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PAPER Special Section on VLSI Design and CAD Algorithms

Simultaneous Optimization of Skew and Control Step Assignments
in RT-Datapath Synthesis

Takayuki OBATA† and Mineo KANEKO†a), Members

SUMMARY As well as the schedule affects system performance, the
control skew, i.e., the arrival time difference of control signals between
registers, can be utilized for improving the system performance, enhancing
robustness against delay variations, etc. The simultaneous optimization of
the control step assignment and the control skew assignment is more pow-
erful technique in improving performance. In this paper, firstly, we prove
that, even if the execution sequence of operations which are assigned to
the same resource is fixed, the simultaneous optimization problem under a
fixed clock period isNP-hard. Secondly, we propose a heuristic algorithm
for the simultaneous control step and skew optimization under given clock
period, and we show how much the simultaneous optimization improves
system performance. This paper is the first one that uses the intentional
skew to shorten control steps under a specified clock period. The proposed
algorithm has the potential to play a central role in various scenarios of
skew-aware high level synthesis.
key words: high level synthesis, RT datapath, skew, wiring delay, schedul-
ing

1. Introduction

In the logic level VLSI design, the clock skew is now uti-
lized intentionally for improving system performances, en-
hancing the robustness against delay variations, reducing
maximum peak power, etc., and significant efforts have been
devoted to so-called clock-scheduling and simultaneous op-
timization of re-timing and clock-scheduling [1]–[6]. Re-
cently, the importance and the impact of considering tim-
ing skew in the high level synthesis are recognized, and
researches on skew-aware high level synthesis have been
started [7]–[11].

Because of the presence of several different approaches
to the high level synthesis, the way of introducing inten-
tional skew (intentionally controlled timing difference be-
tween the beginning of a control step and the working tim-
ing of each register and multiplexer) into high level syn-
thesis is not unique. One possible scenario is that a con-
ventional synthesis system incorporates intentional timing
skew, and uses it to compensate the imbalance of function
delays. One other possible scenario is that a concurrent dat-
apath/floorplan synthesis system [12]–[19] incorporates in-
tentional skew, and uses it to compensate imbalance of path
delays (each path delay may include function delays and
signal propagation delays). Similar to the clock schedule
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in the logic level design, the skew-aware high level design
will contribute to reducing the clock period, and enhanc-
ing the robustness against delay variations. Furthermore, it
will be demonstrated in this paper that the intentional skew
will also contribute to reducing the number of control steps
(makespan) for a target application.

It is well-known in the logic level design that the clock
skew only is not enough for the highest performance, and
the combination of the clock skew with the re-timing tech-
nique is a promising approach. Similar to this situation, in
the skew-aware high level synthesis, the simultaneous opti-
mization of the control step assignment and the skew assign-
ment has a higher potential in performance optimization.

To discuss mathematically and logically the essential
difference between skew and re-timing in a sequential circuit
and our skew and control step assignment would be a hard
task. The rather superficial difference between two are as
follows.

1. Every register reads its input at every clock cycle in
a sequential circuit. On the other hand, each register
reads its input only scheduled clock cycle.

2. By re-timing technique in a sequential circuit, delay
between registers will change, but still every register
keeps to read its input at every clock cycle. On the other
hand, in a datapath circuit, control step assignment (re-
scheduling) does not change any delay between reg-
isters, but changes the timing in which each register
reads its input.

3. Skew and re-timing for a sequential circuit target on
reducing clock period. On the other hand, our skew
and re-schedule can work not only for reducing clock
period, but also for reducing schedule length. Further-
more, it is not clear which value (or concept) in a se-
quential circuit corresponds to the schedule length and
varies by re-timing.

So, as a result, skew and re-timing algorithms designed so
far for a sequential circuit can not be applied to our problem,
especially for reducing schedule length.

Taking the peculiarity of the skew assignment into con-
sideration, we assume that resource binding and the tempo-
ral order (not a specific control step assignment) of lifetimes
of data assigned to the same register are fixed as a part of in-
put description to our problem, and we try to optimize skew
and control step assignments under those constraints. It is
expected that, if we have a tool to solve this problem, it can
be used also as a sub-tool for optimizing resource binding

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers
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and temporal order of lifetimes.
The first contribution of this paper is to show that our

simultaneous control-step and skew optimization is a NP-
hard problem, whereas the skew optimization under fixed
control-step assignment and the constrained control-step op-
timization (that is, resource binding and the temporal order
of lifetimes of data assigned to the same register are fixed)
under fixed skew assignment are in the class P. The second
contribution of this paper is a heuristic algorithm for our si-
multaneous control-step and skew optimization problem. In
the past, the intentional skew was used mainly to shorten a
clock period, and as a result, the clock period was not con-
trolled intentionally. This paper is the first one that uses the
intentional skew to shorten control steps under a specified
clock period.

This paper is organized as follows. In Sect. 2, we sum-
marize basic notations, and show motivational example. In
Sect. 3, our simultaneous optimization of the control step as-
signment and the skew assignment is formulated. Section 4
deals with the computational complexity of our problem.
We present a heuristic algorithm in Sect. 5. Experimental
results are shown in Sect. 6. Finally, we present conclusions
in Sect. 7.

