JAIST Repository

https://dspace.jaist.ac.jp/

Tit Performance Evaluation of Wor kf |l owse
itle

Continuous Petri Nets with I nterval
Author(s) HI RAI SHI , Kuni hi ko

| EI CE TRANSACTI ONS on Fundamental s «
Citation Electronics, Communicatiops and Comj
Sciences, E91-A(11): 3219fFp3228

Issue Date 2008-11-01

Type Journal Article

Text version publ i sher

URL http://hdl.handle.net/ 101009/ 8516

Copyright (C)2008 1 EI CE. Kuni hi ko HI
TRANSACTI ONS on Fundamentphls of El e

Rights Communications and Computpr Science:
2008, 3219-3228.
http:// www.ieice.org/jpn/ftrans_onli:
Description

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



IEICE TRANS. FUNDAMENTALS, VOL.E91-A, NO.11 NOVEMBER 2008

3219

| PAPER Special Section on Concurrent/Real-time and Hybrid Systems: Theory and Applications |

Performance Evaluation of Workflows Using Continuous Petri Nets

with Interval Firing Speeds

SUMMARY In this paper, we study performance evaluation of
workflow-based information systems. Because of state space explosion,
analysis by stochastic models, such as stochastic Petri nets and queuing
models, is not suitable for workflow systems in which a large number of
flow instances run concurrently. We use fluid-flow approximation tech-
nique to overcome this difficulty. In the proposed method, GSPN (Gener-
alized Stochastic Petri Nets) models representing workflows are approxi-
mated by a class of timed continuous Petri nets, called routing timed con-
tinuous Petri nets (RTCPN). In RTCPN models, each discrete set is ap-
proximated by a continuous region on a real-valued vector space, and vari-
ance in probability distribution is replaced with a real-valued interval. Next
we derive piecewise linear systems from RTCPN models, and use interval
methods to compute guaranteed enclosures for state variables. As a case
study, we solve an optimal resource assignment problem for a paper review
process.

key words: fluidification, interval methods, workflow, performance evalu-
ation, hybrid systems

1. Introduction

How to make information systems safe, dependable and
trustworthy is one of central concerns in the development
of e-Society and e-Government. There are two kinds of
correctnesses, qualitative correctness and quantitative cor-
rectness, where the former means that the system is proved
to be logically correct, and the latter means that the sys-
tem has sufficient performance for an expected amount of
transactions. In this paper, we focus on quantitative correct-
ness, and study performance evaluation of workflow-based
information systems, particularly for those in which many
instances of flows run concurrently. Such a situation often
arises in web-based information systems for enterprises and
local governments.

There are various results on modeling and verifica-
tion of workflows (e.g., [8],[21]). In most of previous re-
searches, some specific formalism, such as Petri nets, UML
activity diagrams, and business process modeling languages
(e.g., BPMN [22]), are used for describing workflows, and
properties such as liveness, soundness and more general
properties described by logical formulas are verified by us-
ing verification techniques developed for each formalism.

On the other hand, quantitative correctness was also
studied as an important issue [1],[5],[15]. In actual

Manuscript received April 10, 2008.
Manuscript revised May 19, 2008.

"The author is with the School of Information Science, Japan
Advanced Institute of Science and Technology, Nomi-shi, 923-
1292 Japan.

a) E-mail: hira@jaist.ac.jp
DOI: 10.1093/ietfec/e91-a.11.3219

Kunihiko HIRAISHI'®, Member

workflow-based information systems, each workflow is
nothing but a template, and many instances of the same
workflow run concurrently. Therefore, guaranteeing cor-
rectness of an individual instance is insufficient for guar-
anteeing quantitative correctness of the entire system. In
this paper, we study an optimal resource assignment prob-
lem as one of problems that particularly arise in workflow-
based information systems. Recent workflow systems are
often used for integrating various resources (software sub-
systems, databases, workers, machines, other organizations,
etc.) that exist in enterprises. Therefore, we need to take
care of quantity of resources necessary for performing work-
flows. Otherwise, many tasks may be assigned to the same
resource, and as a result, the resource becomes a bottleneck
of the system. To analyze this problem, we can use per-
formance models such as stochastic Petri nets and queuing
networks. However, state space explosion prevents us from
dealing with a large number of flow instances.

Fluidification (or continuization) is a relaxation tech-
nique that tackles the state space explosion by removing
the integrality constraints [20]. This idea is not new, and
is found in various formalisms such as queuing networks
(e.g., [14],[17]) and Petri nets. For Petri nets, fluidification
was firstly introduced into the model called continuous Petri
nets, and the formalism was extended to hybrid Petri nets
[4]. Similar idea was also introduced into stochastic models
such as fluid stochastic Petri nets [12]. Fluidification was
also applied to analysis of a performance model based on
process algebra [10].

In this paper, we introduce a class of timed continu-
ous Petri nets, called routing timed continuous Petri nets
(RTCPN), in order to approximate discrete state spaces of
generalized stochastic Petri nets (GSPN). To deal with vari-
ance in probability distribution of each firing delay, interval
firing speeds are introduced to timed transitions of RTCPN.
In this sense, approximated models have uncertainty in their
parameters.

There are several results on analysis of timed continu-
ous Petri nets. In [9], [13], linear programming is used for
computing performance measures at steady state. In contrast
with previous works, we focus on transient analysis. More-
over, since our aim is to prove quantitative correctness, we
would like to give some amount of guarantee to obtained re-
sults. It is known that the behavior of a timed continuous
Petri net is represented by a piecewise linear (PWL) system.
Based on interval methods for ordinary differential equa-
tions [7],[18], we derive a procedure to compute a guar-

Copyright © 2008 The Institute of Electronics, Information and Communication Engineers



3220

anteed enclosure for state variables at each time step, where
the guaranteed enclosure means that true value is surely in
the enclosure. All the computation can be performed by lin-
ear programming solver and interval arithmetic.

