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GLIVENKO THEOREMS FOR SUBSTRUCTURAL LOGICS OVER FL

NIKOLAOS GALATOS AND HIROAKIRA ONO

Abstract. It is well known that classical propositional logic can be interpreted in intuitionistic propo-

sitional logic. In particular Glivenko’s theorem states that a formula is provable in the former iff its double

negation is provable in the latter. We extend Glivenko’s theorem and show that for every involutive sub-

structural logic there exists a minimum substructural logic that contains the first via a double negation

interpretation. Our presentation is algebraic and is formulated in the context of residuated lattices. In the

last part of the paper, we also discuss some extended forms of the Kolmogorov translation and we compare

it to the Glivenko translation.

§1. Introduction. The following theorem, due to Glivenko [14], shows that clas-
sical propositional logic can be interpreted in intuitionistic propositional logic.

Theorem 1.1 (Glivenko). A formula φ is provable in classical propositional logic
iff the formula ¬¬φ is provable in intuitionistic propositional logic.

Extensions of this theorem can be found in [5] and [6].

Theorem 1.2.

(1) A formula φ is provable in classical propositional logic iff the formula ¬¬φ is
provable in the extension SBL of Hájek basic logic by the axiom (÷ · (÷ →
¬÷))→ ø.

(2) A formula φ is provable in Łukasiewicz infinite-valued logic iff the formula ¬¬φ
is provable in Hájek basic logic.

(3) Let L be an extension of FLew—the full Lambek calculus with exchange and
weakening, and 0→ ø among its axioms—that contains the axiom ¬¬(¬¬ø →
ø) and let In(L) be the extension of L by the axiom ¬¬ø → ø. Then a formula
φ is provable in In(L) iff the formula ¬¬φ is provable in L.

All the logics mentioned above are special cases of substructural logics over FL;
see [11] for a study of these logics. Moreover, the above theorems establish the
interpretability of an involutive logic in another logic. A (commutative) logic with
negation is called involutive, if the double negation formula ∼∼φ ↔ φ is provable
in it; we use the notation ∼φ for φ → 0, rather than ¬φ, if 0 → ø is not assumed
to be an axiom. Observe that the previous results are limited to the case, where
the rules of exchange and weakening are present. In FL neither of these rules is
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assumed and two negations∼φ and−φ (defined by φ\0 and 0/φ) are considered.
In general, a substructural logic is called involutive, if the formulas −∼φ ↔ φ and
∼−φ ↔ φ are provable.
If K and L are substructural logics, we say that the Glivenko property holds for K
relative to L iff, for all formulas φ over the language of FL,

⊢L φ iff ⊢K −∼φ iff ⊢K ∼−φ,

where ⊢M denotes the consequence relation associated with the logicM .
We will base our study on results of [11] that are reviewed in the next section.
In view of the fact that the subvarieties of the variety FL of FL-algebras (pointed
residuated lattices) serve as equivalent algebraic semantics for substructural logics
over FL—see Theorem 2.5—the Glivenko property can also be reformulated in
algebraic terms. If W and V are subvarieties of FL, we say that the Glivenko
property holds forW relative to V iff, for every term t over the language of FL,

|=V 1 ≤ t iff |=W 1 ≤ −∼ t iff |=W 1 ≤ ∼− t,

where |=K denotes the semantical consequence relation relative to the class of
algebras K; e.g., see Section 3.2 of [11]. It follows from the algebraization of FL
that the Glivenko property holds for K relative to L iff it holds for V(K) relative to
V(L).
It is natural to consider the following strengthening of the Glivenko property. If

W and V are subvarieties of FL, we say that the equational Glivenko property holds
forW relative to V iff, for all terms s, t over the language of FL,

|=V s ≤ t iff |=W −∼ s ≤ −∼ t iff |=W ∼− s ≤ ∼− t.

On the other hand, staying within the setting of logic, we can strengthen the
Glivenko property in a different direction. We say that the deductive Glivenko
property holds for K relative to L iff, for every set of formulas Σ ∪ {φ} over the
language of FL,

Σ ⊢L φ iff −∼Σ ⊢K −∼φ iff ∼−Σ ⊢K ∼−φ,

where −∼Σ = {−∼ ó | ó ∈ Σ}; the version of the property where−∼Σ and∼−Σ
are replaced by Σ turns out to be equivalent. In algebraic terms, the deductive
Glivenko property holds forW relative to V iff, for all sets of terms {ti | ∈ I } ∪ {t}
over the language of FL,

D |=V 1 ≤ t iff −∼D |=W 1 ≤ −∼ t iff ∼−D |=W 1 ≤ ∼− t,

where D = {1 ≤ ti | ∈ I } and −∼D = {1 ≤ −∼ ti | i ∈ I }; as before −∼D and
∼−D can be replaced by D.
A common strengthening of all these three types of Glivenko property is the
following. If W , V are subvarieties of FL, we say that the deductive equational
Glivenko property holds forW relative to V iff, for all sets of equations E ∪ {s ≈ t}
over the language of FL,

E |=V s ≤ t iff −∼E |=W −∼ s ≤ −∼ t iff ∼−E |=W ∼− s ≤ ∼− t,

where −∼E = {−∼ u ≈ −∼ v | (u ≈ v) ∈ E}; here again we can simply use E in
all statements and obtain an equivalent formulation.
We will prove that the equationalGlivenko property and the deductive equational
Glivenko property are equivalent and they imply thatL (orV) is involutive; a variety
V is called involutive, if it satisfies ∼−x ≈ x ≈ −∼x. The other properties are
not equivalent in general—see Proposition 4.9 and Proposition 4.10—but under the
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assumption that L (or V) is involutive all of the properties mentioned above are
equivalent.
We show that for every involutive substructural logicL, there exists a substructural
logic G(L) such that some/any Glivenko property holds for a substructural logic
K relative to L iff G(L) ⊆ K ⊆ L, see Corollary 4.7. Given an axiomatization of
a logic L, we provide an axiomatization for the logic G(L) (Corollary 4.12), which
is finite if L is finitely axiomatized (Corollary 4.13) and show that G is an interior
operator on the lattice of substructural logics (see Lemma 3.3(1)). This answers
the question: Given an involutive substructural logic L, for which logics does some
Glivenko property hold relative to L?
We continue by addressing a question in the other direction: Given a substructural
logic K , when and relative to which logics does a Glivenko property hold for K? We
call two substructural logics (or subvarieties of FL) Glivenko equivalent if they
contain the same negated formulas (equations, respectively), see Lemma 3.1. The
equivalence classes are intervals of the lattice of substructural logics (the lattice
of subvarieties of FL) of the form [G(K),M(K)] (or [M(W),G(W)]). It turns
out that two logics K1 and K2 are Glivenko equivalent iff G(K1) = G(K2); see
Lemma 3.3(3). In this case, any of the Glivenko properties holds for K2 relative to
some logic iff the property holds for K1 relative to the same logic. Additionally, any
of the Glivenko properties above holds for K relative to some substructural logic iff
it holds relative toM(K); see Propositions 4.1, 4.4 and 4.6.
For each of the three Glivenko properties, we describe different degrees of involu-
tiveness thatM(K) has to possess. The existence of an involutive substructural logic
(or subvariety of FL) relative to which some/any of the Glivenko properties holds
for K (orW) is equivalent to the condition thatK contains theGlivenko logic G (or
W being contained in the Glivenko variety G); see Theorem 5.7 and the comments
following it.
In each of the three Glivenko properties discussed above, there are three state-
ments involved, which are stipulated to be equivalent. For example, we have

|=V s ≤ t iff |=W −∼ s ≤ −∼ t iff |=W ∼− s ≤ ∼− t.

in the equational Glivenko property. One can consider finer versions of the proper-
ties by stipulating that the first two statements (left version) or the first and the last
statement (right version of the property) are equivalent. So, for example, the left
equational Glivenko property holds forW relative to V iff, for all terms s, t over the
language of FL,

|=V s ≤ t iff |=W −∼ s ≤ −∼ t.

Our analysis respects these more detailed considerations and provides left and right
versions of each of the results that we show. For simplicity we state most of the
results in their left versions, but the opposite statements, where “left” is replaced by
“right” and the terms and equations in the statement are replaced by their opposite,
hold, as well.
In Section 6, we present some special cases. In particular, we show that Theo-
rems 1.1 and 1.2 follow from our analysis. Moreover, we obtain simplified axiom-
atizations for the largest integral subvariety of FL for which Glivenko’s theorem
holds with respect to a given integral involutive variety. Also, we study the case
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where a Glivenko property holds relative to the variety of Boolean algebras and the
case of the subvarieties of GBL-algebras.
Finally, in Section 7, we discuss briefly a translation that generalizes the Kol-
mogorov translation to substructural logics and compare it to the Glivenko trans-
lation.

§2. Preliminaries. Our approach, presentation and proofs of most of the results
are algebraic. Therefore, we begin by reviewing the definitions and results of [11]
needed for this paper, pertaining to the connection of substructural logics to their
algebraic counterparts: residuated lattices. The reader is referred to [11] for the
proofs and for further results.
A residuated lattice-ordered monoid, or residuated lattice, is an algebra A =

〈A,∧,∨, ·, \, /, 1〉 such that 〈A,∧,∨〉 is a lattice, 〈A, ·, 1〉 is a monoid and multi-
plication is residuated with respect to the order by the division operations \, /; i.e.,
for all a, b, c ∈ A,

a · b ≤ c ⇔ a ≤ c/b ⇔ b ≤ a\c.

