
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Novel Register Sharing in Datapath for Structural

Robustness against Delay Variation

Author(s) INOUE, Keisuke; KANEKO, Mineo; IWAGAKI, Tsuyoshi

Citation

IEICE TRANSACTIONS on Fundamentals of

Electronics, Communications and Computer

Sciences, E91-A(4): 1044-1053

Issue Date 2008-04-01

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/8520

Rights

Copyright (C)2008 IEICE. Keisuke INOUE, Mineo

KANEKO, Tsuyoshi IWAGAKI, IEICE TRANSACTIONS on

Fundamentals of Electronics, Communications and

Computer Sciences, E91-A(4), 2008, 1044-1053.

http://www.ieice.org/jpn/trans_online/

Description



1044
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.4 APRIL 2008

PAPER Special Section on Selected Papers from the 20th Workshop on Circuits and Systems in Karuizawa

Novel Register Sharing in Datapath for Structural Robustness
against Delay Variation

Keisuke INOUE†a), Student Member, Mineo KANEKO†, and Tsuyoshi IWAGAKI†, Members

SUMMARY As the feature size of VLSI becomes smaller, delay varia-
tions become a serious problem in VLSI. In this paper, we propose a novel
class of robustness for a datapath against delay variations, which is named
structural robustness against delay variation (SRV), and propose sufficient
conditions for a datapath to have SRV. A resultant circuit designed under
these conditions has a larger timing margin to delay variations than pre-
vious designs without sacrificing effective computation time. In addition,
under any degree of delay variations, we can always find an available clock
frequency for a datapath having SRV property to operate correctly, which
could be a preferable characteristic in IP-based design.
key words: datapath synthesis, delay variation, register assignment, setup
and hold constraints

1. Introduction

With the advance of process technologies, the feature size
of VLSI becomes smaller, and switching delay decreases.
As the operation speed becomes higher, on the other hand,
delay variations caused by the fluctuation of process param-
eters, the change of the temperature, supply voltage noise,
coupling noise, etc., have become a serious problem [1]–[3].

There are several reports on this problem from differ-
ent points of view. In order to decrease the timing margin,
methods for estimating delay variations more precisely have
been studied [4]–[6]. In [7] the authors have addressed the
problem to correct timing violations after manufacturing by
using programmable delay elements (PDEs). In many cases,
the hold constraint, which requests that an operation result
has to be kept as it is until it is certainly latched by a register,
becomes critical for a correct latch of a signal under delay
variations, and specially configured registers have been pro-
posed to try to ensure the hold constraint [8]. Compensation
of the minimum path delay is also a candidate technique to
ensure the hold constraint.

In this paper, we propose a novel class of robustness
against delay variations for a datapath. As the first attempt
to study the robustness against delay variations, we focus
on the functional aspect of a circuit, which is mainly deter-
mined by its structure and its control schedule. In particular,
we characterize a datapath which operates correctly under
delay variations as a datapath which always has, under any
given finite delay variations, a feasible clock frequency with
which the datapath operates correctly, and we propose de-
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sign conditions for a datapath to have such property. It is
shown that, compared with conventional designs, a resul-
tant datapath designed with our property has a large timing
margin to delay variations without sacrificing effective com-
putation time.

The rest of this paper is organized as follows. Section 2
describes the concept of a novel class of robustness against
delay variations for a datapath, which is named structural
robustness against delay variation (SRV), and also describes
sufficient conditions for a datapath to have SRV. Section 3
presents a feasible register assignment based on SRV. In
Sect. 4, we compare our method with some existing tech-
niques. Application examples are presented in Sect. 5. Sec-
tion 6 treats a minimum register assignment for SRV, and
shows several computation algorithms for this problem. Fi-
nally, Sect. 7 concludes the paper.

2. Structural Robustness against Delay Variation

In this paper, we study the application specific register-
transfer level datapath design considering delay variations.
As the first attempt for it, an input application algo-
rithm is assumed to be the set of operations and data-
dependencies between operations, and is assumed to be de-
scribed as a data flow graph (DFG). Throughout this pa-
per, a, a′, b, b′, etc., represent data, and Oa,Oa′ ,Ob,Ob′ , etc.,
represent operations, where a, a′, b, b′, . . . are the results of
Oa,Oa′ ,Ob,Ob′ , . . ., respectively.

