
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Automatic Construction of Program Transformation

Templates

Author(s) Chiba, Yuki; Aoto, Takahito; Toyama, Yoshihito

Citation
IPSJ Transactions of Programming, 49(SIG 1(PRO

35)): 14-27

Issue Date 2008-01-15

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/8515

Rights

社団法人　情報処理学会, Yuki Chiba, Takahito

Aoto, Yoshihito Toyama, IPSJ Transactions of

Programming, 49(SIG 1(PRO 35)), 2008, 14-27.　こ

こに掲載した著作物の利用に関する注意: 本著作物の

著作権は（社）情報処理学会に帰属します。本著作物

は著作権者である情報処理学会の許可のもとに掲載す

るものです。ご利用に当たっては「著作権法」ならび

に「情報処理学会倫理綱領」に従うことをお願いいた

します。 Notice for the use of this material: The

copyright of this material is retained by the

Information Processing Society of Japan (IPSJ).

This material is published on this web site with

the agreement of the author (s) and the IPSJ.

Please be complied with Copyright Law of Japan

and the Code of Ethics of the IPSJ if any users

wish to reproduce, make derivative work,

distribute or make available to the public any

part or whole thereof. All Rights Reserved,

Copyright (C) Information Processing Society of

Japan.

Description

Vol. 49 No. SIG 1(PRO 35) IPSJ Transactions on Programming Jan. 2008

Regular Paper

Automatic Construction of Program Transformation Templates

Yuki Chiba,†1 Takahito Aoto†1 and Yoshihito Toyama†1

Program transformation by templates (Huet and Lang, 1978) is a technique to improve
the efficiency of programs. In this technique, programs are transformed according to a given
program transformation template. To enhance the variety of program transformation, it is im-
portant to introduce new transformation templates. Up to our knowledge, however, few works
discuss about the construction of transformation templates. Chiba, et al. (2006) proposed a
framework of program transformation by template based on term rewriting and automated
verification of its correctness. Based on this framework, we propose a method that automat-
ically constructs transformation templates from similar program transformations. The key
idea of our method is a second-order generalization, which is an extension of Plotkin’s first-
order generalization (1969). We give a second-order generalization algorithm and prove the
soundness of the algorithm. We then report about an implementation of the generalization
procedure and an experiment on the construction of transformation templates.

1. Introduction

Automatic program transformation which in-
tends to improve efficiency of input programs is
one of the most fascinating techniques for pro-
gramming languages 9),10). Several techniques
for transforming functional programs have been
developed 2),8),13). In particular, Huet and
Lang 8) introduced program transformation by
templates based on lambda calculus, and sev-
eral extensions of the technique has been pro-
posed 6),7),14).

Chiba, et al. proposed a framework of pro-
gram transformation by template based on term
rewriting 3)–5). In their framework, program
transformation is specified by some transforma-
tion pattern P ⇒ P ′. A term rewriting sys-
tem (TRS for short) is transformed according
to a transformation pattern, by performing the
pattern matching between the given TRS and
the input part of the transformation pattern,
and then by applying the result of the pattern
matching to the output part of the transforma-
tion pattern (Fig. 1).

For example, the transformation pattern
P ⇒ P ′ represents a well-known program trans-
formation from recursive programs to iterative
programs where

P

⎧⎪⎨
⎪⎩

f(a) → b
f(c(u1, v1)) → g(u1, f(v1))
g(b, u2) → u2

g(d(u3, v3), w3) → d(u3, g(v3, w3))

†1 Research Institute of Electrical Communication,
Tohoku University

P ′

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f(u4) → f1(u4, b)
f1(a, u5) →u5

f1(c(u6, v6), w6)→ f1(v6, g(w6, u6))
g(b, u7) →u7

g(d(u8, v8), w8) → d(u8, g(v8, w8))

The following TRS Rsum specifies a program
that computes the summation of a list, in which
the natural numbers 0, 1, 2, . . . are expressed as
0, s(0), s(s(0)),

Rsum

⎧⎪⎨
⎪⎩

sum(nil) → 0
sum(cons(x1, ys1))→+(x1, sum(ys1))
+(0, x2) →x2

+(s(x3), y3) → s(+(x3, y3))

The TRS pattern P matches to the TRS Rsum

under the following term homomorphism ϕ, i.e.,
Rsum = ϕ(P).

ϕ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f �→sum(�1), u1 �→x1, u6 �→x6,
g �→+(�1,�2), v1 �→ys1, v6 �→y6,
f1 �→sum1(�1,�2), u2 �→x2, w6 �→z6,
a �→nil, v3 �→x3, u7 �→x7,
b �→0, w3 �→y3, v8 �→y8,
c �→cons(�1,�2), u4 �→x4, w8 �→z8

d �→s(�2), u5 �→x5,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

Thus, the TRS Rsum is transformed into the
following TRS R′

sum = ϕ(P ′).

R′
sum

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sum(x4) → sum1(x4, 0)
sum1(nil, x5) →x5

sum1(cons(x6, y6), z6)→
sum1(y6, +(z6, x6))

+(0, x7) →x7

+(s(y8), z8) → s(+(y8, z8))

Let us consider another example of program

14

Vol. 49 No. SIG 1(PRO 35) Automatic Construction of Program Transformation Templates 15

Fig. 1 Overview of TRS transformation by transformation patterns.

Fig. 2 Overview of the construction of a template.

transformation. A program that computes the
concatenation of a list of lists is specified by the
following TRS Rcat .

Rcat

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cat(lnil) → nil
cat(lcons(x1, ys1)) →

app(x1, cat(ys1))
app(nil, x2) →x2

app(cons(x3, y3), z3)→
cons(x3, app(y3, z3))

The TRS pattern P matches to the TRS Rcat

under the following term homomorphism ϕ.

ϕ=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f �→cat(�1), u1 �→x1, u6 �→x6,
g �→app(�1,�2), v1 �→y1, v6 �→y6,
f1 �→cat1(�1,�2), u2 �→x2, w6 �→z6,
a �→lnil, v3 �→y3, u7 �→x7,
b �→nil, u3 �→x3, u8 �→x8,
c �→lcons(�1,�2), w3 �→z3, v8 �→y8,
d �→cons(�1,�2), u4 �→x4, w8 �→z8

u5 �→x5,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

According to the template P ⇒ P ′, Rcat =
ϕ(P) can be transformed to the following TRS
R′

cat = ϕ(P ′).

R′
cat

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

cat(x4) → cat1(x4, nil)
cat1(lnil, x5) →x5

cat1(lcons(x6, y6), z6)→
cat1(y6, app(z6, x6))

app(nil, x7) →x7

app(cons(x8, y8), z8) →
cons(x8, app(y8, z8))

To apply the technique of program transfor-

mation by template, appropriate transforma-
tion patterns have to be constructed before-
hand. Thus, it is important to introduce new
transformation patterns in order to enhance the
variety of program transformation. Up to our
knowledge, however, few works discuss about
the construction of transformation templates.

Our idea is to construct transformation pat-
terns by considering the opposite of problems
of program transformation, that is, we try to
construct transformation patterns by generaliz-
ing similar TRS transformations. For example,
from TRS transformations Rsum ⇒ R′

sum and
Rcat ⇒ R′

cat , we try to construct the trans-
formation pattern P ⇒ P ′. We expect that
our method will help to extract new transfor-
mation patterns from existing program trans-
formations.

We first propose a generalization procedure
of two terms, and extend it for two TRSs. We
then propose the construction of transforma-
tion patterns using the generalization proce-
dure of TRSs. The input part of the trans-
formation pattern is constructed by generaliz-
ing inputs of program transformations. Then
the output part is constructed by generaliz-
ing outputs of program transformations using
the information of generalization of input part
(Fig. 2).