2. Background and Motivation

2.1 Structural and Behavioral Descriptions of Datapath
Circuit

We assume that the input algorithm of high-level synthesis is
described as a data flow graph (DFG in short) (O,D) where
a vertex set O is the set of operations and an edge set D
indicates data dependencies between operations.

The input algorithm is transformed to the datapath cir-
cuit by determining resource assignment, that is, the func-
tional unit assignment ρ : O → F and the register assign-
ment ξ : O \ U → R, where F is a set of functional units,
R is a set of registers, U is a set of operations whose out-
puts are not written to registers, and ξ(o) = r means that
the output data of the operation o is assigned to a register
r (the output of o is written in r). Interconnections and
multiplexers in the datapath part are so designed that, for
each operation oj with (oi, oj) ∈ D, the input register ξ(oi)
is connected to the functional unit ρ(oj) and ρ(oj) is con-
nected to the output register ξ(oj). As an example, Fig. 1(b)
shows the datapath circuit obtained from Fig. 1(a) with the

Fig. 1 Example of DFG and RT-Level architecture.

resource assignment ρ(o1) = FU1, ρ(o2) = FU2, ρ(o3) =
FU2, ρ(o4) = FU1, ρ(o5) = FU1, ξ(o1) = r2, ξ(o2) =
r5, ξ(o3) = r3, ξ(o4) = r4, ξ(o5) = r1.

The behavior of the datapath circuit, on the other hand,
is determined by the arrival timing of control signals to reg-
isters and multiplexers. We letM be the set of all registers
(and multiplexers), and S denotes the set of all control sig-
nals, where co

x ∈ S represents the control signal which is
related to the execution of o ∈ O and is sent to x ∈ M.
The arrival timing is partly determined by the control step
assignment σ : S → Z+, and the rest by the timing skew
τ :M→ R. As the result, the control signal co

x reaches x at
the time σ(co

x) · clk + τ(x), where clk is a clock period.

2.2 Motivational Example

Figure 2(a) shows an example of a DFG. We assume that the
resource binding has been finished, and for each operation,
signal path delays from an input register to an output register
via a functional unit has been obtained. In general, data path
from a multiple-bit register to a multiple-bit register must be

Fig. 2 Several different types of skew aware designs.
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a multiple-input, multiple-output combinatorial circuit, and
hence data path from a register to a register includes mul-
tiple signal paths having different delays. We will charac-
terize each register-to-register data path with the maximum
and the minimum among those delays, and we call them the
maximum delay and the minimum delay, respectively. In
Fig. 2(a), the maximum and the minimum delays are indi-
cated like 6/2 for O2, 8/3 for O3, etc. The assignment of
data to registers is indicated as ri beside each arc.

Figure 2(b) shows a schedule of 6 control signals co1
r1

,
co2

r2
, co3

r3
, co4

r1
, co5

r2
, and co6

r3
. The number written beside a slant

solid (broken) arrow shows maximum (minimum) delay of
the corresponding operation. The schedule requires 4 con-
trol steps, and its minimum clock period is 8 (the total com-
putation time is 8 × 4 = 32). This is an optimum schedule
under zero skew if the number of control steps is restricted to
smaller than or equal to 4 (See Fig. 2(b)). When we assign
skew (τ(r1), τ(r2), τ(r3)) = (0,−1, 1), the minimum clock
period can be reduced to 7 (the total computation time is
now 7 × 4 + 1 = 29). The situation is illustrated in Fig. 2(c).
When we assign skew (τ(r1), τ(r2), τ(r3)) = (0, 6, 2) and
we keep clock period to 8, we can modify the schedule and
the number of control steps can be reduced to 3 (totally,
8 × 3 + 2 = 26). The situation is illustrated in Fig. 2(d).
Figure 2(e) shows an optimum schedule and skew assign-
ment. If we try to keep the number of control steps to 3, the
minimum clock period is now 7 (totally, 7 × 3 + 2 = 23).

Skew is conventionally utilized only for reducing clock
period (Fig. 2(c)). However, in many design flows, the clock
period can not be determined freely upon convenience of a
single datapath circuit. If we need to design a datapath un-
der a given clock period, the conventional skew optimiza-
tion can not be used directly. As it is shown by Design 3
in Fig. 2(d), the simultaneous optimization of the skew as-
signment and the control step assignment is necessary for
datapath synthesis under a given clock period. Also in the
case for minimizing the latency (Design 4 in Fig. 2(e)), the
skew assignment and the control step assignment must be
treated simultaneously.

3. Simultaneous Optimization of Control Step and
Skew Assignments

3.1 Formulation of the Problem

Our simultaneous optimization problem, (σ, τ, clk)-optimi-
zation, receives a data flow graph G, resource assignments ρ,
ξ, and the execution order of operations assigned to the same
FU, and the production order of data assigned to the same
register (the function next introduced later reflects such in-
formation), and outputs σ, τ and clk.

Figure 3 illustrates the correct timing of control signals
with respect to the execution of oj. We assume that oi is an
operation generating an input of oj, and the output of the
operation oj is written in a register r j (ξ(oj) = r j). On the
other hand, the resource xi is either a register which stores
the input data for oj, an input multiplexer of a FU ρ(oj), or

Fig. 3 Setup/Hold constants.

an input multiplexer of r j.
The “setup constraint” (the arrival of the control sig-

nal c
oj
r j

has to be later than the arrival of the result of oj) is
formulated as

σ(co∗
xi

) · clk + τ(xi) + terr + D
oj
xi−r j
+ s

≤ σ(c
oj
r j

) · clk + τ(r j) (1)

where o∗ is either the operation that generates the input of oj

stored in a register xi or oj in case xi is a multiplexer at the
input of ρ(oj) or r j. D

oj

xi−r j
is the maximum path delay from

xi to r j related to the execution of oj. terr is a timing margin,
and s is the setup time of the register r j.