As a case study, we consider the paper review process
in an academic journal. The problem is to compute the min-
imum number of associate editors sufficient for handling an
expected amount of submitted papers. We first show a re-
sult by GSPN. Next we compute transient behavior of the
approximated RTCPN model, and compare the two results.
Consequently, we claim that the proposed approach is scal-
able for the number of flow instances.

The paper is organized as follows. In Sect.2, anal-
ysis by GSPN is presented. In Sect.3, RTCPN is intro-
duced, and the GSPN model built in Sect. 2 is approximated
by RTCPN. Moreover, we derive a PWL system from the
RTCPN model. In Sect.4, an interval approximation al-
gorithm for computing transient behavior of PWL systems
is described. Numerical results of the algorithm are also
shown. In Sect. 5, we discuss contribution and usefulness of
the results in this paper. Section 6 is the conclusion.

2. Modeling Workflows by Stochastic Petri Nets
2.1 Example: Paper Review Process

We study the following workflow as an example. It is a
workflow of the review process of an academic journal. The
initial fragment of the workflow is shown in Fig. 1. By the
editor in chief, each submitted paper is firstly assigned to
one of associate editors responsible for research categories
suitable for the paper. Then the associate editor finds two re-
viewers through some negotiation processes. There are three
cases at the first review: acceptance, rejection, and condi-
tional acceptance. If the decision is conditional acceptance,
then the associate editor requests the authors to submit a re-
vised manuscript toward the second review. The decision at
the second review is the final one, and is either acceptance
or rejection.

All the processes are supported by a web-based infor-
mation system including electronic submission and auto-
matic notification of due dates. Then the problem is how to
decide the appropriate number of associate editors in each

Author Editor Assoc. Editor | Reviewer1 | Reviewer2
paper
submission - {» accept
receive €-send receipt
receipt #
assignan .....] .- accept
assoc. editor
s e 9 accept
assign P AR accept
reviewers l *

Fig.1  The paper review process of an academic journal.

IEICE TRANS. FUNDAMENTALS, VOL.E91-A, NO.11 NOVEMBER 2008

research category, considering load balancing.
The problem is formally stated as follows:
Given

o A description of workflow,

o Statistics on paper submission,

e An upper bound of the number of papers each associate
editor can handle,

Find

e The minimum number of associate editors such that the
workflow runs stably. (The number of papers waiting
for being processed should not become too large.)

The statistics on paper submission/handling is given as
follows:
e Duration between submission and final judgment:

Acceptance at the first review: 2.4 months
Rejection at the first review: 3.9 months
Acceptance at the second review: 5.9 months
Rejection at the second review: 6.8 months

e Probabilities of acceptance and rejection:

Acceptance at the first review: 0.065
Rejection at the first review: 0.687
Acceptance at the second review: 0.238
Rejection at the second review: 0.010

e Average number of paper submissions: 16.9/month.

(This statistics is obtained from actual data of some aca-
demic journal.)

2.2 Stochastic Petri Nets

A generalized stochastic Petri net (GSPN) [2] is a 6-tuple
GSPN = (P, T,A,my, A, w), where P is a set of places, T is
a set of transitions, A : PX T UT x P — N is the incidence
function that specifies the weights of the arcs between places
and transitions, and mg : P — N is the initial marking. The
incidence function is equivalently represented by two non-
negative integer matrices A* = [a;'j], A = [ai‘j] € NIPXITI by
a;; = A(t}, p;) and a;; = A(pit)). Let A = A* — A~ be called
the incidence matrix.

Transitions of GSPN are partitioned into two different
classes: immediate transitions and timed transitions. Im-
mediate transitions fire in zero time, and timed transitions
fire after a random, exponentially distributed, enabling time.
The function A : T,,, — R* assigns a firing rate to each
timed transition, where R* is the set of nonnegative real
numbers. The function w : T;,, — R* assigns a firing weight
to each immediate transition.

Firing semantics is described as follows. If the
set of enabled transitions H comprises only timed transi-
tions, then each transition t; € H fires with probability
A(t))/ Yen Ate). If H comprises both immediate and timed
transitions, then only immediate transitions can fire. If H



HIRAISHI: PERFORMANCE EVALUATION OF WORKFLOWS

waiting papers editor pool

(V)
' >/ "accept, 1/3.5
\ conditional acc. 6 *

submit

reject; 1/3.9
paper pool

®

|:| timed transition I immediate transition

Fig.2  GSPN model.

has several conflicting immediate transitions, then the fir-
ing weights determine probability that a particular imme-
diate transition will fire. Let C C H be the set of con-
flicting immediate transitions. Then the probability, called
switching probability, that each transition ¢; € C will fire is
w(tj)/ Xiyec w(te).

The firing semantics described above is called finite-
server semantics. There is another firing semantics, called
infinite-server semantics. In infinite-server semantics, the
same transition fires simultaneously. The multiplicity in the
firing depends on the number of tokens in input places of
each transition. As usual, we use the notation *x := {y €
PUT|A(y,x)>0}and x* :={y € PUT | A(x,y) > 0}. For
an infinite-server timed transition ¢; and a marking m, let
enab(t;, m) := miny.e {im(p;)/A(p;, t;)}. Then the marking-
dependent firing rate of #; at marking m is A(¢;) - enab(t;, m).
We will allow both types of timed transitions to exist in a
model.

We first use GSPN to compute performance measures
such as the average number of papers waiting for being pro-
cessed. One of advantages of using Petri net models is that
each instance of workflows is modeled by a token. Increas-
ing the number of workflow instances corresponds to in-
creasing the number of tokens. This means that modeling
by GSPN is scalable in the number of workflow instances.
Using analysis techniques on GSPN, we can compute sta-
tionary probability distribution of reachable states.

