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ON CONSTRUCTING COMPLETIONS

LAURA CROSILLA, HAJIME ISHIHARA, AND PETER SCHUSTER

Abstract. TheDedekind cuts in an ordered set form a set in the sense of constructive Zermelo–Fraenkel

set theory. We deduce this statement from the principle of refinement, which we distill before from the

axiom of fullness. Together with exponentiation, refinement is equivalent to fullness. None of the defining

properties of an ordering is needed, and only refinement for two–element coverings is used.

In particular, the Dedekind reals form a set; whence we have also refined an earlier result by Aczel and

Rathjen, who invoked the full form of fullness. To further generalise this, we look at Richman’s method to

complete an arbitrary metric space without sequences, which he designed to avoid countable choice. The

completion of a separable metric space turns out to be a set even if the original space is a proper class; in

particular, every complete separable metric space automatically is a set.

§1. Introduction. Throughout this article we work in the constructive Zermelo–
Fraenkel set theory (CZF) founded by Aczel in [2] as a formal system for Bishop’s
constructivemathematics [7, 8]. CZF came out two years afterMyhill’s constructive
set theory (CST) [18], and was further developed in [3, 4]. More recently, Rathjen
and others have joined Aczel in the enterprise ofCZF; we refer to [6] also for parts of
this later progress. The main characteristics of CZF can be summarised as follows.
On the one side, CZF is formulated in the same language as classical Zermelo–
Fraenkel set theory (ZF) is, and in such a way that full ZF results from it by simply
adding the logical principle of excluded middle. On the other side, CZF takes
advantage of its being basedon intuitionistic logic, as it avoids the classical axiomsof
full separation and of power set in favour of (intuitionistically) weaker principles—
restricted separation and subset collection, respectively—which can be justified from
a tolerant predicative perspective. As a consequence, the proof–theoretic strength of
CZF is well below the one of ZF, contrary to impredicative systems like intuitionistic
Zermelo–Fraenkel set theory (IZF). Finally, while introducing his systemAczel has
also provided it with a natural interpretation in Martin–Löf’s intuitionistic type
theory (ITT) [15, 16, 17], by means of which CZF gains constructive meaning as
well as a computational content for its theorems.
In the present notewe studywhether one obtains sets in the sense ofCZFwhenone
constructs completions—and, if so, which principles of CZF are needed to ensure
this. We start with the real numbers, perhaps the most basic completion occurring
in mathematics. With Dedekind reals one can follow the standard development
of constructive analysis also in an environment, such as topos theory, in which
countable choice cannot be taken for granted. The situation is different for Cauchy
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reals, which one has to equip throughout with moduli of convergence etc. to avoid
countable choice.
Also when it comes to show that the class of real numbers is a set, then Cauchy
and Dedekind reals have to be treated differently. The Cauchy reals form a set by
virtue of the principle of exponentiation, which is an axiom of CST, and valid in
CZF as a consequence of subset collection. In CST, moreover, dependent choice is
included; whence the Dedekind reals coincide with the Cauchy reals, and thus form
a set. This rather simple argument does not work in CZF, in which theory not even
countable choice is at one’s disposal.
However, Aczel and Rathjen have deduced from the principle of fullness—an
equivalent of subset collection—that the Dedekind reals form a set in CZF [6]. As
we shall see below, to prove this it suffices to assume a binary form of fullness. We
also show that, more generally, Richman’s choice–free way to complete a separable
metric space [21] yields a completion which is a set no matter whether the original
space is a set.
The consequence of fullness we start from is that for every pair of sets A and
B there is a set D (of subsets of A) such that every covering of A by a family of
subsets with index set B admits of a refinement whose elements all belong to D.
Accordingly, we call this the principle of refinement; we prove that in conjunction
with exponentiation it is equivalent to fullness. Given refinement for A and B , it
suffices thatDB is a set to deduce the corresponding instance of fullness.
Todealwith completions, we only need the specific case of refinement inwhichB is
the two–element set. This, and more generally refinement for finite coverings, turns
out to be equivalent—even without exponentiation—to the corresponding instance
of fullness. Refinement has nonetheless the advantage of a topological character,
for which it is probably easier to use than fullness, especially in mathematics beyond
set theory. The appearance of the principle of refinement may thus help to represent
formal topology in CZF, which task was put forward in [6] and begun in [1, 5].