On the other hand, the “hold constraint” (the arrival of
c

oj
r j

has to be earlier than the destruction of the result of oj)
is given as

σ(c
oj
r j

) · clk + τ(r j) + terr

≤ σ(cnext(xi,oi)
xi

) · clk + τ(xi) + d
oj

xi−r j
− h, (2)

where d
oj

xi−r j
is the minimum path delay from xi to r j re-

lated to the execution of oj, and h is the hold time of r j.
next(xi, oi) is the operation next to oi on the resource xi. In
case that several operations are chained, setup and hold con-
straints are formulated between input registers to the first
operation, intermediate multiplexers located on the chain-
ing path, and the output register of the last operation of the
chain. Note that, when the control step assignment σ is vari-
able, we can set 0 ≤ τ(x) < clk for all x ∈ M without loss
of optimality.

Note that schedule and skew for an input multiplexer of
a register is trivial. Let m be an input multiplexer of a reg-
ister r. For all operations o which are assigned to the same
register r, the maximum path delays Do

m−rs have almost the
same value, and also the minimum path delays do

m−rs have
almost the same value. So we can set σ(co

m) and τ(m) as
following.

σ(co
m) =

⌊
σ(co

r ) · clk + τ(r) − Do
m−r

clk

⌋
,

τ(m) = τ(r) − Do
m−r −

⌊
τ(r) − Do

m−r

clk

⌋
clk.

In general, the objective of the scheduling is the mini-
mization of the computation time and the size of a resultant
circuit. Since ξ and ρ are fixed in our problem, to minimize
the size of a circuit is to minimize the size of a controller.
We can assume that the size of the controller is an increasing
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function of |M| and CS (the number of control steps). Since
|M| is fixed, CS is our objective to be minimized in terms
of circuit size. On the other hand, the computation time of
a circuit can be evaluated with clk · CS . Hence, we choose
clk · CS + λ · CS as the objective to be minimized, where λ
is a weighting coefficient.

Whether an instance has a feasible solution or not can
be tested easily by relaxing integer-valued problem into real-
valued problem, that is, by relaxing σ : S → Z+ into
σ : S → R≥0. We will call σ : S → R≥0 a real-valued
schedule and it is computed by using a real-domain schedule
constraint graph Grs = (S, Ers). The vertex setS is the set of
all control signals. The weighted edge set Ers corresponds
to the following constraint inequalities obtained from (1)–
(2) assuming variables τ equal to zero.

σ(c
oj
r j

) ≥ σ(coi
xi

) + D
oj
xi−r j
+ s + terr (3)

σ(cnext(xi,oi)
xi

) ≥ σ(c
oj
r j

) − d
oj

xi−r j
+ h + terr (4)

That is, corresponding to (3)–(4), we add (coi
xi
, c

oj
r j

) with its

weight D
oj
xi−r j
+ s + terr and (c

oj
r j
, cnext(xi,oi)

xi
) with its weight

−d
oj
xi−r j
+h+ terr. The longest path length to each vertex from

a source in Grs provides a feasible and optimal (in terms of
clk ×CS → min) real-valued schedule.

Theorem 1. If and only if there is no positive cycle in Grs,
there is a feasible assignment of σ and τ.

If there is no feasible real-valued schedule, there is no
feasible assignment of σ and τ because if there is a feasible
assignment of σ and τ, we can compute the actual time of
control signals in the form of σ(co

x) · clk + τ(x). When clk
is sufficiently small, τ is also small, nearly equal to zero,
and we can assume that σ(co

x) · clk takes an arbitrary real
value. That is a reason why if there is a feasible real-valued
schedule, there is a feasible assignment of σ and τ.
σ takes an integer value and τ takes a real value, so if

one of clk and CS is fixed, the problem becomes a Mixed In-
teger Linear Programming Problem. We show an optimiza-
tion algorithm to compute optimum σ and τ using MILP
solver in Fig. 4. Although the algorithm computes an opti-
mum solution, it takes impractical time.

Input λ, constraints.
Step1 Set the objective of MILP to the minimization of CS . Solve the

MILP and let CS min be the minimum CS .
Step2 Set clk to 1 and the objective to the minimization of CS . Relax the

problem into a real valued LP problem, and solve it. Let timemin be
the minimum CS

Step3 Set opt to∞ and CS to CS min.
Step4 Set the objective to the minimization of clk and solve MILP. If clk ·

CS + λ · CS < opt then set opt to (clk · CS + λ · CS ), CS opt to CS
and sol to (σ, τ).

Step5 Increase CS by 1. If (clk · CS − timemin) > λ then goto Step4,
otherwise output sol and terminate.

Fig. 4 A simultaneous optimization algorithm using MILP.

3.2 Partial Problems

Because simultaneous optimization of σ, τ, clk is a hard
problem, we consider partial problems. We assume that one
of σ, τ, clk is fixed, and try to optimize the other two.

