 1 Division

Here we show our scalar multiplication algorithm, Algorithm 4, which optimizes Algorithm 1 in such a way that the Montgomery trick \(\text{Minv}[\ell]\) is applied efficiently. A sketch of the algorithm is described as follows.

1. Use formulae of \((\text{Dbl}_p, \text{Dbl}_l, \text{Dbl}_W)\) and \((\text{Add}_p, \text{Add}_l, \text{Add}_W)\) as affine coordinates in Section 2, where only \(\text{Dbl}_l\) and \(\text{Add}_l\) require 1 inverse.

2. \(\text{TournamentAdd}[\ell_e]\) is the summation algorithm, for input of \(\ell_e\) points \(T_1, \cdots, T_{\ell_e}\), it arranges them in the tournament structure (Fig. 3), and outputs the result of \(T_1 + \cdots + T_{\ell_e}\), which is used at the beginning of Algorithm 4 and the end of the main loop.

3. \(\text{DblAddMinv}[\ell]\), the 1-doubling-and-\((\ell - 1)\)-addition algorithm, for input of 1 doubling point \(T_0\) and \(2(\ell - 1)\) addition points \(T_1, \cdots, T_{2\ell-2}\), it uses the Montgomery trick \(\text{Minv}[\ell]\) to compute \(\ell\) inverses simultaneously, and outputs \(2T_0, T_1 + T_2, \cdots, T_{2\ell-3} + T_{2\ell-2}\), which are used at the beginning of the main loop.

4. \(\text{AddMinv}[\ell]\), the \(\ell\)-addition algorithm, for input of \(2\ell\) addition points \(T_1, \cdots, T_{2\ell}\), it uses the Montgomery trick \(\text{Minv}[\ell]\) to compute \(\ell\) inverses.

\[\frac{\ell_e}{2}\]

Fig. 3 Tournament structure.
simultaneously, and outputs $T_1 + T_2, \cdots, T_{2^\ell - 1} + T_{2^\ell}$, which are used in the function of TournamentAdd[].

Let (h,v) be a division of n. Let us use the same notation as in Section 3.1 such as $a = \lceil \frac{n}{2} \rceil$ and $b = \lceil \frac{n}{4} \rceil$. The pre-computed points are constructed in the same way as Algorithm 1 by using the above parameters, which consist of $((2^h - 1) \times v)$ points $\{P[i,s]\}$, where $P[i,s] = \sum_{j=0}^{h-1} s_j 2^{h+i+j}P$ with a representation of s in radix 2. Then, the detailed algorithm for (h,v) with $v \geq 2$ is given as follows. (see Fig.1). Note that the main loop in Algorithm 1 corresponds to steps 6-8 in Algorithm 4.

Algorithm 4
Input: $k = \sum_{i=0}^{n-1} k[i]2^i, P, \{P[i,j]\}$
Output: kP
0. $k_{i,j} = \sum_{i=0}^{b-1} k[a\ell + j + b]2^\ell$ $(i,j) \in \{0, \cdots, v-1\} \times \{0, \cdots, b-1\}$.
1. If $bv - a > 0$, then $\ell_v = v - 1$.
Else $\ell_v = v$.
2. $T = \text{TournamentAdd}[^\ell \varepsilon]P[0,k_0,0], \cdots, P[\ell_v - 1, k_{\ell_v - 1,0}]$.
3. For $j = b - 2$ to 0 by -1 {
4. If $b - (bv - a) \geq 0$, then $\ell_e = v + 1$.
Else $\ell_e = v + 2$.
5. $\ell = \left\lfloor \frac{\ell_v}{2} \right\rfloor$.
6. $(T_1, \cdots, T_{2^{\ell_v}}) = \text{DblAddMinv}[\ell](T_1, P[0,k_0,0], \cdots, P[2(\ell_v - 1) - 1, k_{2(\ell_v - 1) - 1,0}]).$
7. If $\ell \equiv 1 \mod 2$, then $\ell + 1 = P[2(\ell_v - 1) - 1, k_{2(\ell_v - 1) - 1,0}]$ and $\ell_e = \ell + 1$.
Else $\ell_e = \ell$.
8. $T = \text{TournamentAdd}[\ell_v](T_1, \cdots, T_{\ell_e})$.

