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New examples of generalized fullerenes

M. Deza and M. I. Shtogrin

A fullerene is a simple (3-valent) polyhedron whose faces are pentagons and hexagons,
and therefore the number of pentagons is 12. Only 4 fullerenes have no adjacent hexagons.
These are the dodecahedron F20, the hexagonal barrel F24 (whose two hexagons are sepa-
rated by two belts of pentagons), the fullerene F26 (which is unique with 26 vertices), and
a fullerene F28 (one of the two with 28 vertices). They have, respectively, 0, 2, 3, and 4
non-adjacent hexagons, 20, 24, 26, and 28 vertices, and are called Frank–Kasper fullerenes,
abbreviated as FK-fullerenes. The elongated barrel F36 is obtained from F24 by adding
a belt of 6 hexagons between the belts of pentagons. The elongated dodecahedron F30 is
obtained from F20 by adding a belt of 5 hexagons. The twisted dodecahedron F ′

20 (a related
simple polyhedron with a triple axis but not a fullerene) has a belt of alternating three
hexagons and three squares, and the remaining 6 faces are pentagons.

An R3-fullerene (space fullerene) is defined as a simple (that is, 4-valent) normal tiling
of R3 into fullerenes. An R3-fullerene is said to be crystalline if its symmetry group
is crystallographic —has translations in three non-coplanar directions. FK-R3-fullerenes
(or Frank–Kasper phases) are crystalline R3-fullerenes whose cells are FK-fullerenes (all 4,
or some of them) (see [1]–[3]). Exactly 24 FK-phases are known as metallic alloys. It
was observed in [2], [3] that the proportions of the cells F20, F24, F26, F28 in each of
the 24 cases are linear combinations of the proportions for the basic examples A15, C15,
and Z with proportions 2 : 6 : 0 : 0, 16 : 0 : 0 : 8, 3 : 2 : 2 : 0. However, in 2008
Delgado-Friedrichs, Deza, and Dutour found all the FK-R3-fullerenes with at most 16
cells in the fundamental domain. Three of them, with proportions 3 : 4 : 2 : 0, 7 : 4 : 2 : 2,
6 : 6 : 4 : 0, are counterexamples to a general conjecture that was unsolved at that time.

The only known crystalline R3-fullerene that is not an FK-R3-fullerene was constructed
in [4]. It was considered in detail later in [5] as the Deza–Shtogrin tiling . We call it the
DS-R3-fullerene. It consists of F20, F24, F36 in the proportion 7 : 2 : 1 and has symmetry
group P6/mmm. All the crystalline R3-fullerenes with at most 7 orbits of vertices are
A15, C15, Z, C14, and the DS-R3-fullerene, which have, respectively, 3, 3, 5, 7, and 7 orbits
(see [5]). The DS-R3-fullerene turned out to be the best among the known ones in the
sense of the average number of sides of its faces, 56/11, the nearest to the unattainable
minimum 5.

The tiling with the group P6/mmm corresponding to the clathrate H is closely related
to R3-fullerenes. The fundamental domain of this tiling has 34 vertices (water molecules),
which form cells F20, F ′

20, F36 in the proportion 3 : 2 : 1 (see [6]). Clathrates are crys-
talline solid substances based on crystalline water (they are similar to ice) in which
non-polar molecules (usually, gases) are trapped inside cells of water molecules with hydro-
gen bonds. The basic clathrates of type I (A15 in the crystallographic terminology; they
have group Pm3̄n) and of type II (C15 in the crystallographic terminology; they have group
Fd3̄m) correspond to the FK-R3-fullerenes A15 and C15. The crystalline FK-R3-fullerene
C14 has group P63/mmc, whose fundamental domain consists of eight F20 and four F28.
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In essence, C14 is a hexagonal version of C15, with the same proportion 2 : 0 : 0 : 1 but
with 12 cells in the fundamental domain of the group P63/mmc. The fullerenes F28 form
the diamond structure in C15, and the hexagonal diamond (lonsdaleite) structure in C14.

Below we construct infinitely many non-crystalline R3-fullerenes from any crystalline
R3-fullerene with an axis of order 6 and with planes of mirror symmetry along the axis.
This method of constructing R3-fullerenes is a three-dimensional analogue of the method
for producing R2-fullerenes presented below.

A generalized fullerene (more precisely, an Mn-fullerene; see [4]) is a simple tiling of
a manifold Mn of any dimension n (closed or unbounded) whose two-dimensional faces
are pentagons and hexagons. An ordinary fullerene is an S2-fullerene. A generalized
P2-fullerene, where P2 is the projective plane, has 6 pentagons.

We now present a method for constructing R2-fullerenes homeomorphic to the plane
that have at most 6 pentagons. Let us consider the standard tiling of the plane R2

into hexagons and choose the centre of one of the hexagons as the vertex of an angle
π/3 whose boundary rays are directed along axes of mirror symmetry. We perform the
following operation: we remove the interior of the angle π/3 and identify the boundary rays
by a rotation through π/3. After this operation, some halves of hexagons are removed
together with the interior of the angle, while the other halves are glued together into
whole hexagons. Only one hexagon, at whose centre we chose the vertex of the angle
π/3, becomes a pentagon after one sixth of it is removed. As a result, we obtain a simple
normal tiling of the plane into hexagons and one pentagon. This simplest R2-fullerene
has group 5m. In this R2-fullerene any hexagon can again be replaced by a pentagon in
exactly the same fashion. For that, we must remove an angle π/3 with vertex at the centre
of a hexagon that does not contain the pentagon that we already have. Thus we obtain
infinitely many R2-fullerenes with two pentagons. The group of each of these R2-fullerenes
is 2m or 2. This operation can be repeated six times, since six pairwise disjoint angles π/3
can be removed from the tiling of the Euclidean plane into hexagons, but not more, which
follows from the equality 6 · π/3 = 2π.

The DS-R3-fullerene has group P6/mmm. Let us construct a dihedral angle π/3 formed
by planes of mirror symmetry. We perform the following operation: we remove the interior
of the angle and identify the faces (by rotation through π/3). After this operation, some
halves of fullerenes are removed, and other halves are glued together into whole fullerenes.
Only those fullerenes that are pierced by the edge of the dihedral angle π/3 turn into
different fullerenes after the removal of one sixth from each of them: F36 into F30 and F24

into F20. The result is a simple normal tiling of the space R3 into fullerenes F36, F30, F24,
and F20. This is a new R3-fullerene. Its symmetry group is no longer crystallographic
but a rod group, p5/mmm, with one translational period. In the new R3-fullerene, along
an arbitrary local axis of order 6 we can again replace F36 by F30 and F24 by F20. For
that, we remove a dihedral angle π/3 with edge along a local axis of order 6 whose interior
does not contain the new fullerene F30. We thus obtain infinitely many R3-fullerenes with
two local rod groups with axis of order 5. Each has rod group pmmm or p2/m11. The
operation can be repeated six times. This is the three-dimensional analogue in question.

Theorem. This procedure produces R3-fullerenes from all the others with group P6/mmm.
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