
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Proof Score Approach to Verification of Liveness

Properties

Author(s) OGATA, Kazuhiro; FUTATSUGI, Kokichi

Citation
IEICE TRANSACTIONS on Information and Systems,

E91-D(12): 2804-2817

Issue Date 2008-12-01

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/8524

Rights

Copyright (C)2008 IEICE. Kazuhiro OGATA, Kokichi

FUTATSUGI, IEICE TRANSACTIONS on Information and

Systems, E91-D(12), 2008, 2804-2817.

http://www.ieice.org/jpn/trans_online/

Description

2804
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.12 DECEMBER 2008

PAPER

Proof Score Approach to Verification of Liveness Properties∗

Kazuhiro OGATA†a), Member and Kokichi FUTATSUGI†, Nonmember

SUMMARY Proofs written in algebraic specification languages are
called proof scores. The proof score approach to design verification is at-
tractive because it provides a flexible way to prove that designs for systems
satisfy properties. Thus far, however, the approach has focused on safety
properties. In this paper, we describe a way to verify that designs for sys-
tems satisfy liveness properties with the approach. A mutual exclusion
protocol using a queue is used as an example. We describe the design veri-
fication and explain how it is verified that the protocol satisfies the lockout
freedom property.
key words: CafeOBJ, equations, observational transition systems (OTSs),
rewriting, specification

1. Introduction

The proof score approach to design verification is a formal
method of verifying that a design for a system satisfies a
property. In the approach, a design for a system is speci-
fied in an algebraic specification language, a property is ex-
pressed in the language, and it is verified that the design sat-
isfies the property by writing proofs (or proof plans) called
proof scores in the language and executing the proof scores
with a processor of the language.

We have argued in [2] that the the approach has sev-
eral attractive characteristics thanks to (1) balanced human-
computer interaction and (2) flexible but clear structure of
proof scores. The former means that humans are able to fo-
cus on proof plans, while tedious and detailed computations
can be left to computers; humans do not necessarily have to
know what deductive rules or equations should be applied
to goals to prove. The latter means that lemmas do not need
to be proved in advance and proof scores can help humans
comprehend the corresponding proofs; a proof that a system
satisfies a property can be conducted even when all lemmas
used have not been proved, and assumptions used are ex-
plicitly and clearly written in proof scores.

The OTS/CafeOBJ method [3]–[5] is an instance of the
proof score approach to design verification. The main in-
gredients of the OTS/CafeOBJ method are observational
transition systems (OTSs) and CafeOBJ. OTSs are a kind
of transition system (or state machine), which can be used
as mathematical models of designs for systems, and Cafe-

Manuscript received May 11, 2007.
Manuscript revised August 1, 2008.
†The authors are with the School of Information Science,

JAIST, Nomi-shi, 923–1292 Japan.
∗This paper is an extended and revised version of the paper [1]

presented at 17th SEKE.
a) E-mail: ogata@jaist.ac.jp

DOI: 10.1093/ietisy/e91–d.12.2804

OBJ [6] is an executable algebraic specification language
and system. Given a problem that a design for a system
satisfies a property, in the OTS/CafeOBJ method, (1) the
design is modeled as an OTS, which is written in CafeOBJ,
(2) the property is expressed as a CafeOBJ term, and (3) it is
verified that the OTS satisfies the property by writing proof
scores in CafeOBJ and executing them with CafeOBJ. A
survey of proof scores in CafeOBJ is described in [7].

We have conducted case studies [8]–[10] to demon-
strate the usefulness of the OTS/CafeOBJ method. Thus far,
however, the OTS/CafeOBJ method has mainly focused on
invariant properties, which are safety properties. This pa-
per shows that the method can also deal with other kinds
of properties, especially ensures and leads-to properties,
which are liveness properties. A mutual exclusion proto-
col using a queue, which is called Qlock [5], is used as an
example; it is verified that Qlock satisfies the lockout (or
starvation) freedom property, which can be expressed as a
leads-to property.

The OTS/CafeOBJ method has been largely influenced
by UNITY [11]. Although UNITY has been widely used
to design parallel and distributed systems, UNITY itself
does not provide any tool support. Therefore, some formal
methods and tools have been used to support UNITY [12]–
[14], The OTS/CafeOBJ method may be regarded as one of
such formal methods and tools. None of the existing formal
methods and tools to support UNITY is based on the proof
score approach to design verification. This is the essential
difference between the OTS/CafeOBJ method and the oth-
ers.

The rest of the paper is organized as follows. Section 2
describes OTSs including the five basic properties. Section 3
introduces CafeOBJ. Section 4 describes proof scores of
ensures and leads-to properties. Section 5 reports on a case
study in which it is verified that Qlock satisfies the lockout
freedom property. Section 6 mentions some related work.
Section 7 concludes the paper.

2. Observational Transition Systems (OTSs)

We describe the definitions of basic concepts on observa-
tional transition systems, or OTSs, and five basic properties
with respect to (wrt) OTSs.

2.1 Definitions

We suppose that there exists a universal state space denoted

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers

OGATA and FUTATSUGI: PROOF SCORE APPROACH TO VERIFICATION OF LIVENESS PROPERTIES
2805

Υ and that each data type used in OTSs is provided. The
data types include Bool for Boolean values. A data type is
denoted D with a subscript such as Do1.

Definition 1 (OTSs): An OTS S is 〈O,I,T〉 such that

• O : A finite set of observers. Each observer
ox1:Do1,...,xm:Dom : Υ → Do is an indexed function that
has m indexes x1, . . . , xm whose types are Do1, . . . ,Dom.
For brevity, we suppose that the name o of each ob-
server ox1:Do1,...,xm:Dom : Υ → Do is distinct from each
other. Therefore, the name o may be used to refer to
the observer. The equivalence relation (υ1 =S υ2) be-
tween two states υ1, υ2 ∈ Υ is defined as ∀o : O.∀x1 :
Do1 . . .∀xm : Dom. (ox1,...,xm (υ1) = ox1,...,xm(υ2)).

• I : The set of initial states such that I ⊆ Υ.
• T : A finite set of transitions. Each transition

ty1:Dt1,...,yn:Dtn : Υ → Υ is an indexed function that
has n indexes y1, . . . , yn whose types are Dt1, . . . ,Dtn

provided that ty1,...,yn (υ1) =S ty1,...,yn (υ2) for each [υ] ∈
Υ/=S, each υ1, υ2 ∈ [υ] and each yk : Dtk for
k = 1, . . . , n. Each transition ty1,...,yn has the condition
c-ty1:Dt1,...,yn:Dtn : Υ → Bool, which is called the effec-
tive condition of the transition. If c-ty1,...,yn(υ) does not
hold, then ty1,...,yn(υ) =S υ. For brevity, we suppose that
the name t of each transition ty1:Dt1,...,yn:Dtn : Υ → Υ is
distinct from each other. Therefore, the name t may be
used to refer to the transition and the name c-t may be
used to refer to the effective condition. �

The definition of each transition looks like:

ty1,...,yn(υ) � υ
′ if c-ty1,...,yn(υ) s.t.

. . .
ox1,...,xm(υ′) = . . .
. . .

where c-ty1,...,yn(υ) � . . .

The definition means that if c-ty1,...,yn(υ) holds for a given
state υ, then ty1,...,yn moves υ to υ′ that satisfies all equations
between s.t. and where, and if c-ty1,...,yn (υ) does not, then
ty1,...,yn does not change υ. If ox1,...,xm (υ′) equals ox1,...,xm (υ),
the corresponding equation “ox1,...,xm(υ′) = ox1,...,xm(υ)” can
be omitted. The definition of c-ty1,...,yn is written after
where. If c-ty1,...,yn (υ) holds for an arbitrary state υ, then “if
c-ty1,...,yn(υ)” and “where c-ty1,...,yn(υ) � . . .” may be omitted.

Given an observer o ∈ O (a transition t ∈ T) and values
ak : Dok, . . . , am : Dom (b1 : Dt1, . . . , bn : Dtn), oa1,...,am

(tb1,...,bn) is called an instance of the observer (the transition).
If an observer (a transition) does not have any indexes, the
observer (the transition) itself is the instance of the observer
(the transition).

Given an OTS S and two states υ, υ′ ∈ Υ, if there
exists an instance tb1,...,bn of a transition t ∈ T such that
tb1,...,bn (υ) =S υ′, we write υ �

tb1 ,...,bn

S υ′ and call υ′ a t-
successor state of υ wrt S. tb1,...,bn may be omitted from
υ�

tb1 ,...,bn

S υ′ and υ′ may be called a successor state of υ wrt
S.

A mutual exclusion protocol called Qlock using a

queue is used as an example.