2.1 Setup and Hold Constraints

Figure 1 illustrates the correct timing of control signals with
respect to the execution of operation Ob. We assume that Ob

Fig. 1 Setup and hold constraints.
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is assigned to a functional unit FUA, input data a for Ob is
stored in a register Reg 1, and the result b of Ob is written to
a register Reg 2. In this paper, we assume that a datapath is
designed nominally under zero skew, i.e., the nominal delay
from the clock source or a controller to the jth flip-flop of a
register Reg i, r(i, j), has the same value r(i, j) = r0 for all i
and j.

The arrival of the control signal at Reg 2 for latching
data b has to be later than the arrival of b. This constraint is
called “setup constraint” and is formulated as

σ(a) · tc + dmax ≤ σ(b) · tc,
where tc is a clock period, σ(x) ∈ Z is the control step in
which the controller sends out the control signal for latching
data x, and dmax is the maximum path delay from Reg 1 to
Reg 2 including the output delay of Reg 1 and the setup time
of Reg 2. Note that, for simplicity in notation, the time axis
is defined (the time origin is properly shifted) so that the
arrival of a control signal (or a clock edge) at each register
occurs nominally at a multiple of tc, regardless of the value
of r0.

In general, a register is shared by several data. The
control signal must arrive at Reg 2 to latch data b before b is
destroyed. This constraint is called “hold constraint,” and is
formulated as

σ(b) · tc < σ(a′) · tc + dmin,

where a′ is the data that is written in Reg 1 after a, (that is, a
is overwritten with a′), and dmin is the minimum path delay
from Reg 1 to Reg 2 including the output delay of Reg 1
minus the hold time of Reg 2. A datapath operates correctly
under no delay variations with the clock period tc when the
above two types of constraints are satisfied for each opera-
tion.

In this paper, we focus on two types of delay variations;
one is the delay variation of the arrival of the clock signal (or
a control signal) at a register, and the other is the delay vari-
ation of a path delay in the datapath. Sufficient conditions
of the setup and hold constraints under delay variations can
be formulated as

σ(a) · tc + Δr(1)max + dmax + Δdmax

≤ σ(b) · tc + Δr(2)min, and

σ(b) · tc + Δr(2)max

< σ(a′) · tc + Δr(1)min + dmin + Δdmin ,

where Δdmax and Δdmin are variations of dmax and dmin, respec-
tively. In addition,

Δr(i)min = min
j
{Δr(i, j)}, and

Δr(i)max = max
j
{Δr(i, j)},

where Δr(i, j) is the delay variation of r(i, j).

2.2 Structural Robustness against Delay Variation

A datapath operates correctly with a clock period tc under

a certain delay variation model if the setup and hold con-
straints considering delay variations are satisfied for each
operation. But it would be difficult to estimate delays and
delay variations correctly at the high level design. There-
fore, we temporarily divide datapath properties into two cat-
egories; one is the functional property that is determined by
a datapath structure and a control schedule, and the other
is the performance property that is determined by parame-
ter values together with the functional property. We focus on
the functional property of a datapath in this paper. When ex-
act delay values and exact delay variations are unknown, it
is hard to guarantee the correct operation without any sacri-
fices. Our proposal is to offer a clock period as the expense
of guaranteeing the correct operation of a datapath. This
concept is described formally as follows.

Structural Robustness against delay Variation (SRV):
A datapath is said to have SRV if there always exists a clock
period with which the setup and hold constraints consider-
ing delay variations are satisfied for each operation under
any finite (or bounded) delay variations.

Please note the following remarks.

1. A datapath which operates correctly under a nomi-
nal situation does not always have the SRV property.
Hence the datapaths having the SRV property form a
proper subclass of datapaths.

2. Sacrificing the clock period as the functional property
does not mean that the SRV property results in an in-
ferior performance in speed. In fact, in most cases our
datapath having SRV has comparable or superior per-
formance than a non-SRV datapath, when both of them
are designed with the same design environment and are
operated in the same field environment.

In the following of this section, the SRV property is
shaped more concretely.