Our method is inspired by Plotkin’s work 11)

for the first-order generalization of terms. The
key technique of our method is the 2nd-order
generalization of terms; contrast to the first-

16 IPSJ Transactions on Programming Jan. 2008

order generalization, a function part of a term
can be instantiated in the 2nd-order generaliza-
tion. For example, a first-order generalization
of +(s(x1), y1) and +(x2, s(y2)) is +(x3, y3).
On the other hand, a 2nd-order generalization
of +(s(x1), y1) and ×(s(x2), y2) is p(s(x3), y3)
where p is a pattern variable that is instanti-
ated by + or ×.

An important problem in program transfor-
mation is to guarantee its correctness. We
say that a program transformation is correct
when the input and output program perform
the same computation. In fact, incorrect trans-
formations may be also obtained by the trans-
formation pattern P ⇒ P ′ above. Chiba, et al.
introduced a method to prove the correctness
of program transformation by template 3)–5).
They have defined a transformation template
by a triple 〈P,P ′,H〉 where P and P ′ are used
to form the transformation pattern P ⇒ P ′ and
H, called hypothesis , is a set of equations. A hy-
pothesis H is used to represent lemmas which
input TRSs have to satisfy to guarantee the cor-
rectness of transformation.

For automatic verification of the correctness
of transformations, Chiba, et al. introduced a
notion of developed template and gave sufficient
conditions to verify the correctness of transfor-
mations by developed templates 3)–5). Devel-
oped templates are those that can be obtained
using simple inference rules. Provided that the
transformation template is developed, the cor-
rectness problem of a program transformation
is reduced to a semi-decidable problem. For
example, the template 〈P,P ′,H〉 is developed
where P and P ′ are those appeared before as
the transformation pattern P ⇒ P ′ and H is
the following hypothesis:

H
{

g(b, u1) ≈ g(u1, b)
g(g(u2, v2), w2) ≈ g(u2, g(v2, w2)).

Currently, no automatic method to produce
developed templates is known. In our frame-
work, after constructing a transformation pat-
tern by generalizing input similar transforma-
tions, we look for an appropriate hypothesis and
prove the developedness to construct developed
template (Fig. 2).

The rest of the paper is organized as follows.
In Section 2, we recall basic notions in term
rewriting and TRS transformation that will be
used throughout this paper. In Section 3, we
propose a non-deterministic 2nd-order general-
ization procedure of terms and prove its sound-

ness. In Section 4, we give a TRS generalization
procedure and report about an implementation
of the procedure. We introduce several heuris-
tics to omit obviously useless solutions and re-
duce the number of outputs of the generaliza-
tion procedure. We then give a generalization
procedure of templates and examples of con-
struction of transformation templates in Sec-
tion 5. We conclude our result in Section 6.

2. Preliminaries

This section introduces notions of term
rewriting systems 1),12) and program transfor-
mations by templates based on term rewrit-
ing 3)–5).

Let F , X and V be the sets of function
symbols, pattern variables and local variables,
respectively. Any function symbol and pat-
tern variable p ∈ F ∪ X has its arity (de-
noted by arity(p)). The set T(F ∪ X , V) of
term patterns (or just patterns) is defined by:
(1) V ⊆ T(F ∪ X , V); and (2) p(t1, . . . , tn) ∈
T(F ∪ X , V) for any p ∈ F ∪ X such that
arity(p) = n and t1, . . . , tn ∈ T(F∪X , V). For
any term pattern s, the sets of function sym-
bols, pattern variables and local variables in s
are denoted by F (s), X (s) and V (s), respec-
tively. For a term pattern s = p(s1, . . . , sn), the
root symbol of s is p (denoted by root(s)).

A substitution θ is a mapping from V to
T(F ∪ X , V). A substitution θ is extended
to a mapping θ̂ over term pattern T(F ∪
X , V) as follows: (1) θ̂(x) = θ(x) if x ∈ V ,
(2) θ̂(p(s1, . . . , sn)) = p(θ̂(s1), . . . , θ̂(sn)). We
usually identify θ̂ and θ. We write sθ instead of
θ(s). The domain of a substitution θ is defined
by dom(θ) = {x ∈ V | x �= θ(x)}.

Special (indexed) constants �i (i ≥ 1) such
that �i /∈ F ∪P∪V are called (indexed) holes.
The set of holes is denoted by H . An (indexed)
context C is an element of T(F ∪X ∪H , V).
C[s1, . . . , sn] is the result of C replacing �i with
s1, . . . , sn from left to right. C〈s1, . . . , sn〉 is the
result of C replacing �i by si for i = 1, . . . , n
(indexed replacement). The set of indexed holes
which appear in C is denoted by H (C). A
context C with precisely one hole is denoted
by C[]. The set of contexts is denoted by
T�(F ∪X , V); its subset T(F ∪X ∪{�i | 1 ≤
i ≤ n}, V) is denoted by T�n (F ∪ X , V). The
sets of contexts T�(F ∪ X) and T�n (F ∪ X)
without local variables are defined accordingly.

A pair 〈l, r〉 of term patterns is a rewrite rule

Vol. 49 No. SIG 1(PRO 35) Automatic Construction of Program Transformation Templates 17

if l /∈ V and V (l) ⊇ V (r). We usually write
the rewrite rule 〈l, r〉 as l → r. A term rewrit-
ing system pattern (TRS pattern for short) is a
set of rewrite rules. A term pattern s reduces to
a term pattern t by a TRS pattern R (denoted
by s →R t) if there exists a context C[], a sub-
stitution θ and a rewrite rule l → r ∈ R such
that s = C[lθ] and t = C[rθ]. The reflexive
transitive closure of →R is denoted by ∗→R, the
transitive closure by +→R, and the equivalence
closure by ∗↔R. An equation is a pair of term
patterns; we usually write an equation l ≈ r. A
hypothesis is a set of equations.

A transformation pattern is a pair 〈P,P ′〉 of
two TRS patterns. We usually denote a trans-
formation pattern 〈P,P ′〉 as P ⇒ P ′.

A mapping ϕ from X ∪ V to T�(F ∪
X , V) is said to be a term homomorphism
if (1) ϕ(p) ∈ T�arity(p)(F ∪ X) for any p ∈
domX (ϕ), (2) ϕ(x) ∈ V for any x ∈ domV (ϕ),
and (3) ϕ is injective on domV (ϕ), i.e., for
any x, y ∈ domV (ϕ), if x �= y then ϕ(x) �=
ϕ(y), where domX (ϕ) = {p ∈ X | ϕ(p) �=
p(�1, . . . ,�arity(p))} and domV (ϕ) = {x ∈ V |
ϕ(x) �= x}. A term homomorphism ϕ is ex-
tended to a mapping ϕ̂ over T(F ∪ X , V) as
follows:

ϕ̂(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ(x) if s = x ∈ V
f(ϕ̂(s1), . . . , ϕ̂(sn))

if s = f(s1, . . . , sn), f ∈ F
ϕ(p)〈ϕ̂(s1), . . . , ϕ̂(sn)〉

if s = p(s1, . . . , sn), p ∈ X .

We usually identify ϕ̂ and ϕ. A term homo-
morphism is extended to a mapping on rewrite
rules and equations in the obvious way.

A term pattern without pattern variables is
called a term. The set of terms is denoted by
T(F , V). A TRS pattern over terms is called a
TRS. Let P ⇒ P ′ be a transformation pattern.
We say a TRS R is transformed into R′ by P ⇒
P ′ if R and R′ match P and P ′, respectively, by
a term homomorphism ϕ, that is there exists a
term homomorphism ϕ such that R = ϕ(P) ∪
Rcom and R′ = ϕ(P ′) ∪ Rcom for some TRS
Rcom . A pattern matching algorithm between
P and R appears in Ref. 4).

3. Generalization of Terms

In this section, we propose a term generaliza-
tion procedure, called 2nd-Gen, and show its
soundness. 2nd-Gen will be used as a basic
module of TRS generalization procedure. We

first give a notion of generalization of two term
patterns.

