<table>
<thead>
<tr>
<th>Title</th>
<th>A constructive look at the completeness of the space DR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ishihara, Hajime; Yoshida, Satoru</td>
</tr>
<tr>
<td>Citation</td>
<td>The Journal of Symbolic Logic, 67(4): 1511-1519</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2002-12</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10119/8526</td>
</tr>
</tbody>
</table>
A CONSTRUCTIVE LOOK AT THE COMPLETENESS OF THE SPACE $\mathcal{D}(\mathbb{R})$

HAJIME ISHIHARA AND SATORU YOSHIDA

Abstract. We show, within the framework of Bishop’s constructive mathematics, that (sequential) completeness of the locally convex space $\mathcal{D}(\mathbb{R})$ of test functions is equivalent to the principle BD-\mathbb{N} which holds in classical mathematics, Brouwer’s intuitionism and Markov’s constructive recursive mathematics, but does not hold in Bishop’s constructivism.

§1. Introduction. The space $\mathcal{D}(\mathbb{R})$ of all infinitely differentiable functions $f : \mathbb{R} \to \mathbb{R}$ with compact support together with a locally convex structure defined by the seminorms

$$p_{\alpha, \beta}(f) := \sup_n \sup_{l \leq \beta(n)} \sup_{|x| \geq n} 2^{\alpha(n)} |f^{(l)}(x)| \quad (\alpha, \beta \in \mathbb{N} \to \mathbb{N})$$

is an important example of a locally convex space. Classically the space $\mathcal{D}(\mathbb{R})$—the space of test functions—is complete, but it has not been known whether the constructive completion of $\mathcal{D}(\mathbb{R})$, whose explicit description was given in [1, Appendix A] and [2, Chapter 7, Notes], coincides with the original space or not. This leads us to a difficulty in developing the theory of distributions in Bishop’s constructive mathematics; see [1, Appendix A] and [2, Chapter 7, Notes] for more details.

The aim of our paper is to find a principle which is necessary and sufficient to establish the completeness of $\mathcal{D}(\mathbb{R})$. Although it is formulated in the setting of informal Bishop-style constructive mathematics, the proofs could easily be formalized in a system based on intuitionistic finite-type arithmetics \mathcal{HA}^n [8, Chapter 1], [9, Chapter 9]; see also [5].

A subset A of \mathbb{N} is said to be pseudobounded if for each sequence $\{a_n\}$ in A,

$$\lim_{n \to \infty} \frac{a_n}{n} = 0.$$

A bounded subset of \mathbb{N} is pseudobounded. The converse for countable sets holds in classical mathematics, intuitionistic mathematics and constructive recursive mathematics of Markov’s school; see [6]. However, a natural recursivisation of the following principle is independent of Heyting arithmetic [4].

BD-\mathbb{N}: Every countable pseudobounded subset of \mathbb{N} is bounded. BD-\mathbb{N} has been proved to be equivalent to the following theorems [6, 7, 4]: Banach’s inverse mapping theorem; the open mapping theorem; the closed graph theorem;
the Banach-Steinhaus theorem: the Hellinger-Toeplitz theorem: every sequentially continuous mapping of a separable metric space into a metric space is pointwise continuous; every uniformly sequentially continuous mapping of a separable metric space into a metric space is uniformly continuous. In this paper, we will show that it is also equivalent to the (sequential) completeness of $\mathcal{D}(\mathbb{R})$.