Example 1 (Qlock): The pseudo-code executed by each
process i can be written as follows:

Loop
rs: put(queue, i)
wt:repeat until top(queue) = i

Critical Section
cs: get(queue)

queue is the queue of process IDs shared by all pro-
cesses. put, top and get are the usual functions of queues.
put(queue, i) puts a process ID i into queue at the end,
get(queue) deletes the top element from queue if queue is
not empty, and top(queue) returns the top element of queue
if queue is not empty. rs, wt and cs are labels given to
the pseudo-code, standing for the remainder section, wait-
ing and the critical section. Initially, each process i is at
label rs and queue is empty. Let Label, Pid and Queue be
the types of labels, process IDs and queues of process IDs,
respectively.

Qlock can be modeled as the OTS SQlock such that

OQlock � {pci:Pid : Υ→ Label, queue : Υ→ Queue}
IQlock � {υ ∈ Υ | ∀i : Pid.(pci(υ) = rs)∧

queue(υ) = empty}
TQlock � {wanti:Pid : Υ→ Υ, tryi:Pid : Υ→ Υ,

exiti:Pid : Υ→ Υ}

where empty is the empty queue. The three transitions are
defined as follows:

wanti(υ) � υ′ if c-wanti(υ) s.t.
pc j(υ

′) = if i = j then wt else pc j(υ)
queue(υ′) = put(queue(υ), i)

where c-wanti(υ) � pci(υ) = rs

tryi(υ) � υ
′ if c-tryi(υ) s.t.

pc j(υ
′) = if i = j then cs else pc j(υ)

where c-tryi(υ) � pci(υ) = wt ∧ top(queue(υ)) = i

exiti(υ) � υ′ if c-exiti(υ) s.t.
pc j(υ

′) = if i = j then rs else pc j(υ)
queue(υ′) = get(queue(υ))

where c-exiti(υ) � pci(υ) = cs

where put, top and get are the same functions appearing in
the pseudo-code. �

Definition 2 (Reachable states): Given an OTS S, reach-
able states wrt S are inductively defined:

• Each υ ∈ I is reachable wrt S.
• For each υ, υ′ ∈ Υ such that υ �S υ′, if υ is reachable

wrt S, so is υ′.

Let RS be the set of all reachable states wrt S. �

Example 2 (Reachable states wrt SQlock): Let υ0 ∈ IQlock.
Both wanti(υ0) and tryi(wanti(υ0)) are reachable wrt SQlock.
υ−1 such that pci(υ−1) = cs ∧ pc j(υ−1) = cs ∧ i � j is not
reachable wrt SQlock, although it needs to be verified. �

2806
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.12 DECEMBER 2008

2.2 Properties

Predicates whose types are Υ → Bool are called state pred-
icates. We suppose that every state predicate considered in
this paper does not have any quantifiers unless otherwise
explicitly stated. Note that variables freely occurring in
formulas are equivalent to universally quantified variables.
There are five basic properties wrt S, which are inspired by
UNITY [11].

Definition 3 (Five Basic Properies): Let p, q, r, p j be ar-
bitrary state predicates, and J be an arbitrary set. Given an
OTS S, the five properties are defined:

(1) p unlessS q � ∀υ, υ′ : RS.
(υ�S υ′ ∧ p(υ) ∧ ¬q(υ)⇒ p(υ′) ∨ q(υ′))

(2) stableS p � p unlessS false.

(3) invariantS q � ∀υ : RS. p(υ)

(4) p ensuresS q � (p unlessS q) ∧
∃t : T .∃b1 : Dt1. . . .∃bm : Dtm.∀υ, υ′ : RS.
(υ�

tb1 ,...,bm

S υ′ ∧ p(υ) ∧ ¬q(υ)⇒ q(υ′))

(5) p leads-toS q (or p �→S q) holds
if and only if this can be deduced by applying
the three deductive rules finitely often:

1.
p ensuresS q

p �→S q

2.
p �→S q, q �→S r

p �→S r

3.
∀ j : J.(p j �→S q)

(∃ j : J. p j) �→S q

Note that invariantS q can also be defined as ∀υ : I. p(υ) ∧
stable p, which is equivalent to ∀υ : RS. p(υ). The second
conjunct of the definition of p ensuresS q may be abbrevi-
ated as p eventuallyS q. �

S may be omitted from unlessS, stableS, invariantS,
ensuresS and leads-toS (�→S) if it is clear from context.
The first three properties are classified into safety properties,
while the remaining are classified into liveness properties.

We informally describe what the five properties say.
p unlessS q says that whenever each instance of every tran-
sition is applied in a state where p holds and q does not hold,
p or q holds in the successor state. It does not mention what
occurs when an instance of a transition is applied in a state
where p does not hold or q holds. It can be interpreted as
follows: once p holds, p keeps holding unless q becomes
true. stableS p says that once p holds, p keeps holding, al-
though p may never get true. invariantS p says that p holds
in every reachable state wrt S.

Before describing what the remaining two properties
say, we define executions of an OTS S. An arbitrary infinite
sequence υ0, υ1, . . . of states satisfying the following three
conditions is called an execution of S:

• Initiation : υ0 ∈ I.

• Consecution : For each i ∈ {0, 1, . . .}, υi �S υi+1.
• Fairness : For each instance ty1,...,yn of every transition,

there exist an infinite number of indexes i such that
υi �

ty1 ,...,yn

S υi+1.

The first and second conditions guarantee that every state
appearing in executions of S is reachable wrt S. The third
condition says that each instance ty1,...,yn of every transition
is applied infinitely many times in the course of every exe-
cution of S, although the effective condition of ty1,...,yn may
not hold in states in which ty1,...,yn is applied.

p ensuresS q says that whenever there exists a state υi

in an arbitrary execution of S such that p holds in υi, there
exists a state υ j in the execution such that j ≥ i and q holds
in υ j. This is because p ensuresS q specifies that p or q
holds in the successor state after applying each instance of
every transition in a state where p holds and q does not hold
and that there exists an instance tb1,...,bn of a transition that
makes q true when tb1,...,bn is applied in a state where p holds
and q does not hold, and such an instance of a transition is
eventually applied thanks to Fairness. p ensuresS q can be
interpreted as follows: whenever S reaches a state where p
holds, S will eventually reach a state where q holds. Al-
though p �→S q resembles p ensuresS q, p does not nec-
essarily keep holding until q gets true in p �→S q. leads-
to properties are transitive from the definition, but ensures
properties are not.

The role of Fairness is to make it possible to interpret
p ensuresS q as described in the previous paragraph. If we
do not assume Fairness, p ensuresS q does not necessar-
ily mean that whenever S reaches a state where p holds, S
will eventually reach a state where q holds because some
transitions may be never applied from some time on. When
ensures and leads-to properties are verified, we do not need
to explicitly care about Fairness because the definitions of
ensures and leads-to properties do not refer to Fairness.

Some readers may wonder if the three deductive rules
for leads-to properties are sound and complete. Let LT(p, q)
be the property that whenever S reaches a state where p
holds, S will eventually reach a state where q holds. When-
ever p �→S q is deduced by applying the rules finitely of-
ten, the rules are called sound if LT(p, q) holds. Whenever
LT(p, q) holds, the rules are called complete if p �→S q is
deduced by applying the rules finitely often. When we ar-
gue the soundness, all we have to do is to check if each
rule is sound. The first rule is sound because p ensuresS q
can be interpreted as LT(p, q) as described above. Since it is
natural that LT is transitive, namely that LT(p, r) comes from
LT(p, q) and LT(q, r), the second rule is sound. It is also natu-
ral that if LT(p j, q) holds for all j ∈ J, then LT((∃ j : J. pi), q)
holds because ∃ j : J. pi implies that some pk holds. There-
fore, the third rule is sound. For the completeness, we refer
to the article [15].

Example 3 (Properties of SQlock): Let p(υ, i), q(υ, i) and
r(υ, i) be pci(υ) = cs, pci(υ) = wt and top(queue(υ)) = i,
respectively. Some properties of SQlock are as follows:

1. (q(υ, i) ∧ r(υ, i)) unless p(υ, i)

OGATA and FUTATSUGI: PROOF SCORE APPROACH TO VERIFICATION OF LIVENESS PROPERTIES
2807

2. stable ((p(υ, i) ∧ p(υ, j))⇒ (i = j))
3. invariant ((p(υ, i) ∧ p(υ, j))⇒ (i = j))
4. (q(υ, i) ∧ r(υ, i)) ensures p(υ, i)
5. q(υ, i) �→ p(υ, i) .

The third property is called the mutual exclusion property
and the fifth property is called the lockout (or starvation)
freedom property. The five properties need to be verified.
We will describe the verification of the fifth property in
this paper. The verification needs eight invariant proper-
ties, three ensures properties and four leads-to properties
as lemmas. Among the lemmas are the third and fourth
properties. �

3. CafeOBJ

CafeOBJ [6] is an algebraic specification language and sys-
tem mainly based on order-sorted algebras and hidden alge-
bras [16], [17]. Data types are specified in terms of order-
sorted algebras, and state machines such as OTSs are speci-
fied in terms of hidden algebras. Algebraic specifications of
state machines are called behavioral specifications. There
are two kinds of sorts in CafeOBJ: visible sorts and hidden
sorts. A visible sort denotes a data type, while a hidden sort
denotes the state space of a state machine. There are three
kinds of operators (or operations) wrt hidden sorts: hidden
constants, action operators and observation operators. Hid-
den constants denote initial states of state machines, action
operators denote state transitions of state machines, and ob-
servation operators let us know the situation where state ma-
chines are located. Both an action operator and an observa-
tion operator take a state of a state machine and zero or more
data. The action operator returns the successor state of the
state wrt the state transition denoted by the action opera-
tor plus the data. The observation operator returns a value
that characterizes the situation where the state machine is
located.

