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PAPER

Application of DES Theory to Verification of Software Components

Kunihiko HIRAISHI†a), Member and Petr KUČERA††, Nonmember

SUMMARY Software model checking is typically applied to compo-
nents of large systems. The assumption generation is the problem of finding
the least restrictive environment in which the components satisfy a given
safety property. There is an algorithm to compute the environment for
properties given as a regular language. In this paper, we propose a gen-
eral scheme for computing the assumption even for non-regular properties,
and show the uniqueness of the least restrictive assumption for any class of
languages. In general, dealing with non-regular languages may fall into un-
decidability of problems. We also show a method to compute assumptions
based on visibly pushdown automata and their finite-state abstractions.
key words: discrete event systems, software component verification, super-
visory control

1. Introduction

Model checking is widely used for determining whether a
discrete-state system satisfies certain properties by exhaus-
tively exploring all possible state transitions [1]. Software
model checking is typically applied to components of large
systems by several reasons, e.g., one can ignore the de-
tailed behavior of the operating system in which a compo-
nent runs; the size of the state space for the entire system
becomes too large, etc. [2].

Let M be a software component and let E be the en-
vironment of M (i.e., software components other than M).
Then the entire software system is denoted by the composi-
tion of M and E, written by M‖E. Let P be a safety property
defined on M‖E. Since the component M is developed inde-
pendently of other software components, M is usually built
to satisfy P for all possible environment. However, this ap-
proach is overly pessimistic. Assumption generation is the
problem of finding the least restrictive environment E∗ so
that P holds on M‖E∗ [2]. If there exists an environment E
in which the component M satisfies the property, then such
E∗ exists and all the behavior of the software allowed by E
are also allowed by E∗. An algorithm to compute the least
restrictive environment E∗ was proposed for the case that
both M and P are represented by finite automata [2]. The
obtained assumption will be used for selecting and/or de-
signing appropriate environment for the component. More-
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over, assumption generation may be seen as a way of pro-
viding automated support for assume-guarantee reasoning
for software verification [3].

Since the behavior of a software is not necessarily reg-
ular and is usually modeled by a context-free language, as-
sumption generation for finite-state systems is not sufficient.
In this paper, we study the assumption generation problem
for the case that the property P is represented by a non-
regular language.

We first propose a general scheme for computing the
assumption even for non-regular properties. The scheme
is based on the supervisory control theory of discrete event
systems. By simple applications of the results in the supervi-
sory control theory, we can show that the least restrictive en-
vironment uniquely exists for any classes of languages, and
is computed by application of several language operations.
In general, dealing with non-regular languages may fall into
undecidability of problems. Next we propose a method to
compute assumptions based on finite-state abstraction of
automata. Since complements of languages are abstracted
in the method, the obtained assumption may still be non-
regular. Finally, as a dual problem of finding least restric-
tive assumption for safety property, we propose a scheme
for generating assumptions from liveness properties.

2. Assumption Generation Problem

2.1 Modeling Software Components

One of main concerns in component-based software devel-
opment is how to check correctness of component compo-
sition and component use. A component can be viewed
as a black-box entity which provides and/or requires a set
of services. To describe communication behavior between
software components in a formal way, various approaches
have been taken [4]–[8]. In many researches dealing with
software component verification, state transition based mod-
eling, such as finite-state machines and process algebra,
is used for describing interface and protocols of software
components. Such an abstracted view of software systems
is possible because correctness of individual component is
checked separately and we can focus only on interface part
of software components. Once formal models for commu-
nication behavior of software components are built, formal
verification techniques such as model checking and theorem
proving can be applied.

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers
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2.2 Automata-Based Modeling

In this paper, automata are used for describing behavior of
software like in [2], [9]. An automaton is a 5 tuple M =

(Q,Σ, δ, q0,Qm), where Q is the set of states, Σ is the set of
events, δ : Q × Σ → Q is the transition function, q0 is the
initial state, and Qm ⊆ Q is the set of marked states. The
state transition function δ is defined as a partial function and
we will write δ(q, σ)! to indicate that “δ(q, σ) is defined”.
As usual, the domain of δ is extended to Q × Σ∗. The set of
trajectories generated byM is L(M) := {s ∈ Σ∗ | δ(q0, s)!},
and the set of trajectories marked byM is Lm(M) := {s ∈
Σ∗ | δ(q0, s) ∈ Qm}. Sequences in Lm(M) are related to
completion of tasks, but we do not use them in this paper.
When Q is finite, we callM a finite automaton.