In the rest of the paper, we assume familiarity with the constructive calculus, as found in [1, Chapter 2], [3, Appendix], [2, Chapter 2], or [9, Chapter 6]. In the next section, we shall show that the test function

$$
\hat{\phi}(x) := \begin{cases}
\exp \left(-\frac{1}{1-x^2} \right) & \text{if } |x| < 1 \\
0 & \text{if } |x| \geq 1
\end{cases}
$$

is well-defined in Bishop’s constructive mathematics. In the last section, we shall prove our main result with the completeness of the space $\mathcal{F}(\mathbb{R})$, which is another important example of a locally convex space, of all uniformly continuous functions $f : \mathbb{R} \to \mathbb{R}$ with compact support together with the seminorms

$$
g_o(f) := \sup_n \sup_{|x| \geq n} 2^{n(a)}|f(x)| \quad (\alpha \in \mathbb{N} \to \mathbb{N}).
$$

Note that since functions differentiable on a compact interval are uniformly continuous on the interval, functions in $\mathcal{D}(\mathbb{R})$ belong to $\mathcal{F}(\mathbb{R})$.

§2. An example of a test function. A function $f : (a, b) \to \mathbb{R}$ is said to vanish at end points if for each k there exists m such that for all $x \in (a, b)$,

$$
x < a + 2^{-m} \lor b - 2^{-m} < x \implies |f(x)| < 2^{-k}.
$$

Proposition 1. Let $f : (a, b) \to \mathbb{R}$ be a function which vanishes at end points and is uniformly continuous on each compact subinterval of (a, b). Then there exists a uniformly continuous function $\tilde{f} : \mathbb{R} \to \mathbb{R}$ such that $f = \tilde{f}$ on (a, b) and $f = 0$ on $(-\infty, a) \cup (b, \infty)$.

Proof. We first show that f is uniformly continuous on (a, b). To this end, let $k \in \mathbb{N}$. Then there exists m such that for all $x \in (a, b)$,

$$
x < a + 2^{-m} \lor b - 2^{-m} < x \implies |f(x)| < 2^{-k-1}.
$$

Since f is uniformly continuous on each compact subinterval of (a, b), we can find $n > m$ such that for all $x, y \in [a + 2^{-m-2}, b - 2^{-m-2}]$,

$$
|x - y| < 2^{-n} \implies |f(x) - f(y)| < 2^{-k}.
$$

Let $x, y \in (a, b)$ with $|x - y| < 2^{-n}$. Then since $(a, b) = (a, a + 2^{-m-1}) \cup (a + 2^{-m-2}, b - 2^{-m-1}) \cup (b - 2^{-m-1}, b)$, either $x, y \in (a + 2^{-m-2}, b - 2^{-m-2})$, $x \in (a, a + 2^{-m-1}) \cup (b - 2^{-m-1}, b)$, or $y \in (a, a + 2^{-m-1}) \cup (b - 2^{-m-1}, b)$. In the first case, we have $|f(x) - f(y)| < 2^{-k}$. In the second case, if $x \in (a, a + 2^{-m-1})$, then

$$
a < y \leq x + |x - y| < a + 2^{-m-1} + 2^{-n} \leq a + 2^{-m},
$$

and hence $a < y < a + 2^{-m}$, or else $x \in (b - 2^{-m-1}, b)$, similarly we have $b - 2^{-m} < y < b$. Hence

$$
|f(x) - f(y)| \leq |f(x)| + |f(y)| < 2^{-k-1} + 2^{-k-1} = 2^{-k}.
$$
In the last case, similarly we have $|f(x) - f(y)| < 2^{-k}$. Therefore f is uniformly continuous on (a,b).

Define the function $F : (-\infty, a) \cup (a, b) \cup (b, \infty) \to \mathbb{R}$ by

$$F(x) := \begin{cases} f(x) & \text{if } a < x < b \\ 0 & \text{if } x < a \text{ or } b < x. \end{cases}$$

We show that F is uniformly continuous on $(-\infty, a) \cup (a, b) \cup (b, \infty)$. Let $k \in \mathbb{N}$. Then there exists n such that for all $x, y \in (a,b)$,

$$|x - y| < 2^{-n} \implies |f(x) - f(y)| < 2^{-k}.$$

$x < a + 2^{-n} \lor b - 2^{-n} < x \implies |f(x)| < 2^{-k}$.