Algorithm 5 (TournamentAdd[ℓ_v])
Input: T_1, \cdots, T_{ℓ_e}
Output: $T_1 + \cdots + T_{\ell_e}$
1. While $\ell_e \geq 4$
2. $\ell = \left\lfloor \frac{\ell_v}{2} \right\rfloor$.
3. $(T_1, \cdots, T_{\ell_v}) = \text{AddMinv}[^\ell](T_1, \cdots, T_{2\ell_v})$.
4. If $\ell \equiv 1 \mod 2$, then $T_{\ell + 1} = T_{2\ell + 1}$ and $\ell_e = \ell + 1$.
Else $\ell_e = \ell$.
5. If $\ell_v = 3$, then $T = \text{Add}(T_1, T_2, T_3)$.
6. If $\ell_v = 2$, then $T = \text{Add}(T_1, T_2)$.
7. If $\ell_v = 1$, then $T = T_1$.
8. Output T.

Algorithm 6 (DblAddMinv[ℓ])
Input: $T_0, T_1, \cdots, T_{2\ell - 1}$
Output: $2T_0, T_1 + T_2, \cdots, T_{2\ell - 3} + T_{2\ell - 2}$
1. Compute $(\lambda_0, \lambda_1, \cdots, \lambda_{\ell - 1}) = \text{Minv}[\ell](\text{Dbl}(T_0), \text{Add}(T_1, T_2), \cdots, \text{Add}(T_{2\ell - 3}, T_{2\ell - 2}))$.
2. Compute $T_0 = \text{Dbl}(T_{2\ell - 6}, T_0, \lambda_0)$ and $T_i = \text{Add}(T_{2\ell - 6}, T_{2i}, \lambda_i)$ for $i \in \{1, \cdots, \ell - 1\}$.
3. Output $\{T_0, T_1, \cdots, T_{\ell - 1}\}$.

Algorithm 7 (AddMinv[ℓ])
Input: $T_1, \cdots, T_{2\ell}$
Output: $T_1 + T_2, \cdots, T_{2\ell - 1} + T_{2\ell}$
1. Compute $(\lambda_1, \cdots, \lambda_\ell) = \text{Minv}[\ell](\text{Add}(T_1, T_2), \cdots, \text{Add}(T_{2\ell - 3}, T_{2\ell - 2}))$.
2. Compute $T_1 = \text{Add}(T_{2\ell - 1}, T_{2i}, \lambda_i)$ for $i \in \{1, \cdots, \ell\}$.
3. Output $\{T_1, \cdots, T_\ell\}$.

4.3 Our Scalar Multiplication Algorithm with 2 Divisions
Now we apply the idea of Algorithm 4 to Algorithm 2 and revisit the division procedure carefully. Let $(h_1, v_1) \times (h_2, v_2)$ be a division of n with $h_1v_1 < h_2v_2$. Then, an n-bit k is divided into two blocks of $v_1 \times h_1$ block with b_1 bits and $v_2 \times h_2$ block with b_2 bits in the optimal division between Eq. (1) and Eq. (2).

\[
\begin{align*}
\ell_1 &= \left\lfloor \frac{n}{v_1h_1 + v_2h_2} \right\rfloor, & a_1 &= b_1v_1, \\
\ell_2 &= \left\lfloor \frac{n - b_1v_1h_1}{h_2} \right\rfloor, & a_2 &= \left\lfloor \frac{n}{v_2h_2} \right\rfloor.
\end{align*}
\]

Figure 4 shows the division procedure of Eq. (2). This division procedure is said to be optimal when the redundant part of computation, $|a_1h_1 + a_2h_2 - n|$, is minimal. The redundant part of computation results from $\left\lfloor \frac{n - b_1v_1h_1}{h_2} \right\rfloor$ and $\left\lfloor \frac{n}{v_2h_2} \right\rfloor$ in the case of Eq. (1) or Eq. (2), respectively. Therefore, the redundant part in Eq. (2) seems to be less than or equal to that in Eq. (1). In fact, in our experimental results, the division procedure of Eq. (2) was optimal.

