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A CONTINUITY PRINCIPLE, A VERSION OF BAIRE’S THEOREM

AND A BOUNDEDNESS PRINCIPLE

HAJIME ISHIHARA AND PETER SCHUSTER

Abstract. We deal with a restricted form WC-N′ of the weak continuity principle, a version BT′

of Baire’s theorem, and a boundedness principle BD-N. We show, in the spirit of constructive reverse

mathematics, that WC-N′, BT′ + ¬LPO and BD-N + ¬LPO are equivalent in a constructive system,

where LPO is the limited principle of omniscience.

§1. Introduction. The Baire space B is the set NN with the product topology
obtained from the discrete topology on N which is metrizable with a complete
metric. The principles characteristic of Brouwer’s intuitionistic mathematics, that
is, the continuity of mappings from B into N together with an appropriate choice
principle, lead to the following scheme of weak continuity for numbers [17, 4.6.3]:

WC-N: ∀α ∃n A(α, n)=⇒∀α ∃n ∃m ∀â ∈ α(m)A(â, n).

Here and in the following, we follow the notational conventions in [17]: m, n, i, j, k
are supposed to range over N, a, b, c over the set N∗ of finite sequences of N, and
α, â, ã, ä overNN; |a| denotes the length of a finite sequence a,a∗b the concatenation
of two finite sequences a and b, and a � b that a is an initial segment of b, that
is, ∃c (a ∗ c = b); α(n) denotes the finite initial segment (α(0), . . . , α(n − 1)) of α
with length n, and α ∈ a that α has initial segment a, that is, α(|a|) = a.
When we set Xn = {α ∈ B | A(α, n)},WC-N expresses that if the sequence (Xn)n
covers B, then the sequence (Int(Xn))n of the open interiors again covers B; see
[17, 7.2.6].
Furthermore assuming that the Xn’s are closed in B, the schema:

BT: ∀α ∃n A(α, n)=⇒∃n ∃a ∀â ∈ a A(â, n),

which is far weaker than WC-N, formalizes Baire’s theorem for B, that is, if the
sequence (Xn)n covers B, then Xn has inhabited interior for some n. Note that a
form of Baire’s theorem has a constructive proof [1, Theorem 4.4], [5, 2.2] (see also
[15, Theorem 8.11] for the formal reals), but its classical equivalent, the form above,
which is used in the standard argument to prove important theorems in functional
analysis, such as the Banach-Steinhaus theorem, the open mapping theorem and
the closed graph theorem, has no constructive proof; see [9], and [4] and [6, 6.6] for
a constructively provable variants of the above form of Baire’s theorem.

Received January 7, 2008.

c© 2008, Association for Symbolic Logic

0022-4812/08/7304-0017/$1.70

1354



A VERSION OF BAIRE’S THEOREM AND A BOUNDEDNESS PRINCIPLE 1355

In this paper, we shall deal with the schemata WC-N and BT, in Bishop’s con-
structive mathematics [1, 2, 5, 6], for an increasing sequence (Xn)n which consists
of closed subsets of B (or subsets in the class Π01) in the sense of Veldman [18], that
is, there exists ó : N∗ ×N→ N such that

α ∈ Xn ⇐⇒ A(α, n)⇐⇒ ∀k (ó(α(k), n) = 0)

and

ó(a,m) = 0 ∧m ≤ n=⇒ó(a, n) = 0. (1)

We call these restricted schemata WC-N′ and BT′, respectively.
A subset S of N is pseudobounded if

lim
n→∞

sn
n
= 0

for each sequence (sn)n in S, or equivalently

sn < n for all sufficiently large n

for each sequence (sn)n in S; see [12, Lemma 3], and also Richman [16] for pseu-
dobounded sets. We shall also deal with a boundedness principle:

BD-N: Every countable pseudobounded subset of N is bounded,

which is derivable in classical, intuitionistic and constructive recursive mathematics.
Lietz [13] proved that BD-N is not derivable in E-HAù + ACó,ô which is a natural
formal framework for Bishop’s constructive mathematics. The principle BD-N
is equivalent to certain continuity principles [8, 3], and to theorems in analysis
including the theorems in functional analysis mentioned above [9, 12].
The limited principle of omniscience is a nonconstructive logical principle:

LPO: ∀ã [∃k (ã(k) 6= 0) ∨ ∀k (ã(k) = 0)],

which is an instance of the principle of excluded middle and refutable both in
intuitionistic mathematics and in constructive recursive mathematics.
In the following, we shall show, in the spirit of constructive reverse mathematics
[10, 14, 19, 11], that WC-N′ implies BT′ +¬LPO, BT′ implies BD-N, and BD-N+
¬LPO implies WC-N′, and hence thatWC-N′, BT′+¬LPO and BD-N+¬LPO are
all equivalent. In particular, since BD-N is not derivable in E-HAù +ACó,ô, BT

′ is
not constructively provable, and, since BD-N+¬LPO is derivable from the extended
Church’s thesis (ECT0) and Markov’s principle (MP) [8, Proposition 4], [17, 4.3.4]
(see [17, 4.4.8, 4.5] for ECT0 and MP), WC-N

′ is not only intuitionistically valid,
but also holds in constructive recursive mathematics. Since BT′ is also classically
true, BT′ is another principle like BD-N that holds in classical, intuitionistic, and
constructive recursive mathematics.
Although the results are formulated in the setting of Bishop’s constructive math-
ematics, the proofs can be formalized in a system based on intuitionistic analysis
EL [17, 3.6] or intuitionistic finite-type arithmeticHAù [17, 9.1] with the countable
choice Π01-AC00, that is the number-number choice

AC00: ∀m ∃n A(m, n)=⇒∃α ∀mA(m,α(m)),

for A(m, n) of the form ∀k (ô(m, n, k) = 0). Note that the quantifier-free axiom of
choice QF-AC00 [17, 3.6.2], that is, AC00 for A(m, n) of the form ô(m, n) = 0, is a
consequence of Π01-AC00.
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Like in EL and HAù , we assume that our universe of functions (sequences) of
natural numbers contains primitive recursive (or elementary) functions and is closed
under composition and bounded minimization. Hence, characteristic functions of,
for example, a relation ä(n)n ∧ sä(n) ≥ ä(n) on N where (sn)n is a sequence of
natural numbers, a relation ∀b � a (ó(b, n) = 0) on N∗ × N and so on, exist
without invoking any choice principle [17, 3.1].

§2. The main results.

Proposition 1. WC-N′ implies BT′ + ¬LPO.

Proof. Trivially WC-N′ implies BT′. Suppose that LPO holds, and define
ó : N∗ ×N→ N by

ó(a, n) = 0⇐⇒ [|a| ≥ n + 2→ ∃i < |a| − 1 (a(i) 6= 0) ∨ a(|a| − 1) = 0].

Then ó satisfies the condition (1). For each α either α(n) 6= 0 for some n or
α(n) = 0 for all n, by LPO. In the former case, ∀k ≥ n + 2 ∃i < k − 1 (α(i) 6= 0)
for some n, and in the latter case, ∀k ≥ n + 2 (α(k − 1) = 0) for all, and hence for
some n. Hence ∀k ≥ n + 2 [∃i < k − 1 (α(i) 6= 0) ∨ α(k − 1) = 0] for some n, and
therefore ∃n ∀k (ó(α(k), n) = 0). By applying WC-N′ and taking α = (0, 0, . . . ),
there exist m and n such that

∀â ∈ α(m)∀k (ó(â(k), n) = 0).

Letting k = max{m+1, n+2} and â = (

k
︷ ︸︸ ︷

0, . . . , 0, 1, 0, . . . ), we have â ∈ α(m) and
ó(â(k), n) 6= 0, a contradiction. ⊣

Proposition 2. BT′ implies BD-N.

Proof. Let S = {sn | n ∈ N} be a countable pseudobounded subset of N, and
define ó : N∗ ×N→ N by

ó(a, n) = 0⇐⇒ [|a| ≥ n + 1→ sa(|a|−1) < |a| − 1].

Then ó satisfies the condition (1). For each α, since (sα(n))n is a sequence in S,
sα(n) < n for all sufficiently large n, and hence ∀k ≥ n + 1 (sα(k−1) < k − 1) for

some n. Therefore ∃n ∀k (ó(α(k), n) = 0). By applying BT′, there exist a and n
such that

∀â ∈ a ∀k (ó(â(k), n) = 0).

Without loss of generality, we may assume that |a| ≥ n. For each m, taking
â = a ∗ (m, 0, 0, . . . ), we have â ∈ a, and hence ó(â(|a|+1), n) = 0. Thus sm < |a|
for all m, which is to say that S is bounded. ⊣

Next, we show that BD-N + ¬LPO implies WC-N′. To this end, suppose
that ∀α ∃n A(α, n), and A(α, n) is of the form ∀k (ó(α(k), n) = 0) for some
ó : N∗ ×N→ N satisfying (1). Let T be the subset of N∗ defined by

T = {a ∈ N∗ | ∃b � a (ó(b, |a|) 6= 0)}. (2)

Then we say thatT has an infinite path if there exists α such that α(k) ∈ T for all k.
Note that if a ∈ T and b � a, then b ∈ T .
In the following, we assume that there exist an encoding function f : N∗ → N

and a decoding function g : N→ N∗ such that g ◦ f = idN∗ .
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Proposition 3. If T has an infinite path, then LPO holds.