2.3 SRV-type I

The setup constraint considering delay variations can be
rewritten as

Δr(1)max + dmax + Δdmax − Δr(2)min

≤ (σ(b) − σ(a)) · tc.
Hence, we can have the condition for the existence of a clock
period to satisfy the setup constraint under any finite delay
variations as follows.

C1 : If a is one of the input data of Ob, then σ(b)−σ(a) ≥
1.

Of course, in a practical design, the minimum of σ(b) −
σ(a) will be specified with regarding practical values
of the clock period tc, delay dmax (and delay variations
Δdmax ,Δr(1)max,Δr(2)min, if they are properly estimated) and
timing margin, and it can be more than one. Condition C1
is the minimum requirement with respect to the setup con-
straint for a datapath to have the SRV property.
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On the other hand, the hold constraint considering de-
lay variations can be rewritten as

(σ(b) − σ(a′)) · tc
< dmin + Δdmin + Δr(1)min − Δr(2)max. (1)

From this inequality, the condition for the existence of a
clock period to satisfy the hold constraint under any finite
delay variations is derived as follows.

C2 : If the input data of Ob is overwritten by another data
a′, then σ(b) − σ(a′) ≤ −1.

If a datapath satisfies both conditions C1 and C2, it has the
SRV property. In particular, we call it SRV-type I.

2.4 SRV-type II

If the arrival time difference of control signals between bits
in a register is properly small, the condition for the existence
of a clock period to satisfy the hold constraint can be relaxed
as follows.

C2’-1 : If the input data of Ob is overwritten by a′ � b,
then σ(b) − σ(a′) ≤ −1. In addition,
C2’-2 : the input data of Ob is allowed to be overwritten
by the result b of Ob even through σ(b)−σ(a′) = σ(b)−
σ(b) = 0.

In case the input data of Ob is overwritten with b, Reg
2 (the output register for Ob) and Reg 1 (one of the input
registers for Ob) are the identical one, and hence Δr(2)max =

Δr(1)max in inequality (1). The detailed assumption for C2’-2
is

dmin + Δdmin + Δr(1)min − Δr(1)max > 0. (2)

Remark that Δr(1)min and Δr(1)max in the above are the
variations of the earliest arrival time and the latest arrival
time among bits in a register, respectively, from a nominal
arrival time of the same control signal (or clock edge).

Under the assumption (2), if a datapath satisfies con-
ditions C1, C2’-1, and C2’-2, it has the SRV property. In
particular, we call it SRV-type II.

2.5 SRV-type III

In the inequality (1), if Δr(1)min > Δr(2)max is guaranteed,
dmin + Δdmin + Δr(1)min − Δr(2)max > 0 is always satisfied.
Therefore, the condition for the existence of a clock period
to satisfy the hold constraint can be reduced to

σ(b) − σ(a′) ≤ 0.

Hence, condition C2’-1 can be relaxed to the following C2’-
1’.

C2’-1’ : When the input data of Ob is overwritten by
a′ � b, if Δr(1)min > Δr(2)max is guaranteed, then σ(b) −
σ(a′) ≤ 0, otherwise σ(b) − σ(a′) ≤ −1.

If a datapath satisfies C1, C2’-1’ and C2’-2 with a fea-
sible order assignment of arrival timing of control signals
(or clock edges) to registers, it has the SRV property. We
especially call it SRV-type III. In a practical design, in order
to guarantee Δr(1)min > Δr(2)max (i.e. a control signal (or a
clock edge) arrives at Reg 2 earlier than Reg 1), we need to
pay special cares on the order of arrival timing throughout
the following design stages, such as logic design and layout
design, but it is beyond the scope of this paper.

3. Register Assignment for SRV

The conditions for the SRV property relate directly to a reg-
ister assignment. This section describes conditions of regis-
ter sharing for a datapath to have the SRV property.