Figure 2 is the GSPN model of the workflow, where de-
tails of the processes (e.g., finding two reviewers, commu-
nication between editors and authors, research categories of
associate editors etc.) are not considered for simplicity. The
number associated with each transition is the firing delay
(if the transition is timed) or the firing weight (if the transi-
tion is immediate). These numbers are determined from the
statistics on paper submission/handling.

Once a paper is submitted, i.e., transition ‘submit’ fires,
the paper is waiting for being processed. If an associate ed-
itor is available, then the result of the first review is decided
according to the given probability. If the result is conditional
acceptance, then the paper proceeds to the second review,
and the final result is decided according to the given prob-

3221

ability. These probabilities are specified by weights of im-
mediate transitions. In the GSPN model, there are two sets
of potentially conflicting immediate transitions: one corre-
sponds to the decision at the first review, and the other cor-
responds to the decision at the second review.

Each duration 7 in the paper review workflow is given
as a firing rate 1/7 of the corresponding timed transition.
Since papers are processed in parallel by associate editors,
these timed transitions are defined to be infinite-server (as
indicated by symbol co in the figure). Only transition ‘sub-
mit’ is a single-server timed transition. The firing rate ‘1’
of transition ‘submit’ specifies the average number of pa-
pers added to place ‘waiting papers’ per one unit of time (=
month). Since the average number of paper submissions is
16.9/month, one token corresponds to 16.9 papers.

The place ‘paper pool’ is necessary for the state space
to be finite, and needs to be nonempty in order to get a cor-
rect result. Otherwise, transition ‘submit’ does not fire with
the defined rate. As long as ‘paper pool’ is nonempty, we
do not have to care about the number of tokens in it. The
return arc to place ‘submit’ is introduced just for keeping
the number of papers in the system constant. At the initial
marking, we put a sufficient number of tokens in place ‘pa-
per pool.” In computer experiments, we check probability
that the number of tokens in ‘paper pool’ is 0.

2.3 Computation Results: GSPN Model

We compute the expected number of waiting papers at
steady state by a computer tool DSPNexpress-NG [16], [23].
Since exponential distribution is not appropriate for the de-
lay of each transition, we use Erlangian distribution of order
2 as the probability distribution of each timed transition. It
is known that Erlangian distribution of order n with average
rate A is simulated by a serial connection of n exponentially-
distributed timed transitions with average rate nd [6]. Us-
ing this technique, we introduce Erlangian-distributed timed
transitions in GSPN models. The drawback to using this
technique is that it increases the size of the state space. Con-
sidering the actual probability distribution, order 2 may be
insufficient. In computer experiments, however, it was hard
to compute solutions for models with Erlangian distribution
of order more than 2, because of state space explosion.

The computation result is shown in Table 1. In the
initial state, we put N tokens in place ‘editor pool.” For
each value of N, the number of tangible states, CPU time,
the expected number of waiting papers at steady state, and
probability that the paper pool is empty are shown in Ta-
ble 1. The computer environment used for the computation
is a Linux high-performance computer with Intel Itanium?2,
1.6 GHz/9 MB Cache CPU, 16 GB main memory. It is ob-
served that N > 6 gives a desirable level. The amount of
resources N = 6 means that 6 X 16.9 = 101.4 papers can be
processed in parallel.

A high probability of p(#paperpool = 0) means that
the amount of resources is insufficient for handling papers.
If the probability is high, most of tokens initially given in the



3222
Table1 Numerical results of GSPN analysis.
N | #states | CPU Time | #waiting | p(#paperpool = 0)
(sec.) papers
3 2926 0.31 10.18 0.30
4 8866 0.7 5.94 0.094
5 23023 2.3 1.99 0.013
6 53053 6.2 0.63 0.0021
7 | 110968 15 0.21 0.00049
8 | 213928 29 0.08 0.00020
9 | 384098 58 0.03 0.00010

place ‘paper pool’ are stuck in place ‘waiting papers.” We
also observe that CPU time and the size of the state space
increase very rapidly.

3. Modeling by a Class of Timed Continuous Petri Nets

In the GSPN model (Fig. 2), the number of reachable states
increases exponentially in the number N. As a result, we
will not be able to compute the steady state for larger mod-
els. We will use fluidification technique to overcome this
difficulty. For this purpose, we introduce a class of timed
continuous Petri nets as formalism to deal with continuous
dynamics.

3.1 Routing Timed Continuous Petri Nets

We define a class of timed continuous Petri nets that will
be used for approximating the GSPN model. A routing
timed continuous Petri nets (RTCPN) is a 6-tuple RTCPN =
(P, T,A, mgy, A, w), where P, T, and A are the same as those in
GSPN except that the range of A is the set of real numbers,
and mg : P — R* is the initial marking.

Transitions of RTCPN are partitioned into timed transi-
tions and routing transitions. Timed transitions correspond
to infinite-server timed transitions of GSPN, and routing
transitions correspond to immediate transitions of GSPN.

The function A : Tyjme — R, where T}, is the set of
timed transitions, assigns a firing speed to each timed tran-
sition. A timed transition ¢; fires at speed A(%;) - enab(t;, m),
similarly to an infinite-server timed transition of GSPN.

Routing transitions together with the routing rate func-
tion w : Tyoure = R*, where Ty is the set of routing tran-
sitions, are used for determining routing of flows.

In RTCPN, we put the following restriction on the Petri
net structure.

e Ifaplace p; has an output routing transition, then every
output transition of p; is a routing transition.

e There is no cycle consisting only of routing transitions.

e For any two routing transition #; and ¢;, if *#; N °¢; # 0
then [*;| = |°¢;| = 1, i.e., every potentially conflicting
routing transition has a free-choice structure.