Let s denote the set of all prefixes of a sequence s, and
let L denotes the prefix closure of a language L. Moreover,
for a subset Σ′ of Σ, let PΣ′ denote the projection operator
defined for each s ∈ Σ∗, PΣ′(s) is the sequence obtained
by removing all symbols in Σ − Σ′ from s. For a language
L ⊆ Σ∗, let PΣ′(L) := {PΣ′(s) | s ∈ L}. When we simply
write P(·), it means the projection operator PΣo(·) to the set
of observable events Σo, which will be introduced later. The
inverse projection operator is defined by P−1

Σ′ (L) := {s ∈
Σ∗ | PΣ′(s) ∈ L} and P−1(L) := {s ∈ Σ∗ | P(s) ∈ L}.

Given two automataMi = (Qi,Σi, δi, q0i,Qm,i), i = 1, 2,
the composition ofM1 andM2, denoted byM1‖M2, is de-
fined as the automaton (Q1 ×Q2,Σ1 ∪Σ2, δ, (q01, q02),Qm1 ×
Qm2), where for each q = (q1, q2) ∈ Q and σ ∈ Σ1 ∪ Σ2:

δ(q, σ) :=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(δ1(q1, σ), δ2(q2, σ)) if δi(qi, σ)! (i = 1, 2)∧
σ ∈ Σ1 ∩ Σ2;

(δ1(q1, σ), q2) if δ1(q1, σ)! ∧ σ � Σ2;
(q1, δ2(q2, σ)) if δ2(q2, σ)! ∧ σ � Σ1;
undefined otherwise.

2.3 Assumption Generation for Safety Properties

Let M be an automaton over ΣM representing a software
component and let E be an automaton over ΣE representing
an environment. C := ΣM−ΣE is called the set of component
events of M, and I := ΣM ∩ ΣE is called the set of interface
events. We assume that the environment cannot control and
observe all events in C, as assumed in [2]. The environment
controls each component (i.e., the environment calls pro-
cedures of components and gets results) only by interface
events.

A safety property is a kind of properties like “something
bad never happen”, and is represented by an automaton P
over ΣP. The behavior of the system is required to be within
the range of P.

Definition 2.1: Given a software component M and a
safety property P, assumption generation for safety prop-
erties (AGS ) is the problem of finding an automaton A
over ΣA = I ∪ (ΣP − C) such that M‖A satisfies P, i.e.,

PΣP (L(M‖A)) ⊆ L(P) holds. Since M‖P and M‖A have the
same set of events ΣM ∪ ΣP, this condition is rewritten as
L(M‖A) ⊆ L(M‖P).

2.4 Supervisory Control of Discrete Event Systems

As usual, the set Σ of events is partitioned into two disjoint
sets Σc and Σuc, where Σc is the set of controllable events
and Σuc is the set of uncontrollable events. Similarly, Σ is
partitioned into Σo and Σuo, where Σc is the set of observable
events and Σuc is the set of unobservable events.

Definition 2.2: Given an automaton G over Σ and a prefix-
closed language K ⊆ L(G), the supervisory control and ob-
servation problem (S COP) is the problem of finding a func-
tion S : P(L(G)) → 2Σc such that L(S/G) = K, where
L(S/G) is the smallest set such that: (i) ε ∈ L(S/G) and
(ii) s ∈ L(S/G)∧ sσ ∈ L(G)∧σ � S (P(s))⇒ sσ ∈ L(S/G).

The function S is called a supervisor, and determines
a set of events to be disabled. If there is no such supervisor,
the next objective is to find a relaxation of K, i.e., a sub-
set of K that satisfies the requirements. The relaxation is
characterized by the supremal controllable and observable
sublanguage of K [10], [11]. When Σc = Σo, the function
S can be represented by an automaton, and the problem is
simply rewritten as follows: Given an automaton G over Σ
and a prefix-closed language K ⊆ L(G), find an automaton S
defined over Σc = Σo such that L(G‖S ) ⊆ K, where L(G‖S )
is the largest it can be.

When Σc ⊆ Σo, i.e., all controllable events are observ-
able, observability and normality are equivalent provided
that the language is controllable [10], [11]. Moreover, it was
shown that the supremal controllable and normal sublan-
guage of a given language always exists. The definition of
controllability and normality will be shown later.