§2. The axioms of CZF. The language of CZF is the first–order language of
Zermelo–Fraenkel set theory with the usual non–logical primitive symbols ∈ and
=. The logical symbols are all the intuitionistic operators ⊥, ∧, ∨, →, ∃, and ∀;
in particular, ¬ϕ is defined as ϕ →⊥. In addition, ∃x ∈ y ϕ and ∀x ∈ y ϕ stand
for ∃x (x ∈ y ∧ ϕ) and ∀x (x ∈ y → ϕ), respectively. As usual, x ⊆ y is a
shorthand for ∀z ∈ x (z ∈ y).
A formula of CZF is restricted, or bounded or a ∆0–formula, if all quantifiers
occurring in it—if any—are bounded: that is, they are of the form ∃x ∈ y or
∀x ∈ y. The axioms of CZF are the usual axioms for intuitionistic first–order logic
with equality together with the following eight set–theoretic axioms and axiom
schemes.

1. Extensionality

∀a ∀b (∀y (y ∈ a ↔ y ∈ b) → a = b) .

2. Pair

∀a ∀b ∃x ∀y (y ∈ x ↔ y = a ∨ y = b) .



ON CONSTRUCTING COMPLETIONS 971

3. Union

∀a ∃x ∀y (y ∈ x ↔ ∃z ∈ a y ∈ z) .

4. Restricted Separation For every ∆0–formula ϕ (y),

∀a ∃x ∀y (y ∈ x ↔ y ∈ a ∧ ϕ(y)) .

5. Subset Collection For every formula ϕ(x, y, u),

∀a ∀b ∃c ∀u
(
∀x ∈ a ∃y ∈ b ϕ(x, y, u)

→ ∃d ∈ c (∀x ∈ a ∃y ∈ d ϕ(x, y, u) ∧ ∀y ∈ d ∃x ∈ a ϕ(x, y, u))
)
.

6. Strong Collection For every formula ϕ(x, y),

∀a
(
∀x ∈ a ∃y ϕ(x, y)

→ ∃b (∀x ∈ a ∃y ∈ b ϕ(x, y) ∧ ∀y ∈ b ∃x ∈ a ϕ(x, y))
)
.

7. Strong Infinity

∃x
(
(0 ∈ x ∧ ∀y (y ∈ x → y + 1 ∈ x)

∧ ∀z (0 ∈ z ∧ ∀y (y ∈ z → y + 1 ∈ z) → x ⊆ z)
)
,

where as usual y + 1 is the successor y ∪ {y} of y, and 0 is the empty set ∅.
8. Set Induction For every formula ϕ(a),

∀a (∀x ∈ a ϕ(x) → ϕ(a)) → ∀a ϕ(a) .

Principles 1–6, and 8 are the same as in [2]. We only diverge from that paper
inasmuch as we adopt the axiom of infinity in a slightly stronger formulation which
guarentees the existence of a least inductive set. This uniquely determined set of
natural numbers will be denoted by N.
With regard to the other axioms of ZF, we recall that in the presence of intu-
itionistic logic one needs to use set induction in place of the axiom of foundation,
since the latter would entail the principle of excluded middle for ∆0–formulas. In
addition, full separation and power set are replaced by restricted separation and
subset collection, respectively, to conform to a notion of predicativity.1 Strong
collection is taken in place of collection for technical reasons, due to the restriction
on separation.
An obvious consequence of strong collection is the following principle.

Replacement: For every formula ϕ (x, y),

∀a
(
∀x ∈ a ∃!y ϕ(x, y) → ∃b ∀y (y ∈ b ↔ ∃x ∈ a ϕ(x, y))) .

One can rephrase it in the perhaps pithier way that if the domain of a mapping is
a set, then so is its range. In particular, the principle of replacement together with
the axiom of (strong) infinity ensures that every countable class is a set.

