
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Generalized Scalar Multiplication Secure against

SPA, DPA, and RPA

Author(s) MIYAJI, Atsuko

Citation

IEICE TRANSACTIONS on Fundamentals of

Electronics, Communications and Computer

Sciences, E91-A(10): 2833-2842

Issue Date 2008-10-01

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/8519

Rights

Copyright (C)2008 IEICE. Atsuko MIYAJI, IEICE

TRANSACTIONS on Fundamentals of Electronics,

Communications and Computer Sciences, E91-A(10),

2008, 2833-2842.

http://www.ieice.org/jpn/trans_online/

Description

IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.10 OCTOBER 2008
2833

PAPER Special Section on Information Theory and Its Applications

Generalized Scalar Multiplication Secure against SPA, DPA, and
RPA∗

Atsuko MIYAJI†a), Member

SUMMARY In the execution on a smart card, elliptic curve cryptosys-
tems have to be secure against side channel attacks such as the simple
power analysis (SPA), the differential power analysis (DPA), and the refined
power analysis (RPA), and so on. MMM-algorithm proposed by Mamiya,
Miyaji, and Morimoto is a scalar multiplication algorithm secure against
SPA, DPA, and RPA, which can decrease the computational complexity by
increasing the size of a pre-computed table. However, it provides only 4
different cases of pre-computed tables. From the practical point of view, a
wider range of time-memory tradeoffs is usually desired. This paper gen-
eralizes MMM-algorithm to improve the flexibility of tables as well as the
computational complexity. Our improved algorithm is secure, efficient and
flexible for the storage size.
key words: elliptic curve scalar multiplication, ZPA, RPA, DPA, SPA

1. Introduction

Elliptic Curve Cryptosystems: The elliptic curve cryp-
tosystem (ECC) chosen appropriately can offer efficient
public key cryptosystems [1]. Thus, elliptic curve cryp-
tosystems have been desired in various application such as a
smart card, whose memory storage and CPU power are very
limited. The efficiency of elliptic curve cryptosystems de-
pends on the implementation of scalar multiplication kP for
a secret key k and an elliptic-curve point P.
Side Channel Attacks on ECC: Side channel attacks mon-
itor power consumption and even exploit the leakage in-
formation related to power consumption to reveal bits of a
secret key k although k is hidden inside a smart card [1].
There are two types of power analysis, the simple power
analysis (SPA) and the differential power analysis (DPA).
SPA makes use of such an instruction performed during a
scalar multiplication that depends on the data being pro-
cessed. DPA uses correlation between power consumption
and specific key-dependent bits. The refined power analy-
sis (RPA) over ECC is one of DPA, which exploits a spe-
cial point with a zero value such as (0, y) or (x, 0) and re-
veals a secret key [10]. RPA is also called a Goubin-type
attack. Not all elliptic curves are vulnerable against RPA,
but some curves in [23] are vulnerable against these attacks.
There exist countermeasures against SPA, DPA, and RPA in

Manuscript received February 4, 2008.
Manuscript revised April 21, 2008.
†The author is with Japan Advanced Institute of Science and

Technology, Nomi-shi, 923-1292 Japan.
∗A preliminary version was presented at ICISC 2007. This

study is partly supported by Grant-in-Aid for Scientific Research
(B), 17300002 and Yazaki Memorial Foundation for Science and
Technology.

a) E-mail: miyaji@jaist.ac.jp
DOI: 10.1093/ietfec/e91–a.10.2833

[4], [17], [21]. This paper revisits the algorithm proposed
by Mamiya, Miyaji, and Morimoto [17], which is called
MMM-algorithm∗∗, here.
Overview of MMM-algorithm: MMM-algorithm uses a
random initial point (RIP) R, computes kP + R by dividing
a scalar k into h × 1 blocks with a table of pre-computed
points based on the blocks, subtracts R from a result, and,
finally, gets kP, where kP+ R is computed from left to right
without any branch instruction dependent on the data being
processed. A random initial point at each execution of kP
makes it impossible for an attacker to control a point P as he
needs since any point or register used in addition formulae
is different at each execution. Thus, MMM-algorithm is not
only secure against SPA, DPA, and RPA but also efficient
scalar multiplication with a precomputed table. However,
it provides only 4 available tables of 9, 15, 27, or 51 field
elements in a 160-bit elliptic curve∗∗∗. Note that MMM-
algorithm with a table of 51 field elements is the most effi-
cient in a 160-bit elliptic curve even if more memory space
is allowed to use. From the practical point of view, the mem-
ory space allowed to use or the time complexity required for
cryptographic functions depends on each individual appli-
cation. Thus, in some application, MMM-algorithm might
not be the best.
Our Contribution: In this paper, we generalize MMM-
algorithm by dividing a scalar k into h × v blocks and opti-
mize the computation method of kP+R to improve flexibility
of tables as well as computational complexity, while being
secure against SPA, DPA, and RPA. It is called Generalized
MMM-algorithm in this paper, GMMM-algorithm in short.
We also analyze the computational complexity of GMMM-
algorithm theoretically. Furthermore, we explore best com-
bination of coordinates between affine, (modified) Jacobian,
mixed coordinate[9], etc based on the latest addition formu-
lae [3] for each division h × v of GMMM-algorithm accord-
ing as the ratio of I/M, where I/M represents the ratio of
complexity of modular inversion against modular multipli-
cation. We also present the iterated-doubling algorithm for
the latest Jacobian coordinate, which is used for our esti-
mation. As a result, even in the same division as MMM-
algorithm, our optimization on coordinates can reduce the
computational and memory complexity since such optimiza-
tion was not investigated in MMM-algorithm [17]. In facts,

∗∗In their paper, MMM-algorithm is called BRIP or EBRIP.
∗∗∗More precisely, it uses 3, 5, 9, 17 elliptic-curve points in Ja-

cobian coordinates.

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers

2834
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.10 OCTOBER 2008

GMMM-algorithm with a table of 7 or 35 field elements can
reduce the computational complexity of MMM-algorithm
with a table of 9 or 51 field elements by 19.7% or 13.4%
over for the range of I/M between 4 and 11, respectively;
and GMMM-algorithm with a table of only 19 field ele-
ments can work faster than MMM-algorithm with a table
of 51 field elements under the above range of I/M. Thus,
GMMM-algorithm is significantly efficient and flexible even
when the storage available is very small or rather large.

This paper is organized as follows. Section 2 sum-
marizes the known facts on elliptic curves and also re-
views MMM-algorithm. Section 3 presents our GMMM-
algorithm and analyzes the computational complexity the-
oretically. Section 4 extends GMMM-algorithm with two
divisions. Section 5 compares our results with the previous
results.

2. Preliminaries

This section summarizes some facts of elliptic curves such
as coordinate systems and side channel attacks against ellip-
tic curves, which refers to [1], [9].

2.1 Elliptic Curve

Let Fp be a finite field, where p > 3 is a prime. The Weier-
strass form of an elliptic curve over Fp in affine coordinates
is described as

E/Fp : y2 = x3 + ax + b (a, b ∈ Fp, 4a3 + 27b2 � 0).