2.5 Reformulation of AGS as S COP

To relate Problem AGS with results on the supervisory con-
trol scheme, we define the completion of automata. Let
M = (Q,ΣM, δ, q0,Qm) be an automaton with ΣM ⊆ Σ.
The completion of M w.r.t. Σ ⊇ ΣM is the automaton
M↑Σ = (Q,Σ, δ↑Σ, q0,Qm) such that (i) for each σ ∈ ΣM,
δ↑Σ(q, σ) = q′ iff δ(q, σ) = q′; (ii) for each σ ∈ Σ − ΣM
and q ∈ Q, δ↑Σ(q, σ) = q. Intuitively, the completion of an
automaton is obtained by adding self-loops with events in
Σ − ΣM to each state. L(M↑Σ) contains all trajectory s ∈ Σ∗
such that PΣM(s) ∈ L(M).

Let Σ := ΣM ∪ ΣA = ΣM ∪ ΣP be the set of all events.
Given an instance of Problem AGS , we construct an in-
stance of Problem S COP as follows: G is the completion
of M w.r.t. Σ, K = L(M‖P), and Σuc = Σuo = C. Then the
least restrictive environment is obtained as the supervisor A
such that L(M↑Σ‖A) is the supremal controllable and normal
sublanguage of K.

In the formulation of S COP, the supervisor can manip-
ulate only events of the plant G. Since the assuption A may
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Fig. 1 Software component M = Mutex‖Writer.

Fig. 2 A safety property.

contain events other than events of M, we need to use M↑Σ
as the plant.

Example 1: We show an instance of Problem AGS . Fig-
ure 1 shows a software component consisting of two sub-
components Mutex and Writer, where Mutex works for
mutual exclusion between the component and the environ-
ment, and subcomponent Writer writes data on common re-
sources. We specify the set of component events C and the
set of interface event I as follows:

C = {W.acquire,W.release,W.enterCS ,W.exitCS },
I = {E.acquire, E.release}.

Note that this component is the same as that used in [2]. As a
non-regular safety property P, we give an automaton shown
in Fig. 2.

Since the supremal controllable and observable sublan-
guage of a given language always exists, we have the follow-
ing theorem.

Theorem 2.3: If Problem AGS has a solution, then the
problem has the largest solution w.r.t. language inclusion.

We remark that this result is independent of the class of
languages.

2.6 Procedures to Compute the Supremal Controllable and
Normal Sublanguage

Definition 2.4: Given an automaton G over Σ and a prefix-
closed language K ⊆ L(G),

• K is called controllable w.r.t. L(G) and Σuc if KΣuc ∩
L(G) ⊆ K,

• K is called normal w.r.t. L(G) and Σo if K =

P−1(P(K)) ∩ L(G).

The supremal controllable and normal sublanguage of
a prefix-closed language K ⊆ L(G), denoted by sup CN(K),
is computed through the following procedures [10], [11]:

• sup CN(K) = sup N(sup C(K)) (see Remark 4.3 of

[10]), where supN(·) denotes the supremal normal sub-
language and sup C(·) denotes the supremal control-
lable sublanguage. Note that if K is prefix-closed, than
so are sup N(K) and sup C(K).
• Suppose that K is prefix-closed. sup C(K) is computed

by performing the following iterative procedure until
Ki+1 = Ki:

– K0 := K;
– Ki+1 := Ki − ((L(G) − Ki)/Σuc)Σ∗,

where L1/L2 := {s ∈ Σ∗ | ∃t ∈ L2.st ∈ L1} is the
quotient operation.
• Suppose that K is prefix-closed. Then sup N(K) = K −
P−1(P(L(G) − K))Σ∗.

The language operations used in the above procedures
are L1 − L2 (difference), L1L2 (concatenation), L1/L2 (quo-
tient), P (projection), and P−1 (inverse projection). There-
fore, we have the following theorem on the decidability of
Problem AGS .

Theorem 2.5: If the class of languages representing L(M)
and L(P) is closed under difference, concatenation, quotient,
projection and inverse projection, then Problem AGS is de-
cidable.

3. Representation of Non-regular Properties

We use a class of automata, called visibly pushdown au-
tomata [13], [14], as formalism for representing non-regular
properties.