1In CZF we form, by separation, a subset of a given set only if the quantifiers in the formula defining
the new set are bounded, and so only refer to previously constructed sets; in particular, we do not want
them to refer to the totality of sets. The axiom of power set does not conform to predicativity, as it
allows to form a set of all subsets of a given (possibly infinite) set, without providing any information
on how such a collection should be formed.



972 LAURA CROSILLA, HAJIME ISHIHARA, AND PETER SCHUSTER

§3. The principle of refinement. Let A and B be sets. By repeated use of re-
placement, one can introduce a set A×B , the cartesian product of A and B , which
consists of the ordered pairs (x, y) = {{x}, {x, y}} with x ∈ A and y ∈ B . A
relation r betweenA and B is a subset ofA×B ; it is total whenever for every x ∈ A
there is y ∈ B with (x, y) ∈ r. A (total) relation r ⊆ A× B is a function from A to
B if for every x ∈ A there is exactly one y ∈ B with (x, y) ∈ r. As total relations
can be seen asmultivalued functions, the class of total relations fromA toB is often
denoted by mv (A,B). One cannot assume in general that the class mv (A,B) is a
set, as this would amount to include power set.
On the basis of the remaining principles of CZF (in particular, of strong collec-
tion), subset collection is equivalent to the following.

Fullness: There is a set C with C ⊆ mv (A,B) such that for every r ∈ mv (A,B)
there is s ∈ C with s ⊆ r.

We use the symbol BA for the class of functions from A to B . The next principle
of CZF follows from the foregoing.

Exponentiation: BA is a set.

In fact, BA can be separated from a set C as provided by fullness, because to be
a function is a restricted property of a (total) relation.2

By restricted separation, for each relation r ⊆ A× B and every b ∈ B the fibre

r−1 (b) = {a ∈ A : (a, b) ∈ r}

of r over b is a subset of A. The following variant of fullness seems to be new.

Refinement: There is a set D (of subsets of A) such that for every r ∈ mv (A,B)
there is s ∈ mv (A,B) with s ⊆ r such that s−1 (b) ∈ D for all b ∈ B .

The reason why we have chosen the name of the principle of refinement will
become clear only later.

Theorem 3.1. Fullness implies refinement. Conversely, fullness forA andB follows

from the same instance of refinement together with the condition thatDB is a set.

Proof. Let C be as in fullness, and define

D =
{
s−1 (b) : s ∈ C & b ∈ B

}
.

This D is a set (of subsets of A) by replacement. According to our choice of C , for
every r ∈ mv (A,B) there is s ∈ C with s ⊆ r. For any such s , clearly, s−1 (b) ∈ D
for all b ∈ B . In other words, D is as required in refinement.
Conversely, let D be as in refinement with the additional property that DB is a
set. Define

C ′ =
{
s ⊆ A× B : ∀ b ∈ B

(
s−1 (b) ∈ D

)}

and

C = C ′ ∩mv (A,B) .

Although C is a priori only a class, if r ∈ mv (A,B), then—by our choice of D—
there is s ∈ C with s ⊆ r. Hence C fulfils the requirements of fullness once we have
shown that it is a set, with which we conclude this proof.

2Lubarsky has recently shown that exponentiation does not prove subset collection [14].
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Since to be total is a restricted property of relations between A and B , we only
need to show that C ′ is a set. To this end, consider for each f ∈ DB the relation
rf ⊆ A× B with

rf =
⋃

{f (b)× {b} : b ∈ B} ,

for which r−1f (b) = f (b) ∈ D for every b ∈ B , and thus rf ∈ C ′. In other words,

C ′′ ⊆ C ′ with

C ′′ =
{
rf : f ∈ DB

}
.

However, we even have C ′ = C ′′, because if s ∈ C ′, then s = rf with f ∈ DB

defined by setting f (b) = s−1 (b) for every b ∈ B . By replacement, C ′′ is a set,
and so is C ′. a

As exponentiation is a consequence of fullness,we furthermore have the following.

Corollary 3.2. Fullness is equivalent to refinement together with exponentia-
tion.