3.1 Condition of Register Sharing for SRV-type I

Basically multiple data can share a single register when their
lifetimes do not overlap each other, where the lifetime of
data a is defined conventionally to begin at (σ(a) · tc)+ and
to end at
⎛
⎜⎜⎜⎜⎜⎝

max
for operation Ob which
uses data a as input

{σ(b) · tc}⎞⎟⎟⎟⎟⎟⎠
−
,

and (τ)+ and (τ)− represent “immediately after” τ and “just
before” τ, respectively. However, the condition C2 requests

σ(b) − σ(a′) ≤ −1

when an input data a for Ob is overwritten with a′, i.e., a′
shares the same register with a. It means that we cannot
assign a data which begins at (σ(a′) ·tc)+ to the same register
with a data which ends at (σ(a′) · tc)−, but we can do it with
a data which ends at ((σ(a′) − 1) · tc)− or before (Fig. 2).

3.2 Conditions of Register Sharing for SRV-type II

For SRV-type II, the sharing feasibility is separated into two
types depending on the relation between data. If a data a′ is
not the result of the latest operation Ob among the operations

Fig. 2 Feasible register sharing. A rectangle represents a lifetime of a
data, and an oval represents a scheduled operation. A gray belt corresponds
to a register, and a data lifetime located on the belt means that the data is
assignment to the register corresponding to the belt. The condition C2 (and
C2’-1) means that, if Ob is the last operation that uses data a as an input,
we cannot assign any other data (data b is excepted in C2’-1) soon after the
end of the lifetime of a, but we can assign a data if its lifetime begins at one
control step or more later than the end of a.
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that use data a as their inputs, the sharing feasibility between
a′ and a is the same with the one for SRV-type I. That is, we
cannot assign a′ which begins at (σ(a′) · tc)+ to the same
register with data a which ends at (σ(a′) · tc)−. We can do it
with a data which ends at ((σ(a′)−1) · tc)− or before (Fig. 2).

On the other hand, if Ob is the sole latest operation
among the operations that use data a as their inputs, we can
assign the result b of Ob to the same register with the data a
even though b begins at (σ(b) · tc)+ and a ends at (σ(b) · tc)−
(Fig. 3(a)). However, if there is more than one latest opera-
tion which uses data a as their input, none of their results can
be assigned to the same register with a as shown in Fig. 3(b).
This is because, when we assign b to the same register with
data a based on C2’-2 with respect to the operation Ob, we
need to apply C2’-1 with respect to the operation Ob′ (that

(a) (b)

Fig. 3 Feasible register sharing. (a) If Ob is the last operation that uses
data a as an input, we can assign b to the same register with a, however (b)
if there are more than one last operations with respect to data a, none of
their results can be assigned to the same register with a.

Fig. 4 Feasible register sharing for SRV-type III. Assume that b is the
result of the last operation that uses data a as an input, and data a and b
are assigned to the registers r1 and r2, respectively. If Δr(1)min > Δr(2)max is
guaranteed, any data a′ that begins soon after the end of a can be assigned
to the same register with a (i.e. r1).

Fig. 5 Feasible register sharing for SRV-type III. Assume that data b and
b′ are results of the two latest operations that use data a as an input, and
r1 and r3 are registers to which a and b′ are assigned, respectively. If
Δr(1)min > Δr(3)max is guaranteed, data b can be assigned to the same register
with a (i.e. r1).

is, in C2’-1, Ob′ is substituted for Ob, b′ for b, b for a′, and
b � b′ for a � b), and it requests

σ(b′) − σ(b) ≤ −1

which contradicts with the assumption.

3.3 Register Sharing for SRV-type III

If a partial order among arrival timing of control signals (or
clock edges) at registers exists, the sharing feasibility for
SRV can be relaxed as follows. That is, if Δr(1)min > Δr(2)max

is guaranteed, the condition C2’-1 can be relaxed to the con-
dition C2’-1’;

σ(b) − σ(a′) ≤ 0.

It means that we can assign a data which begins at (σ(a′) ·
tc)+ to the same register with a which ends at (σ(a′) · tc)−
(Fig. 4). Moreover, in case there is more than one latest op-
eration which uses data a as an input, we can assign one of
these results to the same register with a if the arrival timing
of a control signal (or clock edges) at the register to which
a is assigned is later than the other registers (Fig. 5). In case
the order of the arrival timing of control signals between
two registers does not meet the prerequisite condition, the
sharing feasibility is the same with the one for SRV-type II.

