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We manufactured an organic light-emitting diode �OLED� in which the hole and electron transport
layers are chemically doped with p- and n-type dopants and energy levels in between neighboring
carrier transport layers and emitting molecules are aligned. From the results of the
electroluminescence �EL� characteristics of the OLED, we found that �1� the OLED has an
extremely low driving voltage of 2.65�0.05 0.05 V at a current density of 100 mA /cm2; �2� the
onset voltage of EL ��2.4 V� corresponds to the photon energy of emitting molecules ��2.5 eV�,
while the onset voltage of currents is �1.8 V; and �3� a decrease in EL efficiency at high current
densities can be suppressed by matching the energy levels. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2844891�

Organic light-emitting diodes �OLEDs� doped with
phosphorescent iridium complexes have been shown to
achieve an internal electroluminescence �EL� efficiency of
nearly 100%.1,2 Researchers are now interested in reducing
driving voltages and improving durability for practical dis-
play and lighting applications. In particular, reducing the
driving voltage is required for improving power conversion
efficiencies2,3 and lifetimes.4 In most OLEDs, carrier mobili-
ties of organic layers are much lower than those of inorganic
semiconductors5,6 and carrier injection barriers are present at
metal/organic and organic/organic interfaces,7–9 resulting in
much higher driving voltages of OLEDs than those of inor-
ganic LEDs. Doping organic hole transport layers �HTLs�
and electron transport layers �ETLs� with p- and n-type
dopants2–4,10–13 and softening energy barriers at the hetero-
junction interfaces7–9 have been frequently used to reduce
driving voltages. However, the voltage levels reported thus
far are still higher than the corresponding photon energy lev-
els of emitting molecules. We have now reduced the voltages
to a level equivalent to that of the photon energies using the
above-mentioned techniques.

We manufactured an OLED with a device struc-
ture of glass substrate/indium tin oxide �ITO� anode
�100 nm� /2 mol %-2,3 ,5 ,6-tetrafluoro-7,7,8,8-tetracyano-
quinodimethane �F4-TCNQ�-doped alpha-sexithiophene
��-6 T� HTL �30 nm� /4,4� ,4�-tris�N-3-methylphenyl-
N-phenyl-amino�triphenylamine �m-MTDATA� HTL
�10 nm� /3 mol %-�-6 T-doped m-MTDATA emitting layer
�EML� �10 nm� /3 mol %-�-6 T-doped phenyldipyre-
nylphosphine oxide �POPy2� EML �10 nm� /POPy2 ETL
�10 nm� /30 mol %-Cs-doped POPy2 ETL �30 nm� /Al cath-
ode �100 nm�. The schematic structure and energy-level dia-
gram of this OLED are shown in Figs. 1�a� and 1�b�. The
�-6 T HTL,3,8 the m-MTDATA HTL,14 and the POPy2
ETL3,15 have been previously used to reduce driving voltages
because these layers have relatively high carrier mobilities

among organic materials. In our OLED, we doped p-type
F4-TCNQ in the �-6 T HTL and n-type Cs in the POPy2
ETL and matched the energy levels among the neighboring
organic layers and the �-6 T emitting molecules, which re-
sulted in an extremely low driving voltage of 2.65�0.05 V
for the current density of 100 mA /cm2.

In most OLEDs, EL efficiencies markedly decrease at
high current densities.16 This decrease makes fabricating
electrically pumped organic laser diodes �OLDs� difficult
and, thus, the decrease must be completely eliminated in
order to develop OLEDs and OLDs. The causes of this de-
crease have been ascribed to the lowered carrier balance of
electrons and holes,17 singlet-singlet exciton annihilation,16,18

and singlet-polaron exciton annihilation.18,19 Recently, Luo
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FIG. 1. �a� Schematic structure and �b� energy-level diagram of doped
OLED. In �b�, ionization potential energies of organic layers and work func-
tions of metal layers were measured using AC-1 ultraviolet photoelectron
spectrometer �Riken Keiki�. Electron affinities of organic layers were calcu-
lated by subtracting optical absorption onset energies from ionization poten-
tial energies.
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et al. reported that charge carriers, which are built up at
heterojunction interfaces and are trapped on small-energy-
gap dopant molecules, cause a strong quenching of excitons
in EMLs.19 From results of our study of OLED characteris-
tics, we found that the decrease in �ext at high current den-
sities is suppressed due to the energy-level alignments
among the organic layers and the emitting molecules, as
shown in Fig. 1�b�.