If B is an n–element set for some n > 1, then there is a bijection betweenDB and
the n–th cartesian power Dn of D; whence DB is a set without exponentiation. All
finite cartesian powers of a set are indeed sets, by inductionover the natural numbers,
which proof principle for arbitrary formulas is a consequence of set induction.

Corollary 3.3. Fullness forA and any n–element setB is equivalent to the same
instance of refinement.

Let U be a family of subsets of A indexed by B : that is, for every b ∈ B there is
a uniquely determined subset U (b) of A. In this case, {U (b) : b ∈ B} is a set by
replacement. If A =

⋃
{U (b) : b ∈ B}, then we call U a covering family or simply

a covering of A indexed by B . By a refinement of a covering U we understand a
covering V with V (b) ⊆ U (b) for every b ∈ B .

Remark 3.4. If r ⊆ A× B is a total relation, then Ur with

Ur (b) = r
−1 (b) (b ∈ B)

is a covering family. Conversely, if U is a covering family, then

rU = {(a, b) ∈ A× B : a ∈ U (b)}

is a total relation. These two constructions are inverse to each other, and s ⊆ r
holds for r, s ∈ mv (A,B) precisely when Us is a refinement of Ur .

In view of this one–to–one correspondence between total relations between A
and B and coverings of A indexed by B , fullness for A and B is equivalent to
the existence of a set C of coverings of A, all indexed by B , which contains as
an element a refinement of each covering of A indexed by B . More useful than
this is the following interpretation of the principle of refinement in the language of
coverings, which also justifies our choice of its name.

Corollary 3.5. The principle of refinement for A and B is equivalent to the
existence of a set D (of subsets of A) such that every covering of A indexed by B
allows for a refinement V with V (b) ∈ D for all b ∈ B .
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From the hindsight, the condition occurring in Theorem 3.1 that DB is a set
appears to be fairly natural—every covering V of A indexed by B with V (b) ∈ D
for all b ∈ B is an element of DB .
According to Corollary 3.3, fullness for A and any n–element set B is equivalent
to the following, which is trivially valid for n = 1 with D = {A}.

n–ary Refinement: There is a set D (of subsets of A) such that if U1, . . . , Un are
subsets of A with A = U1 ∪ · · · ∪ Un, then there are V1, . . . , Vn ∈ D with
A = V1 ∪ · · · ∪ Vn such that Vi ⊆ Ui for all i ∈ {1, . . . , n}.

When it next comes to constructing completions, wewill only need the case n = 2.

Binary Refinement : There is a set D (of subsets of A) such that if G and H are
subsets of A with A = G ∪H , then there are V,W ∈ D with V ⊆ G ,W ⊆ H ,
and A = V ∪W .

Again, binary refinement is equivalent to fullness for A and any two–element
set B .

§4. Order completions. Let X be a set with a binary relation <. Although we
do not require any further property from X and <, we adopt the terminology of
(strict) order relations. In this vein, a pair î = (L,U ) of subsets L,U ofX is called

– disjoint if L and U are disjoint,
– bounded if L and U are inhabited,
– located if either x ∈ L or y ∈ U whenever x < y, and
– open if for every x ∈ L there is y ∈ L with x < y, and for every y ∈ U there
is x ∈ U with x < y.

If î satisfies all these four properties, then it is said to be a Dedekind cut in X .
Every disjoint and located î is also monotone with respect to <: that is, if x < y
and y ∈ L, then also x ∈ L, and if x < y and x ∈ U , then also y ∈ U . The
‘weak’ relation6 derived from the ‘strict’ relation< can be defined by setting x 6 y

precisely when ¬ (y < x). If î is disjoint, then x < y for all x ∈ L and y ∈ U
provided that î is monotone with respect to 6.
If < is a pseudo–ordering in the sense of Aczel, which is the constructively
meaningful concept of a strict ordering, then the Dedekind cuts form the order
completion of X . Palmgren [20] has shown, with well–founded dependent choice,
that this is a set in the sense of Martin–Löf type theory with regular universes. In
CZF, Aczel and Rathjen [6] have deduced from fullness that the order completion
of Q is a set, which is nothing but the set of Dedekind reals.
We now provide a more general argument. Apart from the fact that we use
apparently weaker principles, our approach differs from the aforementioned ones
inasmuch as we do not need any property of X and <. In other words, < may be
an arbitrary binary relation on the set X .