Definition 3.1 Let s and t be term pat-
terns. A term pattern u is a generalization of
s and t if there exist term homomorphisms ϕ1

and ϕ2 such that ϕ1(u) = s and ϕ2(u) = t.
Example 3.2 Let f, g ∈ F , p, q ∈ X and

x, y, z ∈ V . Then
(1) p(x, y) is a generalization of f(x, x) and

g(y), since ϕ1(p(x, y))) = f(x, x) and
ϕ2(p(x, y)) = g(y) for ϕ1 = {p �→
f(�1,�1)}, ϕ2 = {p �→ g(�2)}.

(2) p(z) is a generalization of f(x, x) and
g(y), since ϕ1(p(z))) = f(x, x) and
ϕ2(p(z)) = g(y) for ϕ1 = {p �→
f(�1,�1), z �→ x}, ϕ2 = {p �→
g(�1), z �→ y}.

(3) p(q(z)) is a generalization of f(x, x) and
g(y), since ϕ1(p(q(z)))) = f(x, x) and
ϕ2(p(q(z))) = g(y) for ϕ1 = {p �→
f(�1,�1), q �→ �1, z �→ x}, ϕ2 = {p �→
�1, q �→ g(�1), z �→ y}.

Our generalization procedure 2nd-Gen
given later computes a generalization of two in-
put term patterns in a non-deterministic way.
Table 1 explains how two input term patterns
f(g(x), y) and f(z, h(u, w)) are generalized into
f(p(v1), q(v2, u)) using 2nd-Gen.

Initially, two input terms f(g(x), y) and
f(z, h(u, w)) are coupled into f(g(x), y) ∧
f(z, h(u, w)), using a special binary function
symbol ∧ (step 1). Since ∧ indicates the po-
sition which will be generalized, nesting of ∧
is not allowed. Next, 2nd-Gen repeats the fol-
lowing process depending on two symbols α and
β immediately below some ∧, until it obtains a
solution.
I. If α and β are local variables, then the

coupled local variables α ∧ β is replaced
with a new local variable. The memoriz-
ing function records the association be-
tween the coupled local variables and the
introduced local variable.

II. If α and β are the same function symbols
or pattern variables, then the symbol ∧
is distributed in each argument.

III. Otherwise, the coupled contexts is re-
placed with a new pattern variable and
the modified arguments. The memoriz-
ing function records the association be-
tween the coupled contexts and the in-
troduced pattern variable.

Let ∧ be a special binary function symbol. A
coupled term pattern is defined as follows.

18 IPSJ Transactions on Programming Jan. 2008

Table 1 Example of generalization.

step coupled term memorizing function

1 ∧

f

g

x

y

f

z h

u w

2 (by II) f

∧

g

x

z

∧

y h

u w

3 (by III) f

p

∧

x z

∧

y h

u w

g(�1) ∧�1 �→ p

4 (by I) f

p

v1

∧

y h

u w

g(�1) ∧�1 �→ p

x ∧ z �→ v1

5 (by III) f

p

v1

q

∧

y w

u

g(�1) ∧�1 �→ p

x ∧ z �→ v1

�1 ∧ h(�2,�1) �→ q

6 (by I) f

p

v1

q

v2 u

g(�1) ∧�1 �→ p

x ∧ z �→ v1

�1 ∧ h(�2,�1) �→ q

y ∧ w �→ v2

Definition 3.3 The set T∧(F ∪ X , V) of
coupled term patterns is defined as follow:
(i) T(F ∪ X , V) ⊆ T∧(F ∪ X , V); (ii) s, t ∈
T(F ∪ X , V) implies s ∧ t ∈ T∧(F ∪ X , V);
(iii) if s1, . . . , sn ∈ T∧(F ∪X , V), p ∈ F ∪X
and arity(p) = n then p(s1, . . . , sn) ∈ T∧(F ∪
X , V).

From the definition it is clear that every cou-
pled term patten has no nested ∧ symbols. A

coupled term pattern t is ∧-free if t ∈ T(F ∪
X , V). A coupled term pattern t is ∧-top if
t = t′ ∧ t′′ for some t′, t′′ ∈ T(F ∪ X , V).

Each term homomorphism ϕ and each substi-
tution θ are extended to coupled term patterns
by ϕ(s ∧ t) = ϕ(s) ∧ ϕ(t) and θ(s ∧ t) = s ∧ t
respectively. Note that the symbol ∧ cancels
the substitution to the term patterns below it
(i.e. θ(s ∧ t) �= θ(s) ∧ θ(t) in general). The set

Vol. 49 No. SIG 1(PRO 35) Automatic Construction of Program Transformation Templates 19

Var

C[x ∧ y], Φ

C[z]θ, Φ ∪ {x ∧ y �→ z}

if either
(1) Φ(x ∧ y) = z or

(2) x /∈ range(Φ−1
[1]

), y /∈ range(Φ−1
[2]

), and z is a fresh local variable

where θ = {x := z, y := z} is a substitution.
Div

C[p(s1, . . . , sn) ∧ p(t1, . . . , tn)], Φ

C[p(s1 ∧ t1, . . . , sn ∧ tn)], Φ
if p ∈ F ∪ X

Gen

C[C1〈s1, . . . , sn〉 ∧ C2〈t1, . . . , tn〉], Φ

C[p(α1, . . . , αn)], Φ ∪ {C1 ∧ C2 �→ p}

if either Φ(C1 ∧ C2) = p or

(1) C1, C2 ∈ T�n (F ∪ X), C1 	= C2,
(2) p is a fresh (n-ary) pattern variable
(3) C1 ∧ C2 /∈ dom(Φ)
(4) H (C1) ∪ H (C2) = {�1, . . . ,�n}, and

(5) αi =

⎧⎨
⎩

si ∧ ti if �i ∈ H (C1) ∩ H (C2)
Φ[1](si) if �i ∈ H (C1) \ H (C2)
Φ[2](ti) if �i ∈ H (C2) \ H (C1)

Fig. 3 Inference rules of 2nd-Gen.

T∧(F ∪ X ∪ H , V) is defined similarly.
Definition 3.4 Let t be a coupled term

pattern. For i = 1, 2, the (first and second)
projection πi(t) of t is defined as follows:

πi(t)=

⎧⎪⎨
⎪⎩

t if t ∈ T(F ∪ X , V)
p(πi(s1), . . . , πi(sn))

if t=p(s1, . . . , sn) for p ∈ F ∪ X
si if t = s1 ∧ s2

Example 3.5 Let f, g ∈ F and x, y ∈ V .
Then s1 = f(x, x) ∧ g(y), s2 = f(x ∧ y, x),
s3 = f(x ∧ y, x ∧ g(y)) are coupled term pat-
terns but f(x ∧ (x ∧ y), x) is not because it
has nested ∧ symbols. The ∧-top subterms
of s3 are x ∧ y and x ∧ g(y). Also, we have
π1(s1) = π1(s2) = π1(s3) = f(x, x), π2(s1) =
g(y), π2(s2) = f(y, x), and π2(s3) = f(y, g(y)).

From the definition the following properties
of the projection are obtained easily.

Lemma 3.6 Let i = 1 or 2.
(1) If s is ∧-free then πi(s) = s.
(2) For any term homomorphism ϕ and cou-

pled term pattern s, πi(ϕ(s)) = ϕ(πi(s)).
(3) For any coupled term pattern C[s1 ∧ s2],

πi(C[s1 ∧ s2]) = πi(C[si]).
The memorizing function Φ, which records

the association between the coupled contexts
(the coupled local variables) and the introduced
pattern variables (the introduced local vari-
ables, respectively), is carried along with the
coupled term pattern during the generalization.

Definition 3.7 A memorizing function is a
partial mapping Φ from {C1 ∧ C2 | C1, C2 ∈
T�(F ∪ X)} ∪ {x ∧ y | x, y ∈ V } to X ∪ V
such that (1) Φ(x ∧ y) ∈ V and Φ(C1 ∧ C2) ∈
X , (2) Φ(x ∧ y) and Φ(C1 ∧ C2) are fresh lo-

cal variables and pattern variables (i.e., differ-
ent from all the variables already used), re-
spectively, (3) x ∧ y, x ∧ y′ ∈ dom(Φ) (or
y ∧ x, y′ ∧ x ∈ dom(Φ)) implies y = y′,
(4) If C1 ∧ C2 �→ p ∈ Φ and arity(p) = n,
then C1 �= C2, C1, C2 ∈ T�n (F ∪ X), and
H (C1) ∪ H (C2) = {�1, . . . ,�n}.