A pointed residuated lattice, or FL-algebra, A = 〈A,∧,∨, ·, \, /, 1, 0〉 is an algebra
such that 〈A,∧,∨, ·, \, /, 1〉 is a residuated lattice and 0 is an arbitrary element of
A. We will be using the term FL-algebra, unless we want to refer to both residu-
ated lattices and pointed residuated lattices, in which case we will write (pointed)
residuated lattices. Also, in line with the above definition, we will use the adjective
‘pointed’ to refer to algebras whose type has been expanded to include a constant
0; for example we will refer to pointed GBL-algebras.
We assume that, among the operations for residuated lattices, multiplication is
performed first followed by the division operations and the lattice operations. So,
for example, x/yz ∧ u\v is parsed as [x/(yz)] ∧ (u\v). We denote by FmL the
set of terms over the language L of residuated lattices. By t ≤ s we denote both
the equality t = t ∧ s , if t, s are elements of a (pointed) residuated lattice, and
the equation t ≈ t ∧ s , if t, s are terms. It is easy to see that in a (pointed)
residuated lattice the equality s = t is equivalent to the inequality 1 ≤ s\t ∧ t\s .
The opposite top of a (pointed) residuated lattice term t is defined inductively on
the complexity of t. For all terms s, t, we define 1op = 1, 0op = 0, (s · t)op = t · s ,
(s\t)op = t/s , (t/s)op = s\t, (s ∧ t)op = t ∧ s , and (s ∨ t)op = t ∨ s . Essentially,
the opposite of a term is its “mirror image”. We extend the definition to equations,
by (s ≈ t)op = (top ≈ sop), and to metalogical statements in the obvious way.
Note that (s ≤ t)op = (top ≥ sop). Examples of mutually opposite equations can
be seen in each statement of the following lemma. If A = 〈∧,∨, ·, \, /, 1, 0〉 is an
FL-algebra, the algebra Aop = 〈∧,∨, ·op, /, \, 1, 0〉, where x ·op y = y · x, is also an
FL-algebra that is called the opposite of A.

Lemma 2.1. [3, 11] The following identities hold in all (pointed ) residuated lattices.

(1) x(y ∨ z) ≈ xy ∨ xz and (y ∨ z)x ≈ yx ∨ zx;
(2) x\(y ∧ z) ≈ (x\y) ∧ (x\z) and (y ∧ z)/x ≈ (y/x) ∧ (z/x);
(3) x/(y ∨ z) ≈ (x/y) ∧ (x/z) and (y ∨ z)\x ≈ (y\x) ∧ (z\x);
(4) (x/y)y ≤ x and y(y\x) ≤ x;
(5) x(y/z) ≤ (xy)/z and (z\y)x ≤ z\(yx);
(6) (x/y)/z ≈ x/(zy) and z\(y\x) ≈ (yz)\x;
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(7) x\(y/z) ≈ (x\y)/z;
(8) x/1 ≈ x ≈ 1\x;
(9) 1 ≤ x/x and 1 ≤ x\x;
(10) x ≤ y/(x\y) and x ≤ (y/x)\y;
(11) y/((y/x)\y) = y/x and (y/(x\y))\y = x\y;
(12) x/(x\x) = x and (x/x)\x = x;
(13) (z/y)(y/x) ≤ z/x and (x\y)(y\z) ≤ x\z.

Multiplication is order preserving in both coordinates; each division operation is order
preserving in the numerator and order reversing in the denominator. Moreover, if a
residuated lattice has a least element ⊥, then it has a greatest element ⊤, as well, and
⊤ = ⊥/⊥ = ⊥\⊥.

The class RL of residuated lattices and the class FL of FL-algebras are both
varieties. We denote their subvariety lattices by Λ(RL) and Λ(FL), respectively.
A (pointed) residuated lattice is called commutative if its monoid reduct is com-
mutative; i.e., if it satisfies the identity xy ≈ yx. It is called integral if its lattice
reduct has a top element and the latter coincides with the multiplicative identity
1; i.e., if it satisfies x ≤ 1. Finally, it is called contractive if it satisfies the identity
x ≤ x2. It is easy to see that in a residuated lattice commutativity is equivalent
to x/y ≈ y\x; in this context we write x → y for x\y. We denote by CRL and
CFL the varieties of commutative residuated lattices and commutative FL-algebras,
respectively.
In an FL-algebra we define two negation operations ∼x = x\0 and −x = 0/x.
An FL-algebra is called left involutive (right involutive), if it satisfies the identity
−∼x ≈ x (∼−x ≈ x, respectively). It is called involutive, if it is both left and
right involutive; it is called cyclic, if it satisfies ∼x ≈ −x. Note that for every
FL-algebra term t, (∼ t)op = − top and (− t)op = ∼ top and that every commutative
FL-algebra is cyclic. We assume that the negation operations have priority over all
other operations; for example, −y/x means (−y)/x.

Lemma 2.2. If A is an FL-algebra and x, y in A, then

(1) ∼(x ∨ y) = ∼x ∧ ∼ y and −(x ∨ y) = − x ∧ −y;
(2) if x ≤ y, then ∼ y ≤ ∼x and −y ≤ −x;
(3) x ≤ −∼x and x ≤ ∼−x;
(4) ∼−∼x = ∼x and −∼−x = −x;
(5) −∼x = −∼y iff ∼ x = ∼ y.
(6) ∼−x = ∼−y iff − x = − y.
(7) −∼(x/y) · y ≤ −∼x and y · ∼−(y\x) ≤ ∼−x.
(8) −y/x = −(xy) and x\∼y = ∼(yx).
(9) x\−y = ∼ x/y.
(10) x\−y = −∼x\−y and ∼y/x = ∼ y/∼−x.
(11) −∼(x\y) ≤ −∼(−∼x\−∼y) and

∼−(y/x) ≤ ∼−(∼−y/∼−x).
(12) −∼(−∼y/x) = −∼ y/x and ∼−(x\∼− y) = x\∼− y.
(13) xy ≤ − z iff −∼x · y ≤ − z. Also, xy ≤ ∼ z iff x · ∼− y ≤ ∼ z.
(14) ∼ 1 = 0 = − 1 and 1 ≤ ∼ 0 ∧ − 0

Proof. The first statement is a direct consequence of Lemma 2.1(3); the second
statement follows from the first one. Statements (3) and (4) are consequences of
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statements (10) and (11) in Lemma 2.1, for y = 0. Moreover, (5) and (6) follow
from (4). For (7), note that (x/y)y(x\0) ≤ x(x\0) ≤ 0, by (4) of Lemma 2.1. We
have successively,

y(x\0) ≤ (x/y)\0 = [0/((x/y)\0)]\0, by (4),

[0/((x/y)\0)]y(x\0) ≤ 0,

[0/((x/y)\0)]y ≤ 0/(x\0), and

−∼(x/y) · y ≤ −∼x.

Likewise, we prove the opposite identity. To obtain (8), note that, by (6) of
Lemma 2.1, we have − y/x = (0/y)/x = 0/xy = −(xy). For (9), we use (7)
of Lemma 2.1 to obtain x\−y = x\(0/y) = (x\0)/y = ∼ x/y. Using (9) and (4),
we havex\−y = ∼x/y = ∼−∼x/y = −∼x\−y, so we obtain (10). By (3) and
(10), x\y ≤ x\−∼y = −∼x\−∼y; then, (11) follows by (2). For (12), we use
(8) and (4) to obtain−∼(−∼y/x) = −∼−(x ·∼ y) = −(x ·∼ y) = −∼y/x. For
(13) we have xy ≤ − z = 0/z iff xyz ≤ 0 iff yz ≤ x\0 = −∼x\0 iff−∼x · yz ≤ 0
iff −∼x · y ≤ − z. Finally, (14) follows directly from the definition of the negation
operations. ⊣

Lemma 2.3. If A is a cyclic FL-algebra, then for all x, y, z ∈ A, we have

(1) xy ≤ 0 iff yx ≤ 0,
(2) xyz ≤ 0 iff yzx ≤ 0 iff zxy ≤ 0,
(3) xyz ≤ 0 iff ∼∼x · ∼∼ y · ∼∼ z ≤ 0,
(4) xy ≤ ∼ z iff ∼∼x · ∼∼y ≤ ∼ z.

Proof. For (1), if xy ≤ 0, then x ≤ 0/y = y\0, so yx ≤ 0. Condition (2) is a
direct consequence of (1).
For (3), note that ∼∼x · ∼∼ y · ∼∼ z ≤ 0 implies xyz ≤ 0, by Lemma 2.2(3).
Conversely, assume that xyz ≤ 0. Then, we have yz ≤ x\0 = ∼x = ∼∼∼x, by
Lemma 2.2(4). So, we obtain ∼∼x · y · z ≤ 0 and y · z · ∼∼x ≤ 0, by (2). By
repeating the same argument twice, we obtain ∼∼x · ∼∼ y · ∼∼ c ≤ 0.
Finally, (4) follows easily from (3). ⊣

Let L = {∧,∨, ·, \, /, 1, 0} be the language of FL-algebras. By FL we denote the
full Lambek sequent calculus over L, as well as the set of formulas provable in it;
see e.g., [11] for the list of the rules of FL.
If Σ ∪ {φ} is a set of formulas, we write Σ ⊢FL φ in case there is a proof of the
sequent ⇒ φ in the system obtained from FL by adding as initial sequents the
ones of the form ⇒ ó, for ó ∈ Σ. Clearly, ⊢FL is a substitution invariant and
finitary consequence relation on FmL; for the definition of consequence relations
and their properties, see e.g., [8].
A substructural logic (over FL) is a set of formulas that is closed under ⊢FL and
substitution. If L is a substructural logic and Σ ∪ {φ} a set of formulas, we write
Σ ⊢L φ for Σ ∪ L ⊢FL φ. It is clear that ⊢L is a substitution invariant and finitary
consequence relation. We say that a substructural logic L is axiomatized by a set of
formulas Σ, if L is the smallest substructural logic containing Σ.

Theorem 2.4. [11] A set of formulas L is a substructural logic iff it is closed under
substitution and under the following rules
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(fl) FL ⊆ L.
(mpℓ) If φ, φ\ø ∈ L, then ø ∈ L.
(adju) If φ ∈ L, then φ ∧ 1 ∈ L.
(pn) If φ ∈ L, then ø\φø,øφ/ø ∈ L.