Let $x, y \in (-\infty, a) \cup (a, b) \cup (b, \infty)$ with $|x - y| < 2^{-n}$. Then either $x, y \in (a,b)$, $x \in (-\infty, a) \cup (b, \infty)$, or $y \in (-\infty, a) \cup (b, \infty)$. In the first case, we have

$$|F(x) - F(y)| = |f(x) - f(y)| < 2^{-k}.$$

In the second case, if $x \in (-\infty, a)$, then $y \in (-\infty, a) \cup (a, a + 2^{-n})$, and hence

$$|F(x) - F(y)| = |F(y)| < 2^{-k};$$

or else $x \in (b, \infty)$, we have $y \in (b - 2^{-n}, b) \cup (b, \infty)$, and hence $|F(x) - F(y)| < 2^{-k}$.

The last case is similar. Thus F is uniformly continuous.

Therefore by [2, Lemma 4.3.7], there exists a uniformly continuous function $\hat{f} : \mathbb{R} \to \mathbb{R}$ such that $\hat{f}(x) = F(x)$ for all $x \in (-\infty, a) \cup (a, b) \cup (b, \infty)$.

A function f from a subset X of \mathbb{R} into \mathbb{R} is uniformly differentiable on X, with a derivative f', if for each k, there exists n such that for all $x, y \in X$,

$$|x - y| < 2^{-n} \implies |f'(x)(x - y) - (f(x) - f(y))| < 2^{-k}.$$

We shall use the familiar notation for iterated derivatives: $f^{(0)} := f$, $f^{(l+1)} := f^{(l)}$.

Let $f, f' : (a, b) \to \mathbb{R}$ be functions which vanish at end points, and suppose that f is uniformly differentiable on each compact subinterval of (a, b) with a derivative f'. Then by [3, A.1], f and f' are uniformly continuous on each compact subinterval of (a, b), and hence they have the uniformly continuous extensions \hat{f} and \hat{f}'.

Proposition 2. Let $f, f' : (a, b) \to \mathbb{R}$ be functions which vanish at end points, and suppose that f is uniformly differentiable on each compact subinterval of (a, b) with a derivative f'. Then f is uniformly differentiable on \mathbb{R} with a derivative \hat{f}'.

Proof. We first show that f is uniformly differentiable on (a,b) with a derivative f'. To this end, let $k \in \mathbb{N}$. Then since $f^{[k]}$ is uniformly continuous, there exists n such that for all $x, y \in (a,b)$,

$$|x - y| < 2^{-n} \implies |f^{[k]}(x) - f^{[k]}(y)| < 2^{-k}.$$

Let $x, y \in (a,b)$ with $|x - y| < 2^{-n}$, and note that

$$f(w) = \int_y^w f'(t)dt + f(y)$$
on a compact subinterval of \((a, b)\) containing \(x\) and \(y\); see \cite[Theorem 2.6.8]{2}. Then
\[
|f'(x)(x - y) - (f(x) - f(y))| = |f'(x)(x - y) - \int_y^x f'(t)dt| = \int_y^x |f'(x) - f'(t)|dt \leq 2^{-k}|x - y|.
\]
Therefore \(f\) is uniformly differentiable on \((a, b)\) with a derivative \(f'\).