4. Comparison to Existing Techniques

The hold constraint under delay variations is the key factor
of our SRV property and our feasible register assignment for
SRV. In this section, two existing techniques to ensure the
hold constraint are exhibited, and the position of our SRV in
relation to those techniques is presented.

4.1 Register Configurations

As far as we know, there are two types of existing regis-
ter configurations that can ensure the hold constraints under
delay variations.

A “double-latch” register is a register configuration
which connects two latches in series and uses two non-
overlapping clock signals φ1 and φ2 as shown in Fig. 6(a).
Timing behavior of the double-latch register is shown in

(a) (b)

Fig. 6 The structure of a double-latch register (a) and its timing behavior
(b).
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(a) (b)

Fig. 7 The structure of a double-slave register (a) and its timing behavior
(b).

Fig. 6(b). Problems of the double-latch register are the area
overhead caused by using two clock signals and the increase
in power consumption. In addition, it is necessary to keep
the margin, i.e., difference between falling clock edge of φ1

and rising clock edge of φ2, large enough to absorb clock
skew, clock jitter, and delay variations. Furthermore, this
margin is a completely wasted time for computations. The
larger delay variation becomes, the larger the margin has to
be allocated. As a result, the fraction of the time that can be
used for computations (in the following, we call it effective
computation time) becomes smaller as shown in Fig. 8(a).

On the other hand, a “double-slave” register is a regis-
ter configuration which connects three latches in series and
uses one clock signal φ as shown in Fig. 7(a). Timing behav-
ior of the double-slave register is shown in Fig. 7(b). While
the double-slave register uses only one clock signal, it has
the area overhead caused by using three latches. In addition,
similarly to the double-latch register, the larger the margin
is allocated, the smaller the fraction of the effective compu-
tation time becomes as shown in Fig. 8(b).

Compared with those register configurations, our SRV-
based register assignment has superiority in timing issue.
This is because,

(1) we do not need to modify a given operation schedule
(we can use the same operation schedule with a double-
latch-based or double-slave-based datapath configura-
tion),

(2) our configuration can make use of the whole time of a
clock period for data propagation from register to reg-
ister including computation on a functional unit, while
double-latch registers and double-slave registers can
use only a part of a clock period left after taking an ap-
propriate margin (we can always choose a shorter clock
period than a double-latch-based or double-slave-based
datapath configuration),

(3) in addition, our datapath guarantees a large timing mar-
gin almost or more than one clock period without sac-
rificing effective computation time (Fig. 8(c)).

With respect to the power (dynamic power without con-
sidering 0-1 correlation between data), our configuration
does not increase the number of transitions of gate-outputs
compared to a nominal configuration, while the double-
latch-based datapath configuration doubles clock distribu-
tion power and the double-slave-based datapath configura-
tion consumes 1.5 times larger register power.

Furthermore, the robustness of our datapath against de-

(a)

(b)

(c)

Fig. 8 Timing behavior of each register configurations. (a) A double-
latch register, (b) a double-slave register, and (c) proposed SRV-based reg-
ister assignment.

lay variation does not depend on the choice of the register
configuration, and we can always find an available clock fre-
quency for the datapath with SRV to operate correctly under
any finite (or bounded) delay variations.

4.2 Compensation of the Minimum Path Delay

Another possible approach to ensure the hold constraint is
to enlarge the minimum path delay between registers. It can
be done by inserting delay elements on non-critical paths
mainly in a functional unit. In the following, we call it “min-
imum delay compensation (MDC).” MDC and our SRV (or
SRV-based register assignment) are compatible techniques,
and we show this using an example in the next section.

5. Applications

In this section, we demonstrate several design examples
based on our SRV and SRV-based register assignment. As
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(a)

(b)

Fig. 9 Schedule and register assignment. (a) Shows one design example
which is obtained without considering the SRV property, and (b) shows
another design whose MDC is minimized by applying SRV-based register
assignment.