Then, the pre-computed points are constructed in the same way as in Algorithm 2 by using the above parameters, which consist
4. If \(k \) is odd, then \(kP \) is computed as follows.

The detailed algorithm in 2 divisions \((h_1, v_1) \times (h_2, v_2)\) with \(v_1 + v_2 \geq 2\) is given as follows. Note that step 4 in Algorithm 4 corresponds to steps 4-6 in Algorithm 8 and that \(b_1 \geq b_2 \) (resp. \(b_2 \geq b_1 \)) holds in our algorithm (resp. Algorithm 8).

Algorithm 8

Input: \(k = \sum_{i=0}^{n-1} k[i]2^i \), \(P, \{P[i,j], P_s[i,j]\} \)

Output: \(kP \)

1. \(k_{1,i,j} = \sum_{i=0}^{h_i-1} k[a_1\ell + j + b_1]2^i(i,j) \in \{0, \ldots, v_1 - 1\} \times \{0, \ldots, b_1 - 1\} \}, \)

2. \(k_{2,i,j} = \sum_{i=0}^{b_2-1} k[a_2\ell + j + b_2 + b_1v_1h_1]2^i(i,j) \in \{0, \ldots, v_1 - 2\} \times \{0, \ldots, b_2 - 1\} \).

3. For \(j = b_1 - 1 \)

4. If \(b_1 > b_2 \), then \(\ell = v_1 \).

5. Else if \(b_1 = b_2 \) and \(a_1h_1 + a_2h_2 > n \), then \(\ell = v_1 + v_2 - 1 \) and

6. Else, \(\ell = v_1 + v_2 \) and

7. Output \(T \).

4.4 Performance

This section shows the computational complexity of Algorithms 4 and 8 theoretically after investigating the computational complexity for the computation of all inverses in the summation algorithm, TournamentAdd[\(\ell_c \)], in affine coordinates \(^1\). The computational complexity, denoted by Inv[\(\ell_c \)] in this paper, is shown in the next theorem.

Theorem 1 Let Inv[\(\ell_c \)] be the computational complexity for the computation of inverses in the \(\ell_c \)-point-summation algorithm, TournamentAdd[\(\ell_c \)] in affine coordinates. Then the following holds:

(1) \(\text{Inv}[\ell_c] = \left\{ \begin{array}{ll} 0 & \text{if } \ell_c = 1 \\ 3(\ell_c - t - 1)M + tI & \text{if } 2^t < \ell_c < 2^{t+1} \\ 3(\ell_c - t - 2)M + (t + 1)I & \text{if } 2^t < \ell_c < 2^{t+1} \end{array} \right. \)

(2) \(\text{Inv}[\ell_c + 1] = \text{Inv}[\ell_c] + 3M \), if \(2^t < \ell_c < \ell_c + 1 \leq 2^{t+1} \),

where \(M \) (resp. \(I \)) represents the computational complexity of the modular multiplication (resp. inverse) on the definition field.

proof: Regarding (1), it follows from the fact that the Montgomery’s trick Minv[\(n \)] computes \(\ell_c \) inverses with \(I + 3(\ell_c - 1)M \). As for (2), it immediately follows from (1).

By using Theorem 1, the total computational complexity \(\text{Comp}_4 \) of Algorithm 4 with \((h, v) \ (v \geq 2)\) can be computed as follows:

\[^1\] The number of input points for doubling is doubled. That is, the number of input points of summation of \(2T_0 + T_1 + \cdots + T_{\ell_c - 2} \) is \(\ell_c \).
Theorem 2 Let Comp_1 be the total computational complexity of Algorithm 4 with \((h,v)\). Then Comp_1 can be computed as follows:

\[
\text{Comp}_1 = \begin{cases}
(b-1)D_{ni} + (a-1)A_{ni} + \text{Inv}[v-1] + (r-1)\text{Inv}[v+1] + (b - bv + a)\text{Inv}[v+2] \quad & \text{(if } r > 0) \\
(b-1)D_{ni} + (a-1)A_{ni} + (b-1)\text{Inv}[v+2] + \text{Inv}[v] \quad & \text{(if } r = 0),
\end{cases}
\]

where $a = \lceil \frac{n}{v} \rceil$, $b = \lceil \frac{n}{v} \rceil$, $r = bv - a$, A_{ni} (resp. D_{ni}) represents the total computational complexity of Add_p and Add_{bn} (resp. Dbl_p and Dbl_{bn}).

proof: The proof easily follows from Algorithm 4.