Proof. Letα be an infinite path inT . Then, since ∀n ∃b (b � α(n)∧ó(b, n) 6= 0),
we have ∀n ∃b (g(f(b)) � α(n) ∧ ó(g(f(b)), n) 6= 0), and hence

∀n ∃m (g(m) � α(n) ∧ ó(g(m), n) 6= 0).

By QF-AC00, there exists ä such that

∀n (g(ä(n)) � α(n) ∧ ó(g(ä(n)), n) 6= 0).

Let bn = g(ä(n)). For given ã, define a sequence (ân)n in B as follows: if
∀i ≤ n (ã(i) = 0), set ân = α; if ∃i ≤ n (ã(i) 6= 0), set ân = bm ∗ (0, 0, . . . ),
where m = minj≤n[ã(j) 6= 0]. Then (ân)n is a Cauchy sequence: in fact, since

bn � α(n) for each n, we have âj ∈ ân(n) whenever j ≥ n. Let â be the limit of

(ân)n inB. Choose n such that∀k (ó(â(k), n) = 0). If ∀i < m (ã(i) = 0)∧ã(m) 6= 0
for some m ≥ n, then â = bm ∗ (0, 0, . . . ), and therefore, since ó(bm, m) 6= 0 and
since ó(bm, m) 6= 0 implies ó(bm, n) 6= 0, we have ó(â(|bm|), n) = ó(bm, n) 6= 0,
a contradiction. Now either ã(i) = 0 for every i < n, and thus for all i , or else
ã(i) 6= 0 for some i < n. ⊣

For given α, define a subset Sα of N by

Sα = {s ∈ N | s = 0 ∨ α(s) ∈ T}. (3)

Then, since Sα = {s ∈ N | ∃b ∈ N∗ (b � α(s) ∧ ó(b, s) 6= 0)} ∪ {0}, Sα is a
countable subset ofN. In fact, with a coding function j of pairs of natural numbers
and its inverses j1, j2 satisfying j1(j(m, n)) = m and j2(j(m, n)) = n, there is a
surjection h : N→ Sα such that

h(n) =

{

j2(n) if g(j1(n)) � α(j2(n)) ∧ ó(g(j1(n)), j2(n)) 6= 0,

0 otherwise.

We need the following lemmas whose proofs employ techniques from [7].

Lemma 4. Let (sk)k be a sequence in Sα and let n be a natural number. Then either
sk < n + k + 1 for all k or sk ≥ n + k + 1 for some k.

Proof. Since ∀k [sk = 0∨∃b (b � α(sk)∧ó(b, sk) 6= 0)],we have∀k ∃b [sk = 0∨
(g(f(b)) � α(sk) ∧ ó(g(f(b)), sk) 6= 0)], and hence

∀k ∃m [sk = 0 ∨ (g(m) � α(sk) ∧ ó(g(m), sk) 6= 0)].

By QF-AC00, there exists ä such that

∀k [sk = 0 ∨ (g(ä(k)) � α(sk) ∧ ó(g(ä(k)), sk) 6= 0)].

Let bk = g(ä(k)), and define a sequence (âk)k in B as follows: if ∀i ≤ k (si <
n + i + 1), set âk = α; if ∃i ≤ k (si ≥ n + i + 1), set âk = bl ∗ (0, 0, . . . ), where
l = minj≤k [sj ≥ n+ j+1], and note that, in this case, since sl ≥ n+ l +1 > l ≥ 0,
we have bl � α(sl) � α(l) and ó(bl , sl ) 6= 0. Then (âk)k is a Cauchy sequence:
in fact âj ∈ âk(k) whenever j ≥ k. So (âk)k converges to a limit â in B. Choose

m such that ∀k (ó(â(k), m) = 0). If ∀i < l (si < n + i + 1) ∧ sl ≥ n + l + 1
for some l ≥ m, then â = bl ∗ (0, 0, . . . ) and ó(bl , sl ) 6= 0, and therefore, since
sl ≥ n + l + 1 > m, we have ó(â(|bl |), m) = ó(bl , m) 6= 0, a contradiction. Now
either sk < n + k + 1 for every k < m, and thus for all k, or else sk ≥ n+ k + 1 for
some k < m. ⊣
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Lemma 5. Let (sn)n be a sequence in Sα . Then either sn < n for all sufficiently
large n or sn ≥ n for infinitely many n.