3.1 Visibly Pushdown Automata

A pushdown alphabet is a tuple Σ̂ = 〈Σcall,Σret,Σint〉, where
Σcall is a set of call symbols, Σret is a set of return symbols,
and Σint is a set of internal symbols. By Σ, we denote the set
of all symbols, i.e. Σ = Σcall ∪ Σret ∪ Σint.

A visibly pushdown automaton (VPA) over Σ̂ is a tuple
M = (Q, Σ̂, Γ, δ, q0,QF), where Q is the nonempty finite
set of states, q0 ∈ Q is the initial state, Γ is the finite stack
alphabet that contains a special bottom-of-stack symbol ⊥,
δ = δcall ∪ δret ∪ δint is the transition function, where δcall :
Q × Σcall → Q × (Γ − {⊥}), δret : Q × Σret × Γ → Q, and
δint : Q × Σint → Q, and QF ⊆ Q is the set of final states. A
VPAM over Σ̂ is said to be a Σ̂-VPA.

Intuitively, a visibly pushdown automaton is a push-
down automaton, which is restricted in such a way that
it pushes onto stack only when it reads a call symbol, it
pops from stack when it reads a return symbol, and it does
not use the stack when it reads an internal symbol. Let
S t = (Γ − {⊥})∗{⊥}. A configuration is a pair (q, μ), where
q ∈ Q and μ ∈ S t. As usual, we extend the domain and the
range of transition function δ to δ : (Q×S t)×Σ∗ → (Q×S t)
(see the detail in [13], [14]).

A sequence s ∈ Σ∗ is accepted by a Σ̂-VPAM, if there
exists μ ∈ S t such that δ((q0,⊥), s) = (q, μ) ∧ q ∈ QF . The
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Fig. 3 VPA P representing the safety property.

language of M, denoted by L(M), is the set of sequences
accepted by M. A language over finite sequences L ⊆ Σ∗
is a visibly pushdown language (VPL) w.r.t. Σ̂ (a Σ̂-VPL) if
there is a Σ̂-VPAM such that L(M) = L.

In order to represent generated languages in VPAs, we
can assume that there exists a state qud representing the des-
tination of undefined transitions, and let QF := Q− {qud}. In
diagrams of VPAs, we will not draw the state qud together
with connected arrows.

Example 2: The safety property shown in Fig. 2 is repre-
sented by a VPA P in Fig. 3, defined over

Σcall = {E.call},
Σret = {E.return},
Σint = {W.enterCS ,W.exitCS },

where

• each transition qi
a→ qj means that δint(qi, a) = qj if

a ∈ Σint (on reading an internal symbol a, the control
state changes from q to q′);

• each transition qi
a/γ→ qj means that δcall(qi, a) = (qj, γ)

if a ∈ Σcall (on reading a call symbol a, γ is pushed
onto stack and the control state changes from q to q′);
δret(qi, a, γ) = qj if a ∈ Σret (on reading a return symbol
a, γ is popped from the top of stack and the control state
changes from q to q′).

3.2 Closure Properties of VPLs

The following theorem shows, that the class of visibly push-
down languages has similar closure as the class of regular
languages.

Theorem 3.1: The class of visibly pushdown languages is
closed under union, intersection, renaming, concatenation
and Kleene-* [13].

The theorem was proved in a constructive way, i.e.,
given a VPA, we can effectively compute the resulting VPA
by each operator.

LetM = (Q, Σ̂, Γ, δ, q0,QF) be a visibly pushdown au-

tomaton. A Σ̂-VPA representing complementation of L(M)
can be produced from M by simply setting the set of final
states to Q−QF . The difference L1 − L2 is computed by the
intersection of L1 and the complementation of L2. Hence,
the class of VPLs is also closed under difference.

Unfortunately, the class of VPLs is not closed under
projection. Let us consider a pushdown alphabet Σ̂ with
Σcall = {a, b}, Σret = {c}, and Σint = ∅ and a language

Fig. 4 VPA M‖P.

L = (ab)nc2n, which is trivially a visibly pushdown lan-
guage. If, however, b is the only unobservable event, then
P(L) = anc2n, which is not a visibly pushdown language.
Hence, we cannot use the result of Theorem 2.5 without any
additional assumptions.

Similarly, the class of VPLs is not closed under inverse
projection. With the same pushdown alphabet Σ̂ as above,
a language L′ = ancn is a visibly pushdown language, but
P−1(L′) = b∗(ab∗)n(cb∗)n cannot be accepted by any Σ̂-VPA.