From Theorem 1, the computational complexity of $\text{Inv}[\ell_c]$ is most efficient when ℓ_c is a power of 2. Therefore, the cases of $v = 2, 6, 14, 30, \cdots$ would yield efficient performance of Algorithm 4.

The total computational complexity Comp_2 of Algorithm 8 with \((h_1,v_1) \times (h_2,v_2)\) \((v_1 + v_2 \geq 2)\) is given by the following theorem.

Theorem 3 Let Comp_2 be the total computational complexity of Algorithm 8 with \((h_1,v_1) \times (h_2,v_2)\). Then Comp_2 can be computed as follows:

\[
\text{Comp}_2 = \begin{cases}
(b_1-1)D_{ni} + (a_1 + a_2 - 1)A_{ni} + (b_2 - r_2)\text{Inv}[v_1 + v_2 + 2] + \text{Inv}[v_1] + (b_1 - b_2 - 1)\text{Inv}[v_1 + 2] + r_2\text{Inv}[v_1 + v_2 + 1] \quad & \text{(if } b_1 > b_2) \\
(b_1-1)D_{ni} + (a_1 + a_2 - 1)A_{ni} + (b_2 - r_2)\text{Inv}[v_1 + v_2 + 2] \quad & \text{(if } b_1 = b_2 \text{ and } r_2 > 0) \\
+ \text{Inv}[v_1 + v_2 + 1] + (r_2 - 1)\text{Inv}[v_1 + v_2 + 1] \quad & \text{(if } b_1 = b_2 \text{ and } r_2 = 0),
\end{cases}
\]

where $b_1 = \lceil \frac{n}{v_1h_1 + v_2h_2} \rceil$, $a_1 = b_1v_1$, $a_2 = \lceil \frac{n-b_1v_1h_1}{h_2} \rceil$, $b_2 = \lceil \frac{a_2}{v_2} \rceil$, $r_2 = b_2v_2 - a_2$, and A_{ni} (resp. D_{ni}) represents the total computational complexity of Add_p and Add_{bn} (resp. Dbl_p and Dbl_{bn}).

proof: The proof easily follows from Algorithm 8.

For the same reason as Comp_1, the cases where $v_1 + v_2 + 2$ is a power of 2 would yield an efficient performance of Algorithm 8. That is, $v_1 + v_2 = 2, 6, 14, 30, \cdots$.
Let I be the case of an elliptic curve over a 160-bit definition field and a hyper-elliptic curve. In the case of a hyper-elliptic curve, the previous algorithm uses affine coordinate without using Montgomery’s method. Tables 5 and 6 show divisions that our algorithms are better than the previous algorithm and their performances in the case of an elliptic curve and a hyper-elliptic curve, respectively. Both Tables present the computational complexity based on the number of modular multiplications, squares, and inverses over the definition field as well as the estimation based on the assumption that $S = 0.8M$, $I = 11M$, $I_{hec} = 0.8M_{hec}$, $I = 11M_{hec}$, and $M = 4M_{hec}$. The reduction ratio of our algorithm to the previous algorithm is computed under the estimation. The break-even point shows I/M or I_{hec}/M_{hec} when the computational complexity of our algorithms is equal to that of previous ones, where $S = 0.8M$ is assumed.

In the case of an elliptic curve, we see that our algorithm with a precomputed table of 18, 26, 34, 42, or 50 can compute kP more efficiently than the previous algorithm with Jacobian coordinate (resp. Edward coordinate) if $I/M < 12.2, 12.7, 12.7, 12.8, or 12.3$ (resp. 12.6, 13.2, 13.2, 13.3, or 12.7). In the case of $I = 11M$, the computational complexity of our algorithm with a precomputed table of 18, 26, 34, 42, or 50 can be reduced to 95%, 93%, 93%, 93%, or 94% (resp 93%, 91%, 91%, 91%, or 93%) of that of the previous algorithm with Jacobian (resp. Edward) coordinate. Our experimental results also indicate that affine coordinate with Montgomery’s trick or mixed coordinate with Jacobian...