(τ, clk)-optimization is the problem to optimize τ and
clk while keeping control schedule σ unchanged. Because
τ and clk take real values, (τ, clk)-optimization problem can
be formulated as LP problem. An efficient graph theoretic
approach has been proposed [9].

(σ, clk)-optimization is the problem to optimize σ and
clk under given skew τ. Conventional high level synthesis
systems treat (σ, clk)-optimization with zero skew.

(σ, τ)-optimization is the problem to optimize σ and
τ under a give clock period clk. In most cases clk may
be determined considering various factors, and we of-
ten encounter this type of optimization problem. (σ, τ)-
optimization is also a good candidate subroutine for solving
the original (σ, τ, clk)-optimization. That is, by repeating
(σ, τ)-optimization with a systematic sweep of clk, we can
find a best solution for (σ, τ, clk)-optimization. Thus, we
discuss about σ and τ optimization under given clk in the
rest of this paper.

4. Computational Complexity of (σ, τ)-Optimization
Problem

(σ, τ)-optimization problem itself is an important problem
which we will encounter in various design styles. It may
also play an important role in solving the original (σ, τ, clk)-
optimization as a powerful subroutine.

The following theorem is one highlight of this paper.

Theorem 2. (σ, τ)-optimization problem is NP-hard.

As it is mentioned in Sect. 3.1, our (σ, τ)-optimization
problem receives resource assignment and operation order
on each FU as a part of input instance. It can be easily seen
that, if the skew τ is fixed a priori (zero skew is one choice),
σ-optimization problem with given resource assignment and
given operation order on each FU is in class P. In contrast,
even if resource assignment and operation order on each FU
are specified, our (σ, τ)-optimization is a NP-hard problem.

This result would be important in the sense that it
shows us a broad and crucial guideline for designing a so-
lution algorithm. That is, the result implies that there is no
polynomial time algorithm for (σ, τ)-optimization problem
unless P = NP. It also suggests that we need to design a
heuristic algorithm, otherwise we have to use an algorithm
that is essentially the same with full search.

Based on this result, we will present a heuristic algo-
rithm for (σ, τ)-optimization in the next section. As it is the
case for most NP-hard problems, the proof of NP-hardness
do not have any direct relation to our heuristic algorithm.

Our proof of Theorem 2 is based on the polynomial
time reduction from 3SAT to the decision version of (σ, τ)-
optimization problem. The detailed proof is presented in
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Appendix.

5. Heuristic Algorithm

In this section, we show a heuristic algorithm for this (σ,
τ)-optimization problem.

5.1 Skew Constraint Graph

From (1) and (2), we have

τr − τm ≥ (σ
op
m − σok

r ) · clk + τerr + Dok
m−r + s, (5)

τm−τr ≥ (σok
r −σnext(m,op)

m ) · clk + τerr−dok
m−r + h. (6)

We generate a skew constraint multigraph Gτ = (V, E) from
(5) and (6) as shown in Fig. 5. V is a set of multiplex-
ers, registers and one auxiliary source node vs. A set of
weighted edges E is the union of a set of edges reflect-
ing (5) or (6) (i.e., an edge (m, r) with its weight (σ

op
m −

σok
r ) · clk + τerr + Dok

m−r + s or an edge (r,m) with its weight
(σok

r −σnext(m,op)
m )·clk+τerr−dok

m−r+h over all operations), and a
set of auxiliary edges {(m, vs)|m ∈ V\vs}∪{(vs,m)|m ∈ V\vs}.
Edge weights for {(m, vs)|m ∈ V \ vs} and {(vs,m)|m ∈ V \ vs}
are −clk and 0, respectively. Then, skew assignment prob-
lem is now considered as the problem to assign real values to
vertices in Gτ. Once σ is fixed, maximum path lengths from
vs to other vertices give us a solution, i.e., skews of registers
and multiplexers. If Gτ has a positive cycle, feasible skew
schedule does not exist.

5.2 Schedule Constraint Graph

From (1) and (2) with regarding integral σ, we have

σ(c
oj
r j

) − σ(coi
xi

)

≥
⌈(
τ(xi) − τ(r j) + terr + D

oj
xi−r j
+ s
)
/clk
⌉
, (7)

σ(cnext(xi,oi)
xi

) − σ(c
oj
r j

)

≥
⌈(
τ(r j) − τ(xi) + terr − d

oj
xi−r j
+ h
)
/clk
⌉

(8)

We generate a schedule constraint graph Gσ = (Vσ, Eσ)

Fig. 5 Skew constraint multigraph.

similar to a skew constraint graph. Vσ = S⋃{vs} where vs
is an auxiliary source node. Eσ is the set of edges reflecting
(7) or (8), and (vs, v) for all v ∈ S whose weight is 0. Once
τ and clk are given, the longest path length from vs to each
node v is a feasible value of σ(v), and the maximum of those
longest path lengths gives us CS . A path which gives CS
is called a critical path. If Gσ has a positive cycle, feasible
schedule does not exist.