an input application, we use the fifth-order wave digital el-
liptic filter [9]. First we design a schedule as shown in
Fig. 9, and use this schedule in common for all designs
demonstrated in this section. Note that the schedule is de-
signed with assuming that three adders and one multiplier
are available and every operation is a single-cycle opera-
tion. The time chart shown in Fig. 9(a) (Fig. 9(b), Fig. 10(a),
and Fig. 10(b) also) consists of two parts. The left half part
(schedule table) shows operation schedule together with de-
pendency arcs. Each operation is identified by a numeric

and each data is identified by an alphabet. The symbol “inp”
and “out” represent the primary input and primary output
data, respectively, and a symbol “dat i” represents a inter-
iteration data. On the other hand, the right half part (register
assignment table) shows data lifetimes with register assign-
ment information. That is, each vertical line segment repre-
sents the lifetime of one data, and line segments arranged in
the same column mean that the corresponding data are as-
signed to the same register. A directed edge from a lifetime
Li to Lj means that Lj is the output of the operation that uses
Li lastly.

Now, we recall our stance on approaching delay varia-
tion aware datapath design. We have separated the structural
property from the performance property, where the former is
mainly determined by the topological structure of the data-
path and the schedule in control steps and the latter is de-
termined by both the structural property and particular pa-
rameter values. The proposed SRV relates the former and
guarantees that, under any delay variations, our datapath al-
ways operates correctly by only adjusting the clock period.
Because of this stance, in the following demonstrations, dat-
apaths are designed with focusing mainly on the structural
property without specifying a particular technology nor a
particular delay variation. Datapath optimization in perfor-
mances under a particular technology and a particular delay
variation is a future problem.

5.1 Combination of Our SRV-Based Register Assignment
with MDC

In this section, we demonstrate the possibility that the num-
ber of functional units which require MDC can be decreased
by applying our SRV-based register assignment. Figure 9(a)
shows one possible minimum register assignment. Gray op-
erations in the schedule table are operations which require
MDC for assuring the hold constraint. As a result, all of
three adders and one multiplier require MDC.

On the other hand, Fig. 9(b) shows another minimum
register assignment. The maximum degree of temporal
overlap of gray operations is now two, and it is enough to
apply MDC to two adders. The reduction of the number of
functional units which require MDC is achieved by apply-
ing the SRV-based register assignment as much as possible
while keeping the total number of registers unchanged. That
is, if conditions C2’-1 and C2’-2 are satisfied for an opera-
tion Ob, then we do not need to apply MDC to the functional
unit that executes Ob. On the other hand, we need to apply
MDC to an operation Ob (strictly speaking, the functional
unit which executes Ob) for which C2’-1 is not satisfied.

This observation motivates us to formulate an opti-
mization problem to minimize the number of functional
units which require MDC with keeping the number of reg-
isters unchanged, and it will be tackled in future.

5.2 Complete SRV Designs

Figure 10(a) shows a complete SRV design (register assign-
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(a)

(b)

Fig. 10 Schedule and register assignment. Symbol “×” represents a con-
trol step to which any data cannot be assigned. (a) Shows the resultant
register assignment based on the conditions for SRV-type I, and (b) shows
the one based on the conditions for SRV-type II.

ment) based on SRV-type I, and Fig. 10(b) shows another
complete SRV design based on SRV-type II. In these de-
signs, the hold constraints are all resolved by our SRV-based
register assignment, and neither MDC nor specially config-
ured registers are needed. As a result, these datapaths have
the SRV property and also have a large margin more than
one clock cycle on the hold constraint. However the number
of registers might be increased.

The number of registers required for our feasible reg-
ister assignment based on SRV is at least the maximum

of the number of intersecting symbols “×” and data life-
times in each control step in Fig. 10. Actually, compared
with the conventional minimum register assignment, three
more registers are needed for SRV-type I (Fig. 10(a)), and
one more register for SRV-type II (Fig. 10(b)). For those in-
stances, the lower bound on the number of registers given
above has been achieved. If we use double-latch registers or
double-slave registers, we can adopt the conventional min-
imum register assignment, and can save three registers and
one register compared to Fig. 10(a) and Fig. 10(b), respec-
tively. However, as it is mentioned in the previous sec-
tion, a double-latch-based datapath has the area overhead
caused by using an additional clock signal, and a double-
slave-based datapath has the area overhead caused by us-
ing an additional second slave. Our increase in the number
of registers may possibly be comparable to those overheads
in double-latch-based datapaths and double-slave-based dat-
apths. Detailed comparison may depend deeply on a target
application and a target technology, and is beyond the scope
of this paper.