Basic units of CafeOBJ specifications are modules.
CafeOBJ provides built-in modules. One of the most impor-
tant built-in modules is BOOL in which propositional logic
is specified. BOOL is automatically imported by almost ev-
ery module unless otherwise stated. In BOOL and its par-
ent modules, declared are the visible sort Bool, the con-
stants true and false of Bool, and operators denoting
some basic logical connectives. Among the operators are
not_, _and_, _or_, _xor_, _implies_ and _iff_ denot-
ing negation (¬), conjunction (∧), disjunction (∨), exclu-
sive disjunction (xor), implication (⇒) and logical equiv-
alence (⇔), respectively. An underscore _ indicates the
place where an argument is put such as a and b. The op-
erator if_then_else_fi corresponding to the if construct
in programming languages is also declared. CafeOBJ uses
the Hsiang term rewriting system [18] as the decision proce-
dure for propositional logic, which is implemented in BOOL.
CafeOBJ reduces any term denoting a proposition that is al-
ways true (false) to true (false). More generally, a term
denoting a proposition reduces to an exclusively disjunctive

normal form of the proposition.
In the rest of this section, we describe how to specify

data types and OTSs, and how to prove that data types sat-
isfy properties by giving some examples, which will be used
later.

3.1 Specification in CafeOBJ

We first specify Label, Pid, Nat (that is the type of natu-
ral numbers) and Queues. Label is specified in the module
LABEL:

mod! LABEL { [Label]

ops rs wt cs : -> Label

op _=_ : Label Label -> Bool {comm}

var L : Label

eq (L = L) = true .

eq (rs = wt) = false .

eq (rs = cs) = false .

eq (wt = cs) = false .

}

The keyword mod! indicates that the module is a tight se-
mantics declaration, meaning the smallest model (imple-
mentation) that respect all requirements written in the mod-
ule. Visible sorts are declared by enclosing them with [
and]. Label is the visible sort of labels. The keyword op
is used to declare (non-observation and action) operators,
and ops to declare more than one such operator simultane-
ously. The operator _=_ checks if two labels are equal. The
keyword comm specifies that the operator _=_ is commuta-
tive, namely that l1 = l2 equals l2 = l1. The keyword
var is used to declare variables, and vars to declare more
than one variable simultaneously. L is a variable of Label.
The keyword eq is used to declare equations, and ceq to
declare conditional equations in which conditions are writ-
ten after the keyword if. Equations and conditional equa-
tions are used to define operators and specify properties of
operators. CafeOBJ uses declared equations as left-to-right
rewrite rules to reduce terms.

Pid is specified in the module PID:

mod* PID { [Pid]

op _=_ : Pid Pid -> Bool {comm}

var I : Pid

eq (I = I) = true .

}

The keyword mod* indicates that the module is a loose se-
mantics declaration, meaning an arbitrary model (imple-
mentation) that respects all requirements written in the mod-
ule.

Nat is specified in the module PNAT:

mod! PNAT { [Nat]

op 0 : -> Nat op s : Nat -> Nat

op _<_ : Nat Nat -> Bool

op _=_ : Nat Nat -> Bool {comm}

vars X Y : Nat

2808
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.12 DECEMBER 2008

eq 0 < 0 = false . eq 0 < s(X) = true .

eq s(X) < s(Y) = X < Y .

eq (X = X) = true .

eq (s(X) = 0) = false .

eq (s(X) = s(Y)) = (X = Y) .

}

The constant 0 denotes zero and the operator s is the suc-
cessor function of natural numbers. The operator _<_ is the
less-than predicate of natural numbers.

We first specify generic queues in the module QUEUE:

mod! QUEUE(D :: EQTRIV) { pr(PNAT) [Queue]

op empty : -> Queue

op _,_ : Elt.D Queue -> Queue

op put : Queue Elt.D -> Queue

op get : Queue -> Queue

op top : Queue -> Elt.D

op _\in_ : Elt.D Queue -> Bool

op del : Queue Elt.D -> Queue

op where : Queue Elt.D -> Nat

op aux-where : Queue Elt.D -> Nat

op _=_ : Queue Queue -> Bool {comm}

vars Q R : Queue vars X Y : Elt.D

var N : Nat

eq put(empty,X) = X,empty .

eq put((Y,Q),X) = Y,put(Q,X) .

eq get(empty) = empty . eq get((X,Q)) = Q .

eq top((X,Q)) = X .

eq X \in empty = false .

eq X \in (Y,Q) = (X = Y) or X \in Q .

eq del(empty,Y) = empty .

eq del((X,Q),Y)

= if X = Y then Q else X,del(Q,Y) fi .

eq where((X,Q),Y)

= if Y \in (X,Q) then aux-where((X,Q),Y)

else where(empty,Y) fi .

eq aux-where((X,Q),Y) = if X = Y

then 0 else s(aux-where(Q,Y)) fi .

eq (Q = Q) = true .

eq (X,Q = empty) = false .

eq (X,Q = Y,R) = (X = Y and Q = R) .

}

The keyword pr is used to import modules. QUEUE imports
PNAT. The constant empty denotes the empty queue and
the operator _,_ is the constructor of non-empty queues.
The operators put, get and top are usual functions of
queues, and the operator _\in_ is the membership predi-
cate of queues. The operator del deletes a given element
from a given queue if any. The operator where returns the
nearest position from top where a given element appears in
a given queue if any.
QUEUE has one formal parameter D. Given a module

that respects all the requirements in the module EQTRIV as
an actual parameter, QUEUE is instantiated. EQTRIV is as
follows:

mod* EQTRIV { [Elt]

op _=_ : Elt Elt -> Bool {comm}

var X : Elt

eq (X = X) = true .

}

When QUEUE is instantiated with an actual parameter M, vis-
ible sort Elt.D is replaced with the visible sort in M corre-
sponding to the visible sort Elt in EQTRIV. For example,
QUEUE(PID) is the module obtained by instantiating QUEUE
with PID, specifying Queue.

Now that we have specified the data types used in
SQlock, we next specify SQlock in the module QLOCK:

mod* QLOCK { pr(LABEL) pr(PID) pr(QUEUE(PID))

[Sys]

-- an arbitrary initial state

op init : -> Sys

-- observers

bop pc : Sys Pid -> Label

bop queue : Sys -> Queue

-- actions

bops want try exit : Sys Pid -> Sys

-- variables

var S : Sys vars I J : Pid

-- equations defining init

eq pc(init,I) = rs .

eq queue(init) = empty .

-- equations defining want

op c-want : Sys Pid -> Bool

eq c-want(S,I) = (pc(S,I) = rs) .

ceq pc(want(S,I),J)

= (if I = J then wt else pc(S,J) fi)

if c-want(S,I) .

ceq queue(want(S,I))

= put(queue(S),I) if c-want(S,I) .

ceq want(S,I) = S if not c-want(S,I) .

-- equations defining try

op c-try : Sys Pid -> Bool

eq c-try(S,I)

= (pc(S,I) = wt and top(queue(S)) = I) .

ceq pc(try(S,I),J)

= (if I = J then cs else pc(S,J) fi)

if c-try(S,I) .

eq queue(try(S,I)) = queue(S) .

-- equations defining try

ceq try(S,I) = S if not c-try(S,I) .

op c-exit : Sys Pid -> Bool

eq c-exit(S,I) = (pc(S,I) = cs) .

ceq pc(exit(S,I),J)

= (if I = J then rs else pc(S,J) fi)

if c-exit(S,I) .

ceq queue(exit(S,I))

= get(queue(S)) if c-exit(S,I) .

ceq exit(S,I) = S if not c-exit(S,I) .

}

A comment starts with -- and terminates at the end of the
line. Hidden sorts are declared by enclosing them with *[

OGATA and FUTATSUGI: PROOF SCORE APPROACH TO VERIFICATION OF LIVENESS PROPERTIES
2809

and]*. Sys is the hidden sort denoting Υ. The keyword
bop is used to declare observation and action operators, and
bops to declare more than one such operator simultane-
ously. The hidden constant init denotes an arbitrary initial
state and the two observation and three action operators cor-
respond to the two observers and three transitions of SQlock,
respectively. The operator c-want, c-try and c-exit de-
note the effective conditions c-want, c-try and c-exit, respec-
tively. The module has the four sets of equations that define
init, want, try and exit.