Given two automataMi = (Qi,Σi, δi, q0i,Qm,i), i = 1, 2,
the language of composition ofM1 andM2, L(M1‖M2), is
defined as P−1

Σ1
(L(M1)) ∩ P−1

Σ2
(L(M2)), where Σ = Σ1 ∪ Σ2.

This means that L(M1‖M2) is not necessarily a Σ̂-VPL even
ifM1 andM2 are Σ̂-VPAs.

We can show the following positive result for a re-
stricted case.

Lemma 3.2: Suppose that all unobservable events corre-
spond to internal symbols of a pushdown alphabet Σ̂.

1. If L is a Σ̂-VPL, then P(L) is also a Σ̂-VPL.
2. If L is a Σ̂-VPL consisting only of observable events,

then P−1(L) is also a Σ̂-VPL.

Proof. Given a Σ̂-VPA M with L(M) = L, we obtain
a Σ̂-VPA M′ with L(M′) = P(L) by a similar manner to
that for computing projection of a finite automaton, i.e., (i)
we first replace every unobservable event by ε and obtain a
VPA with ε-transitions; (ii) next the VPA is transformed into
one without ε-transitions by redefining the state transition
function and by the determinizing procedure. The resulting
VPA M′ generates P(L) since occurrence of unobservable
events does not change the stack as we have assumed.

A Σ̂-VPA M′′ with L(M′′) = P−1(L) is obtained by
simply adding self-loops with unobservable events to each
state ofM′′.

As a consequence of the above lemma, we can show
that for a finite automatonM1 over Σint and a Σ̂-VPA M2,
L(M1‖M2) is a Σ̂-VPL. Therefore, we can compute M‖P
in Example 1 in the form of a VPA (Fig. 4), where broken
arrows indicate transitions which violate P but are allowed
in G = M↑Σ.
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Fig. 5 (M‖P) f in.

3.3 Finite-State Abstraction of VPAs

To make the problem tractable within a finite domain, we
introduce the notion of finite-state abstraction of VPAs.
Let M = (Q, Σ̂, Γ, δ, q0,QF) be a Σ̂-VPA. We define
the finite-state abstraction of M, denoted by M f in =

(Q,Σ.Q, δ f in, q0,QF), as follows:

• Σ.Q = {σ.q | σ ∈ Σ, q ∈ Q}.
• δ f in(q, σ.q′) = q′ if and only if one of the following

three conditions holds:

1. σ ∈ Σ̂call and δcall(q, σ) = (q′, γ) for some γ ∈ Γ;
2. σ ∈ Σ̂ret and δret(q, σ, γ) = q′ for some γ ∈ Γ;
3. σ ∈ Σ̂int and δint(q, σ) = q′.

Note that adding the destination to the symbol on each
transition is introduced to make the automaton determinis-
tic. Moreover, we can extract the state information of VPA
M from the sequences over Σ.Q.

Given a Σ̂-VPAM, letM.state denote the VPA obtained
by replacing the symbol σ ∈ Σ on each transition with a
symbolσ.q ∈ Σ.Q, where q ∈ Q is the destination of the tran-
sition. Since conditions on the stack are ignored in the tran-
sitions of the finite-state abstraction, L(M.state) ⊆ L(M f in)
holds.

The finite-state abstraction of M‖P is shown in Fig. 5.

4. Computation of Controllable and Normal Sublan-
guages

In this section, we show a method to compute a controllable
and normal sublanguage based on finite-state abstraction of
VPAs. The obtained language is not necessarily a supremal
one, but the language is guaranteed to be controllable and
normal.

4.1 Disabling Points

Let K ⊆ L(G) be a prefix closed language. Instead of using
K, we define the following language DK :

DK := {sσ | sσ ∈ L(G) − K, s ∈ K}.
Let LDK := L(G) − DKΣ

∗. Then LDK = K holds. DK corre-
sponds to the set of points at which events are disabled in K

w.r.t. L(G). The idea of using DK is similar to one in control
objectives [12].

The iterative procedure K0 := K; Ki+1 := Ki − ((L(G) −
Ki)/Σuc)Σ∗ to compute supC(K) is replaced with the follow-
ing iterative procedure:

D0 := DK ;
Di+1 := (Di − Δi) ∪ Δi/Σuc,
where Δi = Di ∩ Σ∗Σuc

(1)

The procedure halts when C∗(DK) := Di+1 = Di.