Theorem 4.1. Binary refinement for

A = {(x, y) ∈ X ×X : x < y}

implies that the disjoint, open, and located pairs of subsets of X form a set.

Proof. Let D be as in this instance of binary refinement, and set

P = {(V,W ) ∈ D ×D : A = V ∪W } .
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For every ð = (V,W ) ∈ P define îð = (Lð, Uð) with

Lð = {x ∈ X : ∃y ∈ X ((x, y) ∈ V )} ,

Uð = {y ∈ X : ∃x ∈ X ((x, y) ∈W )} ,

which are sets by restricted separation. Moreover, îð is a located pair for every
ð = (V,W ) ∈ P, because if (x, y) ∈ A, then either (x, y) ∈ V or (x, y) ∈W .
Conversely, when î = (L,U ) is a located pair of subsets ofX , then there is ð ∈ P
with î = îð provided that, in addition, î is disjoint and open. Indeed, if we define

G = {(x, y) ∈ A : x ∈ L} ,

H = {(x, y) ∈ A : y ∈ U} ,

then A = G ∪ H , because î is located. By our choice of D, there are V,W ∈ D
with V ⊆ G , W ⊆ H , and A = V ∪W ; in particular, ð = (V,W ) ∈ P. To see
that L = Lð for this ð, let first x ∈ Lð: that is, (x, y) ∈ V for some y ∈ X . Since
V ⊆ G , we have x ∈ L. Assume next that x ∈ L. Since î is open, there is y ∈ L
with x < y. Since A = V ∪W , we either have (x, y) ∈ V or (x, y) ∈ W . In the
former case, x ∈ Lð as required; in the latter case, (x, y) ∈ H and thus y ∈ U in
contradiction to î being disjoint. To show that U = Uð for this ð is completely
analogous.
By restricted separation, P is a set, and so is

P′ = {ð ∈ P : îð is disjoint and open} .

By the above, the disjoint, open, and located pairs of subsets of X are precisely the
elements of {îð : ð ∈ P′}, which is a set by replacement. a

We can separate the Dedekind cuts from the disjoint, open, and located pairs of
subsets of X , because boundedness is a restricted property.

Corollary 4.2. By binary refinement, the Dedekind cuts in X form a set.

A particular consequence of binary refinement is therefore that the Dedekind
cuts in Q with the usual ordering form a set, the set R of Dedekind reals. These
are isomorphic to the formal reals [19], the real numbers in formal topology [22],
and to define this isomorphism requires restricted separation only. Hence binary
refinement implies, by Corollary 4.2, that the formal reals form a set once they are
carried over to CZF.

§5. Metric completions. To avoid countable choice, Richman [21] has developed
a method to complete an arbitrary metric space S with no mention of sequences.
We now briefly recall his approach, including the sequence–free variants of some
topological concepts.
In our context, ametric space is a class S endowedwith amapping d : S×S → R

satisfying the usual three conditions

d (x, y) = 0⇔ x = y

d (x, y) = d (y, x)

d (x, z) 6 d (x, y) + d (y, z)

for all x, y, z ∈ S. If S is a metric space and T ⊆ S, then the closure T ⊆ S of T
consists of all the x ∈ S such that for every ε > 0 there is y ∈ T with d (x, y) < ε;
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if T = S, then T is dense in S. A metric space S is separable whenever S possesses
a dense and countable subclass T ; by replacement, any such T is a set even if S is
not.
A mapping f : S → R on a metric space S is a location in S whenever

(i) f(x) > |f (y)− d (x, y)| for all x, y ∈ S and
(ii) infx∈S f (x) = 0.

All the locations in S form the completion Ŝ of S, which is a metric space with
the metric

d (f, g) = inf
x∈S
(f (x) + g (x)) .