Table 4 Performance of Algorithms 4 and 8 (hyper-elliptic curve).

<table>
<thead>
<tr>
<th>$(h, r), (b_1, n_1) \times (b_2, n_2)$</th>
<th>Computational complexity</th>
<th># points</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5743M_{hec} + 872S_{hec} + 159I_{hec}$</td>
<td>19479.1M</td>
<td>2</td>
</tr>
<tr>
<td>$4823M_{hec} + 742S_{hec} + 159I_{hec}$</td>
<td>17652.1M</td>
<td>3</td>
</tr>
<tr>
<td>$3629M_{hec} + 580S_{hec} + 106I_{hec}$</td>
<td>15533.8M</td>
<td>4</td>
</tr>
<tr>
<td>$2713M_{hec} + 432S_{hec} + 79I_{hec}$</td>
<td>9841.5M</td>
<td>6</td>
</tr>
<tr>
<td>$2388M_{hec} + 367S_{hec} + 79I_{hec}$</td>
<td>8837.6M</td>
<td>9</td>
</tr>
<tr>
<td>$2161M_{hec} + 344S_{hec} + 63I_{hec}$</td>
<td>7982.3M</td>
<td>10</td>
</tr>
<tr>
<td>$1816M_{hec} + 289S_{hec} + 53I_{hec}$</td>
<td>6655.5M</td>
<td>14</td>
</tr>
<tr>
<td>$1791M_{hec} + 286S_{hec} + 52I_{hec}$</td>
<td>6547.9M</td>
<td>18</td>
</tr>
<tr>
<td>$1591M_{hec} + 244S_{hec} + 53I_{hec}$</td>
<td>5923.3M</td>
<td>21</td>
</tr>
<tr>
<td>$1540M_{hec} + 245S_{hec} + 45I_{hec}$</td>
<td>5577.5M</td>
<td>22</td>
</tr>
<tr>
<td>$1527M_{hec} + 224S_{hec} + 41I_{hec}$</td>
<td>5393.3M</td>
<td>25</td>
</tr>
<tr>
<td>$1333M_{hec} + 212S_{hec} + 39I_{hec}$</td>
<td>4829.1M</td>
<td>30</td>
</tr>
<tr>
<td>$1444M_{hec} + 199S_{hec} + 27I_{hec}$</td>
<td>4758.9M</td>
<td>41</td>
</tr>
<tr>
<td>$1183M_{hec} + 182S_{hec} + 39I_{hec}$</td>
<td>4394.1M</td>
<td>45</td>
</tr>
<tr>
<td>$1195M_{hec} + 190S_{hec} + 35I_{hec}$</td>
<td>4358.1M</td>
<td>46</td>
</tr>
<tr>
<td>$1278M_{hec} + 176S_{hec} + 24I_{hec}$</td>
<td>4207.1M</td>
<td>58</td>
</tr>
<tr>
<td>$1113M_{hec} + 162S_{hec} + 29I_{hec}$</td>
<td>3904.1M</td>
<td>60</td>
</tr>
<tr>
<td>$1057M_{hec} + 165S_{hec} + 31I_{hec}$</td>
<td>3831.1M</td>
<td>62</td>
</tr>
<tr>
<td>$1078M_{hec} + 152S_{hec} + 24I_{hec}$</td>
<td>3659.4M</td>
<td>75</td>
</tr>
<tr>
<td>$1062M_{hec} + 147S_{hec} + 21I_{hec}$</td>
<td>3563.8M</td>
<td>90</td>
</tr>
<tr>
<td>$932M_{hec} + 143S_{hec} + 31I_{hec}$</td>
<td>3469.3M</td>
<td>93</td>
</tr>
<tr>
<td>$1037M_{hec} + 144S_{hec} + 21I_{hec}$</td>
<td>3458.4M</td>
<td>106</td>
</tr>
<tr>
<td>$1018M_{hec} + 137S_{hec} + 19I_{hec}$</td>
<td>3344.7M</td>
<td>120</td>
</tr>
<tr>
<td>$993M_{hec} + 138S_{hec} + 19I_{hec}$</td>
<td>3281.7M</td>
<td>122</td>
</tr>
<tr>
<td>$881M_{hec} + 128S_{hec} + 23I_{hec}$</td>
<td>3047.9M</td>
<td>124</td>
</tr>
<tr>
<td>$921M_{hec} + 127S_{hec} + 18I_{hec}$</td>
<td>3053.9M</td>
<td>154</td>
</tr>
<tr>
<td>$865M_{hec} + 123S_{hec} + 20I_{hec}$</td>
<td>2959.9M</td>
<td>155</td>
</tr>
<tr>
<td>$896M_{hec} + 124S_{hec} + 18I_{hec}$</td>
<td>2983.3M</td>
<td>170</td>
</tr>
<tr>
<td>$846M_{hec} + 118S_{hec} + 18I_{hec}$</td>
<td>2846.4M</td>
<td>186</td>
</tr>
<tr>
<td>$824M_{hec} + 113S_{hec} + 17I_{hec}$</td>
<td>2754.1M</td>
<td>217</td>
</tr>
<tr>
<td>$805M_{hec} + 108S_{hec} + 15I_{hec}$</td>
<td>2641.1M</td>
<td>248</td>
</tr>
<tr>
<td>$842M_{hec} + 109S_{hec} + 11I_{hec}$</td>
<td>2340.7M</td>
<td>338</td>
</tr>
<tr>
<td>$789M_{hec} + 103S_{hec} + 12I_{hec}$</td>
<td>2509.9M</td>
<td>341</td>
</tr>
<tr>
<td>$819M_{hec} + 103S_{hec} + 2I_{hec}$</td>
<td>2509.9M</td>
<td>465</td>
</tr>
</tbody>
</table>
Table 5 Comparison of performance (elliptic curve).