Proof. First note that, as in the proof of Lemma 4, there exists a sequence (bk)k
such that

∀k [sk = 0 ∨ (bk � α(sk) ∧ ó(bk , sk) 6= 0)],

by QF-AC00.
By applying Lemma 4 to the subsequence (sn+k+1)k and the natural number n,
we have ∃k > n (sk ≥ k) ∨ ∀k > n (sk < k), and hence

∀n ∃k′ ∀k [(k′ > n ∧ sk′ ≥ k
′) ∨ (k > n → sk < k)].

Therefore, by Π01-AC00, there exists ä such that

∀n ∀k [(ä(n) > n ∧ sä(n) ≥ ä(n)) ∨ (k > n → sk < k)].

Let (ën)n be a binary sequence such that ën = 0↔ ä(n) > n∧sä(n) ≥ ä(n).Note that
if ën = 0, then sä(n) ≥ ä(n) > n ≥ 0, and hence bä(n) � α(sä(n)) � α(ä(n)) � α(n)
and ó(bä(n), sä(n)) 6= 0, and that if ën = 1, then ∀k > n (sk < k). We may assume
that ë0 = 0. Define a sequence (ân)n in B as follows: if ∀i ≤ n (ëi = 0), set
ân = bä(n) ∗ (0, 0, . . . ); if ∃i ≤ n (ëi = 1), set ân = ân−1. Then (ân)n is a Cauchy
sequence: in fact, ân ∈ α(n) whenever ∀i ≤ n (ëi = 0). Let â be the limit of (ân)n
in B. Choose m such that ∀k (ó(â(k), m) = 0). If ∀i ≤ n (ën = 0) ∧ ën+1 = 1 for
some n ≥ m, then â = bä(n) ∗ (0, 0, . . . ), and therefore, since ó(bä(n), sä(n)) 6= 0 and

sä(n) ≥ ä(n) > n ≥ m, we have ó(â(|bä(n)|), m) = ó(bä(n), m) 6= 0, a contradiction.
Now either ën = 0 for every n ≤ m, and thus for all n, or else ën = 1 for some
n ≤ m. ⊣

Proposition 6. If T has no infinite path, then Sα is a pseudobounded subset of N
for each α.

Proof. Suppose that T has no infinite path. For given α, let (sn)n be a sequence
in Sα . Then, by Lemma 5, either sn < n for all sufficiently large n or sn ≥ n
for infinitely many n. In the latter case, for each positive integer n there exists
k ≥ n such that sk ≥ k, and therefore, since α(n) � α(k) � α(sk) ∈ T , we have
α(n) ∈ T . Thus T has an infinite path α, a contradiction, and so the former must
be the case. ⊣

From the results obtained so far, we have the following theorem.

Theorem 7. BD-N + ¬LPO impliesWC-N′.

Proof. Suppose that∀α ∃n A(α, n), andA(α, n) is of the form∀k(ó(α(k), n)=0)
for ó : N∗ ×N→ N satisfying (1). By replacing ó by ó ′ such that ó ′(a, n) = 0⇐⇒
∀b � a (ó(b, n) = 0), if necessary, we have ∀k (ó ′(α(k), n) = 0) ⇐⇒
∀k (ó(α(k), n) = 0), and hence we may further assume, without loss of gener-
ality, that if ó(a, n) = 0 and b � a, then ó(b, n) = 0. Define a subset T of N∗

by (2). Then, by Proposition 3 and ¬LPO, T has no infinite path. For each
α the set Sα , constructed by (3), is a countable pseudobounded subset of N, by
Proposition 6, and hence Sα is bounded, by BD-N. Therefore there exists a positive
integer n such that ∀k (ó(α(k), n) = 0) and n /∈ Sα . For any â ∈ α(n), since
α(n) /∈ T , we have ∀k ≥ n (ó(â(k), n) = 0), and hence ∀k (ó(â(k), n) = 0). Thus
∀â ∈ α(n)A(â, n). ⊣
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Now, Proposition 1, Proposition 2 and Theorem 7 culminate in the following
theorem.

Theorem 8. The following are equivalent.

1. WC-N′.

2. BT′ + ¬LPO.
3. BD-N + ¬LPO.
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