For a memorizing function Φ, its inverse pro-
jection is a term homomorphism defined by
Φ−1

[i] = {u �→ si | s1 ∧ s2 �→ u ∈ Φ}, and
its local projection is a substitution defined by
Φ[i] = {xi := z | x1 ∧ x2 �→ z ∈ Φ, z ∈ V }.
From the condition (3) of the memorizing func-
tion, the local projection Φ[i] is well-defined.

The memorization function has the next
property which follows immediately from the
definition.

Lemma 3.8 Let Φ be a memorizing func-
tion. Let s be a ∧-free term such that V (s) ∩
range(Φ) = ∅. Then Φ−1

[i] (Φ[i](s)) = s.
The generalization procedure 2nd-Gen

works on pairs 〈s, Φ〉 of a coupled term pat-
tern s and a memorizing function Φ. Figure 3
gives the inference rules of 2nd-Gen. For pairs
〈s, Φ〉 and 〈s′, Φ′〉, we write 〈s, Φ〉 � 〈s′, Φ′〉
when 〈s′, Φ′〉 is obtained from 〈s, Φ〉 by apply-
ing one of the inference rules in Fig. 3. The
reflexive transitive closure of � is denoted by
∗�.
The generalization procedure 2nd-Gen is

given as follows:
procedure 2nd-Gen
Input: term patterns s and t
begin

1. Rename local variables of s and t so that

20 IPSJ Transactions on Programming Jan. 2008

V (s) and V (t) are disjoint.
2. Compute 〈s ∧ t, ∅〉 ∗� 〈u, Φ〉 until u
becomes ∧-free.
3. Output a term pattern u

end.
Since there exist several possibilities for ap-

plying the rule Gen, two input term patterns s
and t may have more than one generalization.
For example, p(u, u) and q(h, v) are generaliza-
tions of f(a, x) and g(y, y). We note that for a
given coupled term pattern the number of pos-
sible combinations of C1 and C2 in the rule Gen
is finite, because of the condition (4) of Gen.

Lemma 3.9 The procedure 2nd-Gen is
well-defined.

Proof. It suffices to show that if Φ is a mem-
orizing function and 〈s, Φ〉 � 〈s′, Φ′〉 then Φ′
is again a memorizing function. We distinguish
cases by the inference rule applied in the step
〈s, Φ〉� 〈s′, Φ′〉.
(Var) The case x ∧ y �→ z ∈ Φ is obvious.

Suppose x∧y �→ z /∈ Φ. Then Φ′ = Φ∪{x∧
y �→ z}, x /∈ range(Φ−1

[1]), y /∈ range(Φ−1
[2]),

and z is a fresh local variable. Clearly, Φ′ is
a partial mapping from {C1∧C2 | C1, C2 ∈
T�(F ∪ X)} ∪ {x ∧ y | x, y ∈ V } to X ∪
V . The conditions (1), (2), (4) are clearly
satisfied. The condition (3) follows since
x /∈ range(Φ−1

[1]) and y /∈ range(Φ−1
[2]).

(Div) Since Φ′ = Φ, the claim follows imme-
diately.

(Gen) The case C1 ∧ C2 �→ p ∈ Φ is obvi-
ous. So, suppose C1 ∧ C2 �→ p /∈ Φ. By
C1, C2 ∈ T�(F ∪X), Φ′ is a partial map-
ping {C1 ∧ C2 | C1, C2 ∈ T�(F ∪ X)} ∪
{x ∧ y | x, y ∈ V } to X ∪ V . It is easy
to check the conditions (1), (2), (3), (4) are
satisfied.

�
Example 3.10 We present some examples

of the derivation of 2nd-Gen. Recall that the
symbol ∧ cancels the substitution θ, that is,
θ(s ∧ t) = s ∧ t.
(1) 〈f(x, x, x) ∧ g(y, y), ∅〉 �Gen 〈p(x ∧

y, x, x∧y), {f(�1,�2,�3)∧g(�1,�3) �→
p}〉�Var 〈p(z, z, x∧y), {f(�1,�2,�3)∧
g(�1,�3) �→ p, x ∧ y �→ z}〉 �Var

〈p(z, z, z), {f(�1,�2,�3) ∧ g(�1,�3) �→
p, x ∧ y �→ z}〉.

(2) 〈f(x, h(x)) ∧ f(y, g(y)), ∅〉 �Div 〈f(x ∧
y, h(x) ∧ g(y)), ∅〉 �Var 〈f(z, h(x) ∧
g(y)), {x ∧ y �→ z}〉 �Gen 〈f(z, q(x ∧
y)), {x ∧ y �→ z, h(�1) ∧ g(�1) �→ q}〉

�Var 〈f(z, q(z)), {x ∧ y �→ z, h(�1) ∧
g(�1) �→ q}〉.

We next show that the procedure 2nd-Gen
eventually terminates for any input, by using
the following measure.

Definition 3.11 For t ∈ T∧(F ∪ X , V),
the weight w(t) of a coupled term pattern t is a
multiset of natural numbers defined as follows:

w(t)=

⎧⎪⎨
⎪⎩

[] if t ∈ T(F ∪ X , V)⊔n
i=1 w(si) if t = p(s1, . . . , sn)

with p ∈ F ∪ X
[|s1| + |s2|] if t = s1 ∧ s2

where |s| denotes the number of symbol occur-
rences.

Theorem 3.12 The procedure 2nd-Gen
terminates for any input.

Proof. It suffices to show � is well-founded.
Thus, we prove that 〈s, Φ〉 � 〈s′, Φ′〉 implies
w(s) � w(s′) where � is the multiset extension
of > 1). We distinguish cases by the inference
rule applied in the step 〈s, Φ〉� 〈s′, Φ′〉.
(Var) One occurrence of x∧y is replaced by z,

and thus w(s) = w(s′)� [2]. Hence w(s) �
w(s′).

(Div) One occurrence of p(s1, . . . , sn) ∧
p(t1, . . . , tn) is replaced by p(s1∧t1, . . . , sn∧
tn). Since |p(s1, . . . , sn) ∧ p(t1, . . . , tn)| =
|s1|+· · ·+|sn|+|t1|+· · ·+|tn|+2 and [|s1∧
t1|, . . . , |sn∧tn|] = [|s1|+|t1|, . . . , |sn|+|tn|],
we have w(s) � w(s′).

(Gen) In this case, we have w(p(α1, . . . , αn))
= [|si| + |ti| | �i ∈ H (C1) ∩ H (C2)]
and w(C1〈s1, . . . , sn〉 ∧ C2〈t1, . . . , tn〉) =
[|C1〈s1, . . . , sn〉| + |C2〈t1, . . . , tn〉|]. Since
�i ∈ H (C1) ∩ H (C2) implies si �
C1〈s1, . . . , sn〉 and ti � C2〈t1, . . . , tn〉,
|C1〈s1, . . . , sn〉|+|C2〈t1, . . . , tn〉| ≥ |si|+|ti|
for i such that �i ∈ H (C1) ∩ H (C2).
Thus the case si �= C1〈s1, . . . , sn〉 or ti �=
C2〈t1, . . . , tn〉 follows clearly. If si =
C1〈s1, . . . , sn〉 and ti = C2〈t1, . . . , tn〉 then
C1 = �1 = C2, thus this case does not hap-
pen by the condition of the inference rule.

�
Now we show the soundness of the procedure

2nd-Gen, that is, every output of 2nd-Gen
is a generalization of two input term patterns.
The following lemma is shown easily.