<table>
<thead>
<tr>
<th># points</th>
<th>Computational complexity</th>
<th>BE-point†</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h, v)</td>
<td>Ours</td>
<td>Previous results (J/EC)</td>
</tr>
<tr>
<td>(2, 6)</td>
<td>18</td>
<td>334M + 105S + 42I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I = 11M : 880.0M)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) 831M + 131I + 1/T</td>
</tr>
<tr>
<td>(3, 2) × (2, 4)</td>
<td>26</td>
<td>288M + 89S + 34I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I = 11M : 733.2M)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) 705M + 111S + 1/T</td>
</tr>
<tr>
<td>(2, 2) × (3, 4)</td>
<td>34</td>
<td>250M + 77S + 30I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I = 11M : 641.6M)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) 619M + 99S + 1/T</td>
</tr>
<tr>
<td>(3, 6)</td>
<td>42</td>
<td>224M + 69S + 27I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I = 11M : 576.2M)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) 556M + 85S + 1/T</td>
</tr>
<tr>
<td>(4, 1) × (3, 5)</td>
<td>50</td>
<td>209M + 66S + 27I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I = 11M : 558.8M)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) 596M + 108S + 1/T</td>
</tr>
</tbody>
</table>

†: the break-even point is the value of I/M for which our result becomes the same efficiency as the previous result.

Table 6 Comparison of Performance (hyper-elliptic curve).

<table>
<thead>
<tr>
<th># points</th>
<th>Computational complexity</th>
<th>BE-point†</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h, v)</td>
<td>Ours</td>
<td>Previous results (J/EC)</td>
</tr>
<tr>
<td>(4, 1) × (2, 1)</td>
<td>18</td>
<td>1791M_{hec} + 286S_{hec} + 52I_{hec}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(648.0M)</td>
</tr>
<tr>
<td>(3, 6)</td>
<td>42</td>
<td>2227M_{hec} + 2152S_{hec} + 44I_{hec}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(539.3M)</td>
</tr>
<tr>
<td>(4, 2)</td>
<td>28</td>
<td>2332M_{hec} + 2152S_{hec} + 30I_{hec}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(482.9M)</td>
</tr>
<tr>
<td>(4, 3)</td>
<td>30</td>
<td>1444M_{hec} + 1995S_{hec} + 27I_{hec}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(475.1M)</td>
</tr>
<tr>
<td>(4, 6)</td>
<td>46</td>
<td>1183M_{hec} + 1822S_{hec} + 39I_{hec}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(433.0M)</td>
</tr>
<tr>
<td>(4, 2) × (3, 4)</td>
<td>58</td>
<td>1278M_{hec} + 1762S_{hec} + 24I_{hec}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(420.7M)</td>
</tr>
</tbody>
</table>

†: the break-even point is the value of I_{hec}/M_{hec} for which our result becomes the same efficiency as the previous result.