The set of all points P = (x, y) ∈ Fp × Fp satisfying E with
the point at infinity O, denoted by E(Fp), forms an abelian
group. Let P1 = (x1, y1) and P2 = (x2, y2) be two points on
E(Fp) and P3 = P1 + P2 = (x3, y3) be the sum. Then the
addition formula Add (resp. doubling Dbl) in affine coor-
dinate can be described by three modules of Addp(P1, P2),
AddI(α), and AddNI(P1, P2, λ) (resp. Dblp(P1), DblI(α) and
DblNI(P1, λ)) as in [20]. Each module means preparation
for 1 inversion, computation of 1 inversion and computation
without inversion, respectively. Then the addition formulae
are given as follows.

Add(P1, P2) (P1 � ±P2)
Addp(P1, P2): α = x2 − x1

AddI(α): λ = 1
α

AddNI(P1, P2, λ): γ = (y2 − y1)λ
x3 = γ2 − x1 − x2

y3 = γ(x1 − x3) − y1

Dbl(P1)
Dblp(P1): α = 2y1

DblI(α): λ = 1
α

DblNI(P1, λ): γ = (3x2
1 + a)λ

x3 = γ2 − 2x1

y3 = γ(x1 − x3) − y1

Let us denote the computational complexity of an ad-
dition (resp. a doubling) by t(A +A) (resp. t(2A)) in affine

coordinate and multiplication (resp. inversion, resp. squar-
ing) in Fp by M (resp. I, resp. S), where A means affine
coordinates. For simplicity, it is usual to neglect addi-
tion, subtraction, and multiplication by small constant in
Fp to discuss the computation amount. Then we see that
t(A+A) = I+2M+S and t(2A) = I+2M+2S . For the sake
of convenience, let us denote the computational complexity
of Addp and AddNI (resp. Dblp and DblNI) by t(A+A)nI (resp.
t(2A)nI), which represents the total computational complex-
ity of an addition (resp. doubling) without inversion.

Both addition and doubling formulae in affine coor-
dinate need one inversion over Fp, which is more expen-
sive than multiplication over Fp. Affine coordinate is trans-
formed into Jacobian coordinate, where the inversion is free.
We set x = X/Z2 and y = Y/Z3, giving the equation

EJ : Y2 = X3 + aXZ4 + bZ6.

Then, two points (X, Y, Z) and (r2X, r3Y, rZ) for some r ∈ F∗p
are recognized as the same point. The point at infinity is
transformed to (1, 1, 0). The addition formulae have been
being improved step by step so far after they were intro-
duced widely[8]. The latest addition formulae is available
from [3]. In the case of iterated doublings, an efficient
algorithm specific to the previous Jacobian coordinate is
proposed [11]. We also present the efficient iterated dou-
bling specific to the latest Jacobian coordinate. Let P1 =

(X1, Y1, Z1), P2 = (X2, Y2, Z2), P3 = P1 + P2 = (X3, Y3, Z3),
P = (X0, Y0, Z0), and 2wP = (Xw, Yw, Zw). Let us show the
iterated doubling algorithm as well as the doubling and ad-
dition formulae in the latest Jacobian coordinate.

AddJ (P1, P2) (P1 � ±P2)

U1 = X1Z2
2 , U2 = X2Z2

1 , S 1 = Y1Z3
2 , S 2 = Y2Z3

1 ,

H = U2 − U1, R = 2(S 2 − S 1),

I = (2H)2, J1 = IH, J2 = IU1

X3 = R2 − J1 − 2J2, Y3 = R(J2 − X3) − 2S 1J1,

Z3 = ((Z1 + Z2)2 − Z2
1 − Z2

2)H.

DblJ (P1)

S = 2((X1 + Y2
1)2 − X2

1 − Y4
1), M = 3X2

1 + aZ4
1

X3 = M2 − 2S , Y3 = M(S − X3) − 8Y4
1

Z3 = (Y1 + Z1)2 − Y2
1 − Z2

1 (= 2Y1Z1)

Iterated doublings 2wP in J
Y ′0 = 2Y0, W0 = aZ4

0 , T0 = Y ′0
4

S = ((X0 + Y ′0
2)2 − X2

0 − T0), M = 3X2
0 +W0

X1 = M2 − 2S , Y ′1 = 2M(S − X1) − T0

Z1 = ((Y ′0 + Z0)2 − Y ′0
2 − Z0

2)/2

For i = 1 to w − 1: {
Wi = Wi−1Ti−1, Ti = Y ′i

4

S = ((Xi + Y ′i
2)2 − X2

i − Ti), M = 3X2
i +Wi

Xi+1 = M2 − 2S , Y ′i+1 = 2M(S − Xi+1) − Ti

Zi+1 = Y ′i Zi}
Yw = Y ′w/2.

The computation times of addition, doubling, and iterated

MIYAJI: GENERALIZED SCALAR MULTIPLICATION SECURE AGAINST SPA, DPA, AND RPA
2835

Table 1 Computational complexity of addition and doubling of elliptic
curve.

computational complexity

t(A +A = J) 4M + 2S
t(A +J = J) 7M + 4S

t(A +A) 2M + S + I
t(J +J) 11M + 5S

t(J +J = A) 14M + 6S + I
t(2A = J) 1M + 5S

t(2J) 2M + 8S
t(2A) 2M + 2S + I

t(2wJ) (3w − 1)M + (5w + 3)S
t(J → A)† 3M + S + I

† : The computational complexity of transformation from Jacobian to affine
coordinate. The computational complexity without inversion is denoted by
t(J → A)nI .

doubling in Jacobian coordinate are t(J +J) = 11M + 5S ,
t(2J) = 2M + 8S , and t(2wJ) = (3w − 1)M + (5w + 3)S ,
respectively, whereJ means Jacobian coordinate. Note that
the computation of Z3 in doubling or main loop of iterated
doublings adopts the former equation (Y1+Z1)2−Y2

1 −Z2
1 or

the latter equation Y1Z1 to minimize the total computational
amount, respectively.

In addition to affine and Jacobian coordinates, there
exists their combination coordinate, called mixed coordi-
nate [9]. In the case of mixed coordinate, let us denote by
t(C1 + C2 = C3) the time for addition of points in coordi-
nates C1 and C2 giving a result in coordinates C3, and by
t(2C1 = C2) the time for doubling a point in coordinates
C1 giving a result in coordinates C2. Their performance is
summarized in Table 1.

Let us discuss the difference between these coordi-
nates. Regarding additions, we could roughly estimate that
t(A +A = J) < t(A + J = J) ≤ t(A +A) ≤ t(J + J).
This means an addition in mixed coordinate is consider-
ably fast but that of Jacobian coordinate is rather slow.
Therefore, an addition of Jacobian coordinate had better be
avoided. Regarding doublings, we could roughly estimate
that t(2A = J) < t(2J) ≤ t(2A). This means a doubling
in Jacobian coordinate is considerably fast but that of affine
coordinate is rather slow, which had better be avoided.

The major problem in affine coordinate is that it re-
quires 1 inversion when it is executed. However, an addi-
tion of affine coordinate should be revisited if we consider
the above fact of t(A + A) ≤ t(J + J). Furthermore, if
several additions or doublings are executed in parallel, then
we can make use of the following Montgomery’s trick [22]
to reduce the total number of inversions.