Lemma 3.13 For any indexed context C
such that �i /∈ H (C) and any term
patterns s1, . . . , sn, ti, C〈s1, . . . , si, . . . , sn〉 =
C〈s1, . . . , ti, . . . , sn〉.

We now prove the main lemma for the sound-

Vol. 49 No. SIG 1(PRO 35) Automatic Construction of Program Transformation Templates 21

ness theorem.
Lemma 3.14 Let 〈s, Φ〉 � 〈s′, Φ′〉. Let V1

and V2 be disjoint sets of local variables. Sup-
pose that, for i ∈ {1, 2}, (1) V (Φ−1

[i] (πi(s))) ⊆
Vi and (2) for any ∧-top subterm u1 ∧ u2 of
s, V (ui) ⊆ Vi. Then, for each i ∈ {1, 2},
Φ−1

[i] (πi(s)) = Φ′−1
[i] (πi(s′)). Also, conditions (1)

and (2) hold for Φ′ and s′.
Proof. We distinguish cases by the inference

rule applied in the step 〈s, Φ〉 � 〈s′, Φ′〉. We
show only Φ−1

[1] (π1(s)) = Φ′−1
[1] (π1(s′)) in each

case. The case i = 2 is shown similarly.
(Var) We have s = C[x∧y], s′ = C[z]θ where

θ = {x := z, y := z} is a substitution, and
Φ′ = Φ∪{x∧y �→ z} for some C, x, y. Then

Φ−1
[1] (π1(s))

= Φ−1
[1] (π1(C[x ∧ y]))

= Φ−1
[1] (π1(C)[x]) by Lemma 3.6 (3)

= (Φ−1
[1] (π1(C)))[Φ−1

[1] (x), . . . , Φ−1
[1] (x)]

= (Φ−1
[1] (π1(C{y := z})))[. . .] by y ∈ V2

= (Φ−1
[1] ∪ {z �→ x}(π1(Cθ)))[. . .]

= (Φ′−1
[1] (π1(Cθ)))[Φ−1

[1] (x), . . . , Φ−1
[1] (x)]

= (Φ′−1
[1] (π1(Cθ)))[Φ−1

[1] ∪ {z �→x}(z), . . .]

= (Φ′−1
[1] (π1(Cθ)))[Φ′−1

[1] (z), . . . , Φ′−1
[1] (z)]

= Φ′−1
[1] (π1(Cθ[z]))

= Φ′−1
[1] (π1(C[z]θ))

= Φ′−1
[1] (π1(s′))

Clearly, conditions (1), (2) hold for Φ′ and
s′.

(Div) We have s = C[p(s1, . . . , sn) ∧
p(t1, . . . , tn)] and s′ = C[p(s1 ∧ t1, . . . , sn ∧
tn)] for some C, p, s1, . . . , tn and Φ = Φ′.
Then

Φ−1
[1] (π1(s))

= Φ−1
[1] (π1(C[p(s1, . . . , sn)

∧p(t1, . . . , tn)]))
= Φ−1

[1] (π1(C[p(s1, . . . , sn))]))

by Lemma 3.6 (3)
= Φ−1

[1] (π1(C[p(s1 ∧ t1, . . . , sn ∧ tn)]))

by applying Lemma 3.6 (3) repeatedly
= Φ−1

[1] (π1(s′))

= Φ′−1
[1] (π1(s′))

Clearly, conditions (1), (2) hold for Φ′ and

s′.
(Gen) We have s = C[C1〈s1, . . . , sn〉 ∧

C2〈t1, . . . , tn〉], s′ = C[p(α1, . . . , αn)],
Φ′ = Φ ∪ {C1 ∧ C2 �→ p} for some
C, C1, C2, p, s1, . . . , tn. Then
Φ−1

[1] (π1(s))

= Φ−1
[1] (π1(C[C1〈s1, . . . , sn〉

∧C2〈t1, . . . , tn〉]))
= Φ−1

[1] (π1(C[C1〈s1, . . . , sn〉]))
by Lemma 3.6 (3)

= π1(Φ−1
[1] (C[C1〈s1, . . . , sn〉]))

by Lemma 3.6 (2)
= π1(Φ−1

[1] (C)[Φ−1
[1] (C1〈s1, . . . , sn〉),

. . .Φ−1
[1] (C1〈s1, . . . , sn〉)])

= π1(Φ−1
[1] (C)[C1〈s1, . . . , sn〉

. . . C1〈s1, . . . , sn〉])
since variables in dom(Φ−1

[1]) are fresh.
We now show that π1(C1〈. . . si . . .〉) =
π1(C1〈. . .Φ′−1

[1] (αi) . . .〉)) holds for any i.
We distinguish three cases.
(a) Case of �i ∈ H (C1)∩H (C2). Then

π1(C1〈. . . si . . .〉)
= π1(C1〈. . . si ∧ ti . . .〉)
= π1(C1〈. . .Φ′−1

[1] (si ∧ ti) . . .〉)
= π1(C1〈. . .Φ′−1

[1] (αi) . . .〉)

(b) Case of �i ∈ H (C1) \ H (C2).
π1(C1〈. . . si . . .〉)

= π1(C1〈. . .Φ′−1
[1] (Φ[1](si)) . . .〉)

by Lemma 3.8
= π1(C1〈. . .Φ′−1

[1] (αi) . . .〉)

(c) Case of �i ∈ H (C2) \ H (C1).
Then since �i /∈ H (C1), by
Lemma 3.13, π1(C1〈. . . si . . .〉) =
π1(C1〈. . .Φ′−1

[1] (αi) . . .〉).
Hence
π1(Φ−1

[1] (C)[C1〈s1, . . . , sn〉,
. . . C1〈s1, . . . , sn〉])

= π1(Φ′−1
[1] (C)[C1〈Φ′−1

[1] (α1), . . . , 〉,
. . . C1〈Φ′−1

[1] (α1), . . . , 〉])
= π1(Φ′−1

[1] (C)[Φ′−1
[1] (p(α1, . . . , αn)),

. . .Φ′−1
[1] (p(α1, . . . , αn))])

= π1(Φ′−1
[1] (C[p(α1, . . . , αn)]))

22 IPSJ Transactions on Programming Jan. 2008

= Φ′−1
[1] (π1(C[p(α1, . . . , αn)]))

by Lemma 3.6 (2)
= Φ′−1

[1] (π1(s′))
Clearly, conditions (1), (2) hold for Φ′ and
s′.

�
Now we have the following soundness theo-

rem of 2nd-Gen.
Theorem 3.15 Suppose 〈s ∧ t, ∅〉 ∗� 〈u, Φ〉

and V (s) ∩ V (t) = ∅. If u is ∧-free then u is a
generalization of s and t. Moreover, Φ−1

[1] (u) = s

and Φ−1
[2] (u) = t.

Proof. By the assumption V (s) ∩ V (t) = ∅,
we can apply Lemma 3.14 repeatedly so to ob-
tain Φ−1

[1] (π1(u)) = s and Φ−1
[2] (π2(u)) = t. Since

u is ∧-free, π1(u) = π2(u) = u by Lemma 3.6
(1). Thus Φ−1

[1] (u) = s and Φ−1
[2] (u) = t. This

means that u is a generalization of s and t. �
4. Generalization of TRSs

In this section, we give the TRS generaliza-
tion procedure TRS-Gen based on the term
generalization procedure 2nd-Gen given in the
previous section. We also present heuristics to
drop solutions of generalization useless for con-
structing transformation patterns.

TRS-Gen generalizes two TRSs with an in-
put memorizing function by generalizing each
rewrite rule in sequence. A rewrite rule is
treated as a term pattern whose root symbol is
→ in TRS-Gen. A memorizing function which
is an input of TRS-Gen is used to keep con-
sistent with the preceding generalizations.