Condition (adju) is a weakening of adjunction (if φ,ø ∈ L, then φ ∧ ø ∈ L)
stipulated for the unit element only, but the two conditions are equivalent in the
presence of the other conditions. Also, the combination of (pn) or product normality
and (adju) or unit-adjunction is equivalent to the condition (pnu) (if φ ∈ L, then
ø\φø∧1, øφ/ø∧1 ∈ L), in the presence (fl) and (mpℓ). For more on Hilbert-style
conditions for substructural logics, see [11] and [12].
A substructural logic L is called integral, if for every φ, φ\1 ∈ L; it is called
contractive, if for every φ, φ\φ2 ∈ L; finally, it is called commutative, if for every
φ,ø, φø\øφ ∈ L. If a logic is L integral and additionally 0\φ ∈ L, for every φ,
we say that L has weakening. It is easy to see that a logic is integral, contractive,
commutative or has weakening, iff it includes the logic FLi , FLc, FLe or FLw,
respectively; the reader is referred to [11] for the definition of these four logics.
For every class K of FL-algebras and for every set Φ of formulas over L, let
L(K) = {φ ∈ FmL | K |= 1 ≤ φ} and V(Φ) = Mod({1 ≤ φ | φ ∈ Φ}). Moreover,
if Σ is a set of formulas over L and E is a set of equations over L, we define the
set of equations Eq(Σ) = {1 ≤ φ | φ ∈ Σ}, and the set of formulas Fm(E) =
{t\s ∧ s\t | (t ≈ s) ∈ E}. Let s ≈ t and si ≈ ti , i ∈ I , be equations in the
language of FL, x̄ the sequence of variables in them and K a subclass of FL.
Following [2], we say that s ≈ t is a K-consequence of E = {si ≈ ti | i ∈ I }, in
symbolsE |=K s ≈ t, iff, for allA ∈ K and every assignment ā inA for the variables
x̄, if A |= si(ā) = ti(ā), for all i ∈ I , then A |= s(ā) = t(ā). Note that if E is finite,
then

E |=K s ≈ t iff K |= (∀x̄)(
∧
i∈I si(x̄) = ti(x̄) ⇒ s(x̄) = t(x̄)).

Theorem 2.5. [11]

(1) For every K ⊆ FL, L(K) is a substructural logic and for every Φ ⊆ FmL, V(Φ)
is a subvariety of FL.

(2) The maps L : Λ(FL) → SL and V : SL → Λ(FL) are mutually inverse, dual
lattice isomorphisms.

(3) If a substructural logic L is axiomatized by a set of formulasΦ, then the variety
V(L) is axiomatized by the set of equations Eq(Φ).

(4) If a subvariety V of FL is axiomatized by a set of equations E, then the sub-
structural logic L(V) is axiomatized by the set of formulas Fm(E).

(5) A substructural logic is commutative, integral or contractive iff the corresponding
variety is.

(6) If Σ ∪ {φ} is a subset of FmL and L is a substructural logic, then

Σ ⊢L φ iff Eq(Σ) |=V(L) 1 ≤ φ, and φ ⊣⊢L 1\(φ ∧ 1) ∧ (φ ∧ 1)\1.

(7) If E ∪ {t ≈ s} is a set of equations in L and V is a subvariety of FL, then

E |=V t ≈ s iff Fm(E) ⊢L(V) t\s ∧ s\t, and s ≈ t =||=V 1 ≤ s\t ∧ t\s .

The theorem implies, in the terminology of [2], that every subvariety V of FL is
an equivalent algebraic semantics for the substructural logic L(V), where the defining
equation is 1 ≈ φ ∧ 1 and the equivalence formula is φ\ø ∧ ø\φ.
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Theorem 2.5 establishes a link between substructural logics and varieties of FL-
algebras and it allows for the interchange of algebraic and logical terminology
throughout the paper. Wewill use the language of logic and algebra interchangingly
throughout the paper, without explicit reference to the algebraization result.
An iterated conjugate is a composition of polynomials of the form ëa(x) =
a\xa ∧ 1 and ñb(x) = bx/b ∧ 1, for various values of a and b. For example,
ã(x) = a\(b\(cx/c ∧ 1)b ∧ 1)a ∧ 1 is an iterated conjugate. See [3] and [11] for
further discussion on conjugate terms.
The following theorem is a weak version of the classical deduction theorem and
is called parameterized local deduction theorem in [7].1

Theorem 2.6. [11] If Σ∪∆∪{φ} is a subset of FmL andL is a substructural logic,
then

Σ,∆ ⊢L φ iff Σ ⊢L (
∏n
i=1 ãi (øi))\φ,

for some non-negative integer n, iterated conjugates ãi and øi ∈ ∆, i < n.
In particular, when L is commutative, then

Σ,∆ ⊢L φ iff Σ ⊢L (
∏n
i=1(øi ∧ 1))→ φ,

for some non-negative integer n, and øi ∈ ∆, i < n.

We denote by ΣL the set of all substitutions in the language L of (pointed)
residuated lattices. Also, if Φ is a set of formulas, we set ΣL(Φ) = {ó(φ) | ó ∈
ΣL, φ ∈ Φ}. If L is a substructural logic and Φ is a set of formulas, we denote by
L+Φ the least substructural logic that contains L ∪Φ.
The following corollary is an easy consequence of Theorem 2.4 and Theorem 2.6.

Corollary 2.7. IfΦ∪{ø} is a set of formulas, thenFL+Φ ⊢FL ø iffΣL(Φ) ⊢FL ø.

The following lemma allows for a certain degree of commutativity when dealing
with inequalities, the right-hand side of which is negated. Note that we cannot use
Lemma 2.3, as we do not assume cyclicity.

Lemma 2.8. Let φi and ø be formulas, and ãi iterated conjugates, for all i ∈
{1, 2, . . . , n}, where n is a non-negative integer. If

∏n
i=1 ãi(φi) ≤ −ø, then there exist

iterated conjugates ã ′i , for i ∈ {1, 2, . . . , n}, such that
∏1
i=n −∼ ã ′i (φi) ≤ −ø. [Note

the change in the order of the product.]

Proof. If ã1(φ1)ã2(φ2)ã3(φ3) · · · ãn(φn) ≤ −ø, then we have

[−∼ ã1(φ1)]ã2(φ2)ã3(φ3) · · · ãn(φn) ≤ −ø,

byLemma 2.2(13). Recalling thatña(b)a ≤ ab, by Lemma 2.1, we have successively

ñ[−∼ ã1(φ1)](ã2(φ2))[−∼ ã1(φ1)]ã3(φ3) · · · ãn(φn) ≤ −ø,

ñ[−∼ ã1(φ1)](ã2(φ2))ñ[−∼ ã1(φ1)](ã3(φ3))[−∼ ã1(φ1)] · · · ãn(φn) ≤ −ø,

and finally, for a = [−∼ ã1(φ1)],

ña(ã2(φ2))ña(ã3(φ3)) · · · ña(ãn(φn))[−∼ ã1(φ1)] ≤ −ø,

or simply, for ã ′i (φi) = ña(ãi (φi)),

ã ′2(φ2)ã
′
3(φ3) · · · ã

′
n(φn)[−∼ ã1(φ1)] ≤ −ø.

1Note the different spelling of the word ‘parameterized’ in [7] for the same notion.
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By another application of Lemma 2.2(13), we have

[−∼ ã ′2(φ2)]ã
′
3(φ3) · · · ã

′
n(φn)[−∼ ã1(φ1)] ≤ −ø

and proceeding in the same spirit as above, we have, for ã ′′i (φi) = ñb(ã
′
i (φi)) and

b = [−∼ ã ′2(φ2)],

ã ′′3 (φ3) · · · ã
′′
n (φn)[−∼ ã ′2(φ2)][−∼ ã1(φ1)] ≤ −ø.

Proceeding inductively, we obtain

[−∼ ãn(φn)] · · · [−∼ ã2(φ2)][−∼ ã1(φ1)] ≤ −ø,

for some iterated conjugates ã i . ⊣

§3. Glivenko equivalence. We introduce the notion of Glivenko equivalence be-
tween subvarieties of FL. Via the algebraization theorem, Theorem 2.5, there is
an associated relation between substructural logics, for which we will use the same
name. Glivenko equivalence will serve as a unifying concept that will connect the
different Glivenko properties we will consider.

Lemma 3.1. Let W , V be subvarieties of FL and let r, s be terms over FL. The
following statements are equivalent.

(1) V |= ∼ s ≈ ∼ t iffW |= ∼ s ≈ ∼ t.
(2) V |= − s ≈ − t iffW |= − s ≈ − t.
(3) V |= ∼ s ≤ ∼ t iffW |= ∼ s ≤ ∼ t.
(4) V |= r ≤ ∼ t iffW |= r ≤ ∼ t.
(5) V |= 1 ≤ ∼ t iffW |= 1 ≤ ∼ t.
(6) D |=V 1 ≤ ∼ t iff D |=W 1 ≤ ∼ t, for all sets D = {1 ≤ ti | i ∈ I }.
(7) ∼D |=V 1 ≤ ∼ t iff ∼D |=W 1 ≤ ∼ t, for all sets D = {1 ≤ ti | i ∈ I }.
(8) E |=V ∼ s ≈ ∼ t iff E |=W ∼ s ≈ ∼ t, for all E = {si ≈ ti | i ∈ I }.
(9) ∼E |=V ∼ s ≈ ∼ t iff ∼E |=W ∼ s ≈ ∼ t, for all E = {si ≈ ti | i ∈ I }.

We have used the notation∼D = {1 ≤ ∼ ti | i ∈ I } and∼E = {∼ si ≈ ∼ ti | i ∈ I },
where si , ti are terms over FL, for i ∈ I .