Remark 3.1: The first and the second items are natural as-
sumptions. The third one is introduced just for simplify-
ing the discussion. Under the third assumption, the routing
defined by routing transitions becomes static like in STAR-
CPN [9], and is easy to handle. In fact, for any RTCPN

IEICE TRANS. FUNDAMENTALS, VOL.E91-A, NO.11 NOVEMBER 2008

enab(tj, m) =min{ 5/2,4/1 } =2.5

Fig.3  Type (i) firing of a routing transition.

deg(tj, m)=min{ V¥/2,V*}

Fig.4  Type (ii) firing of a routing transition (non-conflicting case).

model, there exists an equivalent RTCPN model without any
routing transitions. We omit the detail because of lack of
space. We note that RTCPN can still represent FORK-JOIN
type structure of workflows under this restriction.

Let ¢; be a non-conflicting routing transition. There are
two types in firing:

(i) When enab(t;, m) > 0, a quantity A(p;, t;)-enab(t;, m) is
removed from each input place p; of ¢;, and a quantity
A(t}, pi) - enab(tj, m) is added to each output place p; of
tj. These actions are instantaneous, and as a result, at
least one of input transitions of #; becomes empty (see
Fig. 3). This case may occur only at the initial marking,
or at the time when external quantity is put on a place.

(ii) Suppose that enab(t;,m) = 0 and every empty in-
put place p; is fed, i.e., a positive quantity V;" flows
into p;. Let E be the set of empty input places of
pi» and we define the firing degree by deg(t;, m) :=
min,cp{VF/A(pi,t)}.  Then a quantity A(p;,t;) -
deg(tj,m) flows from each input place p; of ¢;, and
a quantity A(z;, py) - deg(t;, m) flows into each output
place py of ; (see Fig.4). We remark that nonempty
input places are irrelevant to the firing degree.

For simplicity, we assume that in the initial marking
my, enab(tj,my) = 0 holds for every routing transition ¢;,
and ignore the type (i) firing. In the type (ii) firing, which
one of input places determines the firing degree may be
switched during execution.

The firing rule for conflicting routing transitions is
as follows. Let C be the set of routing transitions that
have a common input place p;. Then a fraction p(¢;) :=
w(t;)/ Xpec w(t) of flow V;F is used exclusively for firing of
each t; € C. Let deg(t;,m) := p(t;) - V' /A(pi,t;). Then,
similarly to the non-conflicting case, a quantity A(p;,t;) -



HIRAISHI: PERFORMANCE EVALUATION OF WORKFLOWS

w(t)

Vr+ &?»
) 2()-V,*

w(t,)

ALY =wt) [ (w(t) + w(t) + w(z))

Fig.5  Type (ii) firing of routing transitions (conflicting case).

deg(tj, m) flows from each input place p; of ¢;, and a quan-
tity A(z;, px) - deg(t;, m) flows into each output place py of #;
(see Fig. ).

3.2 Approximating Probability Distributions

From the GSPN model, we build an approximated RTCPN
model based on the following idea:

e An infinite-server timed transition #; of GSPN (with
mean firing rate A(¢;)) is approximated by a timed tran-
sition with a marking dependent firing speed A(%)) -
enab(t;, m).

o The variance of the probability distribution for firing
rate A(t;) is approximated by an interval firing speed
[A())] = [A)), i(tj)]. We assume that the actual firing
delay is within the interval with a high probability.

e Switching probability among conflicting immediate
transitions is approximated by routing rates of routing
transitions.

Remark 3.2: (1) Approximation by mean firing rates pre-
serves the expected number of tokens in each place of
GSPN. We consider the following simple situation. Let ¢;
be an infinite-server timed transition with firing rate A(¢;) in
GSPN. Suppose that ¢; is non-conflicting and has a unique
input place p; with arc weight 1. Let W; denote the ran-
dom variable representing firing delay of #;. Suppose that
at time 0, there are k tokens in p;. Some amount of time
t > 0 has elapsed and the remaining tokens has decreased
to k' < k by firing of t;. Then the expected value of k'
is E[m(p;))] = kP[W; > 1] = ke~ since t; is exponen-
tially distributed in GSPN. In the RTCPN model, the fir-
ing speed of the corresponding transition is A(z;) - x;, where
x; is the variable representing m(p;). Solving the differ-
ential equation with initial condition x;(0) = k, we obtain
xi(t) = ke~ Both values coincide. This holds in general
cases by the linearity of the system.

(2) For “congested” systems, this approximation is
valid for any probabilistic distribution [20]. This is a result
of the central limit theorem. Suppose that in some stochastic
Petri net, delay for single firing has any probabilistic density
function with mean 7 and variance o>. Then mean delay
for firing with multiplicity # is approximately normally dis-
tributed with the same mean 7 and variance o%/n, provided

3223

| routing transition

|:| timed transition

Fig.6 RTCPN model.

that the time instant at which each of » firings becomes en-
abled is randomly selected. Considering this fact, the size
of the interval [A(#;), A(¢;)] can be narrowed to one propor-

tional to 1/ 4/enab(t;, m), when the system is approaching to
a steady state.

From the GSPN model in Fig. 2, we obtain an RTCPN
model shown in Fig. 6, where A; is the firing speed of timed
transition ‘submit,” [4;] denotes the interval of firing speed
for each timed transition, and w; denotes the routing rate
of each routing transition. There is no ‘paper pool’ in the
RTCPN model since we do not have to make the state space
finite any more. Since RTCPN has no timed transitions cor-
responding to single-server transitions, a single-server tran-
sition ‘submit’ is simulated by a timed transition with a self-
loop.

3.3 From RTCPN Model to Differential Equations

We can derive a set of differential equations from the
RTCPN model. We first define the flow for arc A(p;,¢;)
by V(p,',lj) = A(pi,lj) : /l(lj) . enab(tj,m) if tj is a
timed transition; V(p;,t;) = A(pi,t;) - deg(tj,m) if t; is
a routing transition. Similarly, the flow of arc A(z;, p;) is
V(tj, pi) = A(tj, pi) - A(t;) - enab(t;, m) if t; is a timed transi-
tion; V(¢;, p;) := A2, pi) - deg(tj, m) if t; is a routing transi-
tion.