We show that \(\hat{f}\) is uniformly differentiable on \(\mathbb{R}\) with a derivative \(\hat{f}'\). For given \(k \in \mathbb{N}\), there exists \(n\) such that for all \(x, y \in (a, b)\),
\[
|x - y| < 2^{-n} \implies |f'(x)(x - y) - (f(x) - f(y))| \leq 2^{-k-1}|x - y|,
\]
and hence choosing \(w \in (a, a + 2^{-n})\), then since \(|f(w)| < 2^{-m}\), we have
\[
|\hat{f}'(x)(x - y) - (\hat{f}(x) - \hat{f}(y))| > 2^{-k}|x - y|.
\]
Then there exist \(u, v \in (-\infty, a) \cup (a, b) \cup (b, \infty)\) with \(|u - v| < 2^{-n}\) and \(m\) such that
\[
|\hat{f}'(u)(u - v) - (\hat{f}(u) - \hat{f}(v))| > 2^{-k}|u - v| + 2^{-m}.
\]
Either \(u, v \in (a, b), u \in (-\infty, a) \cup (b, \infty),\) or \(v \in (-\infty, a) \cup (b, \infty)\). The first case is absurd. In the second case, if \(u \in (-\infty, a)\), then since \(v \in (-\infty, a)\) is impossible, \(v \in (a, a + 2^{-n})\), and hence choosing \(w\) with \(a < w < v < a + 2^{-n}\) so that \(|f(w)| < 2^{-m}\), we have
\[
2^{-k}|u - v| + 2^{-m} < |\hat{f}'(u)(u - v) - (\hat{f}(u) - \hat{f}(v))| \leq |f'(w)(w - v) - (f(w) - f(v))| \leq |f'(w)(w - v)| + |f(w)| + 2^{-k-1}|w - v| + 2^{-m} < 2^{-k}|u - v| + 2^{-m},
\]
a contradiction; or else \(u \in (b, \infty)\), by a similar argument, we have a contradiction. Similarly the last case is absurd. Therefore
\[
|\hat{f}'(x)(x - y) - (\hat{f}(x) - \hat{f}(y))| \leq 2^{-k}|x - y|. \tag{1}
\]

The function
\[
\varphi(x) := \exp\left(-\frac{1}{1 - x^2}\right)
\]
from \((-1, 1)\) to \(\mathbb{R}\) is infinitely differentiable on each compact subinterval of \((-1, 1)\), and its \(l\)-th derivative is
\[
\varphi^{(l)}(x) = \frac{P_l(x)}{(1 - x^2)^{l+1}}\exp\left(-\frac{1}{1 - x^2}\right).
\]
Define a sequence \(n \geq n \) hence for some polynomial \(P_t \). Since for each \(m \) and \(k \) there exists \(n \) such that
\[
t > 2^n \implies \frac{t^m}{\exp(t)} < 2^{-k} \quad (t \in \mathbb{R}),
\]
each \(\varphi^{(l)} \) vanishes at end points. Hence \(\hat{\varphi} = \varphi^{(0)} \) is infinitely differentiable on \(\mathbb{R} \), and its \(l \)-th derivative \(\varphi^{(l)} \) is \(\varphi^{(l)}(\cdot) \).

§3. Completeness and BD-\(\mathbb{N} \).

Lemma 3. A subset \(A \) of \(\mathbb{N} \) is pseudobounded if and only if for each sequence \(\{a_n\} \in A \), \(a_n < n \) for all sufficiently large \(n \).

Proof. The “only if” part is trivial. To prove the converse, let \(\{a_n\} \) be a sequence in \(A \), \(\alpha \) a positive integer, and construct a binary sequence such that
\[
\hat{\lambda}_n = 0 \implies \max \left\{ a_m/m : n2^k \leq m < (n + 1)2^k \right\} < 2^{-k},
\]
\[
\hat{\lambda}_n = 1 \implies \max \left\{ a_m/m : n2^k \leq m < (n + 1)2^k \right\} \geq 2^{-k}.
\]
Define a sequence \(\{a'_n\} \) in \(A \) as follows: if \(\hat{\lambda}_n = 0 \), set \(a'_n := a_0 \); if \(\hat{\lambda}_n = 1 \), choose \(m \) with \(n2^k \leq m < (n + 1)2^k \) such that \(a_m/m \geq 2^{-k} \) and set \(a'_n := a_m \). Then there exists a positive integer \(N \) such that \(a'_n < n \) for all \(n \geq N \). If \(\hat{\lambda}_n = 1 \) for some \(n \geq N \), then there exists \(m \) such that \(n2^k \leq m < (n + 1)2^k \) and \(a'_n/m \geq 2^{-k} \), and hence
\[
n \leq m2^{-k} \leq a'_n < n.
\]
a contradiction. Thus \(\hat{\lambda}_n = 0 \) for all \(n \geq N \).