In the case of a hyper-elliptic curve, we see that our algorithm with a precomputed table of 18 (resp. 28, 30, 42, 46, 58) can compute kP more efficiently than the previous algorithm if I_{hec}/M_{hec} > 2.9 (resp. 3). That is, our algorithm is usually more efficiently than the previous one. In the case of I_{hec} = 11M_{hec}, the computational complexity of our algorithm with a pre-computed table of 18, 28, 30, 42, 46, or 58 can be reduced to 92%, 92%, 93%, 87%, 93%, or 88% of the previous algorithm, respectively. We note that hyper-elliptic curves in our algorithm give a better performance than elliptic curves in any size of a precomputed table.

6. Conclusion

In this paper, we have explored an efficient scalar multiplication with a fixed point and improved the LL-algorithm by applying affine coordinate to it and adjusting the division procedure. We have also investigated the previous algorithm with Edward coordinate as well as Jacobian coordinate. Our algorithm can improve the computational complexity of the previous algorithm with the best coordinate in some sizes of the pre-computed table. We have also given the formula of the computational complexity of the proposed algorithm with any division theoretically, which helps developers to choose the best division suitable for the storage available.

Acknowledgments The authors express their gratitude to anonymous referees for invaluable comments.

References

5) Ciet, M., Joye, M., Lauter, K. and Montgomery, P.L.: Trading inversions for multi-

Appendix

A.1 Other Coordinates

This annex summarizes addition formulae in Edward coordinates and the previous addition formulae in Jacobian coordinates.

A.1.1 Edward Coordinates

Recently, a new coordinate system, called Edward Coordinates, has been proposed \(^{(10)}\), whose comparison with other coordinate systems is investigated \(^{(4)}\). One of the weak points in Edward coordinates is that no prime-order elliptic curve can be represented in Edward coordinates with the same definition field since it must have a point with order 4 whereas a prime-order elliptic curve is usually recommended in standards \(^{(10)}\). Here we simply summarize Edward coordinates and its performance.

Let \(\mathbb{F}_p\) be a finite field, where \(p > 3\) is a prime. The Edward form of an elliptic curve over \(\mathbb{F}_p\) in homogeneous coordinates is described as

\[
E_\mathbb{F}_p : (X^2 + Y^2) Z^2 = Z^4 + dX^2 Y^2.
\]

Then, two points \((X, Y, Z)\) and \((rX, rY, rZ)\) for some \(r \in \mathbb{F}_p^*\) are recognized as the same point. The point at infinity, which performs the zero element, is represented with \((0, 1, 1)\). Let \(P_1 = (X_1, Y_1, Z_1)\), \(P_2 = (X_2, Y_2, Z_2)\), and \(P_3 = P_1 + P_2 = (X_3, Y_3, Z_3)\). The doubling and addition formulae in Edward coordinates can be represented as follows.

Add \((P_1, P_2) \) \((P_1 \neq \pm P_2)\)

\[
\begin{align*}
U_1 &= Z_1 Z_2, \\
U_2 &= X_1 X_2, \\
U_3 &= Y_1 Y_2, \\
S_1 &= (X_1 + Y_1)(X_2 + Y_2), \\
S_2 &= dU_2 U_3, \\
H &= U_1^2 - S_2, \\
R &= U_2^2 + S_2, \\
X_3 &= U_1 H (S_1 - U_2 - U_3), \\
Y_3 &= U_1 R (U_3 - U_2), \\
Z_3 &= H R.
\end{align*}
\]

Db) \((P_1) \)

\[
\begin{align*}
U_1 &= X_1^2, \\
U_2 &= Y_1^2, \\
U_3 &= Z_1^2, \\
S_1 &= (X_1 + Y_1)^2, \\
S_2 &= U_1 + U_2, \\
H &= S_2 - 2U_3, \\
X_3 &= (S_1 - S_2) H, \\
Y_3 &= S_2 (U_1 - U_2), \\
Z_3 &= S_1 H.
\end{align*}
\]