Algorithm 1 (Minv [n]): Montgomery’s trick
Input: α0, · · · , αn−1, p
Output: α−1

0 mod p, · · · , α−1
n−1 mod p

1. λ0 = α0

2. For i = 1 to n − 1: λi = λi−1αi mod p.
3. I = λ−1

n−1 mod p
4. For i = n − 1 to 0: λi = Iλi−1 mod p. I =
Iαi mod p
5. Output {λ0, · · · , λn−1}

The Montgomery’s trick Minv [n] works with 3(n − 1) mul-
tiplications and 1 inversion to compute n inversions, whose
computation time is denoted by t(Minv [n]) = 3(n− 1)M + I.
Therefore, if several additions or doublings in affine coor-
dinates are executed in parallel, then the total number of
inversions can be reduced to 1 by executing Addp(P1, P2)
and Dblp(P1) in parallel, applying the Montgomery’s trick
to execute AddI(α) and DblI(α) simultaneously, and finally
executing AddNI(P1, P2, λ) and DblNI(P1, λ) in parallel.

2.2 Power Analysis

There are two types of power analysis, SPA and DPA, which
are described in [1]. RPA is one of DPA, which uses charac-
teristic of some elliptic curve to have a special point [10].
Simple Power Analysis: SPA makes use of such an in-
struction performed during a scalar multiplication that de-
pends on the data being processed. In order to be resis-
tant to SPA, any branch instruction of scalar multiplication
should be eliminated. There are mainly two types of coun-
termeasures: the fixed procedure method and the indistin-
guishable method. The fixed procedure method deletes any
branch instruction conditioned by a secret scalar k such as
the add-and-double-always algorithm. The indistinguish-
able method conceals all branch instructions of scalar multi-
plication algorithm by using indistinguishable addition and
doubling operations, in which dummy operations are in-
serted.
Differential Power Analysis: DPA uses correlation be-
tween power consumption and specific key-dependent bits.
In order to be resistant to DPA, power consumption should
be changed at each new execution. There are mainly 3 types
of countermeasures, the randomized-projective-coordinate
method (RPC), the randomized curve method (RC), and the
exponent splitting (ES) [4]. RPC uses Jacobian or Projective
coordinate to randomize a point P = (x, y) into (r2x, r3y, r)
or (rx, ry, r) for a random number r ∈ F∗p, respectively. RC
maps an elliptic curve into an isomorphic elliptic curve by
using an isomorphism map of (x, y) to (c2x, c3y) for c ∈ F∗p.
ES splits a scalar and computes kP = rP + (k − r)P for a
random integer r.
Refined Power Analysis: RPA reveals a secret key k by us-
ing a special elliptic-curve point with a zero value, which
is defined as (x, 0) or (0, y). These special points of (x, 0)
and (0, y) can not be randomized by RPC or RC since they
still have a zero value such as (r2x, 0, r) (resp. (rx, 0, r)) and
(0, r3y, r) (resp. (0, ry, r)) in Jacobian (resp. Projective) co-
ordinate after conversion. ES can resist RPA because an
attacker cannot handle an elliptic curve point in such a way
that a special point with zero value can appear during an
execution.

2.3 A Review of Mamiya-Miyaji-Morimoto-Algorithm

We briefly review MMM-algorithm [17]. Assume that the
size of the underlying filed and the scalar k are n bits.
MMM-algorithm first chooses a random initial point (RIP)

2836
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.10 OCTOBER 2008

Fig. 1 MMM-algorithm.

R, computes kP+R from left to right without any branch in-
struction dependent on the data being processed, subtracts R
from a result, and gets kP. By using a random initial point at
each execution of exponentiation, any point or any register
used in addition formulae changes at each execution, which
prevents an attacker from controlling a point P itself as he
needs. Thus, it is resistant to SPA, DPA, and RPA†.

Let us briefly review MMM-algorithm (See Fig. 1).
First divide n bits into h blocks and choose a random point
R ∈ E(Fp). Then, MMM-algorithm computes kP+R by rep-

resenting kP+ R to
(1 11 · · · 11︸���︷︷���︸

b

)R + (kn−1 · · ·︸��︷︷��︸
b

· · · · · · k1k0︸��︷︷��︸
b

)P

and executing the (h+1)-simultaneous scalar multiplication,
where b = � n

h 	. The simultaneous scalar multiplication first
constructs a table of (2h − 1) points T [0, s] for an h-bit inte-
ger s =

∑h−1
�=0 s�2� (s� ∈ {0, 1}),

T [0, s] =
h−1∑
�=0

s�2
b�P − R,

and then repeats 1 addition to a table point T [0, s] and 1
doubling from left to right in a b-bit block. The following
is the detailed algorithm. In this paper, we also denote the
algorithm by h-MMM-algorithm where we want to describe
the number of divisions h.

Algorithm 2 (h-MMM-algorithm):
Input: k =

∑n−1
i=0 k[i]2i, P

Output: kP
0. k j =

∑h−1
�=0 k[b� + j]2� (j ∈ {0, · · · , b − 1}).

1. T [0] =randompoint().
Table construction

2. Compute B[i] = 2biP for 0 ≤ i ≤ (h − 1).
3. Compute T [0, s] =

∑h−1
�=0 s�B[�] − T [0] for an

h-bit integer s =
∑h−1
�=0 s�2� (s� ∈ {0, 1}).

Therefore, T [0, 0] = −T [0].
Main computation

4. For j = b − 1 to 0: T [0] = 2T [0] + T [0, k j].
5. Output T [0] + T [0, 0].

3. Proposed GMMM-Algorithm

In this section, the generalized MMM-algorithm is pre-
sented, which improves the flexibility of tables as well as
computational complexity, while it can resist SPA, DPA, and

Fig. 2 Generalized MMM-algorithm.

RPA. Our idea is inspired by an exponentiation algorithm
with a fixed point [15], [16]††. Let k be n bits, h and v be
positive integers, � n

h 	 = a, and � a
v
	 = b. Let us also use no-

tation such as t(2A = J), t(2wJ), t(J → A)nI , t(Minv [n]),
and so on, defined in Sect. 2.

3.1 Algorithm Intuition

MMM-algorithm computes kP + R by dividing k into h × 1
blocks and executing the (h + 1)-simultaneous-scalar mul-
tiplication of b-bit numbers, where � n

h 	 = a and � a
1 	 = b.

Our target is to generalize MMM-algorithm by dividing k
into h × v blocks and executing the (h + 1)-simultaneous-
scalar multiplication of b-bit numbers. Therefore, MMM-
algorithm is a special case of our generalization with (h, v) =
(h, 1).

Then, the issues to resolve are: how to embed a random
point R into h×v blocks efficiently; and how to find the opti-
mal (h, v) for the generalized MMM-algorithm together with
the best coordinates. Regarding the former issue, one way is
to use v random points Ri, compute kP+R1+ · · ·Rv, and sub-
tract R1+ · · ·+Rv from a result. Another way, which reduces
the computational complexity, is to use a random point R in
the same way as MMM-algorithm, compute kP + vR, and
subtract vR. Regarding the latter issue, the algorithm is frac-
tionalized into some parts to explore the best combination
of coordinates, where the table construction phase is divided
into 3 parts. We also investigate the (h, v) from the point of
view of both computational and memory complexity.