Lemma 4.1: LC∗(DK ) = sup C(K).

Proof. Since C∗(DK) consists of sequences in the form
sσ, σ ∈ Σc, LC∗(DK ) is controllable w.r.t. L(G) and Σuc.
Since LC∗(DK ) ⊆ K, LC∗(DK ) ⊆ sup C(K) holds. Assume
that there exists s ∈ sup C(K) − LC∗(DK ). Then there exists
a prefix s′σ of s such that σ ∈ Σc and s′σ ∈ C∗(DK), i.e.,
all sequences of the form s′σΣ∗ are disabled by C∗(DK).
From the procedure of (1), there exists s′′ ∈ Σ∗uc such that
s′σs′′ ∈ L(G)−K. Since K is prefix-closed, so is sup C(K),
and therefore s′σ ∈ sup C(K). This contradicts the fact that
sup C(K) is controllable.

The computation supN(K) = K −P−1(P(L(G)−K))Σ∗
is replaced with the following computation on DK :

N∗(DK) := P−1(P(DK)) (2)

Lemma 4.2: LN∗(DK ) = sup N(K).

Proof. We first show that K′ := LN∗(DK ) is normal. Since
K′ ⊆ L(G), K′ ⊆ P−1(P(K′)) ∩ L(G) holds. Let s ∈ K′ and
s′ ∈ L(G) such that P(s) = P(s′). In order to prove the other
side K′ ⊇ P−1(P(K′)) ∩ L(G), it suffices to show s′ ∈ K′.
Assume that s′ � K′. Then s′ ∈ N∗(DK) since s′ ∈ L(G),
and therefore P−1(P(s′)) ⊆ N∗(DK) holds. This means that
s ∈ N∗(DK). Contradiction. Hence, LN∗(DK ) is normal and
LN∗(DK ) ⊆ sup N(K) holds.

Next we assume that there exists s ∈ supN(K)−LN∗(DK ).
Since s ∈ K, there exists a prefix s′ of s such that s′ ∈
N∗(DK) and all sequences of the form s′Σ∗ are disabled by
N∗(DK). Since s′ � DK but s′ ∈ N∗(DK), there exists t ∈ DK

such that P(s′) = P(t). To make K normal, s′, and also s,
cannot be included in sup N(K). Contradiction.

Thus, we obtain LN∗(C∗(DK )) = sup CN(K). The fol-
lowing lemma is immediately obtained from the fact that
sup CN(K) ⊆ K ⊆ L(G).

Lemma 4.3: sup CN(K) = K − N∗(C∗(DK))Σ∗.

This lemma implies that when DK is regular,
N∗(C∗(DK)) is computable even if K is non-regular. Suppose
that N∗(C∗(DK)) is computed as a finite automaton. Then
LN∗(C∗(DK )) = K − N∗(C∗(DK))Σ∗ is computable if K is given
as a VPA. This is because the class of VPLs are closed un-
der difference, as described in 3.2. The obtained language
LN∗(C∗(DK )) may be non-regular.
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4.2 Approximating DK

Let K ⊆ L(G) be a prefix closed language. If DK is non-
regular, that we may consider a regular set D̃K ⊆ Σ∗ such
that DK ⊆ D̃K , and compute N∗(C∗(D̃K)). We call such D̃K

an over approximation of DK . If K is given as a VPA, and
consequently DK is also a VPL, then we can use the finite-
state abstraction of the VPA as an over approximation.

As we have seen in VPLs, approximating a non-regular
language by a regular one is not a difficult task since most
classes of automata for non-regular languages still have
finite-state control, like in VPAs, pushdown automata, and
also Turing machines. By ignoring infinite-state part of ma-
chines, we can obtain finite-state abstractions of them.

The following theorem shows that the resulting lan-
guage is still controllable and normal even if we use an over
approximation of DK . As a result, we can have an assump-
tion, which is not necessarily least restrictive, for any prop-
erty given by a VPA. Note that approximating the language
K does not give the controllability and the normality of the
resulting language.

Lemma 4.4: Let D̃K be an over approximation of DK .
Then N∗(C∗(DK)) ⊆ N∗(C∗(D̃K)) holds.