Proof. Assume that (1) holds. Then, V satisfies − s ≈ − t iff it satisfies ∼− s ≈
∼− t, by Lemma 2.2(6). By (1), this is true iff W satisfies ∼− s ≈ ∼− t; i.e.,
iff W satisfies − s ≈ − t. Therefore, (1) implies (2); the converse is obtained by
interchanging the two negation operations.
Note that ∼ s ≤ ∼ t iff ∼ s ≈ ∼(s ∨ t), by Lemma 2.2(1); also ∼ s ≈ ∼ t
is equivalent to the conjunction of ∼ s ≤ ∼ t and ∼ t ≤ ∼ s . The equivalence
between (1) and (3) follows from these two facts.
Obviously, (4) implies both (3) and (5). (5) implies (4), since r ≤ ∼ t iff 1 ≤ r\∼ t
iff 1 ≤ ∼(tr), by Lemma 2.2(8), and (3) implies (4), since r ≤ ∼ t iff ∼− r ≤ ∼ t,
by Lemma 2.2(2,3,4). Consequently, (1)-(5) are all equivalent. Moreover, the same
argument shows that (9) implies (7). It is clear that (8) implies (9) and that (7)
implies (5). We will show that (5) implies (6) and that (6) implies (8).
Assume that (5) holds. We have {1 ≤ ti | i ∈ I } |=V 1 ≤ ∼ t iff there exists a
natural number n and iterated conjugates ãk over a sequence of terms, such that
|=V 1 ≤

∏n
k=1 ãk(tik )\∼ t = ∼[t ·

∏n
k=1 ãk(tik )], by using Theorem 2.5(6) and

Theorem 2.6. By (5) the same equation holds in W for the same n and the same
iterated conjugates, hence {1 ≤ ti | i ∈ I } |=W 1 ≤ ∼ t; consequently, (6) holds.



1362 NIKOLAOS GALATOS AND HIROAKIRA ONO

Assume, now, that (6) holds. We have ∼ s ≈ ∼ t iff ∼ s ≤ ∼ t and ∼ t ≤ ∼ s ,
iff 1 ≤ ∼ s\∼ t = ∼(t · ∼ s) and 1 ≤ ∼(s · ∼ t), by Lemma 2.2(8), iff 1 ≤
∼(t · ∼ s)∧∼(s · ∼ t), iff 1 ≤ ∼p, where p = (t · ∼ s)∨ (s · ∼ t), by Lemma 2.2(1).
Moreover, s ≈ t iff 1 ≤ s\t ∧ t\s . So, (8) can be written in a form that is a special
case of (6). ⊣

If any of the equivalent statements of the previous lemma holds, we say that the
variety V is Glivenko equivalent to the variety W . Glivenko equivalence coincides
with the notion of negative equivalenceof S.Odintsov, for the special cases considered
in [16]. Obviously, Glivenko equivalence is an equivalence relation on Λ(FL). It
is clear that if V ,W are Glivenko equivalent and V ⊆ U ⊆ W , then U is Glivenko
equivalent to V and W . So, the equivalence classes of the Glivenko equivalence
relation are convex.
We say that the substructural logics K and L are Glivenko equivalent, if for all
formulas φ,

⊢K ∼φ iff ⊢L ∼φ.

By Lemma 3.1, K and L are Glivenko equivalent iff V(K) and V(L) are Glivenko
equivalent. It follows from Lemma 3.1 that ∼ can be replaced by − in the above
definition.
For every variety V of FL-algebras, letG(V) be the subvariety ofFL axiomatized
by the equations ∼ s ≈ ∼ t, where s, t range over all pairs of terms such that the
equation s ≈ t holds in V . The variety G(V) is called the Glivenko variety of V .

Lemma 3.2. For every subvariety V of FL, the variety G(V) is also axiomatized by
the equations− s ≈ − t, where s ≈ t holds in V .

Proof. Consider the variety G ′(V) axiomatized by the equations − s ≈ − t,
where s ≈ t holds in V ; we will show that G ′(V) = G(V). For every equation s ≈ t
valid in V , the equation − s ≈ − t is valid in V , as well. So, G(V) satisfies the
equation ∼− s ≈ ∼− t, hence it also satisfies the equation −∼− s ≈ −∼− t. In
view of Lemma 2.2(4), we have that− s ≈ − t holds inG(V). Thus,G(V) ⊆ G ′(V).
Likewise, we obtain the converse inclusion. ⊣

Lemma 3.3. Let U , V ,W be subvarieties of FL.

(1) G is a closure operator on Λ(FL); i.e.,
(a) V ⊆ G(V),
(b) if V ⊆ W , then G(V) ⊆ G(W), and
(c) G(G(V)) = G(V).

(2) The varieties V and G(V) are Glivenko equivalent.
(3) The varieties V andW are Glivenko equivalent iff G(V) = G(W).
(4) The varietyG(V) is the largest subvariety ofFL that is Glivenko equivalent to V .

Proof. (1) For (a), note that if ∼ s ≈ ∼ t is an axiom of G(V), namely s ≈ t is
valid in V , then ∼ s ≈ ∼ t is valid in V . Thus, V is a subvariety of G(V). The fact
that G is increasing is clear from its definition. To show that G(G(V)) ⊆ G(V),
let ∼ s ≈ ∼ t be an axiom of G(V). Then, −∼ s ≈ −∼ t holds in G(V), hence
∼−∼ s ≈ ∼−∼ t holds in G(G(V)). Thus, G(G(V)) satisfies ∼ s ≈ ∼ t, by
Lemma 2.2(4).
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(2) If V satisfies − s ≈ − t, then G(V) satisfies ∼− s ≈ ∼− t, hence it satisfies
− s ≈ − t, by Lemma 2.2(6). Conversely, if − s ≈ − t holds in G(V), then it also
holds in V , by (1a). Thus, V and G(V) are Glivenko equivalent.
(3) If V and W are Glivenko equivalent, then G(V) and G(W) are Glivenko
equivalent, by (2). Thus, if ∼ s ≈ ∼ t is an axiom of G(V), then it is valid in
G(W). So, G(W) ⊆ G(V). The other inclusion is obtained in a similar way, hence
G(V) = G(W). Conversely, if G(V) = G(W), then V ,W are Glivenko equivalent,
by (2).
(4) If V , W are Glivenko equivalent, then G(V) = G(W), by (3). Since W ⊆
G(W), by (1), we haveW ⊆ G(V). So, in view of (2), G(V) is the largest subvariety
of FL that is Glivenko equivalent to V . ⊣

For a substructural logic L we define the Glivenko logic of L to be G(L) =
L(G(V(L))). It follows from the preceding theorem and from Theorem 2.5 that
G(L) is the smallest substructural logic that is Glivenko equivalent to L.
By definition G(V(L)) is axiomatized by the equations ∼ s ≈ ∼ t, where s ≈ t
ranges over all equations valid in V(L). Recalling that s ≈ t is valid in V(L) iff
the formula s\t ∧ t\s is in L iff both of s\t and t\s are in L we have that G(L)
is axiomatized by the formulas ∼ s\∼ t ∧ ∼ t\∼ s (equivalently by the formulas
∼ s\∼ t and ∼ t\∼ s), where s\t and t\s are in L. Moreover, if s\t ∈ L, we can
add∼ t\∼ s as an axiom forG(L). Therefore,G(L) = FL+{∼ø\∼φ |φ\ø ∈ L}.
Of course, in view of Lemma 3.2, we also haveG(L) = FL+{−ø\−φ |φ\ø ∈ L}.
We provide an alternative axiomatization for G(L).

Proposition 3.4. If L is a substructural logic, then G(L) is axiomatized relative
to FL by either one of the sets {−∼φ | φ ∈ L} and {∼−φ | φ ∈ L}; i.e., G(L) =
FL+ {−∼φ | φ ∈ L} = FL+ {∼−φ | φ ∈ L}.

Proof. We will show that G(L) =M , whereM = FL+ {∼−φ | φ ∈ L}.
If ∼−φ is an axiom ofM for φ ∈ L, then 1\φ ∈ L; hence

∼−φ = −φ\0 = −φ\− 1 ∈ G(L).

Consequently,M ⊆ G(L).
Conversely, suppose that −ø\−φ is an axiom of G(L) for φ\ø ∈ L. So,

∼−(φ\ø) ∈M and ñφ(∼−(φ\ø)) ∈M .
By Lemma 2.1(4), we have (0/ø)φ(φ\ø) ≤ 0 = ∼ 1, so

(0/ø)φ[∼−(φ\ø)] ≤ 0,

by Lemma 2.2(13). Hence, φ[∼−(φ\ø)] ≤ (0/ø)\0 = (−ø)\0. Since

ñφ(∼−(φ\ø))φ = [φ(∼−(φ\ø))/φ ∧ 1]φ ≤ φ(∼−(φ\ø)),

we have ñφ(∼−(φ\ø))φ ≤ (−ø)\0. So,

ñφ(∼−(φ\ø)) ≤ ((−ø)\0)/φ = (−ø)\(−φ),

by Lemma 2.1(7). By (mpℓ) of Theorem 2.4, we have (−ø)\(−φ) ∈ M . Conse-
quently, G(L) ⊆M . ⊣

An axiomatization of G(L) is also given in [16], for the special case of extensions
of Johansson’s logic.
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We know from Theorem 3.3(4) that given a logic L there exists a smallest logic
G(L) that is Glivenko equivalent to L. For every substructural logic L, we define
the logic

M(L) = FL+ {φ | −∼ ã(φ) ∈ L, for every ã ∈ Γ},

where Γ denotes the set of all iterated conjugates.

Theorem 3.5. For every substructural logic L, the logicM(L) is the greatest ele-
ment of the Glivenko equivalence class of L.

Proof. If ø ∈ L, then ã(ø) ∈ L, by (pn) and (adju) of Theorem 2.4, and
−∼ ã(ø) ∈ L, by Lemma 2.2(3) and (mpℓ) of Theorem 2.4; hence ø ∈ M(L).
Therefore, L ⊆M(L).
If −ø ∈M(L), then FL+Φ ⊢FL −ø, where

Φ = {φ | −∼ ã(φ) ∈ L, for every ã ∈ Γ}.