3.2 Verification with CafeOBJ

In this paper, we will discuss the verification that Qlock sat-
isfies the lockout freedom property. The verification needs
two lemmas on natural numbers and 10 lemmas on queues
(see Appendix A). We describe the proofs of two of the 12
lemmas. The two lemmas are as follows:

eq nat-lemma2(X) = not(X = s(X)) .

eq queue-lemma3(Q,X,Y) = (X \in put(Q,Y)

iff (X = Y or X \in Q)) .

where X in nat-lemma2 is a CafeOBJ variable of Nat, and
X, Y and Q in queue-lemma3 are CafeOBJ variables of
Elt.D, Elt.D and Queue, respectively. The first equation
is declared in the module NAT, and the second in the module
Queue. The first lemma is proved by induction on X, and the
second by induction on Q.

The proof (written in CafeOBJ) of the first lemma is as
follows:

open PNAT

op x : -> Nat . eq x = 0 .

red nat-lemma2(x) .

close

open PNAT

ops x y : -> Nat . eq x = s(y) .

red nat-lemma2(y) implies nat-lemma2(x) .

close

The command openmakes a temporary module that imports
a given module and the command close destroys such a
temporary module. The constants x and y denote arbitrary
natural numbers. The term nat-lemma2(y) is the induction
hypothesis. Such a proof written in CafeOBJ is called a
proof score. Fragments enclosed with open and close in
proof scores are called proof passages. The above proof
score consists of two proof passages.

The two proof passages are of the base case and the
induction case, respectively. What to prove in the base
case is nat-lemma2(0), and what to prove in the induction
case is nat-lemma2(s(y)) under the induction hypothesis
nat-lemma2(y), where y denotes an arbitrary natural num-
ber. The proofs can be conducted by having CafeOBJ exe-
cute the proof passages. When CafeOBJ returns true for
both the proof passages, the proofs are successful. CafeOBJ
indeed returns true for the proof passages.

If CafeOBJ does not return true for some proof pas-
sage, you need to split the corresponding case into multi-
ple sub-cases and/or to use some appropriate lemmas [3].
Note that although proof scores could be generated automat-
ically [19], [20], human users basically need to write proof
scores in the OTS/CafeOBJ method, which implies that hu-
man users are responsible for checking if all cases are cov-
ered.

The proof score of the second lemma is as follows:

open QUEUE

op q : -> Queue . ops x y : -> Elt.D .

eq q = empty .

red queue-lemma3(q,x,y) .

close

open QUEUE

ops q q’ : -> Queue .

ops x y z : -> Elt.D .

eq q = z,q’ . eq x = z .

red queue-lemma3(q,x,y) .

close

open QUEUE

ops q q’ : -> Queue .

ops x y z : -> Elt.D .

eq q = z,q’ . eq (x = z) = false .

red queue-lemma3(q’,x,y)

implies queue-lemma3(q,x,y) .

close

The first proof passage is of the base case, and the second
and third proof passages are of the induction case. The in-
duction case is split into the two sub-cases based on the
proposition x = z. In the sub-case corresponding to the
second proof passage, the proposition holds. In the sub-
case corresponding to the third proof passage, the propo-
sition does not. queue-lemma3(q’,x,y) is the induction
hypothesis (precisely an instance of the induction hypothe-
sis), which is used in the second sub-case (i.e. the third proof
passage). CafeOBJ returns true for each of the three proof
passages, which means that the second lemma is success-
fully proved.

Proof scores of invariant properties [3]–[5] are very
similar to ones of lemmas (and theorems) on data types.

4. Proof Scores of Liveness Properties

We have described in [3]–[5] how to verify that an OTS S
satisfies invariant properties based on proof scores. In this
section, we describe how to verify that S satisfies ensures
and leads-to properties based on proof scores. Proofs of
ensures properties consist of ones of unless properties and
stable properties are specialized unless properties. There-
fore, proof scores described in this section also covers un-
less and stable properties. We suppose that S is specified in
a module SYSTEM in which a hidden sort H is declared and
invariant properties wrt S are written in a module INV.

2810
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.12 DECEMBER 2008

4.1 Proof Scores of ensures Properties

The proof of p ensuresS q consists of those of p unlessS q
and p eventuallyS q. The former is called the unless case,
and the latter the eventually case. We suppose that in addi-
tion to υ whose type is RS, p and q have the free variables
z1, . . . , zα whose types are D1, . . . ,Dα.

We first describe the unless case. We declare the op-
erators denoting p and q, and their defining equations in a
module UNL (which imports SYSTEM and INV) as follows:

op unlp : H
−→
V α -> Bool

op unlq : H
−→
V α -> Bool

eq unlp(S,
−→
Z α) = p(S,

−→
Z α) .

eq unlq(S,
−→
Z α) = q(S,

−→
Z α) .

−→
V α is an abbreviation of V1...Vα and

−→
Z α is an abbrevia-

tion of Z1,...,Zα. Each Vk is a visible sort corresponding

to Dk and each Zk is a CafeOBJ variable of Vk. p(S,
−→
Z α)

and q(S,
−→
Z α) are CafeOBJ terms denoting p and q. We

also declare a constant zk denoting an arbitrary value of
Vk for k = 1, . . . , α in UNL. Let −→z α be an abbreviation of
z1,...,zα.

The basic formula to prove in the unless case is de-
noted by the operator, which is declared and defined in a
module USTEP (which imports UNL) as follows:

op ustep :
−→
V α -> Bool

eq ustep(
−→
Z α)

= (unlp(s,
−→
Z α) and not(unlq(s,

−→
Z α)))

implies

(unlp(s’,
−→
Z α) or unlq(s’,

−→
Z α)) .

s and s’ are constants of H. s denotes an arbitrary state and
s’ denotes an arbitrary successor state of s. The constants
are declared in USTEP.

All needed is to prove ustep(−→z α) for each instance
of every transition (every action operator). We often need
case splitting and lemmas (which are invariant properties
wrt S and/or lemmas on data types). Let us consider proving
ustep(−→z α) for an arbitrary instance ty1,...,yn of a transition
t, which is denoted by a CafeOBJ action operator t. We
suppose that the case is split into L sub-cases characterized
by L propositions case1, . . . , caseL such that case1 ∨ . . . ∨
caseL ⇔ true. Then the proof score of each sub-case l looks
like:

open USTEP

-- arbitrary objects

op y1 : -> Vt1 . · · · op yn : -> Vtn .

-- assumptions

Declarations of equations denoting casel.
-- successor state

eq s’ = t(s,−→y n) .

-- check

red Lems implies ustep(−→z α) .
close

Each Vtk is a visible sort corresponding to Dtk for
k = 1, . . . , n. Each constant yk denotes an arbitrary value of
Vtk for k = 1, . . . , n. −→y n is an abbreviation of y1,...,yn.
A set of equations is used to denote casel. We may de-
clare other constants (which denote arbitrary values) used
in equations denoting casel. The constant s’ is defined as
t(s,−→y n), which denotes an arbitrary t-successor state of s
wrt S.

Lems is a CafeOBJ term, which can be constructed by
combining instances of invariant properties wrt S and/or
lemmas on data types with conjunctions. Lems is used to
exclude unreachable states from cases to consider. “Lems
implies” may be omitted.

The variables z1, . . . , zα occur freely in p and q.
Free variables are equivalent to universally quantified

ones. Therefore, if some instance of unlp(s,
−→
Z α) and

not(unlq(s,
−→
Z α)) reduces to false in the proof passage

of the sub-case casel, the proof of the sub-case is discharged.
Hence, Lems may include such an instance.

When CafeOBJ returns true for the proof passage of
each sub-case l, the proof of the unless case is successfully
completed.

We next describe the eventually case. The basic for-
mula to prove in the eventually case is denoted by the op-
erator, which is declared and defined in a module ESTEP
(which imports UNL) as follows:

op estep :
−→
V α -> Bool

eq estep(
−→
Z α)

= (unlp(s,
−→
Z α) and not(unlq(s,

−→
Z α)))

implies unlq(s’,
−→
Z α) .

All needed is to prove that there exists a witness,
namely an instance of a transition that makes estep(−→z α)
true. We conjecture that tb1,...,bn is such an instance of a tran-
sition. As the unless case, we often need case splitting and
lemmas. We suppose that the case is split into L sub-cases
characterized by L propositions case1, . . . , caseL such that
case1 ∨ . . .∨ caseL ⇔ true. Then the proof passage for each
sub-case l looks like:

open ESTEP

-- arbitrary objects

Declarations of constants if necessary.
-- assumptions

Declarations of equations denoting casel.
-- successor state

eq s’ = t(s,
−→
b n) .

-- check

red Lems implies estep(−→z α) .
close

−→
b n is an abbreviation of b1,...,bn. Each bk denotes bk for
k = 1, . . . , n. We may declare constants used in equations

OGATA and FUTATSUGI: PROOF SCORE APPROACH TO VERIFICATION OF LIVENESS PROPERTIES
2811

denoting casel. As the unless case, Lem may contain an

instance of unlp(s,
−→
Z α) and not(unlq(s,

−→
Z α)).