3.2 GMMM-Algorithm

Here we show the generalized MMM-algorithm, which is
called GMMM-algorithm in this paper. The brief idea of
GMMM-algorithm is described in Fig. 2.

†An SPA in the chosen-message-attack scenario [24] that uses
a point P with order 2 is applied to MMM-algorithm. However, we
can easily avoid this attack by checking 2P � O before computing
kP.
††The fixed-point exponentiation algorithm divides an exponent

k into h × v blocks and makes a pre-computed table based on
the blocks. The application to elliptic curves is discussed in [8].
MMM-algorithm could be considered as a combination of the ex-
ponentiation algorithm with h×1 blocks and a random initial point.

MIYAJI: GENERALIZED SCALAR MULTIPLICATION SECURE AGAINST SPA, DPA, AND RPA
2837

Algorithm 3 ((h, v)-GMMM-algorithm):
Input: k =

∑n−1
i=0 k[i]2i, P

Output: kP
0. ki, j =

∑h−1
�=0 k[a� + j + bi]2�

((i, j) ∈ {0, · · · , v − 1} × {0, · · · , b − 1}).
1. For i = 0 to v − 1: R[i] =randompoint().
Table Construction

2. Compute B[i, �] = 2a�+biP for 0 ≤ i ≤ (v − 1)
and 0 ≤ � ≤ (h − 1). Then B[0, 0] = P.

3. Compute T [i, s] =
∑h−1
�=0 s�B[i, �] − R[i] for

0 ≤ i ≤ (v − 1) and an h-bit integer
s =

∑h−1
�=0 s�2�. Then T [i, 0] = −R[i] for

0 ≤ i ≤ (v − 1).
Main computation

4. Initialization: T [0] = R[0] + · · · + R[v − 1].
T [1] = −T [0].

5. For j = b − 1 to 0 by −1
main-loop: T [0] = 2T [0] +

∑v−1
i=0 T [i, ki, j].

6. Finalization: T [0] = T [0] + T [1].
7. Output T [0].

Remark 1: 1. To reduce the computational and memory
complexity, 1 random point R would be used instead of v
points {R[i]}. In this case, the initialization step in Algo-
rithm 3 is changed to T [0] = vR; and only T [0, 0] = −R
among {T [i, 0]} in the step 3 in Algorithm 3 is kept during
the execution.
2. In the current GMMM-algorithm, one fixed power-
consumption pattern is observed for any k with a bit length
of n ≤ bvh for the sake of a brief description. However,
GMMM-algorithm can be described in such a way that 1
addition is saved for the first bv − a rounds if the (v − 1)-th
block are not full.

Theorem 1 (Correctness): GMMM-algorithm can com-
pute kP correctly for a given elliptic-curve point P and a
scalar k =

∑n−1
i=0 k[i]2i.

proof: For elliptic-curve points P, R[0], · · · ,R[v − 1] and a
scalar k, set B[i, �] = 2a�+biP for 0 ≤ i ≤ (v − 1) and 0 ≤ � ≤
(h − 1), T [i, s] =

∑h−1
�=0 s�B[i, �]− R[i] for 0 ≤ i ≤ (v − 1) and

an h-bit integer s =
∑h−1
�=0 s�2�, ki, j =

∑h−1
�=0 k[a� + j + bi]2�

((i, j) ∈ {0, · · · , v − 1} × {0, · · · , b − 1}), and T [0] = R[0] +
· · · + R[v − 1]. Then, by describing 1 as a (b + 1)-bit integer
such as 1 = 1 11 · · · 11︸���︷︷���︸

b

, we get

kP + R[0] + · · · + R[v − 1]

= T [0] +
b−1∑
j=0

v−1∑
i=0

⎛⎜⎜⎜⎜⎜⎜⎝
h−1∑
�=0

k[a� + bi + j]2a�+bi+ jP − 2 jR[i]

⎞⎟⎟⎟⎟⎟⎟⎠
= T [0] +

b−1∑
j=0

2 j
v−1∑
i=0

⎛⎜⎜⎜⎜⎜⎜⎝
h−1∑
�=0

k[a� + bi + j]2a�+biP − R[i]

⎞⎟⎟⎟⎟⎟⎟⎠
= T [0] +

b−1∑
j=0

2 j
v−1∑
i=0

T [i, ki, j].

Therefore, the main-loop in GMMM-algorithm computes

kP + R[0] + · · ·+ R[v − 1] and, thus, GMMM-algorithm can
compute kP correctly.

Theorem 2 (Security): GMMM-algorithm is secure aga-
inst SPA, DPA, and RPA.

proof: GMMM-algorithm lets the power-consumption pat-
tern be fixed regardless of the bit pattern of a secret key k,
and thus it is resistant to SPA. GMMM-algorithm makes use
of a random initial point at each execution and let all vari-
ables {T [i, s]} be dependent on the random point. Thus, an
attacker cannot control a point in such a way that it outputs a
special point with a zero-value coordinate or zero-value reg-
ister. Therefore, if {R[i]} is chosen randomly by some ways,
GMMM-algorithm can be resistant to DPA and RPA.

In order to enhance the security against address-bit DPA†
(ADPA) and an SPA in the chosen-message-attack scenario,
the same discussion as MMM-algorithm holds in GMMM-
algorithm.

3.3 The Optimal Division with the Best Coordinate

Both MMM- and GMMM-algorithms aim at a random-point
scalar multiplication and, thus, each execution starts with
the table construction. Therefore, both are evaluated by the
total complexity of the table construction and main compu-
tation. MMM-algorithm has employed Jacobian coordinate
in the whole procedures. Therefore, any pre-computed point
is given in Jacobian coordinate as well as any computation
being done in Jacobian coordinate. However, it should be
revisited. Because the computational complexity of addi-
tion in Jacobian coordinate is considerably large even if it-
erated doublings in Jacobian coordinate compute the table
construction efficiently (see Table 1).

Let us investigate the optimal (h, v) with the best co-
ordinates in GMMM-algorithm by separating two phases
of table construction and main computation. The table-
construction phase computes, first, hv base points B[i, �]
by iterated doublings and, then, (2h − 1 − hv) points of
T [i, s] =

∑h−1
�=0 s�B[i, �] − R[i] by only additions. As for

the iterated doublings, Jacobian coordinate is the best co-
ordinate as we have described the above. However, the
base points themselves should be converted into affine co-
ordinate to reduce the computational complexity of the next
computation of T [i, s]. For the conversion from Jacobian
to affine coordinate, we can apply Montgomery trick (Algo-
rithm 1). Then, all base points B[i, �] can be transformed
into affine coordinate with the computational complexity of
3(2hv − 3)M + (hv − 1)S + I. The computation of T [i, s]
can be executed simultaneously for each hamming weight
of s =

∑h−1
�=0 s�2�. Therefore, affine coordinate with the

Montgomery trick would be the best. By the above two
procedures, we get a pre-computed table with affine coor-
dinate. On the other hand, the main computation repeats

†ADPA is one of DPA, which uses the leaked information from
the address bus and can be applied on such algorithms that fix the
address bus during execution.