We manufactured the OLED using the following steps.
Glass substrates coated with a 100-nm-thick ITO layer with a
sheet resistance of 25 � /sq �Sanyo Vacuum Industries� were
ultrasonically cleaned in a mixture of detergent �Cica clean
LX-II, Kanto Chemicals� and pure water �1 /10 by volume�.
This was followed by ultrasonication in pure water, acetone,
and isopropanol. The substrates were soaked in boiling iso-
propanol and then placed in an UV-ozone treatment chamber.
In a vacuum evaporator, which was evacuated to �10−4 Pa,
organic and Al layers were vacuum deposited on the ITO
surfaces at deposition rates of 0.3 nm /s for the organic lay-
ers and 0.1 nm /s for the Al layer. The doping concentrations
of the guest-to-host molecules were controlled at 2 mol %
for the F4-TCNQ:�-6 T ETL, 3 mol % for the �-6 T-doped
EMLs, and 30 mol % for the Cs:POPy2 ETL using two
quartz crystal microbalances. The active area of the device
was 0.785 mm2. The EL spectrum of the device was
measured with a spectrometer �SD-2000, Ocean Optics�
at a constant current density of 100 mA /cm2. The current
density-voltage-external quantum efficiency �J-V-�ext� char-
acteristics of the device were measured using a semiconduc-
tor parameter analyzer �E5250A, Agilent Technology� and a
calibrated silicon photodiode �1930-C, Newport�. The lumi-
nance �L� was calculated from �ext assuming a Lambertian
emission pattern.

The EL spectrum of the doped OLED and the
photoluminescence �PL� spectra of 3 mol %-�-6 T-doped
m-MTDATA and 3 mol %-�-6 T-doped POPy2 films
�100 nm� on quartz substrates are shown in Fig. 2. The ex-
citation light wavelength for PL was 350 nm, where the ab-
sorption of POPy2 and m-MTDATA is large while the ab-
sorption of �-6 T is relatively small. We only observed the
emissions arising from �-6 T in the EL spectrum and the PL
spectrum of the �-6 T:POPy2 film. However, there were two
emission peaks arising from both �-6 T and m-MTDATA in
the PL spectrum of the �-6 T:m-MTDATA film. Moreover,
the EL spectrum better corresponded to the PL spectrum of
the �-6 T:POPy2 film than that of the �-6 T:m-MTDATA

film. From these observations, we speculate that carrier re-
combination of electrons and holes mainly occur in the
�-6 T:POPy2 EML. We calculated the photon energy of
electrically excited �-6 T molecules to be �2.5 eV from the
high-energy edge of the EL spectrum.

The J-V and L-V characteristics of the OLED are shown
in Fig. 3. We achieved an extremely low driving voltage of
2.65�0.05 V at 100 mA /cm2 in the OLED. We can at-
tribute this low voltage to the following factors. �1� We
doped F4-TCNQ and Cs in the �-6 T HTL and the POPy2
ETL, which resulted in a charge transfer between the host
and guest molecules and an increase in free carrier concen-
tration. This concentration increase enhances electrical con-
ductivities in the doped layers20 and induces the formation of
nearly Ohmic contacts at the metal/organic interfaces.21 �2�
We used �-6 T,3,8 m-MTDATA,14 and POPy2 �Refs. 3 and
15� materials, which have high carrier mobilities. �3� We
matched the energy levels among the neighboring organic
layers and the �-6 T emitting molecules, as shown in Fig.
1�b�. Matching the energy levels leads to efficient carrier
injection at the heterojunction interfaces and prevents carrier
accumulation at the interfaces, resulting in a reduction in the
driving voltage of the OLED.

Since our OLED had much lower voltages than those of
conventional OLEDs, we were able to investigate detailed
J-V and EL characteristics at low voltages. When the device
was biased beyond the flatband condition to cause current
flow, the currents abruptly increased at �1.8 V �Fig. 3�.
However, we observed no EL from the device at this voltage.
The onset voltage of EL was �2.4 V, which was higher than
the onset voltage of the currents ��1.8 V� and corresponded
to the photon energy of emitting �-6 T molecules
��2.5 eV�.