When CafeOBJ returns true for the proof passage of
each sub-case l, the proof of the eventually case is success-
fully completed.

4.2 Proof Scores of leads-to Properties

Rewriting is used to verify that S satisfies leads-to proper-
ties based on deductive rules of leads-to. To this end, de-
ductive rules of leads-to are written in terms of equations.
When such deductive rules are written, however, we do not
use the logical operators such as _and_ and _or_ declared
and defined in the module BOOL and its parent modules. Ba-
sically, the left-hand side of an equation should be in normal
(irreducible) form so that CafeOBJ can use the equation ef-
fectively as a rewrite rule. The normal form of a term such as
p or q made of the logical operators is an exclusively dis-
junctive normal form such as (q and p) xor q xor p.
Exclusive disjunctive normal forms are hard to read. It is
inconvenient to use such hard-to-read terms as the left-hand
sides of equations.

Therefore, we declare new operators denoting basic
logical connectives in a module OTSLOGIC as follows:

op ˜_ : Bool -> Bool {prec: 53}

op _/_ : Bool Bool -> Bool

{comm assoc prec: 55 r-assoc}

op _\/_ : Bool Bool -> Bool

{comm assoc prec: 59 r-assoc}

op _=>_ : Bool Bool -> Bool

{prec: 61 r-assoc}

op _<=>_ : Bool Bool -> Bool

{comm prec: 63 r-assoc}

The operators denote negation (¬), conjunction (∧), disjunc-
tion (∨), implication (⇒) and logical equivalence (⇔), re-
spectively. As comm, assoc, r-assoc and prec: are at-
tributes given to operators. assoc specifies that an operator
@ is associative, namely that (a @ b) @ c equals a @
(b @ c), r-assoc specifies that an operator _@_ is right
associative, namely that a @ b @ c is parsed as a @ (b @
c), and prec: specifies the precedence of an operator. A
natural number is written after prec:. The greater the num-
ber, the weaker the precedence.
OTSLOGIC has an operator eval to evaluate terms

made of these operators. The operator is declared and de-
fined as follows:

op eval : Bool -> Bool

eq eval(true) = true .

eq eval(false) = false .

eq eval(˜ P) = not eval(P) .

eq eval(P /\ Q) = eval(P) and eval(Q) .

eq eval(P \/ Q) = eval(P) or eval(Q) .

eq eval(P => Q) = eval(P) implies eval(Q) .

eq eval(P <=> Q) = eval(P) iff eval(Q) .

where P and Q are CafeOBJ variables of Bool. The variables

are also used in the rest of this subsection. In addition, let
P1, Q1, R, R1 and R2 be CafeOBJ variables of Bool.

We use invariant, ensures and leads-to properties to
reason about leads-to properties. Therefore, we declare
the operators denoting these three kinds of properties in
OTSLOGIC as follows:

op invariant_ : Bool -> Bool

op _ensures_ : Bool Bool -> Bool

op _|-->_ : Bool Bool -> Bool

The remainder of OTSLOGIC are equations denoting
conditional deductive rules of leads-to properties. We use
three kinds of conditional deductive rules of leads-to prop-
erties, which are as follows:

if (p⇒ p1) ∧ (q1 ⇒ q), then
p1 RS q1

p �→S q

if (p⇒ p1) ∧ (r ⇒ r1) ∧ (q1 ⇒ q),

then
p1 R1S r, r1 R2S q1

p �→S q

if (p⇒ p1 ∨ q1) ∧ (r1 ⇔ r2) ∧ (r1 ⇒ r),

then
p1 R1S r1, q1 R1S r2

p �→S r

The three rules are parameterized. RS, R1S and R2S are
parameters. The three rules can be instantiated by replac-
ing each of RS, R1S and R2S with ⇒, ensuresS and �→S.
Therefore, we have 21 conditional deductive rules of leads-
to properties. A conditional deductive rule can be applied
provided that the condition holds.

We straightforwardly prove that if p⇒ q, then p �→S q
for an arbitrary OTS S. This fact and the three deductive
rules of leads-to properties in Definition 3 are used to prove
that the 21 conditional deductive rules are valid.

Each of the 21 rules is denoted by one conditional
equation. In this paper, the three equations denoting three
of the 21 rules are shown:

ceq ((P1 ensures Q1) => (P |--> Q)) = true

if eval(P => P1) and eval(Q1 => Q) .

ceq ((P1 |--> R /\ R1 |--> Q1)

=> (P |--> Q)) = true

if eval(P => P1) and

eval(R => R1) and eval(Q1 => Q) .

ceq ((P1 |--> R1 /\ Q1 |--> R2)

=> (P |--> R)) = true

if eval(P => (P1 \/ Q1)) and

eval(R1 <=> R2) and eval(R1 => R) .

In addition to the 21 conditional equations denoting the
21 rules, one more conditional equation denoting a deduc-
tive rule of leads-to properties is declared in OTSLOGIC:

ceq (P |--> Q) = true if eval(P => Q) .

The deductive rule denoted by the conditional equation ex-
presses the fact that if p ⇒ q, then p �→S q for an arbitrary
OTS S.

2812
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.12 DECEMBER 2008

We use one more conditional deductive rule of
leads-to properties. The rule is as follows:

if (p⇒ p1) ∧ (q1 ⇒ q),

then
(p1 ∧ M = m) �→S ((p1 ∧ M ≺ m) ∨ q1)

p �→S q

where m is an arbitrary value in an arbitrary set W, M is
an arbitrary function mapping Υ to W, and ≺ is an arbitrary
well-founded relation on W. The definition of leads-toS and
the mathematical induction principle are used to prove that
the rule is valid [11].

Since the rule has W as its parameter, the conditional
equation denoting the rule is declared in a parameterized
module INDOFLTO, which imports OTSLOGIC. An actual
parameter of the module has to satisfy the requirements de-
clared in a module EQLTRIV, which is as follows:

mod* EQLTRIV { [Elt]

op _<_ : Elt Elt -> Bool

op _=_ : Elt Elt -> Bool {comm}

}

The visible sort Elt corresponds to W and the operator _<_
corresponds to ≺. The formal parameter of INDOFLTO is
declared as (D :: EQLTRIV). The conditional equation de-
noting the rule is declared in INDOFLTO:

ceq ((P1 /\ (M = X))

|--> ((P1 /\ (M < X)) \/ Q1))

=> (P |--> Q) = true

if eval(P => P1) and eval(Q1 => Q) .

M and X are CafeOBJ variables of the visible sort Elt.D.
When INDOFLTO is instantiated with a module M that sat-
isfies EQLTRIV, Elt.D, _=_ and _<_ are replaced with the
corresponding sort, the corresponding operator and the cor-
responding operator in M.

In order to reason about leads-to properties from equa-
tions denoting deductive rules of leads-to properties, we
declare and define in a module PROVED (which imports
SYSTEM and OTSLOGIC) operators denoting invariant and
ensures properties. Such invariant and ensures proper-
ties need to be proved in order to complete proving leads-to
properties. It is not quite necessary, however, to finish prov-
ing such invariant and ensures properties in order to start
proving leads-to properties. Operators denoting such invari-
ant and ensures properties are defined with invariant_,
ensures, ˜_, _/_, _\/_, _=>_ and _<=>_ declared in
OTSLOGIC. We declare and define in a module LTO (which
imports PROVED) operators denoting leads-to properties to
prove. Such operators are defined with _|-->_, ˜_, _/_,
\/, _=>_ and _<=>_ declared in OTSLOGIC.

Let us consider proving p �→S q. We suppose that in
addition to υ whose type is RS, p and q have the free vari-
ables z1, . . . , zα whose types are D1, . . . ,Dα as we did in the
previous subsection. We also use the same abbreviations
used in the previous subsection. We declare the operator
denoting p �→S q and its defining equation in LTO:

op lto : H
−→
V α -> Bool

eq lto(S,
−→
Z α) = p(S,

−→
Z α) |--> q(S,

−→
Z α) .

As proof scores of ensures properties, we often need
case splitting and lemmas. We suppose that the case is split
into L sub-cases characterized by L propositions case1, . . . ,
caseL such that case1 ∨ . . . ∨ caseL ⇔ true. Then the proof
passage of each sub-case l looks like:

open LTO

pr(INDOFLTO(M))
-- arbitrary objects

Declarations of constants if necessary.
-- assumptions

Declarations of equations denoting casel.
-- check

red Lems implies (Prem => lto(−→z α)) .
close

“pr(INDOFLTO(M))” may be omitted. Prem is a CafeOBJ
term whose form is P or P /\ Q, where P is a CafeOBJ
term denoting an invariant property, an ensures property or
a leads-to property, and so is Q. “Prem =>” may be omit-
ted.