5.3 Heuristic Algorithm for (σ, τ)-Optimization Problem

Suppose we have computed τ from Gτ, and consider the
union T of a longest path from vs to each node. Then,
T is a spanning tree, and for each edge (xi, r j) in T , rela-
tive skew (τ(r j) − τ(xi)) mod clk is equal to either “(terr +

D
oj
xi−r j
+ s) mod clk” or “(terr − d

oj
xi−r j
+ h) mod clk” depend-

ing on the edge weight. Therefore, we can consider the skew
optimization problem as the problem to extract a spanning
tree from Gτ. It is interesting that, once a spanning tree
T of Gτ is fixed, and tree edges are suppose to be critical
path edges in Gτ, we can compute τ from T ⊂ Gτ with-
out information of σ. That is, for each edge (xi, r j) in T ,
we can put the relative-skew (τ(r j) − τ(xi)) mod clk as ei-
ther (terr + D

oj
xi−r j
+ s) mod clk or (terr − d

oj
xi−r j
+ h) mod clk

depending on the edge weight.
On the other hand in Gσ, since the right hand side of

(7), (8) has a ceiling, if the relative skew (τ(r j) − τ(xi)) mod
clk is equal to (terr + D

oj

xi−r j
+ s) mod clk or (terr − d

oj

xi−r j
+

h) mod clk, the weight of the edge reflecting inequality (7)
or (8) is minimized. Therefore, to minimize CS , it is ef-
ficient to set relative skew to (terr + D

oj
xi−r j
+ s) mod clk or

(terr − d
oj
xi−r j
+ h) mod clk for as many edges as possible in a

critical path. That is, we have to choose as many edges in a
critical path in Gσ as edges of spanning tree in Gτ.

Our heuristic algorithm is shown in Fig. 7. We start
with the spanning tree T whose edge set is {(vs,m)|m ∈ V\vs}
assuming τ(m) = 0 for all m. We replace (vs,m) with an edge
corresponding to an edge on a critical path in Gσ in one by
one manner. In each time, we will test all candidate edges to
be added to T , and choose one edge which achieves smallest
CS .

In order to keep T being a tree, we use a partitioning
to know which edge we can add and which edge we have
to remove. Each connected component in T\{(vs, x)|x ∈ V}
forms a partite set of a partition. Because T is a tree, only

Fig. 6 We add an edge on a critical path in Gσ to T .
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Step1. Generate Gτ and Gσ
Step2. Generate an initial spanning tree T ⊂ Gτ.
Step3. Compute τT from T . Compute σ from Gσ|τ=τt . Let P be a

critical path in Gσ|τ=τt .
Step5. For each edge (u, v) ∈ Gτ corresponding to e ∈ P, try

to generate T(u,v) from T by adding (u, v) and removing an
appropriate edge. If we can compute T(u,v), compute skew
assignment τ(u,v) from T(u,v) and the number of control steps
CS (u,v) from Gσ|τ=τt .

Step6. If CS (u,v) > CS or we cannot generate T(u,v) for all (u, v) in
Step5, output τT and σ and quit. Otherwise, set T = T(u,v)

by such (u, v) which achieves the smallest CS (u,v), and go to
Step3.

Fig. 7 Heuristic algorithm.

one edge from each partite set connects to vs. If we generate
T(u,v) by adding (u, v) to T , we remove the edge between vs
and the connected component to which v belongs to. Gτ in
Fig. 6 shows the replacement of edges. We add (u, v) to T
only if u and v belong to different partite sets.

6. Experiments

The proposed heuristic algorithm for (σ, τ)-optimization
has been implemented using C programming language and
tested on AMD OpteronT M based PC. As input applications,
we use three DAG algorithms modified from Jaumann wave
filter, all-pole lattice filter and elliptic wave filter.

We have prepared 2 input instances for each input algo-
rithm, each instance has different resource assignment, dif-
ferent operation order, and different delay assignment.

A path delay from an input register to an output register
is the sum of delays of register-to-multiplexer, multiplexer-
to-FU, FU, FU-to-multiplexer, and multiplexer-to-register.
Maximum/minimum delays of multipliers and adders are
60/10 and 20/10, respectively. The other delays are given
randomly. That is, minimum register-multiplexer and FU-
multiplexer delays are chosen between 3 to 25, and the min-
imum multiplexer-register and multiplexer-FU delays are
chosen from 2 to 15. The maximum delay of each path is
set as 1.1 to 1.4 times larger value than its minimum delay.

Note that, for each input instance, those maximum
delay values and minimum delay values, as well as re-
source assignment and operation order on each FU, are
fixed throughout the experiments done with various different
clock period clk. Of course, skew and control step are de-
termined so that the setup condition and the hold condition
are satisfied for all operations under the specified maximum
delays, minimum delays, and clock period.

As the first experiment, for each instance, we have
applied a schedule optimization without skew optimization
(assuming zero skew) and the proposed algorithm.

Table 1 shows some of experimental results. The
columns “#fu,” “#reg,” and “clk” represent the numbers of
functional units, registers, and clock period of each instance,
respectively. The column “CS” represents the number of
control steps (makespan) of an output schedule and “time”

Table 1 Experimental results.