Definition 4.1 Let R1 = {l1 → r1, . . . ,
ln → rn} and R2 = {l′1 → r′1, . . . , l

′
n → r′n} be

TRS patterns over F and → a special binary
function symbol such that → /∈ F . The TRS
generalization procedure TRS-Gen is given as
follows:
Input: TRS patterns R1 and R2 and

a memorizing function Φ.
begin

1. Rename local variables so that sets of
local variables of each rewrite rule
in R1 and R2 are mutually disjoint.

2. Φ0 = Φ
3. For(i = 0 to i = n)

begin
Compute l̃i → r̃i where
〈→(li∧l′i, ri∧r′i), Φi−1〉 ∗� 〈→(l̃i, r̃i), Φi〉
using 2nd-Gen.

end

4. Output R̃ = {l̃1 → r̃1, . . . , l̃n → r̃n}
and Φn.

end
The following is a corollary of Theorem 3.15.
Theorem 4.2 Let R̃ and Φ̃ be outputs of

TRS-Gen whose inputs are R1, R2 and Φ. R̃
is a generalization of R1 and R2. More pre-
cisely, Φ−1

[1] (R̃) = R1, Φ−1
[2] (R̃) = R2 (up to

renaming local variables) and Φ ⊆ Φ̃.
We have implemented 2nd-Gen and TRS-

Gen using modules of program transforma-
tion system RAPT 3)–5) and performed exper-
iments. It turned out that our algorithms
tend to produce many solutions which are ob-
viously useless to make transformation pat-
terns. For example, the number of solu-
tions of a generalization of sum(cons(x, xs))
and cat(cons(y, ys)) is over 1,000. Further-
more, it contains many solutions such as
p(sum(cons(x, xs)), cat(cons(y, ys))) which are
obviously useless for transformation patterns.

Even if many solutions of generalization are
obtained, they have to be enriched into devel-
oped templates by adding appropriate hypothe-
ses in order to use for program transformation.
Since such enrichment is not always possible, it
is preferred that obviously useless solutions are
omitted beforehand. Below, we report several
heuristics which work well in our experiment.

We first introduce two notions that are neces-
sary for describing our heuristics. A notion of
I-match is useful to reduce possibilities of ap-
plication of Gen.

Definition 4.3 Let C ∈ T�n (F ∪ X) be
an indexed context, and t ∈ T(F ∪ X , V)
a term pattern. We say C I-matches to t if
there exist term patterns s1, . . . , sn such that
C〈s1, . . . sn〉 = t.

We note that the notion of I-match is a vari-
ant of the first-order matching, which is decid-
able and has a unique solution up to renaming
local variables.

Definition 4.4 (1) The set of positions of
a term s is a set Pos(s) of sequences of integers,
which is inductively defined as follows: (i) If s =
x ∈ V , then Pos(s) = {ε} where ε represents
empty sequence; (ii) If s = q(s1, . . . , sn), then
Pos(s) = {ε}∪⋃n

i=1{ip | p ∈ Pos(si)}. (2) Let s
be a term pattern. A position p of s is shallower
than a position q of s if |p| ≤ |q|. The position p
is the shallowest and leftmost in t if (i) p is the
shallowest in t; (ii) for any shallowest position
q such that q �= p, there exist p′, i, j, q1, and q2

Vol. 49 No. SIG 1(PRO 35) Automatic Construction of Program Transformation Templates 23

such that p = p′iq1, q = p′jq2 and i < j.
Our heuristics are as follows:

H1 Gen is applied only when neither Var
nor Div can be applied.

H2 For a coupled term pattern s and mem-
orizing function Φ, we chose the shallow-
est and leftmost ∧-top subterm to apply
2nd-Gen.

H3 When 〈C[C1〈s1, . . . , sn〉∧C2〈t1, . . . , tn〉],
Φ〉 � 〈C[p(α1, . . . , αn)], Φ′〉 applying
Gen, we restrict that the depth of each
indexed context C1 and C2 is equal to or
less than 1.

H4 For 〈C[s ∧ t], Φ〉, we choose C1 and C2

to apply Gen if there exists C1 ∧ C2 �→
p ∈ Φ such that C1 I-matches to s and
C2 I-matches to t.

H5 When H4 cannot be applied to 〈C[s ∧
t], Φ〉, we choose C1 and C2 to apply
Gen, if there exist C1, s1, . . . , sn, C2,
t1, . . . , tn, k, and C ′

1 ∧ C ′
2 �→ p ∈

Φ such that s = C1〈s1, . . . , sn〉, t =
C2〈t1, . . . , tn〉, and �k ∈ H (C1) ∩
H (C2), and C ′

1 and C ′
2 I-match sk and

tk, respectively.
H6 When H4 and H5 cannot apply to 〈C[s∧

t], Φ〉, we choose arbitrary indexed con-
texts satisfying H3 to apply Gen.

Gen can be applied even when Var or Div
can be done. One can obtain more concrete
generalizations by giving higher priority to Var
and Div than Gen. Here, we say a term
pattern s is more concrete than a term pat-
tern t if there exists a term homomorphism ϕ
such that ϕ(t) = s. For example, let x, y be
local variables. Without heuristics, Var and
Gen can be applied to a pair 〈x ∧ y, ∅〉. If
Var is applied then the pair 〈z, {x ∧ y �→ z}〉
is obtained. If Gen is applied then the pair
〈p(x, y), {�1 ∧ �2 �→ p}〉 is obtained. The for-
mer is more concrete than the latter.

By H3, the number of possibilities of applica-
tion for Gen is reduced drastically. For exam-
ple, there are 225 possibilities for applying Gen
to 〈+(s(x), y)∧app(cons(z, zs), ws), Φ〉 without
our heuristics while 81 possibilities for apply-
ing Gen with heuristic H3 according to our
experiment. In our experiments, heuristic H3
seems to work well. However, there may exist
transformations which the depth defined in H3
should be increased.

Intuitively, H4 and H5 force to generalize
common patterns by the same pattern vari-
ables. In our experiments, one can obtain more

concrete generalizations with helps of H4 and
H5. For example, pars of generalizations of
f(f(x)) and g(g(y)) are p(q(v)) and p(p(v)).
The latter is more concrete than the former and
produced using H4 and H5.

Below we demonstrate one of the derivations
following our heuristics (Fig. 4).

Step (a): We choose the shallowest
and leftmost ∧-top subterm +(s(x), y) ∧
app(cons(z, zs), ws) to apply 2nd-Gen by H2.
Var, Div, H4 and H5 cannot apply to this
subterm. So, we choose C1 = +(�1,�2) and
C2 = app(�1,�2) to apply Gen to this sub-
term. As mentioned before, there are 81 possi-
bilities of applying Gen to this subterm.

Step (b): The shallowest and leftmost ∧-
top subterm is s(+(x, y))∧cons(z, app(zs, ws)).
Since +(�1,�2) I-matches to +(x, y) and
app(�1,�2) I-matches to app(zs, ws), we
choose C1 = s(�1) and C2 = cons(�2,�1) to
apply Gen to this subterm by H5.

Step (c): The shallowest and leftmost ∧-
top subterm is s(x) ∧ cons(z, zs). Since s(�1)
I-matches to s(x) and cons(�2,�1) I-matches
to cons(z, zs), we choose C1 = s(�1) and C2 =
cons(�2,�1) to apply Gen to this subterm by
H4.

Step (d): We apply H2 and H4 as the step
(c).

Step (e): The shallowest and leftmost ∧-top
subterm is x∧zs. We apply Var to this subterm
by H1.

Steps (f), (g), and (h): We apply Var in
the way similar to the step (e).

Example 4.5 Let Rsum and Rcat be TRSs
which appear in Section 1. The following TRS
pattern P̃ is one of outputs of our implemen-
tation with heuristics whose inputs are Rsum ,
Rcat and ∅:

P̃

⎧⎪⎨
⎪⎩

p(r) → q
p(p2(u, v)) → p1(u, p(v))
p1(q, v1) → v1

p1(p3(v7, v4), v8) → p3(p1(v7, v8), v4)

The TRS pattern P̃ above is a generalization of
Rsum and Rcat .

5. Generalization of Transformations

In this section, we discuss how to construct
transformation templates using our generaliza-
tion algorithm.