5. Verification that Qlock Satisfies the Lockout Free-
dom Property

We describe verification that SQlock satisfies the lockout
freedom property, namely that (pci(υ) = wt) �→ (pci(υ) =
cs). The property is denoted by the operator lto16, which
is defined in a module LTO as follows:

eq lto16(S,I)

= ((pc(S,I) = wt) |--> (pc(S,I) = cs)) .

where S and I are CafeOBJ variables of Sys and Pid. As de-
scribed in Example 3, the verification needs eight invariant
properties (see Appendix B), three ensures properties and
four leads-to properties. Three of the eight invariant prop-
erties are directly needed for the verification. The remain-
ing five are needed to verify the three invariant properties
and the three ensures properties. Moreover, the verification
needs two lemmas on natural numbers and 10 lemmas on
queues as mentioned in Sect. 3.2.

The three invariant properties and the three ensures
properties are denoted by the operators inv6, inv7, inv8,
ens9, ens10 and ens11, which are defined in a module
PROVED (which imports QLOCK and OTSLOGIC) as shown in
Fig. 1. The four leads-to properties are denoted by the oper-
ators lto12, lto13, lto14 and lto15, which are defined in
the module LTO (which imports PROVED) as shown in Fig. 2.
In Fig. 1 and Fig. 2, S, I, J and N are CafeOBJ variables of
Sys, Pid, Pid and Nat, respectively. The constants s, i and
n of Sys, Pid and Nat are declared in LTO.

The leads-to property denoted by lto16 is deduced
from the invariant property denoted by inv8 and the leads-
to property denoted by lto17. The corresponding proof
score is as follows:

OGATA and FUTATSUGI: PROOF SCORE APPROACH TO VERIFICATION OF LIVENESS PROPERTIES
2813

eq inv6(S,I) = invariant (pc(S,I) = wt => (pc(S,I) = wt /\ I \in queue(S))) .

eq inv7(S,I) = invariant (((pc(S,I) = wt /\ I \in queue(S) /\ where(queue(S),I) = 0)

=> (pc(S,I) = wt /\ top(queue(S)) = I))) .

eq inv8(S,I,N) = invariant ((pc(S,I) = wt /\ I \in queue(S) /\ where(queue(S),I) = s(N))

=>

(pc(S,I) = wt /\ I \in queue(S) /\ where(queue(S),I) = s(N) /\

(pc(S,top(queue(S))) = wt \/ pc(S,top(queue(S))) = cs))) .

eq ens9(S,I) = ((pc(S,I) = wt /\ top(queue(S)) = I) ensures pc(S,I) = cs) .

eq ens10(S,I,J,N) = ((pc(S,I) = wt /\ I \in queue(S) /\ where(queue(S),I) = s(N)

/\ top(queue(S)) = J /\ pc(S,J) = cs)

ensures (pc(S,I) = wt /\ I \in queue(S) /\ where(queue(S),I) = N)) .

eq ens11(S,I,J,N) = ((pc(S,I) = wt /\ I \in queue(S) /\ where(queue(S),I) = s(N)

/\ top(queue(S)) = J /\ pc(S,J) = wt)

ensures (pc(S,I) = wt /\ I \in queue(S) /\ where(queue(S),I) = s(N)

/\ pc(S,top(queue(S))) = cs)) .

Fig. 1 Equations declared in the module PROVED.

eq lto12(S,I,N) = ((pc(S,I) = wt /\ I \in queue(S) /\ where(queue(S),I) = s(N)

/\ pc(S,top(queue(S))) = wt)

|--> (pc(S,I) = wt /\ I \in queue(S) /\ where(queue(S),I) = N)) .

eq lto13(S,I,N) = ((pc(S,I) = wt /\ I \in queue(S) /\ where(queue(S),I) = s(N)

/\ (pc(S,top(queue(S))) = wt \/ pc(S,top(queue(S))) = cs))

|--> (pc(S,I) = wt /\ I \in queue(S) /\ where(queue(S),I) = N)) .

eq lto14(S,I,N) = ((pc(S,I) = wt /\ I \in queue(S) /\ where(queue(S),I) = N)

|--> ((pc(S,I) = wt /\ I \in queue(S) /\ where(queue(S),I) < N)

\/ (pc(S,I) = cs))) .

eq lto15(S,I) = ((pc(S,I) = wt /\ I \in queue(S)) |--> (pc(S,I) = cs)) .

Fig. 2 Equations declared in the module LTO.

open LTO

red (inv6(s,i) /\ lto15(s,i))

=> lto16(s,i) .

close

CafeOBJ returns true for this proof score.
In the rest of the section, we describe the proof scores

of the two leads-to properties denoted by lto14 and lto15,
and that of the ensures property denoted by ens11. The
proof scores of lto12 and lto13 are written in the same
way as that of lto16, and the proof scores of ens9 and
ens10 are written in the same way as that of ens11.

5.1 Proof Score of lto14

The leads-to property denoted by lto14 is deduced from
the two invariant properties denoted by inv7 and inv8, the
ensures property denoted by ens9 and the leads-to prop-
erty denoted by lto13. The verification also needs the
lemma nat-lemma2 on natural numbers. The case is split
into four sub-cases. The four sets of equations for the four
sub-cases are as follows:

1. n = 0
2. n = s(m), where(queue(s),i) = m,
(s(m) = m) = false

3. n = s(m), where(queue(s),i) = m, s(m) = m

4. n = s(m), (where(queue(s),i) = m) = false

where m is a constant of Nat. The term s(m) denotes an
arbitrary positive natural number. Note that human users
are responsible for checking if all cases are covered.

The proof score (which consists of four proof passages)
is as follows:

open LTO

eq n = 0 .

red (inv7(s,i) /\ ens9(s,i))

=> lto14(s,i,n) .

close

open LTO

op m : -> Nat . eq n = s(m) .

eq where(queue(s),i) = m .

eq (s(m) = m) = false .

red lto14(s,i,n) .

close

open LTO

op m : -> Nat . eq n = s(m) .

eq where(queue(s),i) = m . eq s(m) = m .

red nat-lemma2(m) implies lto14(s,i,n) .

close

open LTO

2814
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.12 DECEMBER 2008

op m : -> Nat . eq n = s(m) .

eq (where(queue(s),i) = m) = false .

red (inv8(s,i,m) /\ lto13(s,i,m))

=> lto14(s,i,n) .

close

CafeOBJ returns true for each of the four proof passages.

5.2 Proof Score of lto15

The leads-to property denoted by lto15 is deduced from
the leads-to property denoted by lto14. The proof score is
as follows:

open LTO

pr(INDOFLTO(PNAT)) .

red lto14(s,i,n) => lto15(s,i) .

close

CafeOBJ returns true for this proof score.

5.3 Proof Score of ens11

The two state predicates in the ensures property denoted by
ens11 are denoted by the operators unl11-1 and unl11-2,
which are defined in a module UNL (which imports QLOCK
and INV) as follows:

eq unl11-1(S,I,J,N)

= (pc(S,I) = wt and I \in queue(S) and

where(queue(S),I) = s(N) and

top(queue(S)) = J and pc(S,J) = wt) .

eq unl11-2(S,I,J,N)

= (pc(S,I) = wt and I \in queue(S) and

where(queue(S),I) = s(N) and

pc(S,top(queue(S))) = cs) .

S, I, J and N are CafeOBJ variables of Sys, Pid, Pid and
Nat, respectively. The constants i, j and n of Pid, Pid and
Nat are declared in UNL.

The basic formula to prove in the eventually case is de-
noted by the operator estep11, which is defined in a mod-
ule ESTEP (which imports UNL) as follows:

eq estep11(I,J,N)

= (unl11-1(s,I,J,N) and

not unl11-2(s,I,J,N))

implies unl11-2(s’,I,J,N) .

The basic formula to prove in the unless case is denoted by
the operator ustep11, which is defined in a module USTEP
(which imports UNL) as follows:

eq ustep11(I,J,N)

= (unl11-1(s,I,J,N) and

not unl11-2(s,I,J,N))

implies (unl11-1(s’,I,J,N) or

unl11-2(s’,I,J,N)) .

In the eventually case, all needed is to prove that there

exists a witness, namely an instance of a transition, that
makes estep11(i,j,m) true. We conjecture that tryj is
such a witness, which is confirmed by writing a proof score.
To this end, the case is split into five sub-cases. The five sets
of equations for the five sub-cases are as follows:

1. queue(s) = empty
2. queue(s) = k,q, (k = j) = false
3. queue(s) = k,q, k = j, i = j
4. queue(s) = k,q, k = j, (i = j) = false,
(pc(s,j) = wt) = false

5. queue(s) = k,q, k = j, (i = j) = false,
pc(s,j) = wt

where k is a constant (of Pid) denoting an arbitrary pro-
cess ID and q is a constant (of Queue) denoting an arbitrary
queue. The term k,q denotes an arbitrary non-empty queue.