Instance #fu #reg clk CS time(ms)
n/s w/s n/s w/s

Jaumann1 6 6 20 38 33 0.122 8.31
40 22 18 0.124 11.4
60 18 13 0.125 12.4
80 14 11 0.123 11.9

100 13 11 0.122 14.9
Jaumann2 7 7 20 33 31 0.114 1.72

40 19 17 0.114 3.05
60 13 12 0.113 11.3
80 11 9 0.115 10.5

100 11 9 0.116 9.13

Lattice1 3 5 20 55 50 0.075 2.12
40 31 27 0.076 3.05
60 24 18 0.080 5.37
80 19 15 0.075 3.80

100 15 12 0.073 5.64
Lattice2 4 5 20 50 46 0.078 2.76

40 29 25 0.078 3.33
60 19 16 0.078 3.43
80 17 14 0.077 5.02

100 16 13 0.084 6.10

Elliptic1 8 13 20 66 57 0.241 42.1
40 38 33 0.241 74.0
60 32 24 0.238 88.6
80 23 16 0.239 96.5

100 19 15 0.232 108
Elliptic2 8 14 20 67 58 0.245 42.2

40 38 31 0.244 51.6
60 32 20 0.240 57.8
80 22 18 0.243 101

100 20 17 0.242 90.6

Fig. 8 Application time (CS × clk) vs. clk for Jaumann.

represents the computation time in milli seconds.
Figures 8 through 10 show the experimental results

graphically by plotting design points on the application time
(i.e., CS × clk) vs. clock period axes. Those plots are ob-
tained by applying our algorithm repeatedly with increasing
clk by 1 at a time. Note again that, for each input instance,
resource assignment, operation order on each FU, maximum
delay values and minimum delay values are fixed, and these
same values are used for different clk values. Lower bound
in each figure represents the minimum CS × clk of real-
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Fig. 9 Application time (CS × clk) vs. clk for Lattice.

Fig. 10 Application time (CS × clk) vs. clk for Elliptic.

valued schedule, which is introduced in Sect. 3.1. Since the
solution space for real-valued schedule includes the one for
integer-valued schedule (with skew), the smallest CS × clk
achieved by real-valued schedule is no larger than the small-
est CS × clk achieved by integer-valued schedule with skew.

As it is mentioned previously, conventional skew opti-
mization algorithm is designed only for reducing the clock
period. Even though its objective does not match with our
objective; reduce the schedule length CS under a given
clock period, we will bravely compare our method with a
two-step method; scheduling followed by skew optimiza-
tion. Results are shown in Figs. 11 through 16. Design
points given by “skew after schedule” are the result of the
two-step algorithm; scheduling (with zero skew) followed
by skew optimization. Figures 11, 12, and 13 compare
our proposed algorithm with “skew after schedule.” On the
other hand, “skew after proposed” is also a two-step algo-
rithm; proposed algorithm followed by skew optimization
for reducing clock period. Figures 14, 15, and 16 compare
“skew after proposed” with “skew after schedule.”

From those experiments, advantage of our proposed
method to the conventional skew optimization can be veri-
fied It is notable that the advantage is remarkable especially

Fig. 11 Application time (CS × clk) vs. clk for Jaumann.

Fig. 12 Application time (CS × clk) vs. clk for Lattice.

Fig. 13 Application time (CS × clk) vs. clk for Elliptic.

when we choose a large clock period (low clock frequency).
Finally, we briefly discuss area overhead and extra

power consumption paid for skew control. The following
discussion is based on logic synthesis results done by “De-
sign Compiler (Version A-2007, 12-SP3)” with using library
“class.” Table 2 shows the synthesis results of datapath com-
ponents, and Table 3 shows the synthesis result of delay el-
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Fig. 14 Application time (CS × clk) vs. clk for Jaumann.

Fig. 15 Application time (CS × clk) vs. clk for Lattice.

Fig. 16 Application time (CS × clk) vs. clk for Elliptic.

ements. Note that area is presented with being normalized
by the area of 2-input NAND gate (it has the area 1).

Considering the maximum delay of an adder, we as-
sume that the clock period is set to 7 ns. Then we need to
prepare delay elements up to 7 ns. In case that the skew for
each register or multiplexer is controlled by its own delay
element, the area overhead for each register or multiplexer

Table 2 Datapath components.

16 bit
adder

16 bit
multiplier

16 bit
register

16 bit
reg.
with
reset

16 bit
2-1

MUX

Max.
delay [ns] 5.82 17.79

M in.
delay [ns] 0.59 0.32

Area 195 4329 176 209 64

Power
[μW] 48.6501 2586 2.9154 7.4032 1.139

Table 3 Delay element.

Rising Delay [ns] Falling Delay [ns] Area Power [uW]
0.38 0.43 4 0.2225
0.67 0.99 3 0.2225
1.45 1.48 5 0.5975
1.79 1.90 4 0.5700
2.18 2.45 8 0.9450
2.94 2.95 12 1.5562
3.49 3.49 6 0.9175
3.69 3.90 13 1.6675
4.44 4.46 14 1.9662
4.97 5.00 15 2.1888
5.38 5.46 15 2.1888
5.92 5.95 19 2.6888
6.36 6.45 13 1.9875
6.89 6.92 20 2.9113
7.46 7.49 25 3.2375
7.94 7.95 19 2.8350
8.41 8.49 28 3.7587
8.94 8.96 32 4.1962
9.44 9.48 28 4.1062
9.92 9.95 33 4.4812
10.40 10.48 36 4.6062

varies from 0 to around 20, and the extra power varies from
0 to around 3 μW. If we assume that skew values to regis-
ters and multiplexers spread equally from 0 to 7 ns, the av-
erage area overhead per register or multiplexer is around 10
which is around 6% of an 16 bit register and around 16%
of an 16 bit 2-to-1 multiplexer. On the other hand, the aver-
age extra power per register or multiplexer is around 1.5 μW
which is around 50% of an 16 bit register and around 130%
of an 16 bit 2-to-1 multiplexer. In case that various clock
skew values are generated from a single delay chain, the
area overhead and extra power may possibly be decreased.