By Corollary 2.7, we have ΣL(Φ) ⊢FL −ø. We will show that ΣL(Φ) = Φ.
Assume that φ ∈ Φ, ó ∈ ΣL and ã ∈ Γ. Let ã ′ be the iterated conjugate obtained
from ã by replacing all common variables xi of ã and φ by new variables yi not
appearing in ã or φ. Also, let ó ′ be the substitution that maps the variables yi to
the variables xi and otherwise behaves like ó. It is easy to see that ó

′(−∼ ã ′(φ)) =
−∼ ã(ó(φ)). Since φ ∈ Φ, we have −∼ ã ′(φ) ∈ L and hence −∼ ã(ó(φ)) =
ó ′(−∼ ã ′(φ)) ∈ L. Thus, ó(φ) ∈ Φ.
Consequently by Theorem 2.6, Φ ⊢FL −ø, so there are φi ∈ Φ and iterated
conjugates ãi , for i ∈ {1, 2, . . . , n}, for some non-negative integer n, such that

n∏

i=1

ãi(φi) ≤ −ø.

By Lemma 2.8, we have

1∏

i=n

−∼ ã ′i (φi) ≤ −ø.

Sinceφi ∈ Φ, for all i , wehave that−∼ ã ′i (φi) ∈ L, for all i ; hence
∏1
i=n −∼ ã ′i (φi) ∈

L, by (pn) and (mpℓ ) of Theorem 2.4 and−ø ∈ L, by (mpℓ) of the same theorem.
Consequently, L andM(L) are Glivenko equivalent.
Now, assume that K is a substructural logic that is Glivenko equivalent to L.
If ø ∈ K then, by Theorem 2.4, we have that ó(ø) ∈ K for every substitution ó,
ã(ó(ø)) ∈ K for every iterated conjugate ã, and−∼ ã(ó(ø)) ∈ K . By the Glivenko
equivalence, −∼ ã(ó(ø)) ∈ L, for all ó ∈ ΣL and for all ã ∈ Γ; thus ø ∈ M(L).
Consequently, K is contained inM(L). ⊣

A similar result is shown in [16] for the special case considered in the paper.
The definitions and results in this as well as in the following sections can be
transferred from subvarieties of FL to substructural logics over FL and vice versa.
For example, for a subvariety V of FL we defineM(V) = V(M(L(V))).
It follows, by Lemma 3.3(4) and Theorem 3.5, that the Glivenko equivalence
classes are intervals in Λ(FL) of the form [M(V),G(V)]. Also, the classes of the
Glivenko equivalence between logics are intervals of the form [G(L),M(L)].
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§4. Glivenko properties. In this section we discuss when a Glivenko property
holds for a substructural logic K relative to a substructural logic L. As mentioned
in the introduction, we consider three types of Glivenko properties. We provide a
characterization for each of them in terms of different types of involutiveness that
we introduce below.
A substructural logic L is called left involutive, if ⊢L −∼φ\φ, for every φ. We say
that L is left weakly involutive, if−∼φ ⊢L φ, for every φ, and that it is left Glivenko
involutive, if ⊢L −∼φ implies ⊢L φ, for every φ. Clearly, left involutiveness is the
strongest and left Glivenko involutiveness is the weakest among the three properties.
In Section 4.3—see Propositions 4.9 and 4.10—we will see that the associated
implications are strict.

4.1. The Glivenko property. We say that the left Glivenko property holds for K
relative to L, or that K has the left Glivenko property relative to L, if ⊢L φ iff
⊢K −∼φ, for all φ. The opposite of the left Glivenko property (obtained by
interchanging ∼ and −) is the right Glivenko property and the conjunction of the
two is the Glivenko property. We define the Glivenko property for subvarieties of
FL by referring to their corresponding substrctural logics. The following result
then can be reformulated for subvarieties of FL in the obvious way.

Proposition 4.1. If L and K are substructural logics, then the following are equiv-
alent.

(1) The left Glivenko property holds for K relative to L.
(2) K and L are Glivenko equivalent and L is left Glivenko involutive.
(3) L =M(K) andM(K) is left Glivenko involutive.

Proof. We first establish the equivalence of (1) and (2). By setting ∼φ for φ in
(1), it follows by Lemma 2.2(4) thatK andL areGlivenko equivalent. In particular,
⊢K −∼φ iff ⊢L −∼φ; hence ⊢L −∼φ iff ⊢L φ, for every φ, by (1). Conversely,
if (2) holds, then ⊢K −∼φ iff ⊢L −∼φ iff ⊢L φ, by the assumption that L is left
Glivenko involutive.
Obviously, (3) implies (2). For the converse implication, note that L ⊆ M(K),
since K and L are Glivenko equivalent. Moreover, if ⊢M(K) φ, then ⊢M(K) −∼φ.
By Glivenko equivalence, we have ⊢L −∼φ, so ⊢L φ, since L is left Glivenko
involutive. Thus,M(K) ⊆ L. ⊣

It follows from Proposition 4.1 that in every Glivenko equivalence class [G(K),
M(K)] there is at most one left Glivenko involutive logic and it is equal toM(K),
when it exists. The corresponding statement and the analogue of Proposition 4.1
hold for subvarieties of FL. Conditions on the existence of the left Glivenko
involutive logic in a Glivenko equivalence class will be discussed in Section 5; see
page 1374.
We show that there exists a substructural logicK for which the Glivenko property
does not hold (relative to any logic L). We will state and prove this result in the
terminology of algebra; i.e., we will show that there is a subvariety V of FL, for
which the Glivenko property does not hold. By Proposition 4.1, it is enough to
show thatM(V) is not left Glivenko involutive.
We define an order relation on the set A = {⊥, u, 1,⊤}, by ⊥ < u < 1 < ⊤.
Moreover, we define an idempotent multiplication, for which⊥ is an absorbing and
1 a unit element, by ⊤u = ⊤ and u⊤ = u. It is easy to check that multiplication
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preserves order, hence it preserves arbitrary joins, as well, sinceA is totally ordered.
Therefore, multiplication is residuated with respect to the order and it can be easily
checked that it is associative. We denote by A the associated FL-algebra, where
0 = ⊥.

Proposition 4.2. The subvariety of FL that is generated by A does not enjoy the
right Glivenko property. Similarly, the variety generated by Aop does not enjoy the left
Glivenko property.

Proof. It is easy to see that A does not have any subalgebras or homomorphic
images other than the trivial and the universal. Therefore, the varietyW generated
by A is an atom, see [10], andM(W) =W (since the trivial variety is only Glivenko
equivalent to itself). To show thatW is not right Glivenko involutive, it suffices to
show that there is a term t such that A |= 1 ≤ ∼− t, but not A |= 1 ≤ t. Such a
term is t(x) = 1/[x ∨ (x\1)]. Indeed, it is not hard to verify that tA(x) = u and
∼− tA(x) = ⊤, if x 6= 1, tA(1) = 1 and ∼− tA(1) = ⊤. ⊣

On the other hand, we have the following result.

Proposition 4.3. M(K) is Glivenko involutive whenever K is a substructural logic
that contains FLew. Thus, the Glivenko property holds for every substructural logic
over FLew (relative to some logic).

Proof. It follows from Theorem 3.5, and the fact that conjugates do not con-
tribute anything in the commutative integral case, thatM(K) = FLew+{φ | ∼∼φ ∈
K}. We will show that M(K) is Glivenko involutive. If ⊢M(K) ∼∼φ, then,
by Theorem 2.6 and integrality, there exist φi , i ∈ I , such that ⊢K ∼∼φi and
⊢FLew (

∏
φi) → ∼∼φ. It follows from Lemma 2.8, commutativity and integrality

that ⊢FLew (
∏

∼∼φi) → ∼∼φ; alternatively, using terminology and results that
have not been itroduced yet, it follows from the fact that ë is a nucleus in the com-
mutative case according to Lemma 5.2 of the next section. Therefore, ⊢K ∼∼φ, by
(mpℓ ) of Theorem 2.4; hence ⊢M(K) φ. ⊣

4.2. The deductive Glivenko property. We say that the left deductive Glivenko
property holds for K relative to L, if Σ ⊢L φ iff Σ ⊢K −∼φ, for all Σ ∪ {φ}. The
right deductive Glivenko property is defined as the opposite statement to the left
deductive Glivenko property; the deductive Glivenko property is the conjunction of
the two properties.

Proposition 4.4. If L and K are substructural logics and Φ ∪ {ø} are formulas,
then the following are equivalent.

(1) The left deductive Glivenko property holds for K relative to L.
(2) Φ ⊢L ø iff −∼Φ ⊢K −∼ø, for all Φ ∪ {ø}.
(3) K and L are Glivenko equivalent and L is left weakly involutive.
(4) L =M(K) andM(K) is left weakly involutive.

Proof. (1) ⇒ (2). Assume that (1) holds and let −∼Φ ⊢K −∼ø, for some
Φ ∪ {ø}. Since φ ⊢K −∼φ for all φ ∈ Φ, we get Φ ⊢K −∼ø, by the transitivity
of ⊢K . By (1), we obtain Φ ⊢L ø. Conversely, let Φ ⊢L ø, for some Φ ∪ {ø}.
Taking {−∼ ÷} for Σ and ÷ for φ in (1), we obtain −∼÷ ⊢L ÷, for every ÷. So,
−∼Φ ⊢L φ, for all φ ∈ Φ; hence −∼Φ ⊢L ø, by transitivity. By (1), we get
−∼Φ ⊢K −∼ø.
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(2) ⇒ (3). Recall that −∼−∼ø = −∼ø; so, for Φ = {−∼ø}, (2) yields
−∼ø ⊢L ø. Moreover, by substituting the empty set for Φ and −ø for ø in (2),
we obtain ⊢L −ø iff ⊢K −ø, for all ø, by Lemma 2.2(4). Consequently, K and L
are Glivenko equivalent.
(3) ⇒ (1). Since K and L are Glivenko equivalent, we have Φ ⊢K −∼ø iff
Φ ⊢L −∼ø. Moreover, since ø and −∼ø are mutually deducible in L, i.e.,
ø ⊢L −∼ø and −∼ø ⊢L ø, we have that Φ ⊢L −∼ø is equivalent to Φ ⊢L ø.
Obviously, (4) implies (3). For the converse, if L is weakly involutive, then it is
Glivenko involutive, so L =M(K), by Proposition 4.1. ⊣

It is easy to see that the opposite of Proposition 4.4 is valid, so we obtain a
characterization for the deductive Glivenko property, as well.