2838
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.10 OCTOBER 2008

additions to each pre-computed point T [i, s] with affine co-
ordinate and 1 doubling. Therefore, there exist two meth-
ods. One is mixed coordinate, in which main computation
is done in Jacobian coordinate while pre-computed points
are given in affine coordinate. The other is affine coordinate
with the Montgomery trick, in which main computation is
done in affine coordinate by applying the Montgomery trick
in each iteration. Then, only 1 inversion is required in each
iteration.

Let us summarize the above discussion as follows:

• Table construction:
– Repeated-doubling phase: Jacobian coordi-

nate,
– Simultaneous-addition phase: affine coor-

dinate with the Montgomery trick,

• Main computation:
– case 1: mixed coordinates of Jacobian and affine

coordinates,
– case 2: affine coordinate with the Montgomery

trick.

The best combination of coordinates depends on (h, v) and
the ratio of I/M, which will be shown in Sect. 3.4.

3.4 Performance

Let us discuss the memory and computational complexity
of (h, v)-GMMM-algorithm in both cases 1 and 2, where the
case 1 constructs a table by repeated doublings in Jacobian
coordinate and simultaneous additions in affine coordinate
with the Montgomery trick and executes the main computa-
tion in mixed coordinates of Jacobian and affine coordinates;
and the case 2 constructs a table in the same way as the case
1 and executes the main computation in affine coordinate
with the Montgomery trick. To make the discussion simple,
we assume that 1 random point is used for 1 execution in the
same way as MMM-algorithm.

As for the memory complexity, a table with (2h − 1)v
points are required, which are represented in affine coordi-
nate in both cases. In addition, 3 points of T [0, 0], T [0], and
T [1] are used†. All these points are given in affine coordi-
nate in the case 2, while, in the case 1, only T [0, 0] is given
in affine coordinate and the others are given in Jacobian co-
ordinate.

Let us investigate the computational complexity by
separating two phases of the table construction and the
main computation. First, let us discuss the table con-
struction phase, in which both cases 1 and 2 employ the
same procedure. The table construction consists of the
repeated-doubling part and the simultaneous-addition part.
The repeated-doubling part computes {B[i, �]} by executing
the iterated doublings in Jacobian coordinate and transform-
ing their results in Jacobian coordinate to affine coordinate.
Thus, the total computational complexity of the repeated-
doubling part is

Fig. 3 Main computation of GMMM-algorithm (Case 2).

t(2A = J) + t(2b(v−1)+a(h−1)−1J)

+(hv−1)t(J → A)nI+t(Minv [hv−1]) (if vh � 1).

In the case of vh = 1, we can skip the repeated-doubling
part. The simultaneous-addition phase computes T [i, s] =∑h−1
�=0 s�B[i, �] − R[i] simultaneously for each hamming

weight of s =
∑h−1
�=0 s�2�. Therefore, it starts with the ham-

ming weight 1 of s, that is, computes {B[i, �] − R[i]}�,i si-
multaneously by executing additions in affine coordinate to-
gether with Montgomery’s trick. Thus, the total computa-
tional complexity of the simultaneous-addition part is

h∑
i=1

(
v

(
h
i

)
t(A + A)nI + t

(
Minv

[
v

(
h
i

)]))
,

where
(

h
i

)
means the combination to choose i elements from

h elements. Then, we’ve got a precomputed table in affine
coordinate.

Let us discuss the main-computation phase, in which
each case employs each different procedure. The main-
computation phase consists of initialization, main loop, and
finalization (step 4, 5, and 6 in Algorithm 3, respectively).
Let us focus on the case 1, that is the mixed coordinates of
Jacobian and affine coordinates. The computational com-
plexity of the main loop is

a · t(J +A = J) + b · t(2J).

The computational complexity of initialization (resp. final-
ization) is that to compute T [0] = vR for R in affine coordi-
nate giving a result in Jacobian coordinate (resp. T [0]+T [1]
of points in Jacobian coordinate giving a result in affine co-
ordinate).

Let us focus on the case 2 of affine coordinate with the
Montgomery trick. As for the computation of the main-loop,
a tournament structure with v + 2 leaves is applied if v � 1,
where v points of T [i, ki, j] and doubling points of T [0] are
in the leaf of the tournament structure (see Fig. 3)††. We
pairwise add points at leaves with a common parent, give its
sum to the parent node, and carry out these procedures at

†In the case of v = 1, which corresponds to the case of MMM-
algorithm, 2 points of T [0, 0] and T [0] are used since T [0, 0] =
T [1].
††In the case of v = 1, affine coordinate without Montgomery’s

trick is executed.

MIYAJI: GENERALIZED SCALAR MULTIPLICATION SECURE AGAINST SPA, DPA, AND RPA
2839

each level to the root. By applying the Montgomery’s trick
to each level, only 1 inversion is required in each level. The
simplest case is the binary tree case, which is described in
[20]. Then, the computational complexity of the main loop
is

a · t(A +A)nI + b · t(2A)nI + b · t(TournaMinv[v + 2]),

where t(TournaMinv[v + 2]) denotes the computational
complexity to get all inversions of (v + 2)-point summation
according to the tournament structure with (v + 2) leaves.
The computational complexity of initialization (resp. final-
ization) is that to compute T [0] = vR of R in affine coordi-
nate giving a result in affine coordinate (resp. T [0] + T [1]
of points in affine coordinate giving a result in affine coordi-
nate).

The above discussion is summarized in the following
theorem.

Theorem 3: The total computational complexity of (h, v)-
GMMM-algorithm with 1 random point, Comp, is given as
follows:
1. In the case 1: mixed coordinates in the main computation,
if vh � 1, Comp
= t(2A = J) + t(2b(v−1)+a(h−1)−1J) + (hv − 1)t(J → A)nI

+ t(Minv [hv − 1]) +
∑h

i=1

(
v
(
h
i

)
t(A + A)nI + t(Minv

[
v
(
h
i

)]
)
)

+ t(vA = J) + a · t(J +A = J) + b · t(2J) + t(J +J = A);
if vh = 1, Comp

= t(A +A) + a · t(J +A = J) + b · t(2J) + t(J +A = A)

2. In the case 2: affine coordinate with the Montgomery’s
trick in the main computation:
if v � 1, Comp
= t(2A = J) + t(2b(v−1)+a(h−1)−1J) + (hv − 1)t(J → A)nI

+ t(Minv [hv − 1]) +
∑h

i=1

(
v
(
h
i

)
t(A + A)nI + t(Minv

[
v
(
h
i

)]
)
)

+ t(vA) + a · t(A +A)nI + b · t(2A)nI

+ b · t(TournaMinv[v + 2]) + t(A +A);
if v = 1 and h � 1, Comp
= t(2A = J) + t(2a(h−1)−1J) + (h − 1)t(J → A)nI

+ t(Minv [h − 1]) +
∑h

i=1

((
h
i

)
t(A + A)nI + t(Minv

[(
h
i

)]
)
)

+ a · t(A +A) + b · t(2A) + t(A +A);
if vh = 1, Comp

= a · t(A +A) + b · t(2A) + 2t(A +A);

where � n
h 	 = a, � a

v
	 = b, and t(vA) (resp. t(vA = J)) denote

the time to compute v-multiple points in affine coordinate
giving a result in affine (resp. Jacobian) coordinate.