7. Conclusion

We have introduced a novel optimization problem, simul-
taneous schedule (control step assignment) and skew opti-
mization problem. We presented a proof of NP-hardness
and a heuristic algorithm for the simultaneous control step
and skew optimization under given clock period. The al-
gorithm has the potential to play a central role in various
scenarios of skew-aware RT level synthesis. A study of the
relation between the simultaneous optimization of skew and
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re-timing in logic level and our problem in RT level is one
of the interesting future works.
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Appendix: Proof of NP-Hardness of (σ, τ)-Optimiza-
tion Problem

We show the detailed proof of NP-hardness of (σ, τ)-
Optimization Problem (Theorem 2).

Our proof is based on the polynomial time reduction
from 3SAT to the decision version of (σ, τ)-optimization
problem (In the following, we call it (σ, τ)-decision problem
in short.).

First, we define the transformation from an instance of
3SAT problem to an instance of the (σ, τ)-decision prob-
lem. Let (X,C) be an instance of 3SAT problem, where
X = {x1, x2, · · · , xn} is a set of variables, C = c1∧c2∧· · ·∧cm

is a formula, and for each clause ci = (li1 ∨ li2 ∨ li3), literal
li j is either xk or ¬xk for some k. An input instance of the
decision version of (σ, τ)-optimization problem is a 8-tuple
(G, ρ, ξ, next,D, d, clk,CS spec), and the problem asks “Are
there any feasible σ and τ satisfying that the maximum con-
trol step is less than or equal to CS spec?”
Data Flow Graph G = (O,D):

The set of vertices O is;

O = {Oci | 0 ≤ i ≤ m}
∪{Oli j | 1 ≤ i ≤ m, 1 ≤ j ≤ 3},

and the set of edgesD is;

D = {(Oci−1 ,Oci )|1 ≤ i ≤ m}
∪{(Oci−1 ,Oli1 ), (Oli1 ,Oli2 ), (Oli2 ,Oli3 ),

(Oli3 ,Oci)|1 ≤ i ≤ m}
Please refer to Fig. A· 1.
Resource assignments ρ and ξ:

For operations, they are assigned to separate FUs (no
FU sharing occurs). For data, we prepare n + 1 regis-
ters named x1, x2, · · · , xn, and y, and we assign ξ(Oc0 ) =
ξ(Oc1 ) = · · · = ξ(Ocm ) = y, and ξ(Oli j ) = xk, where the
literal li j is either xk or ¬xk, for all i and j.
next:

Trivial from the data dependency specified by G =

(O,D).
Maximum path delay D and minimum path delay d:

Maximum path delays are set depending on the number

Fig. A· 1 A DFG for a 3SAT instance.
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of negated variables in a clause.

1. For a clause ci = (x j ∨ xk ∨ xl) ; D
Oli1
y−x j
= D

Oli2
x j−xk

=

D
Oli3
xk−xl
= D

Oci
xl−y = 0.5, D

Oci
y−y = 3.

2. For a clause ci = (x j ∨ xk ∨¬xl) ; D
Oli1
y−x j
= D

Oli2
x j−xk
= 0.5,

D
Oli3
xk−xl
= D

Oci
xl−y = 1, D

Oci
y−y = 4.

3. For a clause ci = (x j ∨ ¬xk ∨ ¬xl) ; D
Oli1
y1−x j

= D
Oli3
xk−xl
=

0.5, D
Oli2
x j−xk
= D

Oci
xl−y = 1, D

Oci
y−y = 4.

4. For a clause ci = (¬x j∨¬xk∨¬xl) ; D
Oli1
y−x j
= D

Oci
xl−y = 1,

D
Oli3
xk−xl
= D

Oli2
x j−xk
= 0.5, D

Oci
y−y = 4.

On the other hand, we can assign an arbitrary value (be-
tween 0 and the corresponding maximum path delay) to the
minimum path delay do

x−y, i.e., 0 < do
x−y ≤ Do

x−y.
clk:

We set clk = 1.
CS spec:

We set CS spec = 3m0 + 4(m −m0), where m is the total
number of clauses and m0 is the number of clauses including
only non-negated variables.
Others:

We set s, h, terr to 0, for the simplicity purpose. Dis-
cussions do not lose the generality by this simplification, be-
cause we can generate an equivalent problem instance with
non-zero s, h, terr by simply arranging the maximum path
delay Do

x−x′ to Do
x−x′ − terr − s and the minimum path de-

lay do
x−x′ to do

x−x′ + terr + h. Based on this observation, the
following discussions are made under s = h = terr = 0.

The basic idea behind this transformation is to simu-
late the {0, 1} assignment to variables in 3SAT problem by
the skew assignment to registers x1, x2, · · · , xn in the (σ,τ)-
decision problem.

The first lemma ensures that the optimum solution for a
problem instance obtained by the above transformation from
an instance of 3SAT problem can be determined without de-
pending on the minimum path delay information, and we
need to care only maximum path delays.