Theorem 4. The following are equivalent.

1. \(\mathcal{F}(\mathbb{R}) \) is (sequentially) complete.
2. \(\mathcal{D}(\mathbb{R}) \) is (sequentially) complete.
3. BD-\(\mathbb{N} \).

Proof. (3) \(\implies \) (1). Let \(\{f_i\} \) be a Cauchy sequence in \(\mathcal{F}(\mathbb{R}) \). Then taking \(\alpha := \hat{\lambda}n.0 \), for each \(\beta \) there exists \(I \) such that
\[
\sup_{|x| \geq 0} |f_i(x) - f_j(x)| \leq q_\alpha(f_i - f_j) < 2^{-k} \quad (i, j \geq I).
\]
By a straightforward modification of the proof of [2, Theorem 2.4.11], \(\{f_i\} \) converges uniformly to a uniformly continuous function \(f \). Note that for each \(\alpha \in \mathbb{N} \to \mathbb{N} \) and \(k \) there exists \(I \) such that
\[
\forall n \forall x \in \mathbb{R}(|x| \geq n \implies 2^nq_\alpha(x) - f(x) \leq 2^{-k}) \quad (i \geq I).
\]
In fact, given \(\alpha \in \mathbb{N} \to \mathbb{N} \) and \(k \), there exists \(I \) such that \(q_\alpha(f_i - f_j) < 2^{-k-1} \) for all \(i, j \geq I \). Let \(i \geq I \), and suppose that there exists \(n \) such that \(2^{n+1}|f_i(x) - f(x)| \leq 2^{-k} \) for some \(x' \in \mathbb{R} \) with \(|x'| \geq n \). Then there exists \(j \) with \(j \geq I \) such that \(|f_j(x) - f(x)| < 2^{-\alpha(n)-k-1} \) for all \(x \in \mathbb{R} \), and hence
\[
2^{-k} \leq 2^nq_\alpha(f_i(x') - f(x')) \leq 2^nq_\alpha(f_i(x') - f_j(x')) + 2^nq_\alpha(f_j(x') - f(x')) \leq q_\alpha(f_i - f_j) + 2^{-k-1} < 2^{-k}.
\]
a contradiction. We shall show that \(f \) has compact support, and hence \(\{f_i\} \) converges to \(f \) in \(\mathcal{S}(\mathbb{R}) \). To this end, let

\[
A := \{0\} \cup \{n \in \mathbb{N} : \exists m \in \mathbb{N} \forall u \in \mathbb{Q}(|u| \geq n \land |f(u)| > 2^{-m})\}.
\]

Then \(A \) is a countable subset of \(\mathbb{N} \). Given sequence \(\{a_n\} \) in \(A \), construct a binary sequence \(\{\lambda_n\} \) such that \(\lambda_0 := 0 \) and for \(n \geq 1 \),

\[
\lambda_n = 0 \implies a_n < n, \\
\lambda_n = 1 \implies a_n \geq n.
\]

Define a sequence \(\alpha \in \mathbb{N} \to \mathbb{N} \) as follows: if \(\lambda_n = 0 \), set \(\alpha(n) := 0 \); if \(\lambda_n = 1 \), choose \(m \) such that \(\exists u \in \mathbb{Q}(|u| \geq a_n \land |f(u)| > 2^{-m}) \) and set \(\alpha(n) := m \). Then there exists \(I \) such that

\[
\forall n \forall x \in \mathbb{R}(|x| \geq n \implies 2^{\alpha(n)}|f_I(x) - f(x)| \leq 1).
\]