4. Our GMMM-Algorithm with Two Divisions

We extend Algorithm 3 to allow divisions (h1, v1) × (h2, v2).
Let k be n bits, h1, v1, h2, and v2 be positive integers with
v1h1 ≤ v2h2. Then n is divided into h1v1 + h2v2 blocks as
follows†: b2 = � n

v1h1+v2h2
	, b1 = � n−v2h2b2

v1h1
	, a1 = b1v1, and

a2 = b2v2. Then b2 ≥ b1.

Algorithm 4 ((h1, v1) × (h2, v2)-GMMM-algorithm):
Input: k =

∑n−1
i=0 k[i]2i, P

Output: kP
0. k1,i, j =

∑h1−1
�=0 k[a1� + j + b1i]2�

((i, j) ∈ {0, · · · , v1 − 1} × {0, · · · , b1 − 1}),
k2,i, j =

∑h2−1
�=0 k[a2� + j + b2i + b1v1h1]2�,

((i, j) ∈ {0, · · · , v2 − 1} × {0, · · · , b2 − 1}).

1. For i = 0 to v1 − 1: R1[i] =randompoint().
2. For i = 0 to v2 − 1: R2[i] =randompoint().
Table Construction

3. Compute B1[i, �] = 2a1�+b1iP for 0 ≤ i ≤ (v1 − 1)
and 0 ≤ � ≤ (h1 − 1). Then B1[0, 0] = P.

4. Compute B2[i, �] = 2a2�+b2i+a1h1 P for
0 ≤ i ≤ (v2 − 1) and 0 ≤ � ≤ (h2 − 1).

5. Compute T1[i, s] =
∑h1−1
�=0 s1,�B1[i, �] − R1[i] for

0 ≤ i ≤ (v1 − 1) and an h1-bit integer

s1 =
∑h1−1
�=0 s1,�2�. Then T1[i, 0] = −R1[i] for

0 ≤ i ≤ (v1 − 1).
6. Compute T2[i, s] =

∑h2−1
�=0 s2,�B2[i, �] − R2[i] for

0 ≤ i ≤ (v2 − 1) and an h2-bit integer

s2 =
∑h2−1
�=0 s2,�2�. Then T2[i, 0] = −R2[i] for

0 ≤ i ≤ (v2 − 1).
Main computation

7. Initialization: T [0] = R1[0] + · · ·+
R1[v1 − 1] + R2[0] + · · ·+ R2[v2 − 1]. T [1] = −T [0].

8. For j = b2 − 1 to 0 by −1
main-loop††: T [0] = 2T [0] +

∑v1−1
i=0 T1[i, k1,i, j]

+
∑v2−1

i=0 T2[i, k2,i, j].
9. Finalization: T [0] = T [0] + T [1].
10. Output T [0].

Remark 1 holds in Algorithm 4. The same discussion of
the optimal division with the best coordinate as in Algo-
rithm 3 holds in Algorithm 4. We only give the memory
and computational complexity here. The memory complex-
ity is (2h1 − 1)v1 + (2h2 − 1)v2 points represented in affine
coordinate and 3 points of T1[0, 0], T [0], and T [1], where 3
points are given in affine coordinate in the case 2, while, in
the case 1, only T [0, 0] is given in affine coordinate and the
others are given in Jacobian coordinate. The computational
complexity is described as follows.

Theorem 4: The total computational complexity of (h1, v1)
× (h2, v2)-GMMM-algorithm with 1 random point, Comp, is
given as follows:
1. In the case 1: mixed coordinates in the main computation,

Comp = t(2A = J) + t(2a1h1+a2h2−b2−1J)
+ (h1v1 + h2v2 − 1)t(J → A)nI

+ t(Minv [h1v1 + h2v2 − 1])

+
{∑h1

i=1 v1
(

h1
i

)
+

∑h2
i=1 v2

(
h2
i

)}
t(A + A)nI

+
∑hmin

i=1 t(Minv
[
v1

(
h1
i

)
+ v2

(
h2
i

)]
)

+
∑hmax

i=hmin+1 t(Minv
[
vmax

(
hmax

i

)]
+ (a1 + a2) · t(J +A = J) + b2 · t(2J)
+ t((v1 + v2)A = J) + t(J +J = A).

2. In the case 2: affine coordinate with the Montgomery’s trick in
the main computation

Comp = t(2A = J) + t(2a1h1+a2h2−b2−1J)
+ (h1v1 + h2v2 − 1)t(J → A)nI

+ t(Minv [h1v1 + h2v2 − 1])
+

{∑h1
i=1 v1

(
h1
i

)
+

∑h2
i=1 v2

(
h2
i

)}
t(A + A)nI

+
∑hmin

i=1 t(Minv
[
v1

(
h1
i

)
+ v2

(
h2
i

)]
)

†The division way which reduces the redundant part is revisited
in [19]
††In the case of b2 > b1, only the first summation is executed

for b2 ≥ i > b1.

2840
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.10 OCTOBER 2008

+
∑hmax

i=hmin+1 t(Minv
[
vmax

(
hmax

i

)]
+ (a1 + a2) · t(A +A)nI + b2 · t(2A)nI

+ (b2 − b1) · t(TournaMinv[v2 + 2])
+ b1 · t(TournaMinv[v1 + v2 + 2])
+ t((v1 + v2)A) + t(A +A),

where min (resp. max) indicates the index with the min-
imum (resp. maximum) of h1 and h2, b2 = � n

v1h1+v2h2
	,

b1 = � n−v2h2b2
v1h1

	, a1 = b1v1, a2 = b2v2, and t((v1+ v2)A) (resp.
t((v1 + v2)A = J)) denote the time to compute (v1 + v2)-
multiple points in affine coordinate giving a result in affine
(resp. Jacobian) coordinate.

5. Performance

In this section, we compare our algorithm with the previous
countermeasures to SPA, DPA, and RPA, those are ES [4],
randomized window algorithm [21], LRIP [12], and MMM-
algorithm [17].

5.1 Computational and Memory Assumption

Here, M, S , or I represents the computational amount of
modular multiplication, square, or inversion, respectively.
In order to make comparison easier, the computational com-
plexity is also estimated in terms of M and I by assuming
that S = 0.8M as usual and that S = 0.8M and I = 4M or
I = 11M. A ratio of I/M depends on the algorithm used and
the size of the field. The well-known fast algorithms are the
extended Euclid algorithm due to Lehmer [18] and the Mon-
togomery inverse [13], [14]. A ratio is estimated between 3
and 10 in [2] or 4 and 10 in [6]. In fact, some software im-
plementations without Montgomery inversion yield a ratio
of 3.8 or 4.8 for a 160-bit or 256-bit prime field, respec-
tively [7]. On the other hand, some hardware implementa-
tions with Montgomery inversion yield a ratio of 4.18, 5.00,
5.42, or 6.23 for a prime field with 160, 192, 224, or 256 bits,
respectively [14]. A discussion on the ratio can be found in
[5].