The differential equation with respect to place p; is
given as follows:

(pi) = Vi =V} M
where
V= Z V(t;,p), Vi = Z V(pi,t)) 2)
1€ p; ti€p;

The differential Eq. (1) is not linear in general because
enab(t;, m) and deg(t;, m) may contain ‘min’ operator. How-
ever, we can rewrite the set of differential equations as a
piecewise linear (PWL) system.

Theorem 3.3: For the set of differential Eq. (1) derived
from RTCPN, there exists an equivalent PWL system.



3224

Mode I:{x, = 0, x; > 0} Mode II:{x, > 0, x; = 0}

X5 = As — R(x) X =0

Xp:O Xp:R()C)—/lS

Yea = PeaR(X) = [AcalXca Yea = Peads = [AcalXca

Xa1 = Pa1 R(x) — [Aa1]Xa1 Xa1 = pards — [Aa11xXa1

X1 = priR(x) = [A1]x01 X1 = pr1ids — [Ar1]xn

Xa2 = pazldealXea — [Aa2)xa2 Xa2 = pa2ldealXea — [Aa2)xa2
X2 = praldealXca — [A2]x2 X2 = praldealXca — [A2]x2

R(x) = [Aa1]xa1 + [Ar1]xr1 + [Aa2]xa2 + [Ar2]xr2-
Pj=wj/(Weqg + Wa1 +wrr) (j € {ca,al, r1}),
pj=wj/(waz +wy2) (j € {a2,r2}).

Fig.7 The PWL system derived from the RTCPN model.

Proof. We first remark that each marking m : P — R can
be identified with a real vector m € R, For enab(tj, m),
where ¢; is a timed transition, we define a polytope

Eimelty, pil := {m € RV | Vp; € 1; — {py).
m(pr)/A(px, t;)) < m(pi)/A(p;, t))}.

Then enab(t;, m) is replaced with m(py)/A(px, t;) under the
condition m € &ipelt;, pil-

Similarly for a non-conflicting routing transition ¢;, we
define the following set, which is not necessarily a polytope:

froute[tj’ Pk E]:=
{m € RP'| [Vp; € E.m(p;) = 0]A
[Vp, e® tj— E. m(p,) > 0]A
[Ypi € E —{pi}.
Vim)[A(pk, 1)) < ViEm)/A(pi, 1)1},

where E C* t; and V" (m) is the total flow to place p; deter-
mined by the current marking m. Suppose that for any place
pi € E, all transitions in *p; are timed transitions. Such a
case exists since there is no cycle consisting only of rout-
ing transitions, as we have assumed. Then, Vl.+ (m) is repre-
sented as a piecewise linear function of m. This is a result
of the partition by &l 1’s shown above. Therefore, there
exists a finite set of polytopes { fﬁome[t i» Pk E1} such that we
can replace deg(t;, m) with a linear formula V" (m)/A(px, t;)
when m € &,.[tj, pr, El. Moreover, if such a finite set
of polytopes is obtained for every input transition, which is
not necessarily a timed transition, of place p;, then V[.’r (m) is
represented by a piecewise linear function. Repeating this
procedure, we can obtain the above finite set of polytopes
{ € ueltis Prs E1 } for every routing transition 7;.

Using the finite partition of R/l obtained by the above
polytopes, we can have an equivalent PWL system. |

In the RTCPN model in Fig. 6, we assign a state vari-
able x; to each place, as indicated in the figure. The quan-
tities in the place after ‘start’ and the place before ‘end’ are
always 0, and we do not assign variables to these places.
Then we obtain a PWL system with two modes shown in
Fig.7. At lease one of x, and x; is empty at every time in-
stant.

IEICE TRANS. FUNDAMENTALS, VOL.E91-A, NO.11 NOVEMBER 2008

4. Guaranteed Transient Analysis by Interval Method

In this section, we show a method for transient analysis of
PWL systems derived from RTCPN models. The result in-
cludes guaranteed enclosures of state variables. The method
is based on interval methods for ordinary differential equa-
tions. All the computation can be performed by interval
arithmetic and linear programming.

4.1 Interval Method

Interval methods for ordinary differential equation (ODE)
systems were introduced by Moore [18]. These methods
provide numerically reliable enclosures of the exact solution
at discrete time points #g, #1, - - - , .

We consider the following nonlinear continuous-time
system:

x(1) = f(x(),0), x(19) = xo 3)

where x € R" and 6 is the vector of uncertain system param-
eters. Each parameter 6; is assumed to be bounded by an
interval [0, ;). In what follows, we will write [v] to denote
a vector of intervals that give the range of each component
of a vector v. First the continuous-time state Eq. (3) is dis-
cretized by Taylor series expansion with respect to time:

x(tes1)

= x(1) + )" D (10,0) + (), ) @
r=1 "

with b =t — #r and ty < 1 < f341. The guaranteed bound
for the time discretization error is calculated by

y+1

(y+ D!

where FO) is the interval extension of the y-th order deriva-
tive £ of f, and [By] is the bounding box for the range of
state variables x(f) € [By], Vt € [#, tx+1]. The bounding box
[Bi] is computed by applying the Picard operator

O([Br]) = [xi] + [0, 2] - F([Bi], [6]) < [Bx] (6)

e(x(1),0) < [ex] = FOB, [6]) ®)

where F is the interval extension of the function f. Cal-
culation is usually performed by interval arithmetic. The
bounding box [By] is initialized with the state vector [x(f)].
If ©([Bi]) ¢ [Bi], then the bounding box [By] has to be en-
larged. If ®([Br]) € [B], then (6) is evaluated recursively
until the deviation between ®([By]) and [By] is smaller than
a specified value. In the case that this algorithm does not
converge or that the interval of the discretization error [e;]
is unacceptably large, the step size /4 has to be reduced.
There are several ways to compute a guaranteed bound
[x(#x+1)] by Egs.(4) and (5) [7]. The direct interval tech-
nique is to compute [x(#+)] by interval arithmetic, i.e.,

Y
[e(te)] = Dx@0) + D~ FO (131 16D + lead (7)
r=1 "~



HIRAISHI: PERFORMANCE EVALUATION OF WORKFLOWS

The direct interval techniques propagate entire boxes
through interval solutions. As a consequence errors may
tend to accumulate as computations proceed. Let v|; denote
the i-th component of a vector v. In the piecewise interval
technique, the solution is computed by

[t )i
= inf Y(x, 0,

x€[x(x)],0€[6]

8
sup (0| +lecli O
x€[x(t)],0€[0]

where y(x, 6) := x+3_ (h"/r!) fU"D(x,6), i.e., intervals are
computed by solving optimization problems for each com-
ponent. The main idea of the piecewise interval technique is
to propagate small boxes, and works effectively for reducing
the accumulation of error.