Choosing \(N \) such that \(f_I(x) = 0 \) for all \(x \in \mathbb{R} \) with \(|x| \geq N \), consider any integer \(n \geq N \). If \(\lambda_n = 1 \), then there exists \(u \in \mathbb{Q} \) such that \(|u| \geq a_n \geq n \geq N \) and \(|f(u)| > 2^{-\alpha(n)} \), and hence

\[
1 < 2^{\alpha(n)}|f(u)| = 2^{\alpha(n)}|f_I(u) - f(u)| \leq 1,
\]

a contradiction. Thus \(\lambda_n = 0 \) for all \(n \geq N \). Therefore \(A \) is pseudobounded, and so \(A \) is bounded, that is \(f \) has compact support.

\((1) \implies (2)\). Let \(\{f_i\} \) be a Cauchy sequence in \(\mathcal{S}(\mathbb{R}) \). Then for each \(l, \alpha \in \mathbb{N} \to \mathbb{N} \) and \(k \), letting \(\beta := \lambda n l \), there exists \(I \) such that

\[
g_{\alpha}(f_i^l) - f_j^l) \leq g_{\alpha,\beta}(f_i^l - f_j^l) < 2^{-k} \quad (i, j \geq l).
\]

Hence for each \(l \), \(\{f_i^l\} \) is a Cauchy sequence in \(\mathcal{S}(\mathbb{R}) \), and thus converges to a limit \(f^l \) in \(\mathcal{S}(\mathbb{R}) \). We show that \(f^l \) is uniformly differentiable on \(\mathbb{R} \) with a derivative \(f^{l+1} \), and so \(f := f^{(0)} \in \mathcal{S}(\mathbb{R}) \). For given \(k \), since \(f^{l+1} \) is uniformly continuous, there exists \(n \) such that for all \(x, y \in \mathbb{R} \),

\[
|x - y| < 2^{-n} \implies |f^{l+1}(x) - f^{l+1}(y)| < 2^{-k}.
\]

Let \(x, y \in \mathbb{R} \) with \(|x - y| < 2^{-n} \). Then since \(\{f_i^l\} \) and \(\{f_i^{l+1}\} \) converge uniformly to \(f^l \) and \(f^{l+1} \) respectively, we have

\[
f^l(x) - f^l(y) = \lim_{i \to \infty} \left(f_i^l(x) - f_i^l(y) \right) = \lim_{i \to \infty} \int_y^x f_i^{l+1}(t) dt = \int_y^x f^{l+1}(t) dt
\]

by [2, Lemma 2.6.9], and hence

\[
|f^{l+1}(x)(x - y) - (f^l(x) - f^l(y))| \\
= \left| f^{l+1}(x)(x - y) - \int_y^x f^{l+1}(t) dt \right| \\
= \left| \int_y^x f^{l+1}(x) - f^{l+1}(t) dt \right| \\
\leq 2^{-k}|x - y|.
\]
We show that \(\{ f_i \} \) converges to \(f \) in \(\mathcal{D}(\mathbb{R}) \). For given \(\alpha, \beta \in \mathbb{N} \to \mathbb{N} \) and
\(k \in \mathbb{N} \), there exists \(I \) such that
\(p_{\alpha, \beta}(f_i - f_j) < 2^{-k-1} \) for all \(i, j \geq I \). Suppose
that \(p_{\alpha, \beta}(f_i - f_j) > 2^{-k} \) for some \(i \geq I \). Then there exists \(n \) and \(l \) with \(l \leq \beta(n) \) such that
\(\sup_{|x| \geq n} 2^{\alpha(n)} |f_i^{(l)}(x) - f_j^{(l)}(x)| > 2^{-k} \). Choosing \(j \geq I \) so that
\(q_{\alpha}(f_j^{(l)} - f_i^{(l)}) < 2^{-k-1} \), we have
\[
2^{-k} < \sup_{|x| \geq n} 2^{\alpha(n)} |f_i^{(l)}(x) - f_j^{(l)}(x)| \\
\leq \sup_{|x| \geq n} 2^{\alpha(n)} |f_i^{(l)}(x) - f_j^{(l)}(x)| + \sup_{|x| \geq n} 2^{\alpha(n)} |f_j^{(l)}(x) - f_i^{(l)}(x)| \\
\leq p_{\alpha, \beta}(f_i - f_j) + q_{\alpha}(f_i^{(l)} - f_j^{(l)}) < 2^{-k},
\]
a contradiction. Therefore \(p_{\alpha, \beta}(f_i - f_j) \leq 2^{-k} \) for all \(i \geq I \).