The computation times in Edward coordinates are \(t(E + E) = 11M + S\) and \(t(2E) = 3M + 4S\), where \(E\) means Edward coordinates. In this paper, the computation time of multiplication by \(d\) is not considered as special. This is due to the fact that the limitation on \(d\) damages the flexibility of elliptic curves over a definition filed, which is exactly an advantage over RSA or DLP-based cryptosystems.
Furthermore, such a limitation does not seem to be used in general.\footnote{The computation time in coordinates is investigated in three cases\footnote{\cite{41}} \((S/M, \text{multiplication by } d)/M = (1, 1), (0.8, 0.5), (0.8, 0)\), however, the cases may not be natural since \((S/M, \text{multiplication by } d)/M = (0.8, 1)\) is usually assumed from the point of view of practicality and flexibility.}

A.1.2 Traditional Jacobian Coordinates

The traditional Jacobian coordinates\footnote{\cite{41}} have been referred in many publications so far. To compare with the addition formulae in Section 2, this section describes the traditional Jacobian coordinates. Let \(P_1 = (X_1, Y_1, Z_1)\), \(P_2 = (X_2, Y_2, Z_2)\), and \(P_3 = P_1 + P_2 = (X_3, Y_3, Z_3)\). The doubling and addition formulae in the traditional Jacobian coordinates can be represented as follows.

\[
\begin{align*}
\text{Add}(P_1, P_2) & \quad (P_1 \neq \pm P_2) \\
U_1 &= X_1Z_2^3, \quad U_2 = X_2Z_1^3, \quad H = U_2 - U_1, \\
S_1 &= Y_1Z_2^3, \quad S_2 = Y_2Z_1^3, \quad R = S_2 - S_1, \\
X_3 &= -H^3 - 2U_1H^2 + R^2, \quad Y_3 = -8Y_1^4 + M(S - X_3), \quad Z_3 = 2Y_1Z_1.
\end{align*}
\]

\[
\begin{align*}
\text{Dbl}(P_1) & \\
S &= 4X_1Y_1^2, \quad M = 3X_1^2 + aZ_1^2, \\
X_3 &= M^2 - 2S, \\
Y_3 &= -8Y_1^4 + M(S - X_3), \quad Z_3 = 2Y_1Z_1.
\end{align*}
\]

The computation times of addition and doubling in the traditional Jacobian coordinates are \(12M + 4S\) and \(4M + 6S\), respectively.

(Received December 3, 2007)
(accepted June 3, 2008)
(Original version of this article can be found in the Journal of Information Processing Vol. 16, pp.176–189.)

Atsuko Miyaji received the B. Sc., the M. Sc., and the Dr. Sci. degrees in mathematics from Osaka University, Osaka, Japan in 1988, 1990, and 1997 respectively. She joined Matsushita Electric Industrial Co., LTD from 1990 to 1998 and engaged in research and development for secure communication. She was an associate professor at the Japan Advanced Institute of Science and Technology (JAIST) in 1998. She has joined the computer science department of the University of California, Davis since 2002. She has been a professor at the Japan Advanced Institute of Science and Technology (JAIST) since 2007 and a director of Library of JAIST since 2008. Her research interests include the application of number theory into cryptography and information security. She received the IPSJ Sakai Special Researcher Award in 2002, the Standardization Contribution Award in 2003, Engineering Sciences Society: Certificate of Appreciation in 2005, the AWARD for the contribution to CULTURE of SECURITY in 2007, IPSJ/ITSCJ Project Editor Award in 2007, the Director-General of Industrial Science and Technology Policy and Environment Bureau Award in 2007, and Editorial Committee of Engineering Sciences Society: Certificate of Appreciation in 2007. She is a member of the International Association for Cryptologic Research, the Institute of Electronics, Information and Communication Engineers, the Information Processing Society of Japan, and the Mathematical Society of Japan.

Kenji Mizosoe received the B. Eng. degree from the National Defense Academy in 1999 and the M. Info. Sci. degree from the Japan Advanced Institute of Science and Technology in 2007. He is engaged in development and research of the information security in the government office.