Lemma 1. Let o and o′ be distinct operations and there
exist an edge (o′, o) in G. If there exist a directed path from o
to next(ξ(o′), o′) in G, the minimum path delay do

ξ(o′)−ξ(o) ≥ 0
does not affect σ(co

ξ(o)).

Proof. If there exist a directed path from o′ to next(ξ(o′), o′)
in G, we can sum up the setup constraints of registers along
this path, and we have

σ(co
ξ(o)) + τ(ξ(o)) ≤ σ(cnext(o′,ξ(o′))

ξ(o′) ) + τ(ξ(o′)).

It means that the hold constraint

σ(co
ξ(o)) · clk + τ(ξ(o))

≤ σ(onext(o′,ξ(o′))
ξ(o′) ) · clk + τ(ξ(o′)) + do

ξ(o′)−ξ(o)

is satisfied automatically without depending on the value of
do
ξ(o′)−ξ(o). �

Next, we will introduce the following lemma which al-
lows us to restrict the skew value to doubleton {0, 0.5clk}.
By this restriction, we can ensure the correspondence be-
tween {0, 1} assignment in 3SAT and the {0, 0.5clk}-skew
assignment in the (σ,τ)-decision problem.

Lemma 2. If the clock period is clk and each of maximum
and minimum path delays has the value either k · clk or
(k + 0.5)clk for some integer k, there always exists a (σ,
τ)-optimum solution with only 0, 0.5clk skew values. (From
an arbitrary (σ, τ)-optimum solution, we can construct a
(σ, τ)-optimum solution having only 0, 0.5clk skew values.
The time complexity of this transformation is O(|M|).)
Proof. Let σ and τ be an optimum solution of the (σ, τ)-
optimization for an input instance in which every path delay
has the form either k · clk or (k + 0.5)clk for some integer k.
Let τ∗ be the transformed version of τ, which is obtained as
follows.

τ∗(x) =

{
0 if 0 ≤ τ(x) < 0.5clk
0.5clk if 0.5clk ≤ τ(x) < clk

(A· 1)

Note that τ(x) ≥ τ∗(x) for all x. It will be proven that σ and
τ∗ is also an optimum solution for the given instance. Since
σ is unchanged, it is enough to verify that the pair of σ and
τ∗ is a feasible solution. For the setup constraint of any part

σ(co
x) · clk + τ(x) ≥ σ(co′

x′ ) · clk + τ(x′) + Do
x−x′ ,

we have

σ(co
x) · clk + τ∗(x) + (τ(x) − τ∗(x)) − (τ(x′) − τ∗(x′))

≥ σ(co′
x′ ) · clk + τ∗(x′) + Do

x−x′

Since σ(co
x) · clk, τ∗(x), σ(co′

x′) · clk, τ∗(x′) and Do
x−x′ are all

multiples of 0.5clk, and −0.5clk < (τ(x) − τ∗(x)) − (τ(x′) −
τ∗(x′)) < 0.5clk, we can truncate (τ(x) − τ∗(x)) − (τ(x′) −
τ∗(x′)) to 0, and we have

σ(co
x) · clk + τ∗(x) ≥ σ(co′

x′ ) · clk + τ∗(x′) + Do
x−x′

We can verify hold constraints for σ and τ∗ in a similar way,
and we can conclude the feasibility of the pair σ and τ∗. �

From Lemmas 2 and 1, we can discuss an optimum
solution for the problem instance obtained by the transfor-
mation from 3SAT only considering maximum path delays
and doubleton {0, 0.5} for skew values.

Proof of Theorem 1: It is clear that the (σ, τ)-decision
problem is in the class NP.

The transformation from an instance of 3SAT
((X,C)) to an instance of the (σ, τ)-decision problem
((G, ρ, ξ, next,D, d, clk,CS spec)) can be done in polynomial
time. We claim that (G, ρ, ξ, next,D, d, clk) has σ and τ such
that σ(cOcm

y )−σ(c
Oc0
y ) is less than or equal to 3mo+4(m−m0)

if and only if (X,C) is satisfiable. It can be easily verified

that σ(cOcm
y )−σ(c

Oc0
y ) equals to 3mo + 4(m−m0) if and only

if
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Fig. A· 2 2 control-step assignments for the clause ci = (x j ∨ xk ∨ xl).

Fig. A· 3 2 control-step assignments for the clause ci = (x j ∨ xk ∨ ¬xl).

σ(c
Oci
y ) − σ(c

Oci−1
y )

=

{
3 if ci includes non-negated variables only,
4 if ci includes at least one negated variable

is satisfied for all i, 1 ≤ i ≤ m. For a clause ci = (x j∨ xk∨ xl)

(all non-negated variables), σ(c
Oci
y ) − σ(c

Oci−1
y ) = 3 if and

only if at least one from τ(x j), τ(xk) and τ(xl) equals to 0.5
(See Fig. A· 2), which corresponds to the fact that at least
one from x j, xk and xl is assigned 1 and the clause ci is
satisfied. The similar arguments are satisfied for the other
types of clauses (Fig. A· 3 shows one other case where the
clause includes exactly one negated variable). So, we can

conclude that σ(cOcm
y ) − σ(c

Oc0
y ) equals to 3mo + 4(m − m0)

if and only if all clauses are satisfied. �
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