4.2 Piecewise Interval Method for Systems with Multiple
Modes

For systems with multiple modes like PWL systems, we
need to take account of mode changes during time interval
[#, tr+1]. Such systems with switching are studied in [19].
We briefly describe the interval method for a PWL system

X(1) = fi(x(),0)if x € &; ©)]

where x € R", each f; represents a linear continuous-time
dynamic with a vector of interval parameters 6, and each
&; is a polytope in R". The idea is to replace function
f in Eq. (3) with the following function f, that represents
the union of f;’s for all active modes during time interval
[tk, ke ], 1€,

Fy 2 U Fy (10)

JEM([Bi])

where [By] is a bounding box for time interval [#, fx+1],
M([B]) denotes the set of all mode j such that £;N[By] # 0,
and F; represents the exact value set Fy = {y |y =
f([Bx], [6])} of function f under consideration of all inter-
val arguments. Since the bounding box [By] and function
f. are mutually dependent, we need to perform an iterative
procedure to compute them.

We use here a piecewise interval technique which was
not used in [19]. This is possible because we are consid-
ering only linear systems. Considering that the system is
piecewise linear, we will use y = 1 in Eqs. (4) and (5).

The result by applying the Picard operator is computed
by the following piecewise computation:

O(By)l;
N (11)
=\ inf ¢j(x,y,d,0)i, sup ¢;(x,y,d,0)l;
(ox.y,d.0) (ox.y,d.0)
esk esk
where
Sk :={(j.x,y.d,0)| j € M([By]), x € [x(t)] N O, (12)

y €[B]N®O,de[0,h],0 € [6]}

3225

and ¢;(x,y,d,0) := x +d - fi(y,0) for each region &;.
® is the additional linear constraints that we can as-
sume on the state space. As the constraints ®, we will
use P-invariants derived from RTCPN models later. Let
BoundingBox([x(t)], [6], ®, h) denote the above procedure
to compute the bounding box.

The piecewise interval method to compute guaranteed
bounds for x(#), k = 0,1,---, ks is shown in Fig. 8, where
piecewise computation is used at the step (*) for computing

[x(tesD]l;-

Theorem 4.1: Suppose that the PWL system (9) satisfies
the following condition: for any bounded set X C R”, the
number of regions &; such that X N ¢&; # 0 is finite. Then the
computation of (11) and step (*) in procedure solve() can be
performed by solving a finite number of linear programming
(LP) problems.

Proof. We first prove the theorem for (11). Constraints
for x € [x(tx)] N O, y € [By] N O, and 6 € [F] are all lin-
ear. Let x = [x,---,x,)" and y = [y1,---,y,]". Each
component of ¢;(x,y,d,0) = [¢j1,- - ,¢j,,1]T has the form
¢j; = xi+d-3; a;y;, whered € [0, h] and a; € [@;, @;]. By in-
troducing new variables z;, i = 1,--- ,n, ¢;; can be rewritten
as ¢;; = x; +d - 3; z; with linear constraints @,y; < z; < @y,
if @; > 0 and y; > 0, and constraints for other cases are sim-
ilarly obtained. Since scalar variable d is constrained only
by interval [0, k], ¢;; gives its optimal value when d = 0
or d = 1. Therefore, we can compute the interval of ¢,
by solving LP problems for all j € M([By]) and d € {0, h},
where M([By]) is finite by the assumption. The situation is
the same in optimization problems of (*) except that d is
fixed to A. |

The PWL system obtained from RTCPN satisfies the
condition in the above theorem, because the system consists
of a finite number of regions. Therefore, the procedures for
computing (11) and (*) in solve() can be implemented on
a constraint solver that can solve liner programming prob-
lems. On the other hand, the computation [e;] includes Ja-
cobian f(l), and we need solve nonlinear constraints in order
to compute piecewise interval solutions. By this reason, in-
terval arithmetic is used for computing [e;].

4.3 Using P-Invariants As Constraints of LP Problems

A P-invariant is a nonnegative integer solution y € N*! of
a linear homogeneous equation y’ A = 0, where A is the
incidence matrix of the Petri net structure. As well known,
y"m = y"my holds for any marking m reachable from the
initial marking mg. Since the marking of RTCPN is defined
in a real vector space, we define a P-invariant of RTCPN
as any real-valued solution y € R" of equation y"A = 0.
When we solve optimization problems in (11) and (*), we
can add an equation y”x = y”x,, where y is a P-invariant
and x( is the initial state, as one of linear constraints ©.
This will works effectively in reducing the sizes of intervals.
In the RTCPN model in Fig. 6, the following P-invariant is



3226

solve([x(to)], [6], ©, to, h, ky)::
fork=0to ks —1do

[Bi] := BoundingBox([x(t;)], [0], ®, h);

h2
lex] := EF(”([BU, [60;

[x(ter )i ==

inf i(x,0li,  sup (x, 0)i| + [exdli (%)

Gix0)esk (jx0)esk
where
SE = {0 x.0)] j € M([B), x € [x(1)] N ©,0 € [0]},
Vi(x,0) := x+h- fi(x,0);

endfor.