The proof scores of the fifth sub-case is shown:

open ESTEP

op k : -> Pid . op q : -> Queue .

eq queue(s) = k,q . eq k = j .

eq (i = j) = false . eq pc(s,j) = wt .

eq s’ = try(s,j) .

red estep11(i,j,n) .

close

CafeOBJ returns true for the proof passage. The proof
scores of the remaining four sub-cases are written likewise.

In the unless case, all we have to do is to prove
istep11(i,j,n) for each instance of every transition
(every action operator). We describe the proof that an
arbitrary instance wantk of the transition want makes
istep11(i,j,n) true. For the proof, the case is split into
five sub-cases. The five sets of equations for the five sub-
cases are as follows:

1. pc(s,k) = cs, i = k
2. pc(s,k) = cs, (i = k) = false,
queue(s) = empty

3. pc(s,k) = cs, (i = k) = false,
queue(s) = l,q. l = k

4. pc(s,k) = cs, (i = k) = false,
queue(s) = l,q. (l = k) = false

5. c-exit(s,k) = false

where l is a constant (of Pid) denoting an arbitrary pro-
cess ID and q is a constant (of Queue) denoting an arbitrary
queue. Note that the equation pc(s,k) = cs is equivalent
to the equation c-exit(s,k) = true.

The proof of the fourth sub-case needs an invariant
property wrt SQlock and those of the remaining sub-cases do
not need any invariant properties and any lemmas on data
types. The invariant property needed for the proof of the
fourth sub-case is denoted by the operator inv2, which is
defined in the module INV as follows:

eq inv2(S,I) = (pc(S,I) = cs

implies top(queue(S)) = I) .

The proof score of the fourth sub-cases is shown:

OGATA and FUTATSUGI: PROOF SCORE APPROACH TO VERIFICATION OF LIVENESS PROPERTIES
2815

open USTEP

op k : -> Pid . op l : -> Pid .

op q : -> Queue .

eq pc(s,k) = cs . eq (i = k) = false .

eq queue(s) = l,q . eq (l = k) = false .

eq s’ = exit(s,k) .

red inv2(s,k) implies ustep11(i,j,n) .

close

CafeOBJ returns true for the proof passage.
The proof passages of the remaining four sub-cases

are written likewise. The proof passages that arbitrary in-
stances of the remaining transitions want and try make
istep11(i,j,n) true are also written likewise, which
need the three lemmas (queue-lemma3, queue-lemma8
and queue-lemma9; see Appendix A) on queues.

6. Related Work

Many methodologies have been proposed to verify that sys-
tems and/or programs satisfy liveness as well as safety
properties. Among such methodologies are UNITY [11],
IOA [21] and TLA [22]. Moreover, many formal tools
have been developed, which can be used to formalize
(or mechanize) such methodologies. Among such tools
are CafeOBJ [6], Larch [23], Isabelle [24], Coq [25] and
HOL [26]. IOA has been formalized in Larch [27], TLA has
been formalized in Larch and HOL [28], [29], and UNITY
has been formalized in Isabelle, Coq and HOL [12]–[14].
The OTS/CafeOBJ method has been largely influenced by
UNITY and may be regarded as a method of support-
ing formal verification of UNITY programs modeled as
OTSs. Therefore, we summarize one approach to formal-
izing UNITY.

Paulson [12] proposes a way to formalize (or mech-
anize) UNITY in Isabelle [24], which is a proof assis-
tant based on higher-order logic. The UNITY he uses is
new UNITY [30], [31], while the UNITY that affects the
OTS/CafeOBJ method is classic UNITY [11]. The most
primitive property (or temporal operator) is unless in classic
UNITY, while it is co (or next) in new UNITY. Given two
state predicates p and q, p co q is defined as follows: when-
ever p holds in a state of a UNITY program, every statement
of the program makes q hold in the successor state. unless
can be defined in terms of co, namely (p ∧ ¬q) co (p ∨ q),
which is equal to p unless q. Paulson formalizes the six ba-
sic properties (co, stable, invariant, transient, ensures and
leads-to) in Isabelle and reason about theorems on safety
and liveness properties with Isabelle. Given a state predi-
cate p, transient p is defined as follows: whenever p holds
in a state of a UNITY program, there exists a statement of
the program that makes p false in the successor state. He
also defines the weak version of the six basic properties so
that the basic properties satisfy the substitution axiom [32].
The weak version takes into account reachable states of pro-
grams. The definition of the five basic properties in this pa-
per correspond to the weak version.

Recently much attention has been paid to model check-
ing [33] because it can verify fully automatically that sys-
tems and/or programs satisfy safety and liveness properties.
Many model checkers have been developed. Basically, how-
ever, systems that can be model checked should be finite
state. On the other hand, interactive theorem proving such
as the OTS/CafeOBJ method and Isabelle/UNITY can also
be applied to infinite-state systems. Although abstraction
methods [34] make a finite-state abstract version of a given
(infinite-state) system and make it possible to model check
the abstract version with respect to a given property, it is
necessary to prove that the abstraction used preserves the
property, which usually needs (interactive) theorem proving.

7. Conclusion

We have described a way to verify that designs for systems
satisfy liveness properties in the OTS/CafeOBJ method. A
mutual exclusion protocol called Qlock has been used as
an example, and it has been verified that Qlock satisfies
the lockout freedom property, which can be expressed as a
leads-to property.

Proof scores of ensures properties are quite similar to
ones of invariant properties [3]–[5], and so are ones of un-
less and stable properties. This means that the verification
techniques and tips [3] devised for verification of invariant
properties can be used for verification of ensure properties.

In addition to the mutual exclusion protocol, we have
applied the proposed verification method to a workflow
system that takes into consideration some security poli-
cies [35], [36]. We still need to apply the method to a wider
variety of applications to demonstrate the usefulness of the
proposed verification method.

References

[1] K. Ogata and K. Futatsugi, “Proof score approach to verification of
liveness properties,” 17th International Conference on Software En-
gineering and Knowledge Engineering (17th SEKE), pp.608–613,
Knowledge Systems Institute, 2005.

[2] K. Futatsugi, J.A. Goguen, and K. Ogata, “Verifying design with
proof scores,” IFIP Working Conference on Verified Software: The-
ories, Tools, and Experiments (VSTTE), 2005.

[3] K. Ogata and K. Futatsugi, “Some tips on writing proof scores in
the OTS/CafeOBJ method,” Algebra, Meaning, and Computation:
Essays Dedicated to Joseph A. Goguen on the Occasion of His 65th
Birthday, LNCS, vol.4060, pp.596–615, Springer, 2006.

[4] K. Ogata and K. Futatsugi, “Proof scores in the OTS/CafeOBJ
method,” 6th IFIP WG6.1 International Conference on For-
mal Methods for Open Object-Based Distributed Systems (6th
FMOODS), LNCS, vol.2884, pp.170–184, Springer, 2003.

[5] R. Diaconescu, K. Futatsugi, and K. Ogata, “CafeOBJ: Logi-
cal foundations and methodologies,” Computing and Informatics,
vol.22, pp.257–283, 2003.

[6] R. Diaconescu and K. Futatsugi, CafeOBJ report: The Language,
Proof Techniques, and Methodologies for Object-Oriented Alge-
braic Specification, AMAST Series in Computing, vol.6, World Sci-
entific, 1998.

[7] K. Futatsugi, “Verifying specifications with proof scores in Cafe-
OBJ,” 21st International Conference on Automated Software Engi-
neering (ASE 2006), pp.3–10, IEEE Computer Society Press, 2006.

2816
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.12 DECEMBER 2008

[8] K. Ogata and K. Futatsugi, “Formal analysis of the iKP electronic
payment protocols,” 1st International Symposium on Software Se-
curity (1st ISSS), LNCS, vol.2609, pp.441–460, Springer, 2003.

[9] K. Ogata and K. Futatsugi, “Equational approach to formal analy-
sis of TLS,” 5th International Conference on Distributed Computing
Systems (25th ICDCS), pp.795–804, IEEE Computer Society Press,
2005.

[10] W. Kong, K. Ogata, and K. Futatsugi, “Algebraic approaches to for-
mal analysis of the Mondex electronic purse system,” 6th Interna-
tional Conference on Integrated Formal Methods (6th IFM), LNCS,
vol.4591, pp.393–412, Springer, 2007.

[11] K.M. Chandy and J. Misra, Parallel Program Design: A Foundation,
Addison-Wesley, 1988.

[12] L.C. Paulson, “Mechanizing UNITY in Isabelle,” ACM Trans. Com-
putational Logic, vol.1, no.1, pp.3–32, 2000.

[13] B. Heyd and P. Crégut, “A modular coding of UNITY in Coq,” 9th
International Conference on Theorem Proving in Higer Order Logics
(9th TPHOLs), LNCS, vol.1125, pp.251–266, Springer, 1996.

[14] F. Anderson, K. Petersen, and J. Petterson, “Program verification
using HOL-UNITY,” 6th International Workshop on Higher Order
Logic and its Applications (6th HUG), LNCS, vol.780, pp.1–16,
Springer, 1993.