4.3. The equational Glivenko property. In view of Theorem 2.5, it is clear that K
has the left Glivenko property relative to L iff, for every term t,

V(L) |= 1 ≤ t iff V(K) |= 1 ≤ −∼ t.

It is natural to consider the stronger property given by condition 5 of the following
proposition.

Lemma 4.5. LetW , V be subvarieties of FL and let s, t be terms over FL. Then,
the following statements are equivalent.

(1) V |= s ≈ t iffW |= −∼ s ≈ −∼ t, for all s, t.
(2) V |= s ≈ t iffW |= ∼ s ≈ ∼ t, for all s, t.
(3) V |= s ≤ t iffW |= −∼ s ≤ −∼ t, for all s, t.
(4) V |= s ≤ t iffW |= ∼ s ≥ ∼ t, for all s, t.
(5) V |= s ≤ t iffW |= s ≤ −∼ t, for all s, t.

The opposite statements are pairwise equivalent, as well.

Proof. The equivalences of (1) to (2) and of (3) to (4) follow from the fact
that their right hand sides are equivalent, by Lemma 2.2. The same holds for the
equivalence of (3) and (5), since by Lemma 2.2, −∼ s ≤ −∼ t iff s ≤ −∼ t.
Moreover, it is clear that (3) implies (1). To show the converse it is enough to show
that (2) implies (3). We assume that (2) holds. The inequality s ≤ t is valid in V iff
the equation s ∨ t ≈ t is valid in V . By (2) this is the case exactly whenW satisfies
the equation∼(s∨t) ≈ ∼ t; i.e, by Lemma 2.2(1), whenW satisfies∼ s∧∼ t ≈ ∼ t.
The last equation is in turn equivalent to ∼ t ≤ ∼ s , which, by Lemma 2.2(2) and
(4), is equivalent to −∼ s ≤ −∼ t. ⊣

Let W and V be subvarieties of FL. We say that the left (right) equational
Glivenko property holds for W relative to V , if any of the statements (1)-(5) (the
opposite statements of (1)-(5), respectively) of the previous lemma holds. If both
the left and the right equational Glivenko property hold for W relative to V , we
say that the equational Glivenko property holds forW relative to V . The definition
for substructural logics refers to the corresponding varieties. The following results
have obvious analogues for substructural logics.

Proposition 4.6. Let W and V be subvarieties of FL. Then, the following state-
ments are equivalent.

(1) The left equational Glivenko property holds forW relative to V .
(2) W and V are Glivenko equivalent and V is left involutive.
(3) V =M(W) andM(W) is left involutive.
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Proof. Assume that the left equational Glivenko property holds forW relative
to V . By Lemma 2.2, W satisfies −∼−∼x ≈ −∼x, so V satisfies −∼x ≈ x;
i.e., V is left involutive. Moreover, the variety V satisfies − s ≈ − t iff W satisfies
−∼− s ≈ −∼− t, by (1) ofLemma4.5, iffW satisfies− s ≈ − t, byLemma2.2(4).
Thus, (2) of Lemma 3.1 holds; i.e., V andW are Glivenko equivalent.
Conversely, assume that V is left involutive and that statement (2) of Lemma 3.1
of holds; i.e., assume that

V |= − s ≈ − t iffW |= − s ≈ − t.

We will show that (1) of Lemma 4.5 holds, as well. If V satisfies s ≈ t, then it also
satisfies −∼ s ≈ −∼ t. Thus, W satisfies −∼ s ≈ −∼ t, by (2) of Lemma 3.1.
Conversely, if W satisfies −∼ s ≈ −∼ t, then V satisfies −∼ s ≈ −∼ t, by (2)
Lemma 3.1. So, V satisfies s ≈ t, since V is left involutive.
Obviously, (3) implies (2). Conversely, ifV is left involutive, then it is leftGlivenko
involutive, so by the algebraic analogue of Proposition 4.1, we haveV =M(W). ⊣

We summarize the previous results in the following corollary.

Corollary 4.7. LetW , V andU be subvarieties ofFL and consider the three prop-
erties forW relative to V—the (left) Glivenko property, deductive Glivenko property
and equationalGlivenko property—and the corresponding notions of involutiveness for
V—(left) Glivenko involutive, weakly involutive and involutive.

(1) A Glivenko property holds forW relative to V iff V possesses the corresponding
type of involutiveness and V ⊆ W ⊆ G(V).

(2) If V andW are Glivenko equivalent, then the left version of a Glivenko property
holds for V relative to U iff it holds forW relative to U .

(3) If V possesses the left version of a type of involutiveness, then the correspond-
ing right Glivenko property for W relative to V implies the corresponding left
Glivenko property forW relative to V .

(4) In particular, if V possesses both the left and right versions of a type of involu-
tiveness, then the left and right versions of the corresponding Glivenko property
forW relative to V are mutually equivalent.

Proof. All statements are clear, if one recalls that, by Proposition 4.1 and the
algebraization result, if V is even (left) Glivenko involutive, thenM(V) = V . ⊣

Corollary 4.8. If V is a left involutive or right involutive subvariety of FL and
there exists a varietyW with a decidable equational theory, such thatV ⊆ W ⊆ G(V),
then V has a decidable equational theory, as well.

We have shown that the equational Glivenko property implies the deductive
Glivenko property; also, the latter implies the Glivenko property. We will provide
examples that show that the converse of these implications do not hold. We say
that a property holds for a subvariety ofFL or a substructural logic, if the property
holds for the variety or the logic relative to some variety or logic.
It follows from Proposition 4.1, Proposition 4.4 and Proposition 4.6 that a variety
or logic has a certain type of involutiveness iff it satisfies the correspondingGlivenko
property relative to itself. We will make use of this remark in the proofs of the
following two propositions.

Proposition 4.9. The variety CFL (the logic FLe) is Glivenko involutive, but not
weakly involutive. In other words, the Glivenko property holds for CFL (FLe), but the
deductive Glivenko property fails.
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Proof. Note that ∼∼φ is provable in FLe iff φ is provable in FLe . This follows
from the cut elimination theorem for FLe . In detail, if ⇒ (φ → 0) → 0 is the
last sequent in a proof in FLe , then the only possibility for the upper sequent of
the last rule is φ → 0 ⇒ 0. In turn, the only possibilities for the upper sequents
of the next to the last rule are ⇒ φ and 0 ⇒ 0. Consequently, CFL is Glivenko
involutive. Therefore, the Glivenko property holds for CFL (FLe), relative to itself,
by Proposition 4.1.
On theotherhand, ifFLe satisfies thedeductiveGlivenkoproperty then∼∼p ⊢FLe
p, where p is a propositional variable. By the local deduction theorem, we have that
for some n, ⊢FLe (∼∼p∧1)n → p. Nevertheless, there is a commutativeFL-algebra
that does not satisfy the identity (∼∼x ∧ 1)n ≤ x, for any n. Indeed, consider
the two-element residuated lattice on the set {⊥, 1}, where ⊥ < 1, multiplication is
idempotent and commutative, and 1 is the unit element. If we chose 0 = 1, then we
have (∼∼⊥ ∧ 1)n = (1 ∧ 1)n = 1, for all n. ⊣

Proposition 4.10. The variety CFL ∩ Mod((∼∼x)2 ≤ x) (the logic FLe +
(∼∼p)2 → p) is weakly involutive, but not involutive. In other words, The deductive
Glivenko property holds for it, but the equational Glivenko property fails.

Proof. It follows from the local deduction theorem that the variety V = CFL ∩
Mod((∼∼x)2 ≤ x) is weekly involutive. Consequently, V =M(V) and the deduc-
tive Glivenko property holds for V relative to itself, by Proposition 4.4.
The equational Glivenko property holds for V = M(V) iff it is involutive, by
Proposition 4.6. This is not the case, since there exists a commutative FL-algebra
that satisfies the identity (∼∼x)2 ≤ x, but is not involutive. Indeed, consider the
residuated lattice on the set {⊥, a, 1}, where ⊥ < a < 1, 1 is the unit, ⊥ is an
absorbing element and a2 = ⊥. If we chose 0 = a, then ∼∼⊥ = a, so the algebra
is not involutive. Nevertheless, (∼∼x)2 ≤ x, for every x ∈ {⊥, a, 1}. ⊣

4.4. The Glivenko variety of an involutive variety. Next, given an equational basis
of an involutive variety V , we show how to obtain an explicit axiomatization of
the Glivenko variety G(V) of V . Recall that G(V) was defined on page 1362.
Equivalently, given an axiomatization of an involutive substructural logic L, we
give an explicit axiomatization of the Glivenko logic G(L) of L.
The subvariety Gl of FL axiomatized by the equations

∼(x ⋆ y) ≈ ∼(−∼x ⋆−∼ y)(Gl)

where ⋆ ∈ {∧, ·, \, /}, is called the left Glivenko variety. Also, the subvariety Gr of
FL axiomatized by the equations

−(x ⋆ y) ≈ −(∼−x ⋆ ∼− y),(Gr)

where ⋆ ∈ {∧, ·, \, /}, is called the right Glivenko variety. The variety G = Gl ∩ Gr
is called the Glivenko variety. We will show, see Proposition 4.11(3), that the (left-,
right-) Glivenko variety is the (left-, right-) Glivenko variety of the largest (left-,
right-) involutive subvariety of FL; see page 1373 for the definition. Note that, by
Lemma 2.1(3) and Lemma 2.2(4), the equations (Gl) and (Gr) for ⋆ = ∨ hold in
all subvarieties of FL, thus we do not include them in the axiomatization of the left
Glivenko and right Glivenko variety.
For every subvariety V ofFL, and for every equational basisB = {si ≈ ti | i ∈ I }
ofV relative toFL, letVB (VB , respectively) be the subvariety ofGl (Gr, respectively)



1370 NIKOLAOS GALATOS AND HIROAKIRA ONO

axiomatized by the equations ∼ si ≈ ∼ ti (− si ≈ − ti , respectively), where i ∈ I .
We will show that if V is a subvariety of G, then VB and VB are equal toG(V). Thus,
we obtain an explicit axiomatization of G(V) relative to FL.
For every FL-algebra A, define the binary relations ë, ñ and è, by x ë y iff

∼ x = ∼ y, x ñ y iff−x = −y, and x è y iff both x ë y and x ñ y, for all x, y ∈ A.
Obviously, ë, ñ and è are equivalence relations on A.