A pair 〈R,R′〉 of TRSs is called a TRS trans-
formation. We usually write the TRS trans-
formation 〈R,R′〉 as R ⇒ R′. A transforma-

24 IPSJ Transactions on Programming Jan. 2008

〈→(+(s(x), y) ∧ app(cons(z, zs), ws), s(+(x, y))) ∧ cons(z, app(zs, ws)), {}〉
(a)�〈→(p(s(x) ∧ cons(z, zs), y ∧ ws), s(+(x, y)) ∧ cons(z, app(zs, ws))),

{+(�1,�2) ∧ app(�1,�2) �→ p}〉
(by H2)

(b)�〈→(p(s(x) ∧ cons(z, zs), y ∧ ws), q(+(x, y) ∧ app(zs, ws), z)),{
+(�1,�2) ∧ app(�1,�2) �→ p
s(�1) ∧ cons(�2,�1) �→ q

}
〉

(by H2 and H5)

(c)�〈→(p(q(x ∧ zs, z), y ∧ ws), q(+(x, y) ∧ app(zs, ws), z)),{
+(�1,�2) ∧ app(�1,�2) �→ p
s(�1) ∧ cons(�2,�1) �→ q

}
〉

(by H2 and H4)

(d)�〈→(p(q(x ∧ zs, z), y ∧ ws), q(p(x ∧ zs, y ∧ ws), z)),{
+(�1,�2) ∧ app(�1,�2) �→ p
s(�1) ∧ cons(�2,�1) �→ q

}
〉

(by H2 and H4)

(e)�〈→(p(q(u1, z), y ∧ ws), q(p(x ∧ zs, y ∧ ws), z)),⎧⎨
⎩

+(�1,�2) ∧ app(�1,�2) �→ p
s(�1) ∧ cons(�2,�1) �→ q
x ∧ zs �→ u1

⎫⎬
⎭〉

(by H1 and H2)

(f)�〈→(p(q(u1, z), u2), q(p(x ∧ zs, y ∧ ws), z)),⎧⎨
⎩

+(�1,�2) ∧ app(�1,�2) �→ p
s(�1) ∧ cons(�2,�1) �→ q
x ∧ zs �→ u1 y ∧ ws �→ u2

⎫⎬
⎭〉

(by H1 and H2)

(g)�〈→(p(q(u1, z), u2), q(p(u1, y ∧ ws), z)),⎧⎨
⎩

+(�1,�2) ∧ app(�1,�2) �→ p
s(�1) ∧ cons(�2,�1) �→ q
x ∧ zs �→ u1 y ∧ ws �→ u2

⎫⎬
⎭〉

(by H1 and H2)

(h)�〈→(p(q(u1, z), u2), q(p(u1, u2), z)),⎧⎨
⎩

+(�1,�2) ∧ app(�1,�2) �→ p
s(�1) ∧ cons(�2,�1) �→ q
x ∧ zs �→ u1 y ∧ ws �→ u2

⎫⎬
⎭〉

(by H1 and H2)

Fig. 4 Example of 2nd-Gen with heuristics.

tion pattern P ⇒ P ′ is a generalization of TRS
transformations R1 ⇒ R′

1 and R2 ⇒ R′
2 if

there exist term homomorphisms ϕ1, ϕ2 such
that ϕi(P) = Ri and ϕi(P ′) = R′

i (i = 1, 2) up
to renaming local variables.

Definition 5.1 Let R1 ⇒ R′
1 and R2 ⇒

R′
2 be TRS transformations where |R1| = |R2|,

|R′
1| = |R′

2|. Here, |R| denotes the number of
rewrite rules appearing in R. The procedure
Trans-Gen is given as follows:
Input: R1 ⇒ R′

1 and R2 ⇒ R′
2

begin
1. Compute P and Φ by applying

TRS-Gen to R1, R2 and ∅.
2. Compute P ′ and Φ′ by applying

TRS-Gen to R′
1, R′

2 and Φ.

3. Output P ⇒ P ′.
end
The following is a corollary of Theorem 4.2.
Theorem 5.2 Let R1 ⇒ R′

1 and R2 ⇒ R′
2

be TRS transformations, and P ⇒ P ′ an out-
put of Trans-Gen whose inputs are R1 ⇒ R′

1

and R2 ⇒ R′
2. Then P ⇒ P ′ is a generaliza-

tion of R1 ⇒ R′
1 and R2 ⇒ R′

2.
Example 5.3 Applying Trans-Gen to

Rsum ⇒ R′
sum and Rcat ⇒ R′

cat which ap-
pear in Section 1, the transformation pattern
P̃ ⇒ P̃ ′ is produced where

Vol. 49 No. SIG 1(PRO 35) Automatic Construction of Program Transformation Templates 25

P̃ ′

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p(v11) → p4(v11, q)
p4(r, v14) → v14

p4(p2(v23, v21), v22)→
p4(v21, p1(v22, v23))

p1(q, v26) → v26

p1(p3(v32, v29), v33)→
p3(p1(v32, v33), v29)

and P̃ is the TRS pattern which appears in Ex-
ample 4.5. We note that there exists little dif-
ference between P ⇒ P ′ which appears in Sec-
tion 1 and P̃ ⇒ P̃ ′. But both of them is a gen-
eralization of Rsum ⇒ R′

sum and Rcat ⇒ R′
cat .

To verify the correctness of transformations
automatically, developed templates have to be
constructed 3)–5). One has to look for an ap-
propriate hypothesis to construct a developed
template from transformation patterns gener-
ated by Trans-Gen.

Example 5.4 Let P̃ ⇒ P̃ ′ be the transfor-
mation pattern appearing in Example 5.3 and
H̃ the following hypothesis.

H̃
{

p1(q, y) ≈ p1(y, q)
p1(x, p1(y, z)) ≈ p1(p1(x, y), z)

It can be shown that the template 〈P̃, P̃ ′, H̃〉 is
developed 4),5).

Let us consider another example of general-
ization.

Example 5.5 The following TRS transfor-
mations Ronesadd ⇒ R′

onesadd and Rlenapp ⇒
R′

lenapp represent the well-known program
transformation called fusion transformation.

Ronesadd

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

onesadd(x, y)→ ones(+(x, y))
ones(0) → nil
ones(s(x)) →

cons(s(0), ones(x))
+(0, x) →x
+(s(x), y) → s(+(x, y))

R′
onesadd

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

onesadd(0, u) → ones(u)
onesadd(s(v), w)→

cons(s(0), onesadd(v, w))
ones(0) → nil
ones(s(v)) →

cons(s(0), ones(v))
+(0, u) →u
+(s(v), w) → s(+(v, w))

Rlenapp

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

lenapp(x, y) → len(app(x, y))
len(nil) → 0
len(cons(x, y))→ s(len(y))
app(nil, y) → y
app(cons(x, y), z) →

cons(x, app(y, z))

R′
lenapp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lenapp(nil, u) → len(u)
lenapp(cons(u, v), w) →

s(lenapp(v, w))
len(nil) → 0
len(cons(u, v)) → s(len(v))
app(nil, u) →u
app(cons(u, v), w)→

cons(u, app(v, w))

Applying Trans-Gen to Ronesadd ⇒ R′
onesadd

and Rlenapp ⇒ R′
lenapp , the transformation

pattern P1 ⇒ P ′
1 is obtained where

P1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p(v, w) → q(r(v, w))
q(p2) → p1
q(p4(v3, v1)) → p3(s(0), q(v3))
r(p2, v6) → v6

r(p4(v12, v9), v13)→ p4(r(v12, v13), v9)

P ′
1

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p(p2, v16) → q(v16)
p(p4(v22, v19), v23)→

p3(s(0), p(v22, v23))
q(p2) → p1
q(p4(v27, v25)) → p3(s(0), q(v27))
r(p2, v30) → v30

r(p4(v36, v33), v37) → p4(r(v36, v37), v33)

Note that the transformation pattern which
is obtained from Ronesadd ⇒ R′

onesadd or
Rlenapp ⇒ R′

lenapp by replacing function sym-
bols with fresh pattern variables cannot be used
as transformation pattern for the other TRS.