The J-�ext characteristics of the doped OLED are
shown in Fig. 4. To compare these characteristics, we manu-

FIG. 2. EL spectrum of doped OLED �solid line� and PL spectra of
3-mol %-�-6T-doped m-MTDATA �broken line� and 3-mol %-�-
6T-doped POPy2 films �bold line�.

FIG. 3. Current density-voltage and luminance-voltage characteristics of
doped OLED. Dotted lines highlight onset voltages of current and EL.

FIG. 4. External quantum efficiency-current density characteristics of doped
OLED and Alq3 OLED.
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factured a conventional OLED with a glass substrate/ITO
anode �100 nm� /N ,N� -diphenyl-N ,N� -bis�1-naphthyl�-
1 ,1� -biphenyl-4 ,4�-diamine ��-NPD� HTL �50 nm�/tris�8-
hydroxy-quinoline� aluminum �Alq3� emitting ETL
�50 nm� /MgAg cathode �100 nm� structure and measured its
J-�ext characteristics, which are also shown in Fig. 4. Al-
though the �ext markedly decreased at high current densities
in the Alq3 OLED, we observed no decrease in �ext of the
doped OLED in the high current region of over two orders of
magnitude. We attribute the unchanged �ext to the energy-
level alignments among the neighboring organic layers and
the �-6 T emitting molecules, which can prevent the accu-
mulation of carriers at the heterojunction interfaces and car-
rier trapping on the �-6 T molecules. In contrast, since there
is a hole injection barrier of 0.2 eV at the �-NPD /Alq3 in-
terface in the Alq3 OLED,8 a number of holes injected from
the ITO contact are built up at this interface, resulting in
exciton quenching by the accumulated holes and the marked
decrease in �ext.

We calculate the generation rates of singlet excitons
�nexciton� in a carrier recombination zone of the OLEDs. The
nexciton can be estimated using

nexciton =
J

e
� �ext �

1

�out
�

1

�PL
�

1

Lexciton
, �1�

where e is the electronic charge, �out is the light out-coupling
efficiency,17,22 �PL is the PL quantum efficiency, and Lexciton
is the width of a carrier recombination zone. The nexciton of
the doped OLED at the maximum current can be calculated
at 5.0�1026 /cm2 s using Eq. �1� with J=18.5 A /cm2, �ext
=0.69, �out=0.2,17,22 �PL=0.4 �for the �-6 T:POPy2
EML�,23 and Lexciton=20 nm �the sum of the thickness of the
�-6 T:POPy2 and �-6 T:m-MTDATA EMLs�. On the other
hand, the nexciton of the Alq3 OLED at the maximum current
can be calculated at 9.2�1025 /cm2 s using Eq. �1� with J
=3.3 A /cm2, �ext=0.46, �out=0.2,17,22 �PL=0.2,23 and
Lexciton=26nm.24 To calculate this nexciton, we assumed that
the exciton diffusion length of 26 nm in Alq3 films24 corre-
sponds to Lexciton. Although the nexciton of the doped OLED
was about five times higher than that of the Alq3 OLED, we
observed no decrease in �ext at the maximum current in the
doped OLED, which is caused by the energy-level align-
ments among the organic molecules.

In an OLED, we chemically doped an �-6 T HTL and a
POPy2 ETL with F4-TCNQ and Cs and matched energy lev-
els among neighboring carrier transport layers and �-6 T
emitting molecules. We achieved an extremely low driving
voltage of 2.65�0.05 V at a current density of 100 mA /cm2

in the OLED. We found that the onset voltage of EL
��2.4 V� corresponds to the photon energy of �-6 T
��2.5 eV� and a decrease in �ext at high current densities is

suppressed by matching the energy levels. Our OLED with a
low driving voltage and unchanged �ext will lead to the de-
velopment of higher performance passive matrix OLED dis-
plays and electrically pumped OLDs as well as a better un-
derstanding of exciton quenching mechanisms.

The present work was partly supported by a Grant-in-
Aid for the Global COE Program, “Science for Future Mo-
lecular Systems” from the Ministry of Education, Culture,
Science, Sports and Technology of Japan.
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