Proof. Since Di+1 = (Di ∩ Σ∗Σc) ∪ (Di ∩ Σ∗Σuc)/Σuc, if
Di ⊆ D′i then Di+1 ⊆ D′i+1 holds. Hence, C∗(DK) ⊆ C∗(D̃K).
Moreover, if D ⊆ D′, then P(P−1(D)) ⊆ P−1(P(D′)) holds,
and therefore N∗(D) ⊆ N∗(D′) holds. Thus, we obtain the
result.

Now we have the main result of this section.

Theorem 4.5: Let D̃K be an over approximation of DK ,
and let L̃ := K − N∗(C∗(D̃K)). Then L̃ is controllable and
normal. w.r.t. L(G), Σc and Σo. Moreover, L̃ ⊆ sup CN(K)
holds.

Proof. Let LD̃K
:= L(G) − D̃KΣ

∗. Since L̃ = sup CN(LD̃K
)

by Lemma 4.3, L̃ is controllable and normal w.r.t. L(G), Σc

and Σo. Moreover, by Lemma 4.3 and Lemma 4.4, we have
L̃ ⊆ K − N∗(C∗(DK)) = sup CN(K).

4.3 Example

We go back to the instance of Problem AGS shown in Ex-
ample 1. Let D̃K be defined by (M‖P) f in shown in Fig. 5,
i.e., D̃K consists of all sequences in (M‖P) f in that end with
events on broken arrows. Then N∗(C∗(D̃K)) is obtained as
the finite automaton shown in Fig. 6, and the assumption is
obtained as the VPA shown in Fig. 7, where the assumption
A is computed by

L(A) = �
(
P(L((M‖P).state) − N∗(C∗(D̃K))Σ∗QM‖P )

)
,

where QM‖P is the set of states in M‖P, and � is the label-
ing function that removes the state information from every

Fig. 6 N∗(C∗(D̃K )).

Fig. 7 The obtained assumption.

event. The assumption is computable since VPLs are closed
under difference, renaming, and also projection provided
that all unobservable events are internal symbols, as shown
in Sect. 3.2.

5. Assumption Generation for Liveness Properties

As a dual of Problem AGS , we can consider the most re-
strictive environment for which the software component sat-
isfies given liveness properties, where a liveness property
is a kind of properties like “something good will happen”.
The assumption generation for liveness properties AGL is
the problem of finding an automaton A over I ∪ (ΣP − C)
such that L(P) ⊆ PΣP(L(M‖A)). The automaton A describes
the behavior of the environment that makes the composition
M‖A to satisfy liveness properties P. Contrary to the case for
safety properties, we want have the strongest assumption. If
there exists an environment E in which the component M
satisfies the property, then all the behavior of M enabled by
A are also enabled by E.

By the results on supervisory control theory, the
strongest assumption exists, i.e., the infimal prefix-closed,
controllable and normal sublanguage of a given language
exists.

6. Conclusion

We have proposed a general scheme for computing the as-
sumption even for non-regular properties, and shown the
uniqueness of the lease restrictive assumption for any class
of languages. Moreover, we have proposed a method to
compute assumptions based on finite-state abstraction of au-
tomata. Since complements of languages are abstracted, the
obtained assumption may still be non-regular.

The obtained result is restrictive since the software
component M is required to be a finite automaton. Another
possibility to the computability based on VPLs is to restrict
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the operations so that the class of VPLs is closed under the
operations necessary for computing the supremal control-
lable and normal sublanguages. We will show the results
based on this idea in a separate reports. We remark that there
exists a result on computing the supremal controllable sub-
language for non-regular specifications. In [15], it is shown
that there is an algorithm to compute the supremal prefix-
closed controllable sublanguage when (i) the plant is mod-
eled by a finite automaton, and (ii) the prefix-closed speci-
fication language is generated by a deterministic pushdown
automaton. Therefore, the difficulty lies in dealing with the
projection operator for non-regular languages.

Dealing with non-regular properties in software com-
ponent verification is necessary for modeling control struc-
tures and recursive calls in computer programs. If we restrict
the depth of recursive calls or the number of iterations in
loops, then the properties and the behavior of software com-
ponents can be modeled by finite automata. However, this
is quite inefficient. On the other hand, using context-free
languages and the corresponding class of automata, push-
down automata, often falls into undecidability of verifica-
tion problems. Using VPLs is a reasonable solution to the
undecidability.
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