In this paper, we assume that a schedule is given as a
part of a problem instance. Under this situation, we have
shown that the minimum register assignment for complete
SRV-based designs type I and II are solved in polynomial
time complexity by an extended left-edge algorithm. When
a DFG includes directed cycles, we also have shown that the
complexity of the minimum register assignment problem is
NP-hard [10]. On the other hand, the minimum register
assignment for the SRV-based design type III is still an open
problem.

6. Minimum Register Assignment for SRV

The register assignments demonstrated in Fig. 10 are de-
signed as the one for a loop pipeline application. Unfor-
tunately, the minimum register assignment problem (find a
register assignment which achieves the minimum number
of registers) for loop pipeline applications based on SRV
is concluded to be NP-hard, as its conventional version is
NP-hard. The development of an efficient heuristic algo-
rithm of the minimum register assignment for loop pipeline
applications remains as a future problem.

As for an application which is represented by an acyclic
DFG (a DAG application, in short), we have the following
results.

Theorem 1: The minimum register assignment problem
for DAG applications based on SRV-type I is in the class P.

Theorem 2: The minimum register assignment problem
for DAG applications based on SRV-type II is in the class P.

As for the minimum register assignment problem for
DAG applications based on SRV-type III, its computational
complexity as well as a solution algorithm are still open
problems.

In the following of this section, we show register as-
signment algorithms for SRV-type I and II in case an input
DFG is a directed acyclic graph.
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6.1 Minimum Register Assignment for SRV-type I

From the condition C2, any data cannot be assigned to a reg-
ister soon after the end of another data assigned to the same
register. This situation can be simulated by extending each
data lifetime. After the extension, our problem is reduced to
the conventional register assignment problem.

Register assignment algorithm for SRV-type I
Step 1. Extend each data lifetime by one control step from

the last step.
Step 2. Apply the left-edge algorithm [11] to the set of the

extended lifetimes obtained in Step 1.

Theorem 3: The proposed algorithm for SRV-type I com-
putes a minimum register assignment which satisfies SRV-
type I.

As for DAG applications, the register assignment based
on SRV-type I, as well as the conventional register assign-
ment, can be reduced to the coloring problem for interval
graphs, which has been proven to be solvable in polynomial
time. The left-edge algorithm is a well-known method to
solve this problem, and it can be seen in many literatures.
Algorithm details and a proof of the optimality of the solu-
tion are skipped in this paper.

6.2 Minimum Register Assignment for SRV-type II

The following shows the proposed algorithm for register as-
signment considering the conditions C2’-1 and C2’-2.

Register assignment algorithm for SRV-type II
Step 1. Find a pair of data where one is the result of the

sole latest operation that uses the other data as the in-
put (please refer to the condition C2’-2), and decide to
assign those data to the same register. As a result of
this decision, merge their lifetimes (intervals) to a sin-
gle lifetime (a single interval). Repeat the above pro-
cedure as much as possible.

Step 2. Add one control step to the last step of the inter-
vals obtained in Step 1 and the lifetimes without being
merged, and they are called extended lifetimes.

Step 3. Apply the left-edge algorithm to the set of the ex-
tended lifetimes obtained in Step 2.

Theorem 4: The proposed algorithm for SRV-type II com-
putes a minimum register assignment which satisfies SRV-
type II.

In the following discussion, a register assignment is a
mapping A : D → R, where D is a set of data, R is a set of
positive integers which represent register IDs. We assume
that the data are assigned to registers in ascending order of
register IDs by our proposed algorithm. Now we let �s(d)
and �e(d) be the start and the end control steps of lifetime of
data d, respectively (Fig. 11). RA(d) is a set of data which are
assigned to the same register with d and their start control
steps are later than or equal to �s(d) in A.

Fig. 11 The start and the end control steps of the lifetime of d.

Fig. 12 Register assignment A and A∗, where α, β, δ and γ are data. A
shaded region contains data which are assigned to registers identically in
both A and A∗.