[15] J. Pachl, “A simple proof of a completeness result for leads-to in the
UNITY logic,” Inf. Process. Lett., vol.41, pp.35–38, 1992.

[16] J. Goguen and G. Malcolm, “A hidden agenda,” Theor. Comput. Sci.,
vol.245, pp.55–101, 2000.

[17] R. Diaconescu and K. Futatsugi, “Behavioural coherence in object-
oriented algebraic specification,” J. Universal Computer Science,
vol.6, pp.74–96, 2000.

[18] J. Hsiang and N. Dershowitz, “Rewrite methods for clausal and non-
clausal theorem proving,” 10th EATCS International Colloquium
on Automata, Languages, and Programming (10th ICALP), LNCS,
vol.154, pp.331–346, Springer, 1983.

[19] T. Seino, K. Ogata, and K. Futatsugi, “A toolkit for generating and
displaying proof scores in the OTS/CafeOBJ method,” 6th Interna-
tional Workshop on Rule-Based Programming (6th RULE), ENTCS,
vol.147, pp.57–72, Elsevier, 2006.

[20] M. Nakano, K. Ogata, M. Nakamura, and K. Futatsugi, “Creme:
An automatic invariant prover of behavioral specifications,” Int. J.
Software Engineering and Knowledge Engineering, vol.17, no.6,
pp.783–804, 2007.

[21] N.A. Lynch, Distributed Algorithms, Morgan-Kaufmann, San
Francisco, CA, 1996.

[22] L. Lamport, “The temporal logic of actions,” ACM Trans. Program-
ming Languages and Systems, vol.16, no.3, pp.872–923, 1994.

[23] J.V. Guttag, J.J. Horning, S.J. Garland, K.D. Jones, A. Modet, and
J.M. Wing, Larch: Languages and Tools for Formal Specification,
Springer, 1993.

[24] T. Nipkow, L.C. Paulson, and M. Wenzel, Isabelle/HOL: A Proof
Assistant for Higher-Order Logic, LNCS, vol.2283, Springer,
Berlin, 2002.

[25] Y. Bertot and P. Castéran, Interactive Theorem Proving and Program
Development – Coq’Art: The Calculus of Inductive Constructions,
Springer, Berlin, 2004.

[26] M.J.C. Gordon and T.F. Melham, Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic, Cambridge Univer-
sity Press, 1993.

[27] S.J. Garland and N.A. Lunch, “The IOA language and toolset:
Supprt for designing, analyzing, and building distributed systems,”
Technical Report MIT/LCS/TR-762, 1998.

[28] U. Engberg, P. Gronning, and L. Lamport, “Mechanical verification
of concurrent systems with TLA,” 4th International Conference on
Computer Aided Verification (4th CAV), LNCS, vol.663, pp.44–55,
Springer, 1992.

[29] T. Langbacka, “A HOL formalization of the temoral logic of ac-
tions,” 7th International Workshop on Higher Order Logic and its
Applications (7th HUG), LNCS, vol.859, pp.332–345, Springer,

1994.
[30] J. Misra, “A logic for concurrent programming: Safety,” J. Computer

and Software Engineering, vol.3, no.2, pp.239–272, 1995.
[31] J. Misra, “A logic for concurrent programming: Progress,” J. Com-

puter and Software Engineering, vol.3, no.2, pp.273–300, 1995.
[32] B.A. Sanders, “Eliminating the substitution axiom from UNITY

logic,” Formal Aspects of Computing, vol.3, no.2, pp.189–205,
1991.

[33] J. Edmund, M. Clarke, O. Grumberg, and D.A. Peled, Model Check-
ing, The MIT Press, 2001.

[34] E.M. Clarke, O. Grumberg, and D.E. Long, “Model checking and
abstraction,” ACM TOPLAS, vol.16, no.5, pp.1512–1542, 1994.

[35] W. Kong, K. Ogata, and K. Futatsugi, “Formal analysis of work-
flow systems with security considerations,” 17th International Con-
ference on Software Engineering and Knowledge Engineering (17th
SEKE), pp.531–536, Knowledge Systems Institute, 2005.

[36] W. Kong, K. Ogata, and K. Futatsugi, “Specification and verifica-
tion of workflows with RBAC mechanism and SoD constraints,” Int.
J. Software Engineering and Knowledge Engineering, vol.17, no.1,
pp.3–32, 2007.

Appendix A: Lemmas on Data Types

The lemmas on natural numbers that are needed for the ver-
ification of Qlock on the lockout freedom property are as
follows:

eq nat-lemma1(X,Y)

= (X = Y iff s(X) = s(Y)) .

eq nat-lemma2(X) = not(X = s(X)) .

where X and Y are CafeOBJ variables of Nat. The equation
is declared in the module PNAT.

The lemmas on queues that are needed for the verifica-
tion are as follows:

eq queue-lemma1(Q,X) = X \in put(Q,X) .

eq queue-lemma2(Q,X,Y)

= X \in Q implies X \in put(Q,Y) .

eq queue-lemma3(Q,X,Y) = (X \in put(Q,Y)

iff (X = Y or X \in Q)) .

eq queue-lemma4(Q,X)

= (X \in get(Q) implies X \in Q) .

eq queue-lemma5(Q,X)

= (X \in del(put(Q,X),X) iff X \in Q) .

eq queue-lemma6(Q,X,Y)

= (not(X = Y) and X \in del(put(Q,Y),X)

implies X \in del(Q,X)) .

eq queue-lemma7(Q,X)

= (X \in del(Q,X) implies X \in Q) .

eq queue-lemma8(Q,X) = X \in Q implies

(top(Q) = X iff where(Q,X) = 0) .

eq queue-lemma9(Q,X,Y,N) = X \in Q implies

(aux-where(Q,X) = N

implies aux-where(put(Q,Y),X) = N) .

eq queue-lemma10(Q,X) = X \in Q implies

(where(Q,X) = aux-where(Q,X)) .

where Q, X, Y and N are CafeOBJ variables of Queue, Elt.D,
Elt.D and Nat, respectively. The equations are declared in
the module QUEUE.

OGATA and FUTATSUGI: PROOF SCORE APPROACH TO VERIFICATION OF LIVENESS PROPERTIES
2817

Appendix B: Invariant Properties

The invariant properties wrt SQlock that are needed for the
verification are as follows:

eq inv1(S,I,J)

= (pc(S,I) = cs and pc(S,J) = cs

implies I = J) .

eq inv2(S,I) = (pc(S,I) = cs implies

top(queue(S)) = I) .

eq inv3(S,I) = (I \in queue(S)

iff (pc(S,I) = wt or pc(S,I) = cs)) .

eq inv4(S,I) = (top(queue(S)) = I

implies not(I \in get(queue(S)))) .

eq inv5(S,I) = not(I \in del(queue(S),I)) .

eq inv6(S,I) = (pc(S,I) = wt implies

pc(S,I) = wt and I \in queue(S)) .

eq inv7(S,I)

= (pc(S,I) = wt and I \in queue(S)

and where(queue(S),I) = 0

implies

pc(S,I) = wt and top(queue(S)) = I) .

eq inv8(S,I,N)

= (pc(S,I) = wt and I \in queue(S)

and where(queue(S),I) = s(N)

implies

pc(S,I) = wt and I \in queue(S)

and where(queue(S),I) = s(N)

and (pc(S,top(queue(S))) = wt or

pc(S,top(queue(S))) = cs)) .

where S, I, J and N are CafeOBJ variables of Sys, Pid, Pid,
Nat, respectively. The equations are declared in the module
INV.

Kazuhiro Ogata is a research associate pro-
fessor at Graduate School of Information Sci-
ence, JAIST (Japan Advanced Institute of Sci-
ence and Technology). He received his Ph.D.
in engineering from Graduate School of Science
and Technology, Keio University in 1995. He
was a research associate at JAIST from 1995
to 2001, a researcher at SRA Key Technology
Laboratory, Inc. from 2001 to 2002, and a re-
search expert at NEC Software Hokuriku, Ltd.
from 2002 to 2006. Among his research inter-

ests are software engineering, formal methods and formal verification.

Kokichi Futatsugi is a professor at Grad-
uate School of Information Science, JAIST
(Japan Advanced Institute of Science and Tech-
nology). Before getting a full professorship
at JAIST in 1993, he was working for ETL
(Electrotechnical Lab.) of Japanese Govern-
ment and was assigned to be Chief Senior Re-
searcher of ETL in 1992. His research inter-
ests include formal methods, system verifica-
tions, software requirements/specifications, lan-
guage design, concurrent and cooperative com-

puting. His primary research goal is to design and develop new languages
which can open up new application areas, and/or improve the current soft-
ware technology. His current approach for this goal is CafeOBJ formal
specification language. CafeOBJ is multi-paradigm formal specification
language which is a modern successor of the most noted algebraic specifi-
cation language OBJ.