Memory complexity is evaluated by the number of
finite-field elements, where 1 point in Jacobian (resp. affine)
coordinate consists of 3 (resp. 2) field elements.

5.2 Comparison

Table 2 shows the computational and memory complexity
of GMMM-algorithm with cases 1 and 2 in the case of a
160-bit scalar†. These are arranged in ascending order of
memory. Therefore, if we focus on either case of GMMM-
algorithm, these are also arranged in descending order of
computational complexity. However, the case 1 has advan-
tage over the case 2 if the ratio of inversion over multipli-
cation is rather large and, thus, better case depends on the
ratio of I/M. We also compute a break-even point for the
borderline between both cases. The break-even point shows
I/M such that the computational complexity of both cases
is equal to each other under S = 0.8M. For example, (2, 2)-
GMMM with the case 2 is more efficient than (3, 1)-GMMM

with the case 2 if and only if I/M > 8.4. Each division of
(1, 1), (2, 1), (3, 1) or (4, 1)-GMMM-algorithm corresponds
to that of 1, 2, 3, or 4-MMM-algorithm, respectively. The
difference is: MMM-algorithm uses Jacobian coordinate in
the whole execution, however, GMMM-algorithm with the
case 1 employs mixed coordinate and GMMM-algorithm
with the case 2 uses affine coordinate without the Mont-
gomery trick.

Table 3 shows the computational and memory com-
plexity of previous algorithms in the case of a 160-bit scalar,
where Jacobian coordinate is used for the whole computa-
tion and a result is transformed into affine coordinate ac-
cording to their original proposals.

By generalizing MMM-algorithm to GMMM-algori-
thm, we see that more flexibility, that is a wider range
of time-memory tradeoffs, can be realized instead of I/M.
Furthermore, the optimization of coordinates can reduce
both the computational complexity and memory even if
both MMM and GMMM-algorithms use the same divi-
sion. In fact, GMMM-algorithm performs better than any
previous method. For example, (1,1)-GMMM-algorithm
with the case 1 works with 2997.6M + 2I while 1-MMM-
algorithm works with 3747.8M + I. Therefore, (1,1)-
GMMM-algorithm with the case 1 is more efficient than
1-MMM-algorithm if I/M < 750.2; reduces the computa-
tional complexity of 1-MMM-algorithm by 19.7% over for
the range of I/M; and also reduces the memory size. (4,1)-
GMMM-algorithm with the case 1 works with 1694.6M+6I
while 4-MMM-algorithm works with 2021.2M + I. There-
fore, (4,1)-GMMM-algorithm with the case 1 is more effi-
cient than 4-MMM-algorithm if I/M < 65.3; reduces the
computational complexity of 4-MMM-algorithm by 13.4%
over for the range of I/M; and also reduces the memory by
31.4 %. Note that 4-MMM-algorithm is the most efficient
case in MMM-algorithm††. However, even (2, 2)-GMMM-
algorithm with the case 2 or (3, 1)-GMMM-algorithm with
the case 1 works faster than 4-MMM-algorithm under the
range of I/M < 7.6 or 50.1 and also reduces the memory by
64.7% or 62.7%, respectively.

GMMM-algorithm reduces the number of elliptic
curve additions according to the memory, where the more
memory is used, the fewer elliptic curve additions are ex-
ecuted. GMMM-algorithm also provides two ways, where
one way is efficient when I/M is small, and the other way is
efficient when I/M is large. Therefore, GMMM-algorithm
is applicable to any elliptic curve with more than 160 bits
and can provide more efficient way according to the mem-
ory or ratio of I/M than the previous algorithm.

†Only divisions that reduce the computational complexity from
the point of memory complexity are described in Table 2. There-
fore, other divisions might work when the size of scalar is not equal
to 160 bits.
††5-MMM-algorithm is not as efficient as 4-MMM-algorithm

although it requires more memory than 4-MMM-algorithm.

MIYAJI: GENERALIZED SCALAR MULTIPLICATION SECURE AGAINST SPA, DPA, AND RPA
2841

Table 2 Performance of GMMM-algorithm (160 bits).

(h, v) or (h1, v1) × (h2, v2) Computational complexity Memory‡ I/M�

case 1 or 2 S = 0.8M I = 4M I = 11M
(1, 1)-case 2 644M + 482S + 322I 1029.6M + 322I 2317.6M 4571.6M 6
(1, 1)†-case 1 1456M + 1927S + 2I 2997.6M + 2I 3005.6M 3019.6M 7
(2, 1)-case 2 571M + 648S + 164I 1089.4M + 164I 1745.4M 2893.4M 10
(2, 1)†-case 1 983M + 1373S + 4I 2081.4M + 4I 2097.4M 2125.4M 11

(1, 1) × (2, 1)-case 2 818M + 756S + 113I 1422.8M + 113I 1874.8M 2665.8M 14
(2, 2)-case 2 760M + 775S + 85I 1380M + 85I 1720M 2315M 18 > 8.4
(3, 1)-case 2 574M + 715S + 113I 1146M + 113I 1598M 2389M 18
(3, 1)†-case 1 856M + 1206S + 5I 1820.8M + 5I 1840.8M 1875.8M 19

(1, 1) × (3, 1)-case 2 751M + 769S + 86I 1366.2M + 86I 1710.2M 2312.2M 22
(2, 1) × (3, 1)-case 2 751M + 796S + 70I 1387.8M + 70I 1667.8M 2157.8M 26

(3, 2)-case 2 737M + 808S + 60I 1383.4M + 60I 1623.4M 2043.4M 34 > 7.4
(4, 1)-case 2 597M + 742S + 86I 1190.6M + 86I 1534.6M 2136.6M 34
(4, 1)†-case 1 809M + 1107S + 6I 1694.6M + 6I 1718.6M 1760.6M 35

(2, 1) × (3.2)-case 2 764M + 834S + 67I 1431.2M + 67I 1699.2M 2168.2M 40
(2, 2) × (3, 2)-case 2 809M + 841S + 55I 1481.8M + 55I 1701.8M 2086.8M 46
(3, 1) × (4, 1)-case 2 771M + 825S + 53I 1431M + 53I 1643M 2014M 50

(4, 2)-case 2 778M + 823S + 47I 1436.4M + 47I 1624.4M 1953.4M 66
† : They correspond to h-MMM-algorithm. ‡ : # field elements. � : break-even point

Table 3 Comparison of known countermeasures (160 bits).

Computational complexity Memory
S = 0.8M I = 11M

ES [4] 2083M + 2081S + I 3747.8M + I 3758.8 14�

strengthened window [21] 1239M + 1702S + I 2600.6M + I 2611.6M 15
LRIP [12] 2242M + 1604S + I 3525.2M + I 3536.2M 12
1-MMM [17] 2083M + 2081S + I 3747.8M + I 3758.8 9
2-MMM 1326M + 1464S + I 2497.2M + I 2508.2M 15
3-MMM 1116M + 1286S + I 2144.8M + I 2155.8M 27
4-MMM 1058M + 1204S + I 2021.2M + I 2032.2M 51

�: Strictly, it needs 4 elliptic curve points and 2 field elements.