(2) \(\implies \) (3). Let \(A \) be a pseudobounded subset of \(\mathbb{N} \) and \(\{ a_n \} \) an enumeration of \(A \). We may assume that \(a_n \geq 1 \) for all \(n \). For each \(m \), define the infinitely differentiable function \(g_m : \mathbb{R} \to \mathbb{R} \) by
\[
g_m(x) := \frac{\hat{\phi}(2(x - a_m) + 1)}{2^m}.
\]
Then
- \(0 < g_m(a_m - 1/2) \) for all \(m \),
- \(0 < |g_m^{(l)}(x)| \implies 0 \leq a_m - 1 \leq x \leq a_m \) for all \(m \) and \(l \), and
- for each \(l \) and \(\varepsilon > 0 \) there exists \(I \) such that
\[
\sum_{m=I}^{\infty} |g_m^{(l)}(x)| < \varepsilon \quad (x \in \mathbb{R}).
\]
We shall show that the sequence \(\{ f_i \} := \{ \sum_{m=0}^{\infty} g_m(x) \} \) in \(\mathcal{D}(\mathbb{R}) \) is a Cauchy sequence. To this end, we first show that
\[
\sup_{|x| \geq n} \sum_{m=0}^{\infty} |g_m^{(l)}(x)|
\]
exists for all \(\alpha \in \mathbb{N} \to \mathbb{N} \), \(n \) and \(l \), and hence
\[
S_n^{\alpha, \beta} := \max_{I \leq \beta(n)} \sup_{|x| \geq n} \sum_{m=0}^{\infty} |g_m^{(l)}(x)|
\]
exists for all \(\alpha, \beta \in \mathbb{N} \to \mathbb{N} \), \(n \) and \(l \). Fix \(\alpha \in \mathbb{N} \to \mathbb{N} \), \(n \) and \(l \), and let \(a, b \in \mathbb{R} \) with \(a < b \). Then there exists \(I \) such that
\[
\sum_{m=I+1}^{\infty} |g_m^{(l)}(x)| < \frac{b - a}{2^{\alpha(n) + 1}} \quad (x \in \mathbb{R}).
\]
Either \(a < \sup_{|x| \geq n} 2^{\alpha(n)} \sum_{m=0}^{I} |g_m^{(l)}(x)| \) or \(\sup_{|x| \geq n} 2^{\alpha(n)} \sum_{m=0}^{I} |g_m^{(l)}(x)| < (a + b)/2 \): in the former case, we have
\[
a < 2^{\alpha(n)} \sum_{m=0}^{I} |g_m^{(l)}(x')| \leq 2^{\alpha(n)} \sum_{m=0}^{\infty} |g_m^{(l)}(x')|.
\]
for some \(x' \in \mathbb{R} \) with \(|x'| \geq n \); in the latter case, we have

\[
2^{\alpha(n)} \sum_{m=0}^{\infty} |g_m^{(l)}(x)| \leq 2^{\alpha(n)} \sum_{m=0}^{I} |g_m^{(l)}(x)| + 2^{\alpha(n)} \sum_{m=I+1}^{\infty} |g_m^{(l)}(x)| < b
\]

for all \(x \in \mathbb{R} \) with \(|x| \geq n \). Therefore by the constructive least-upper-bound principle [2, Proposition 2.4.3], the supremum exists.