Example 5.6 The TRS Rdoubleadd is trans-
formed to Rdoubleadd ′ by the transformation
pattern P1 ⇒ P ′

1 where

Rdoubleadd

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

doubleadd(x, y)→
double(+(x, y))

double(0) → 0
double(s(x)) →

s(s(double(x)))
+(0, x) →x
+(s(x), y) → s(+(x, y))

R′
doubleadd

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

doubleadd(0, v16) →
double(v16)

doubleadd(s(v22), v23) →
s(s(doubleadd(v22, v23)))

double(0) → 0
double(s(v27))→

s(s(double(v27)))
+(0, v30) → v30

+(s(v36), v37) →
s(+(v36, v37))

Example 5.7 The TRS Rel is transformed
to R′

el by the transformation pattern P1 ⇒ P ′
1

26 IPSJ Transactions on Programming Jan. 2008

where

Rel

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

evenlenapp(x, y) → evenlen(app(x, y))
evenlen(nil) → true
evenlen(cons(x, y))→ not(evenlen(y))
app(nil, x) →x
app(cons(x, y), z) → cons(x, app(y, z))
not(true) → false
not(false) → true

R′
el

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

evenlenapp(nil, v16) →
evenlen(v16)

evenlenapp(cons(v19, v22), v23) →
not(evenlenapp(v22, v23))

evenlen(nil) → true
evenlen(cons(v25, v27)) →

not(evenlen(v27))
app(nil, v30) → v30

app(cons(v33, v36), v37)→
cons(v33, app(v36, v37))

not(true) → false
not(false) → true

As mentioned before, templates have to be
developed to verify the correctness of transfor-
mations automatically. In this example, it can
be shown that the template 〈P1,P ′

1, ∅〉 is a de-
veloped template 4),5).

We now note about the implementation of our
generalization algorithm. In our implementa-
tion, TRS transformations which are input of
our algorithm are represented by pairs of two
TRSs. The implementation of our generaliza-
tion algorithm produces all solutions obtained
under the heuristics H1∼H6. Each output of
our generalization algorithm is enumerated se-
quentially using the lazy evaluation technique.

6. Conclusion

We have proposed the 2nd-order generaliza-
tion procedure 2nd-Gen for term patterns and
show its soundness. Based on this procedure,
we have given a procedure to construct trans-
formation patterns from similar TRS transfor-
mations. By using some heuristics, the number
of outputs of the generalization procedure is re-
duced and useless solutions are omitted. By
adding appropriate hypotheses, we have also
demonstrated that developed templates are ob-
tained from transformation patterns produced
using Trans-Gen.

Plotkin proposed a first-order generalization
algorithm 11). The first-order generalization is
simulated by treating local variables as fresh
constant and permitting pattern variables in-
stantiated only term patterns (i.e., indexed con-

texts without holes). Therefore, our framework
is an extension of first-order generalization. To
the best of our knowledge, there is no result of
generalization which is specialized for program
transformation.

The notion of program transformation by
templates was originally introduced by Huet
and Lang 8). They showed the method to
construct transformation templates manually.
After their work, several results about pro-
gram transformation by templates have been
obtained 6),7),14). In these works, no automated
method to construct transformation templates
has been proposed.

Although soundness of the generalization
procedure 2nd-Gen was proved, proving com-
pleteness of 2nd-Gen remains as a future work.
In our framework, transformation templates are
constructed manually from transformation pat-
terns obtained by generalization procedure. We
consider that it is interesting to attack the
problem of constructing developed templates
directly and automatically.

Acknowledgments The authors would
like to acknowledge their grateful thanks to an
anonymous referee for useful comments and ad-
vices. The presentation of the paper has been
improved very much by the constructive sug-
gestions of the referee. This work was partially
supported by grants from JSPS, Nos. 17700002
and 19500003.

References

1) Baader, F. and Nipkow, T.: Term rewrit-
ing and all that, Cambridge University Press
(1998).

2) Burstall, R. and Darlington, J.: A transforma-
tion system for developing recursive programs,
J. ACM, Vol.24, No.1, pp.44–67 (1977).

3) Chiba, Y. and Aoto, T.: RAPT: A program
transformation system based on term rewrit-
ing, Proc. 17th International Conference on
Rewriting Techniques and Applications, LNCS,
Vol.4098, pp.267–276, Springer-Verlag (2006).

4) Chiba, Y., Aoto, T. and Toyama, Y.: Program
transformation by templates based on term
rewriting, Proc. 7th ACM-SIGPLAN Interna-
tional Conference on Principles and Practice
of Declarative Programming (PPDP 2005),
pp.59–69, ACM Press (2005).

5) Chiba, Y., Aoto, T. and Toyama, Y.: Pro-
gram transformation by templates: A rewriting
framework, IPSJ Trans. Programming, Vol.47,
No.SIG 16 (PRO 31), pp.52–65 (2006).

6) Curien, R., Qian, Z. and Shi, H.: Effi-

Vol. 49 No. SIG 1(PRO 35) Automatic Construction of Program Transformation Templates 27

cient second-order matching, Proc. 7th Inter-
national Conference on Rewriting Techniques
and Applications, LNCS, Vol.1103, pp.317–331,
Springer-Verlag (1996).

7) de Moor, O. and Sittampalam, G.: Higher-
order matching for program transforma-
tion, Theoretical Computer Science, Vol.269,
pp.135–162 (2001).

8) Huet, G. and Lang, B.: Proving and applying
program transformations expressed with sec-
ond order patterns, Acta Informatica, Vol.11,
pp.31–55 (1978).

9) Paige, R.: Future directions in program trans-
formations, ACM Computing Surveys, Vol.28,
No.4es, p.170 (1996).

10) Partsch, H. and Steinbrüggen, R.: Pro-
gram transformation systems., ACM Comput-
ing Surveys, Vol.15, No.3, pp.199–236 (1983).

11) Plotkin, G.D.: A note on inductive general-
ization, Machine Intelligence, Vol.5, Chapter8,
pp.153–163, Edinbrgh University Press (1969).

12) Terese: Term rewriting systems, Cambridge
University Press (2003).

13) Wadler, P.: Deforestation: transforming pro-
grams to eliminate trees, Theoretical Computer
Science, Vol.73, pp.231–248 (1990).

14) Yokoyama, T., Hu, Z. and Takeichi, M.: De-
terministic second-order patterns, Information
Processing Letters, Vol.89, No.6, pp.309–314
(2004).

(Received May 7, 2007)
(Accepted September 4, 2007)

Yuki Chiba received his M.S.
from Tohoku University in 2005.
He is currently a doctoral stu-
dent at the same university. His
research interests include term
rewriting and program transfor-
mation. He is a member of IPSJ

and JSSST.

Takahito Aoto received his
M.S. and Ph.D. from Japan Ad-
vanced Institute for Science and
Technology (JAIST). He was at
JAIST from 1997 to 1998 as an
associate, at Gunma University
from 1998 to 2002 as an assis-

tant professor, and at Tohoku University from
2003 to 2004 as a lecturer. He has been in
Tohoku University from 2004 as an associate
professor. His current research interests in-
clude term rewriting, automated theorem prov-
ing, and foundation of software. He is a member
of IPSJ, JSSST, EATCS, and ACM.

Yoshihito Toyama received
his B.E. from Niigata University
in 1975, and his M.E. and D.E.
from Tohoku University in 1977
and 1990. He worked as a Re-
search Scientist at NTT Labora-
tories from 1977 to 1993, and as

a Professor at the Japan Advanced Institute of
Science and Technology (JAIST) from 1993 to
2000. Since April 2000, he has been a professor
at the Research Institute of Electrical Commu-
nication (RIEC) of Tohoku University. His re-
search interests include term rewriting systems,
program theory, and automated theorem prov-
ing. He is a member of IEICE, IPSJ, JSSST,
ACM, and EATCS.