Proposition 4.11. Assume that V is a subvariety of FL, B an equational basis of
V and A a FL-algebra.

(1) The implications (a)⇒ (b)⇒ (c) hold for the following statements.
(a) A is in VB (VB , VB ∩ VB , respectively).
(b) ë (ñ, è, respectively) is a congruence relation on A and A/ë (A/ñ, A/è,
respectively) is in V ,

(c) A is in G(V).
Consequently, VB ⊆ G(V) and VB ⊆ G(V).

(2) IfA is in G(V) and ë (ñ, è, respectively) is a congruence relation onA, thenA/ë
(A/ñ, A/è, respectively) is in V .

(3) If V is a subvariety of Gl (Gr, G), then the corresponding statements in (a)–(c) of
(1) are equivalent. In particular, VB = G(V) (VB = G(V), VB = VB = G(V),
respectively).

(4) If V is a finitely axiomatized subvariety of Gl or of Gr, then so is G(V).

Proof. For the first implication in (1), assume thatA is in VB . By the definitions
of the relation ë and the variety VB and by (1) and (4) of Lemma 2.2, it is clear that
ë is a congruence on A. Consequently, A/ë is a residuated lattice. Note that A/ë
satisfies all the equations in B, by the definition of the variety VB ; hence A/ë ∈ V .
For the second implication, assume that ë is a congruence relation on A and A/ë
is in V . If the equation s ≈ t holds in V , then it also holds in A/ë; hence, the
equation ∼ s ≈ ∼ t is valid in A. Consequently, A is in G(V).
For (2), let A be in G(V) and let ë be a congruence on A. If s ≈ t holds in V ,
then ∼ s ≈ ∼ t holds in G(V), hence also in A. So, s ≈ t holds in A/ë. Thus,
A/ë ∈ V .
In view of (1), it suffices to show the implication (c)⇒ (a) in order to establish
(3). If V is a subvariety of Gl , then it satisfies the equations (Gl). Since, G(V)
is Glivenko equivalent to V , it satisfies the equations (Gl), as well. Consequently,
G(V) satisfies all the equations in the axiomatization of VB ; thus, G(V) ⊆ VB .
Finally, statement (4) follows from (3). ⊣

We define the left Glivenko logic Gl = L(Gl), the right Glivenko logic Gr = L(Gr)
and the Glivenko logic Gl = L(G). We restate the main result in Proposition 4.11 in
the terminology of logic.

Corollary 4.12. If a logicL is an extension ofGl axiomatized by a set of formulas
Φ, then G(L) is axiomatized by

{∼−φ | φ ∈ Φ} ∪ {(∼(φ ⋆ ø))/(∼(−∼φ ⋆−∼ø)) | ⋆ ∈ {∧, ·, \, /}},

or by the opposite formulas.

Proof. Note that V(L) is a subvariety of Gl axiomatized by {φ ≈ φ ∨ 1 |φ ∈ Φ}.
By Proposition 4.11, G(V(L)) is axiomatized by {∼φ ≈ ∼(φ ∨ 1) | φ ∈ Φ} ∪ (Gl),
or equivalently by {1 ≤ −∼φ | φ ∈ Φ} ∪ (Gl). ⊣
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Corollary 4.13. If a logic L is a finitely axiomatized extension of Gl, then G(L)
is also finitely axiomatized.

For example, ifL is left involutive and finitely axiomatized, we can give an explicit
axiomatization of the smallest logic for which the Glivenko property holds relative
to L. We will give some interesting such examples in Section 6.

§5. More on the equational Glivenko property.

5.1. The deductive equational Glivenko property. In this section, we show that the
deductive form of the equational Glivenko property is equivalent to the equational
Glivenko property.

Lemma 5.1. Let W and V be subvarieties of FL and let E ∪ {s ≈ t} be a set of
equations in the language of FL. Then, the following statements are equivalent.

(1) E |=V s ≈ t iff E |=W −∼ s ≈ −∼ t.
(2) E |=V s ≈ t iff E |=W ∼ s ≈ ∼ t.
(3) E |=V s ≤ t iff E |=W −∼ s ≤ −∼ t.
(4) E |=V s ≤ t iff E |=W ∼ s ≥ ∼ t.
(5) E |=V s ≤ t iff E |=W s ≤ −∼ t.

The opposite statements are pairwise equivalent, as well.

Proof. The proof is similar to the proof of Lemma 4.5, which is a special case
for E = ∅, and is left to the reader. ⊣

Let W and V be subvarieties of FL. We say that the left (right) deductive
equational Glivenko property holds forW relative to V , if, for every set E ∪ {s ≈ t}
of equations in the language of FL, the statements (the opposite of the statements,
respectively) in the first set of Lemma 5.1 hold. We say that the deductive equational
Glivenko property holds forW relative toV , if both left and right deductive equational
Glivenko properties hold.
A map ã on a (pointed) residuated lattice A is called a nucleus, if it is a closure
operator on A and, for all x, y ∈ A, ã(x)ã(y) ≤ ã(xy). For equivalent definitions,
see [13].
Consider the FL-algebra terms ë(x) = −∼x and ñ(x) = ∼−x. We will use
the same symbols for the term operations that these terms define on particular FL-
algebras. Recall the binary relation ë defined in the previous section and note that,
if A is an FL-algebra and x, y ∈ A, then x ë y iff ë(x) = ë(y). In other words, we
use the same symbol for the map and its kernel.

Lemma 5.2. If A is an FL-algebra, then the maps ë and ñ are closure operators on
A. If for all x ∈ A, (x\0)\0 = 0/(x\0) (0/(0/x) = (0/x)\0, respectively), then ë
(ñ, respectively) is a nucleus on A. In particular, if A is cyclic, then ë and ñ are nuclei
on A.

Proof. The fact that ë is a closure operator follows from (2), (3) and (4) of
Lemma 2.2. Using Lemma 2.1(4) and (13), we have

[y\(x\0)]ë(x)ë(y) = [y\(x\0)][0/(x\0)][0/(y\0)]
= [y\(x\0)][(x\0)\0][(y\0)\0]
≤ [y\0][(y\0)\0] ≤ 0.
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So, we have ë(x)ë(y) ≤ [y\(x\0)]\0 = (xy\0)\0 = 0/(xy\0) = ë(xy), by
Lemma 2.1(6) and the assumption. ⊣

Lemma 5.3. If ã is a nucleus on an FL-algebra A, then the algebra Aã = 〈ã(A),∧,
∨ã , ·ã , \, /, ã(1), ã(0)〉, where x ·ã y = ã(xy) and x∨ã y = ã(x∨y), is an FL-algebra.
If, additionally, ã is either ë or ñ, then ã(0) = 0 and Aã is left involutive or right
involutive, respectively.

Proof. It is shown in [13], see also [9], and in [17] for the commutative case,
that the algebra 〈ã(A),∧,∨ã , ·ã , \, /, ã(1)〉 is a residuated lattice. Thus, Aã is an
FL-algebra. Moreover, ë(0) = 0, by Lemma 2.1(12). ⊣

Theorem 5.4. Let V andW be subvarieties of FL. Then, the following statements
are equivalent.

(1) The left equational Glivenko property holds forW relative to V .
(2) The left deductive equational Glivenko property holds forW relative to V .
(3) E |=V s ≈ t iff −∼E |=W −∼ s ≈ −∼ t, for all E, s, t.

Proof. By taking E to be the empty set in (3), we obtain the left equational
Glivenko property; so (3) implies (1).
We will show that (2) implies (3). Suppose that (2) holds and assume that
E |=V s ≈ t. Then, −∼E |=V s ≈ t, since V is left involutive by Proposition 4.6.
By (2), we have −∼E |=W −∼ s ≈ −∼ t. Conversely, assume that −∼E |=W

−∼ s ≈ −∼ t. Since E |=W −∼ u ≈ −∼ v, for all (u ≈ v) ∈ E, we have
E |=W −∼ s ≈ −∼ t. By (2), we get E |=W s ≈ t. Thus, (2) implies (3). We will
prove that (1) implies (2).
We will first show that, for all A ∈ W , ë is a homomorphism from A onto Aë.
By Proposition 4.6, V is involutive, hence G(V) satisfies the equations ∼(x ⋆ y) ≈
∼(−∼x ⋆ −∼ y), hence also the equations −∼(x ⋆ y) ≈ −∼(−∼x ⋆ −∼ y)
where ⋆ ∈ {∧, ·, \, /}. Consequently, the latter set of equations holds in A, since
W ⊆ G(V); the last inclusion follows from Lemma 3.3(4) and the fact that, by
Proposition 4.6, the varieties V andW are Glivenko equivalent. For ⋆ = ·, we have
ë(x) · ë(y) ≤ ë(ë(x) · ë(y)) = ë(xy), for all x, y ∈ A; so, in view of Lemma 5.2, ë
is a nucleus from A to Aë. Thus,

ë(xy) = ë(x) ·Aë ë(y), ë(1) = 1Aë , ë(0) = 0Aë and ë(x ∨ y) = ë(x) ∨Aë ë(y),

for all x, y ∈ A, by Lemma 5.3. By the same lemma, Aë is closed under the meet
and division operations of L. So, for ⋆ ∈ {∧, \, /} we have

ë(x ⋆ y) = ë(ë(x) ⋆ ë(y)) = ë(ë(x) ⋆Aë ë(y)) = ë(x) ⋆Aë ë(y).