Fig.8 Procedure to compute guaranteed enclosures.

obtained: x, + Xcq + Xa1 + X1 + Xi2 + X0 = N. More-
over, the following inequalities also hold in all reachable
states and, are added as constraints of the LP problems:
X520,xp 20,x420,x51 20,x1 20,x50 20,x220.

4.4 Computation Results: RTCPN Model

As shown in Theorem 4.1, we need to solve LP problems
a number of times. Moreover, interval arithmetic is used in
the computation of [e;]. All processes of the algorithm are
implemented on a single constraint solver called KCLP-HS,
which is a rapid prototyping tool for algorithms on hybrid
systems developed by the author’s group [11]. KCLP-HS
is a constraint logic programming language equipped with
a linear constraint solver, quadratic programming solver,
manipulation of convex polyhedra, and interval arithmetic.
Disjunctions of linear constraints are handled by backtrack-
ing mechanism. We compute at each time step guaranteed
intervals for state variables under the following parameters:

e Initial state: x, = N, (N = 50,60, ---,150). Values of
other state variables are all 0.

e Interval of firing speeds: [(1 — ) - A(z)), (1 + 0) - A(¢;)]
for each timed transition ¢;, where ¢ is a parameter de-
termining the width of intervals.

e Step size: h = 0.1 month.

e Duration: 12 months. This means that the number of
iterations is 120.

Figure 9 shows the upper bound of xj, i.e., the number
of waiting papers, for each N, when 6 = 0.2. Figure 10
shows the guaranteed enclosures of state variables in case
of N = 100, where two enclosures are depicted for each
state variable, one is obtained by a fixed 6 = 0.2, and the
other is obtained by ¢ = 0.2/ y/enab(t;, m) as discussed in
Remark 3.2. Table 2 shows CPU times and upper bounds of
x; after 12 months. CPU times are measured by the same
computer environment as that used for the GSPN analysis.

IEICE TRANS. FUNDAMENTALS, VOL.E91-A, NO.11 NOVEMBER 2008

80
70
60 —50
50 —| 60
5 - 70
40
g - 80
30 /’/ |- 90
20 i | — 100
10 — < — Lo — 7
0 r/v" ememn” o 4meemom

o 1 2 3 4 5 6 7 8 9 10 11 12
month

Fig.9  Upper bounds of x; (6 = 0.2).

Table2 CPU times and the upper bound of x; after 12 months (6 = 0.2).

N | CPU Time | upper bound
(sec.) of xg

50 24.0 73.8
60 22.6 49.6
70 19.9 29.3
80 16.4 12.2
90 11.2 1.1
100 7.7 0
110 6.2 0
120 6.2 0
130 6.2 0
140 6.2 0
150 6.2 0

Note that the value of N does not depend on the computation
time. This shows that the method is scalable for the amount
of resources.

From these results, we observe that N > 100 is suf-
ficient for keeping the number of waiting papers at a low
level. Looking at the transient behavior in Fig. 10, the quan-
tity x,, which corresponds to the residual resource, is nearly
converged after 12 months. Notice that the number N = 100
is almost the same as the number computed by the GSPN
model.

5. Discussion

In this section, we discuss the contribution of this paper both
in application side and theoretical side.

From the application point of view, the proposed
method based on fluidification gives a way to evaluate per-
formance of workflow-based information systems with a
large number of workflow instances. Comparing with con-
ventional approaches such as stochastic performance mod-
eling, one of the advantages of the proposed method is the
scalability for the number of workflow instances. As a result
the proposed method will be applicable to large systems in-
tractable by methods working on discrete states. Moreover,
we will be able to use the transient analysis for simulating
various situations such as sudden change of performance by
system faults.

From the theoretical point of view, contribution of this



HIRAISHI: PERFORMANCE EVALUATION OF WORKFLOWS

120

100

80

papers

60

40

20

papers

o 1 2 3 4 5 6 7 8 9 10 11 12

month

(iii) x,,

25

20

papers

o 1 2 3 4 5 6 7 8 9

month

10 11 12

(V) X a2

Fig. 10

6 = 0.2/ yJenab(t;, m)).

paper is summarized as follows. Firstly, we have proposed a
new class of continuous Petri net RTCPN, which can be used
for fluidification of GSPN models. In fact, for any RTCPN
model, there exists an equivalent RTCPN without any rout-
ing transitions. This can be proved by a similar way as that
discussed in [9]. The reason why routing transitions are in-
troduced is that we want to show the fluidification process
in an intuitive way.

3227
14
12 1
10
g 81
=6l
4 F
2 b
0
o 1 2 3 4 5 6 7 8 9 10 11 12
month
(ii) x,,
60
50
40
g
530 1
(=9
20 [
10 |
0
o 1 2 3 4 5 6 7 8 9 10 11 12
month
(iv) x,,
1.2
1 F
0.8
g
0.6 1
a
04
02
0
o 1 2 3 4 5 6 7 8 9 10 11 12
month
(vi) x,,

Guaranteed enclosures of state variables (N = 100) (Gray area: § = 0.2, Light gray area:

Secondly, we have proposed to use interval methods for
transient analysis of RTCPN models. The method is based
on piecewise interval methods for multi-mode systems, and
computes guaranteed enclosures of state variables. All com-
putations can be performed by solving a finite number of
linear programming problems together with interval arith-
metic. Using place invariants in the computation of intervals
is also an original idea.



3228

As discussed in a survey paper by Silva [20], one pos-
sible way to compute the transient behavior of a fluidified
model is to use numerical methods implemented on a com-
puter, for example using MATLAB. However, ordinary nu-
merical methods do not reflect probabilistic deviations in
system parameters, which are mandatory in performance
evaluation. Using the proposed method, we can compute
guaranteed enclosures of state variables for systems having
deviations in their systems parameters.