For given \(\alpha, \beta \in \mathbb{N} \rightarrow \mathbb{N} \) and \(k \), construct a binary sequence \(\{ \lambda_n \} \) such that

\[
\lambda_n = 0 \implies s_n^{\alpha \beta} < 2^{-k},
\]

\[
\lambda_n = 1 \implies s_n^{\alpha \beta} > 0.
\]

Define a sequence \(\{ a_n' \} \) in \(A \) as follows: if \(\lambda_n = 0 \), set \(a_n' := a_0 \); if \(\lambda_n = 1 \), choosing \(l \leq \beta(n) \), \(x \in \mathbb{R} \) with \(|x| \geq n \) and \(m \) such that \(0 < |g_m^{(l)}(x)| \), we have \(n \leq x \leq a_m \), and set \(a_n' := a_m \). Then since \(A \) is pseudobounded, there exists \(N \) such that \(a_n' < n \) for all \(n \geq N \). If \(\lambda_n = 1 \) for some \(n \geq N \), then \(n \leq a_n' < n \), a contradiction. Hence \(\lambda_n = 0 \) for all \(n \geq N \). Letting \(M := \max(\alpha(n) : n < N) \) and \(L := \max(\beta(n) : n < N) \), there exists \(I \) such that

\[
\sum_{m=I}^{\infty} |g_m^{(l)}(x)| < 2^{-M-k} \quad (x \in \mathbb{R}, l \leq L).
\]

For each \(i, j \) with \(j \geq i \geq I \), we have for \(n < N \)

\[
\max \sup_{l \leq \beta(n) \mid x \geq n} 2^{\alpha(n)} \left| \sum_{m=i}^{j} g_m^{(l)}(x) \right| \leq \max \sup_{l \leq L \mid x \geq n} 2^M \sum_{m=i}^{j} |g_m^{(l)}(x)| \leq \max \sup_{l \leq L \mid x \geq n} 2^M 2^{-M-k} = 2^{-k},
\]

and for \(n \geq N \)

\[
\max \sup_{l \leq \beta(n) \mid x \geq n} 2^{\alpha(n)} \left| \sum_{m=i}^{j} g_m^{(l)}(x) \right| \leq \max \sup_{l \leq L \mid x \geq n} 2^{\alpha(n)} \sum_{m=i}^{j} |g_m^{(l)}(x)| \leq s_n^{\alpha \beta} < 2^{-k}.
\]

Therefore

\[
p_{\alpha, \beta}(f_i - f_j) = \sup_n \max \sup_{l \leq \beta(n) \mid x \geq n} \left| \sum_{m=i}^{j} g_m^{(l)}(x) \right| \leq 2^{-k}.
\]

Thus \(\{ f_i \} \) is a Cauchy sequence, and hence has a limit \(f \) in \(\mathcal{D} (\mathbb{R}) \). Let \(K \) be a positive integer such that \(f(x) = 0 \) whenever \(|x| \geq K \). If \(a_n > K \) for some \(n \), then

\[K < a_n - 1/2 \quad \text{and} \quad 0 < g_n(a_n - 1/2) \leq f(a_n - 1/2), \]

a contradiction. Therefore \(a_n \leq K \) for all \(n \).

Acknowledgement. The authors would like to thank the referee for useful comments and suggestions.

REFERENCES

A CONSTRUCTIVE LOOK AT THE COMPLETENESS OF THE SPACE $\mathcal{B}(\mathbb{R})$

SCHOOL OF INFORMATION SCIENCE
JAPAN ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
TATSUNOKUCHI, ISHIKAWA 923-1292, JAPAN.

E-mail: ishihara@jaist.ac.jp
E-mail: satoru-y@jaist.ac.jp