Proof of Theorem 4: Let A be a register assignment ob-
tained by our proposed algorithm, and let A∗ be a minimum
register assignment for SRV-type II. We compare A∗ with A
in the manner of one data to another with the same order in
which our left-edge algorithm in Step 3 chooses lifetimes.
If the lifetime is the composite of several lifetimes formed
in Step 2, the order follows the order of their start control
steps (earliest one first). Since A∗ � A, we can find the last
data γ such that data from the beginning to γ are assigned
identically in both A and A∗, but the next to γ in A is data α
and the earliest data which starts after γ and is assigned to
the same register with γ is β, β � α, in A∗. Let δ be the latest
data assigned before α in A∗ (Fig. 12). Note that, if there are
multiple minimum register assignments, we choose such A∗
that it has the maximum number of identically-assigned data
from the beginning to γ.

Now, we represent the situations of A and A∗ by using
a triple (x, y, z), where x, y and z are Boolean variables and
their values are defined as follows.

x : If �e(γ) = �s(α) in A then 0, otherwise 1.

y : If �e(γ) = �s(β) in A∗ then 0, otherwise 1.

z : If �e(δ) = �s(α) in A∗ then 0, otherwise 1.

In case (x, y, z) = (0, 0, 0), (0, 0, 1) : The fact that γ and α
can be assigned to the same register and �e(γ) = �s(α) means
that Oα is the sole latest operation that uses γ as the input.
Similarly, the fact that γ and β can be assigned to the same
register and �s(γ) = �s(β) means that Oβ is the sole latest
operation that uses γ as the input. Those two situations never
happen simultaneously.



1052
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.4 APRIL 2008

In case (x, y, z) = (0, 1, 0), (0, 1, 1), (1, 1, 1) : We can swap
register numbers assigned to data inRA∗ (α) for register num-
bers assigned to data inRA∗ (β). The resultant register assign-
ment A∗∗ satisfies conditions for SRV-type II and achieves
the same number of registers with A∗. As a result, A∗∗ is
a minimum register assignment and has one more data in
common with A than A∗. It is a contradiction to the choice
of A∗.
In case (x, y, z) = (1, 0, 0), (1, 1, 0) : The fact that δ and α
can be assigned to the same register and �e(δ) = �s(α) means
that Oα is the sole latest operation that uses δ as an input. In
this situation, our proposed algorithm always finds the pair
δ and α in Step 2, and decide to assign δ and α to the same
register. Thus this situation never happen.
In case (x, y, z) = (1, 0, 1) : The fact that γ and β can be
assigned to the same register and �e(γ) = �s(β) means that
Oβ is the sole latest operation that uses γ as an input. If only
γ is the input to Oβ, our proposed algorithm always finds
the pair γ and β in Step 2, and assigns γ and β to the same
register. Our proposed algorithm does not assign γ and β to
the same register only if Oβ has another input c � γ and Oβ
is also the sole latest operation that uses c as the input, and
our algorithm assigns c and β to the same register. If c = δ,
swap register numbers assigned to data in RA∗ (β) for regis-
ter numbers assigned to data in RA∗ (α). If c � δ, let e be a
data assigned to immediately after c. Swap register numbers
assigned to data in RA∗(β) for register numbers assigned to
data inRA∗ (e), and swap register numbers assigned to data in
RA∗ (e) for register numbers assigned to data in RA∗ (α). Let
A∗∗ be the register assignment obtained by this operation.
A∗∗ is again a register assignment which satisfies conditions
for SRV-type II and achieves the minimum number of regis-
ters, and it has one more data in common with A than A∗. It
is a contradiction to the choice of A∗.

7. Conclusions

We have proposed the concept of the structural robustness
against delay variation (SRV), and we have presented suf-
ficient conditions for a datapath to have SRV. Compared
with conventional designs, a resultant circuit designed un-
der those conditions has a large timing margin to delay vari-
ations without sacrificing effective computation time. In ad-
dition, under any degree of delay variations, we can always
find an available clock frequency for a resultant datapath to
operate correctly. The latter characteristic might be useful
especially for IP-based designs, since those IPs are reused
in various design environments, in various applications, and
in various field environments, and it might be important for
IPs to guarantee the correct operation in such various envi-
ronments.

Discussions done in this paper relate to structural prop-
erties, and datapath optimization in performances under a
particular technology and a particular delay variation is one
of major future problems.
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