6. Conclusion

In this paper, we have generalized MMM-algorithm, which
is the secure scalar multiplication with using a random ini-
tial point. Our improved algorithm is significantly efficient
and flexible and can work efficiently even when the storage
available is very small or quite large. We have also given
the formulae of the computational complexity for any di-
vision of the proposed algorithm theoretically, which helps
developers to choose the best division suitable for the stor-
age available.

Acknowledgments

The author expresses my gratitude to anonymous referees
for invaluable comments.

References

[1] R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and
F. Vercauteren, Handbook of Elliptic and Hyperelliptic Curve Cryp-
tography, Chapman & Hall/CRC, 2006.

[2] I.F. Blake, G. Seroussi, and N.P. Smart, Elliptic Curves in Cryptol-
ogy, LMS 265, Cambridge University Press, 1999.

[3] D.J. Bernstein and T. Lange, “Fast addition and doubling on elliptic
curves” Advances in Cryptology-Proc. ASIACRYPT’07, vol.4833,
pp.29–50, 2007.

[4] M. Ciet and M. Joye, “(Virtually) Free randomization technique
for elliptic curve cryptography,” Proc. ICICS2003, LNCS 2836,
pp.348–359, Springer-Verlag, 2003.

[5] M. Ciet, M. Joye, K. Lauter, and P.L. Montgomey, “Trading inver-
sions for multiplications in elliptic curve cryptography,” Des. Codes
Cryptogr., vol.39, no.2, pp.189–206, Springer Netherlands, 2006.

[6] C. Doche, T. Icart, and D.R. Kohel, “Efficient scalar multiplication
by isogeny decompositions,” Proc. PKC2006, LNCS 3958, pp.191–
206, 2006.

[7] K. Eisenträger, K. Lauter, and P.L. Montgomey, “Fast elliptic
curve arithmetic and improved Weil pairing evaluation,” Proc. CT-
RSA2003, LNCS 2612, pp.343–354, Springer-Verlag, 2003.

[8] H. Cohen, A. Miyaji, and T. Ono, “Efficient elliptic curve exponen-
tiation,” Proc. ICICS’97, LNCS 1334, pp.282–290, Springer-Verlag,
1997.

[9] H. Cohen, A. Miyaji, and T. Ono, “Efficient elliptic curve exponenti-
ation using mixed coordinates,” Advances in Cryptology-Proc. ASI-
ACRYPT’98, LNCS 1514, pp.51–65, Springer-Verlag, 1998.

[10] L. Goubin, “A refined power-analysis attack on elliptic curve cryp-
tosystems,” Proc. PKC2003, LNCS 2567, pp.199–210, Springer-
Verlag, 2003.

[11] K. Itoh, M. Takenaka, N. Torii, S. Temma, and Y. Kurihara, “Fast im-
plementation of public-key cryptography on DSP TMS320C6201,”
Proc. CHES’99, LNCS 1717, pp.61–72, Springer-Verlag, 1999.

[12] K. Itoh, T. Izu, and M. Takenaka, “Efficient countermeasures against
power analysis for elliptic curve cryptosystems,” Proc. CARDIS

2842
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.10 OCTOBER 2008

2004, pp.99–114, Kluwer, 2004.
[13] B.S. Kaliski, Jr., “The Montgomery inverse and its applications,”

IEEE Trans. Comput., vol.44, no.8, pp.1064–1065, 1995.
[14] Ç. K. Koç and E. Savaş, “Architectures for unified field inversion

with applications in elliptic curve cryptography,” 9th IEEE Intern-
tional Conference on Electronics, Circuits and Systems, ICECS
2002, vol.3, pp.1155–1158, 2002.

[15] C.H. Lim and P.J. Lee, “More flexible exponentiation with precom-
putation,” Advances in Cryptology-Proc. Crypto’94, LNCS 839,
pp.95–107, Springer-Verlag, 1994.

[16] N. Pippenger, “On the evaluation of powers and related problems
(preliminary version),” 17th Annual Symposium on Foundations of
Computer Science, pp.258–263, IEEE Computer Society, 1976.

[17] H. Mamiya, A. Miyaji, and H. Morimoto. “Secure elliptic curve ex-
ponentiation against RPA, ZRA, DPA, and SPA,” IEICE Trans. Fun-
damentals, vol.E89-A, no.8, pp.2207–2215, Aug. 2006.

[18] A. Menezes, P.C. Oorschot, and S. Vanstone, Handbook of applied
cryptography, CRC Press, 1996.

[19] A. Miyaji and K. Mizosoe, “Revisited (hyper)-elliptic curve scalar
multiplication with a fixed point,” IPSJ Trans, vol.49, no.9, pp.2975–
2988, 2008.

[20] P.K. Mishra and P. Sarkar, “Application of Montgomery’s trick to
scalar multiplication for EC and HEC using fixed base point,” Proc.
PKC2004, LNCS 2947, pp.41–57, 2004.

[21] B. Möller, “Parallelizable elliptic curve point multiplication method
with resistance against side-channel attacks,” Proc. ISC2002, LNCS
2433, pp.402–413, Springer-Verlag, 2002.

[22] P.L. Montgomery, “Speeding the Pollard and elliptic curve meth-
ods for factorization,” Mathematics of Computation, vol.48, pp.243–
264, 1987.

[23] Standard for efficient cryptography group, specification of standards
for efficient cryptography. Available from: http://www.secg.org

[24] S.M. Yen, W.C. Lien, S. Moon, and J. Ha, “Power analysis by
exploiting chosen message and internal collisions — Vulnerability
of checking mechanism for RSA-decryption,” Proc. Mycrypt 2005,
LNCS 3715, pp.183–195, Springer-Verlag, 2005.

Atsuko Miyaji received the B.Sc., the
M.Sc., and the Dr.Sci. degrees in mathemat-
ics from Osaka University, Osaka, Japan in
1988, 1990, and 1997 respectively. She joined
Matsushita Electric Industrial Co., LTD from
1990 to 1998 and engaged in research and de-
velopment for secure communication. She was
an associate professor at the Japan Advanced
Institute of Science and Technology (JAIST) in
1998. She has joined the computer science de-
partment of the University of California, Davis

since 2002. She has been a professor at the Japan Advanced Institute of
Science and Technology (JAIST) since 2007 and a director of Library of
JAIST since 2008. Her research interests include the application of number
theory into cryptography and information security. She received the IPSJ
Sakai Special Researcher Award in 2002, the Standardization Contribution
Award in 2003, Engineering Sciences Society: Certificate of Appreciation
in 2005, the AWARD for the contribution to CULTURE of SECURITY in
2007, IPSJ/ITSCJ Project Editor Award in 2007, the Director-General of
Industrial Science and Technology Policy and Environment Bureau Award
in 2007, and Editorial Committee of Engineering Sciences Society: Certifi-
cate of Appreciation in 2007. She is a member of the International Associa-
tion for Cryptologic Research, the Institute of Electronics, Information and
Communication Engineers, the Information Processing Society of Japan,
and the Mathematical Society of Japan.