6. Concluding Remarks

For performance evaluation of workflows, we have tried two
approaches, analysis by GSPN and approximation by a class
of timed continuous Petri nets, called RTCPN. A PWL sys-
tem is derived from the RTCPN model. Using piecewise
interval method, guaranteed enclosures for state variables at
each time step have been computed. The difference between
two approaches is in scalability for the number of workflow
instances. Computation times in RTCPN analysis do not de-
pend on the number of workflow instances. Moreover, since
state variables in RTCPN are almost decoupled, we expect
that interval methods can be applied to larger models includ-
ing hundreds of variables. Experiments for larger models
remain as future work.

Transient analysis may correspond to bounded model
checking for discrete-state systems [3], where the objective
of bounded model checking is to find errors by simulation
for finite time steps. The models we have studied in this pa-
per are autonomous. We expect that the proposed approach
is applicable to performance models with external logical
control. Hybrid system models such as hybrid Petri nets can
be used for the modeling. In addition, the proposed method
is able to check properties of systems with uncertainty in
their parameters. Such systems are often found in medical
and biological systems. These are also targets of our ap-
proach.

Acknowledgments

The research is partly supported by the Grant-in-Aid for
Scientific Research of the Ministry of Education, Science,
Sports and Culture of Japan, under Grant No. 17560386, and
also the 21st Century COE program “Verifiable and Evolv-
able E-Society” at JAIST. The author thanks to Prof. Hofer
and Mr. Rauh, University of Ulm, Germany, for valuable
suggestion about interval methods. The author also thanks
to Prof. Lindemann, University of Dortmund, for allowing
us to use DSPNexpress-NG.

References

[1] A.F. Abate, A. Esposito, N. Grieco, and G. Nota, “Workflow per-
formance evaluation through WPQL,” Proc. SEKE’02, pp.489-495,
2002.

[2] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G.
Franceschinis, Modeling with Generalized Stochastic Petri Nets,
Wiley Series in Parallel Computing, John Wiley & Sons, 1995.

(3]
[4]

(5]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

IEICE TRANS. FUNDAMENTALS, VOL.E91-A, NO.11 NOVEMBER 2008

A Biere, et al., Bounded model checking, Book chapter: Advances
in Computers, vol.58, Academic Press, 2003.

R. David and H. Alla, “On hybrid petri nets,” Discrete Event Dy-
namic Systems: Theory and Applications, vol.11, pp.9—40, 2001.

J. Dehnert, J. Freiheit, and A. Zimmermann, “Modeling and perfor-
mance evaluation of workflow systems,” Proc. 4th. World Multicon-
ference on Systems, Cybernetics and Informatics, vol. VIII, pp.632—
637, 2000.

A.A. Desrochers and R.Y. Al-Jaar, Applications of Petri Nets in
Manufacturing Systems, IEEE Press, 1995.

Y. Deville, M. Janssen, and P.V. Hentenryck, “Consistency tech-
niques in ordinary differential equations,” Proc. 4th Int. Conf. Princi-
ples and Practice of Constraint Programming, LNCS 1520, pp.162-
176, 1998.

R. Eshuis and R. Wieringa, “Verification support for workflow de-
sign with UML activity graphs,” Proc. ICSE02, pp.166-176, 2002.
B. Gaujal and A. Guia, “Optimal stationary behavior for a class
of timed continuous petri nets,” Automatica, vol.40, pp.1505-1516,
2004.

J. Hillston, “Fluid flow approximation of PEPA models,” Proc. 2nd
Int. Conf. Quantitative Evaluation Systems, pp.33—42, 2005.

K. Hiraishi, “KCLP-HS: A rapid prototyping tool for implement-
ing algorithms on hybrid systems,” JAIST Research Report IS-RR-
2006-012, Aug. 2006.

G. Horton, V.G. Kulkarni, D.M. Nicol, and K.S. Trivedi, “Fluid
stochastic petri nets: Theory, applications, and solution techniques,”
NASA Contractor Report, n0.198274, 1996.

J. Julvez, L. Recald, and M. Silva, “Steady-state performance
evaluation of continuous mono-t-semiflow petri nets,” Automatica,
vol.41, pp.605-616, 2005.

L. Kleinrock, Queuing Systems, Volume II: Computer Applications,
vol.2, Wiley, 1976.

J. Li, Y.S. Fan, and M.C. Zhou, “Performance modeling and anal-
ysis of workflow,” IEEE Trans. Syst. Man Cybern. A, vol.34, no.2,
Pp-229-242, 2004.

C. Lindermann, Performance Modeling with Deterministic and
Stochastic Petri Nets, Wiley, 1998.

A. Mandelbaum and H. Chen, “Discrete flow networks: Bottlenecks
analysis and fluid approximations,” Mathematics of Operations Re-
search, vol.16, pp.408—446, 1991.

R, Moore, Methods and Applications of Interval Analysis, SIAM,
Philadelphia, 1979.

A. Rauh, M. Kletting, H. Aschemann, and E.P. Hofer, “Interval
methods for simulation of dynamical systems with state-dependent
switching charactaristics,” Proc. IEEE Int. Conf. Control Applica-
tions, pp.355-360, 2006.

M. Silva and L. Recade, “Continuization of timed petri nets:
From performance evaluation to observation and control,” Proc.
ICATPN2005, LNCS 3536, pp.26-47, 2005.

W.M.P. van der Aalst, “Verification of workflow nets,” Proc. ATPN
1997, LNCS 1248, pp.407-426, 1997.

http://www.bpmn.org/
http://rvs.informatik.uni-leipzig.de/de/software/index.php

Kunihiko Hiraishi received from the To-
kyo Institute of Technology the B.E. degree in
1983, the ML.E. degree in 1985, and D.E. degree
in 1990. He is currently a professor at School of
Information Science, Japan Advanced Institute
of Science and Technology. His research inter-
ests include discrete event systems and formal
verification. He is a member of the IEEE, IPSJ,
and SICE.