By assigning the location fz (x) = d (z, x) to every point z ∈ S, one can embed S

into Ŝ . This embedding is an isometry, because

d (y, z) = inf
x∈S
(d (y, x) + d (z, x)) = d (fy , fz) .

We therefore may identify S with its image in Ŝ ; with this convention, S is dense

in Ŝ . A metric space S is complete whenever S = Ŝ ; as one might already expect,
every completion is complete. For all this, see [21].

If T ⊆ S, then T̂ can be embedded isometrically into Ŝ (for short, T̂ ⊆

Ŝ) by mapping each location h on T to the location fh on S with fh (x) =
limh(y)→0 d (y, x). Note that this is a generalisation of the aforementioned con-

struction: if T = {z}, then T̂ = {h0} with h0 (z) = 0, and fh0 = fz .

Lemma 5.1. If T ⊆ S, then T ⊆ T̂ ; in particular, if T is dense in S, then T̂ = Ŝ .

Proof. Let T ⊆ S. If z ∈ T , then infx∈T fz (x) = infx∈T d (z, x) = 0, and thus

fz ∈ T̂ . This proves T ⊆ T̂ . As a consequence, if T = S, then S ⊆ T̂ and thus

Ŝ ⊆
̂̂
T . Since T̂ is complete, this yields the missing inclusion Ŝ ⊆ T̂ . a

By condition (i), every location is nonnegative, so that condition (ii) amounts to
requiring that for every rational r > 0 there is x ∈ S withf (x) < r; in particular, if

S is a set, then to be a location is a restricted property. Again by (i), Ŝ is contained in
the class C (S,R) of uniformly continuous functions; whence if S and C (S,R) are

sets, then so is Ŝ .
Also, if S is a set, then to be uniformly continuous is a restricted property, so that
C (S,R) is a set whenever so are S and RS . In view of Corollary 4.2, we now have
the following.

Proposition 5.2. By exponentiation and binary refinement, if S is a set, then so

is Ŝ .

The requirement ofS being a set is not needed in case, for example, S is separable.

Theorem 5.3. By exponentiation and binary refinement, if S is a separable metric

space, then Ŝ is a set.

Proof. As S is separable, there is a dense and countable subset T of S, for which

T̂ is a set by Proposition 5.2. By Lemma 5.1, Ŝ equals T̂ . a

Although Theorem 5.3 holds no matter whether S is a set, it is a set a posteriori
if, in addition, S is complete.
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Corollary 5.4. By exponentiation and binary refinement, every complete sepa-
rable metric space is a set.

Both in Theorem 5.3 and Corollary 5.4, the hypotheses of exponentiation and of
binary refinement were only needed to guarantee, using the assumption that S is
separable, the presence of a dense subset T of S for which C (T,R), or even RT ,
is a set. If a subset T of this kind is known to exist anyway, one does not have to
suppose those hypotheses.

On the first glance, it is surprising that Ŝ can be a set even when S is not: in

general Ŝ has much more elements than S. To be a set, however, seems to be not
only a matter of (small) size, but also of cohesion. Perhaps the latter counts even
more than the former: while S may consist of relatively scattered points, Ŝ appears
to have enough elements to fill the gaps.
All this is of some relevance for formalising constructive analysis, in which the
complete separablemetric spaces play a predominant role. Though in an unexpected
way, it also confirms Bishop’s intuition to concentrate on separable metric spaces
in constructive analysis. In [7, Appendix A], he even argued for his view of the
concept of an nonseparable metric space as an instance of ‘pseudogenerality’ from
the constructive perspective.
Related phenomena in the context of formal topology have been investigated by
Curi [9, 10, 11, 12, 13]. For instance, he has shown that the formal points of certain
types of formal topologies form a set, including the formal counterparts of R and
of complete metric spaces. Using fullness, Aczel carried this over to CZF, where
he generalised it [1]. Also, Curi has deduced3 the conclusion of Corollary 4.2 from
Aczel’s ‘main lemma’, whose proof is done with full fullness [1]. As compared with
this route, the virtue of our proof is that binary refinement suffices.
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