Now, assume that E |=V s ≈ t, where E = {si(x̄) ≈ ti (x̄) | i ∈ I }. To show that
E |=W −∼ s ≈ −∼ t, let A ∈ W and assume that, for all i ∈ I , sAi (ā) = t

A
i (ā),

where ā is an element of the appropriate power of A. We will show that ë(sA(ā)) =
ë(tA(ā)). Since ë(sAi (ā)) = ë(t

A
i (ā)), for all i ∈ I , and since ë is a homomorphism,

we obtain sAëi (ë(ā)) = t
Aë
i (ë(ā)), where ë(ā) denotes the sequence consisting of the

ë images of the terms in ā. Note that Aë is inW , since it is a homomorphic image
of an algebra in W ; hence Aë ∈ G(V), since W ⊆ G(V). If u ≈ v is an equation
valid in V , then the equation∼ u ≈ ∼ v holds in G(V) and hence it holds in Aë. By
Lemma 5.3, Aë is left involutive, so the equation s ≈ t holds in Aë. Consequently,
Aë is inV , hence it satisfies s

Aë(ë(ā)) = tAë(ë(ā)). Thus, ë(sA(ā)) = ë(tA(ā)), since
ë is a homomorphism. Consequently, E |=W −∼ s ≈ −∼ t. Conversely, suppose
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that E |=W −∼ s ≈ −∼ t. By Corollary 4.7, V ⊆ W , so E |=V −∼ s ≈ −∼ t.
Since V is left involutive, we have E |=V s ≈ t. ⊣

Corollary 5.5. If V is an involutive subvariety of FL and the quasi-equational
theory of a varietyW , where V ⊆ W ⊆ G(V), is decidable, then the quasi-equational
theory of V is decidable, as well.

5.2. An alternative characterization for the equational Glivenko property. We have
obtained a characterization of the Glivenko properties in terms of the type of
involutiveness that the minimal variety of the Glivenko equivalence class has to
possess. Here we describe varieties, containment in which guarantees the validity
of the equational Glivenko property.
Let IlFL (respectively, IrFL) be the variety of left- (right-) involutive FL-
algebras, i.e., the subvariety ofFL axiomatized by the equation−∼x ≈ x (respec-
tively, ∼−x ≈ x). Also, let InFL = IlFL ∩ IrFL. By Proposition 4.11(3), it
follows that Gl = G(IlFL), Gr = G(IrFL) and G = G(InFL).
Note that, by Proposition 4.11, A ∈ Gl (A ∈ Gr, A ∈ G) iff ë (ñ, è, respectively)
is a congruence on A and A/ë is left involutive (A/ñ is right involutive, A/è is
involutive, respectively).
For every subvariety V of FL, set Il(V) = IlFL ∩ V , Ir(V) = IrFL ∩ V and
In(V) = InFL ∩ V—the largest left involutive, right involutive and involutive
subvariety of V , respectively. Note that Il, Ir and In are interior operators on
Λ(FL). A notion related to In(V) is also discussed in [5].

Lemma 5.6. Let V andW be subvarieties of FL.

(1) If V andW are Glivenko equivalent, then Il(V) = Il(W), Ir(V) = Ir(W), and
In(V) = In(W).

(2) Il(V) = Il(G(V)), Ir(V) = Ir(G(V)), and In(V) = In(G(V)).
(3) If V is left involutive (right involutive, involutive), then Il(G(V)) = V
(Ir(G(V)) = V , In(G(V)) = V , respectively).

(4) The varieties Il(V), Ir(V) and In(V) are subvarieties ofM(V).
(5) G(Il(V)) = Gl ∩ G(V), G(Ir(V)) = Gr ∩ G(V), and G(In(V)) = G ∩G(V).

Proof. For (1), assume that V and W are Glivenko equivalent. If V satisfies
s ≈ t, then it also satisfies ∼ s ≈ ∼ t. So,W satisfies ∼ s ≈ ∼ t, hence it satisfies
−∼ s ≈ −∼ t. Consequently, Il(W) satisfies s ≈ t. Thus, Il(W) ⊆ V , so
Il(W) ⊆ Il(V). Likewise, we show the other inclusion, so Il(W) = Il(I).
Statement (2) follows from (1) and Lemma 3.3(2). Statement (3) is a direct
consequence of (2). For statement (4), note that since V and M(V) are Glivenko
equivalent, using (1) we obtain Il(V) = Il(M(V)) ⊆M(V).
To show (5), note that if an FL-algebra A is in Gl ∩ G(V) = G(IlFL) ∩ G(V),
then, by taking IlFL for V in Proposition 4.11(3), we have that ë is a congruence
relation on A and A/ë is in IlFL. So by applying Proposition 4.11(2) to V , we get
that A/ë is in V . Therefore, A/ë is in IlFL ∩ V = Il(V). By Proposition 4.11(1)
we get A is in G(Il(V)).
Conversely, if A is in G(Il(V)), then ë is a congruence relation on A and A/ë is in
Il(V) = IlFL ∩ V , by Proposition 4.11(3). By applying Proposition 4.11(1) to V
and to IlFL, we have A ∈ G(V) and A ∈ G(IlFL). So, A ∈ G(V) ∩ G(IlFL) =
G(Il(V)). ⊣
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The following theorem shows that the equational Glivenko property holds for a
subvariety V of FL iff V is contained in the Glivenko variety.

Theorem 5.7. The following are equivalent.

(1) V is a subvariety of Gl (Gr, G).
(2) G(V) is a subvariety of Gl (Gr, G, respectively).
(3) M(V) is a subvariety of Gl (Gr, G, respectively).
(4) M(V) is equal to Il(V) (Ir(V), In(V), respectively).
(5) The left equational Glivenko property holds for V relative to Il(V) (Ir(V), In(V),
respectively).

(6) The left equational Glivenko property holds for V relative to some variety.
(7) M(V) is a subvariety of IlFL (IrFL, InFL, respectively).

Proof. We will establish the implications (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5)⇒ (6)⇒
(1), and the equivalence (7)⇔ (4). The implications (2)⇒ (3) and (5)⇒ (6) are
clear and the equivalence (7)⇔ (4) follows from Lemma 5.6(4) and the fact that
M(V) ⊆ V .
(1)⇒ (2): If V ⊆ Gl = G(IlFL), then G(V) ⊆ G(G(IlFL)) = Gl .
(3) ⇒ (4): Since M(V) ⊆ G(V), using Lemma 5.6(5) we obtain M(V) ⊆
G(Il(V)). Moreover, Il(V) ⊆ M(V) by Lemma 5.6(4), so the left equational
Glivenko property holds for M(V) relative to Il(V) by Corollary 4.7(1). Conse-
quently, by Proposition 4.6,M(V) and Il(V) are Glivenko equivalent. SinceM(V)
is Glivenko equivalent to V , and V and Il(V) are Glivenko equivalent, we obtain
M(V) = Il(V) by Proposition 4.6.
(4)⇒ (5): Since Il(V) = M(V) and Il(V) is involutive, (5) follows from Propo-
sition 4.6.
(6)⇒ (1): If the left equational Glivenko property holds for V relative to some
variety U , then U ⊆ V ⊆ G(U) and U is left involutive, by Lemma 4.7(1). So, U =
Il(U) andV ⊆ G(Il(U)). Since Il(U) ⊆ IlFL, we haveG(Il(U)) ⊆ G(IlFL) = Gl ,
by Lemma 3.3(1b). Thus, V ⊆ Gl . ⊣

The equivalence of statements (2) and (3) of the preceding theorem implies that
theGlivenko equivalence class [M(V),G(V)] ofV is either contained in the principal
order ideal of Λ(FL) generated by Gl (Gr, G, respectively), or it is completely
disjoint from it. In the first case and only then the least varietyM(V) (equivalently
some variety) of the interval is contained in IlFL (IrFL, InFL, respectively), or
equivalently it is equal to Il(V) (Ir(V), In(V) respectively). In the second case, the
equational Glivenko property fails to hold for every variety in the interval.

Corollary 5.8. G(Il(V)) is the largest subvariety of G(V) for which the left equa-
tional Glivenko property holds relative to some variety.

Proof. By Theorem 5.7, the left equational Glivenko property holds for a sub-
variety W of G(V) relative to some variety iff W ⊆ G(V) and W ⊆ Gl . By
Lemma 5.6(5), this is equivalent toW ⊆ G(Il(V)). ⊣

§6. Special cases. In this section we discuss some special cases for which the
Glivenko properties holds and describe how Theorems 1.1 and 1.2 follow from our
results.
As we have seen the left Glivenko (right Glivenko, Glivenko) variety Gl (Gr, G,
respectively) is axiomatized by the equations ∼(x ⋆ y) ≈ ∼(−∼x ⋆ −∼y) (−(x ⋆
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y) ≈ −(∼−x ⋆ ∼−y), the combination of both sets of equations, respectively),
where ⋆ ∈ {∧, ·, \, /}. Given an axiomatization of a left involutive (right involutive,
involutive) variety V , an axiomatization of the Glivenko variety G(V) of V—the
largest subvariety of FL for which the left Glivenko (right Glivenko, Glivenko,
respectively) property holds relative to V—consists of the axiomatization of Gl (Gr,
G, respectively) mentioned above plus the left (right, left and right, respectively)
negations of the equations in the axiomatization of V .
Moreover, for every subvariety W of FL, an axiomatization of the variety
GW(V) = G(V)∩W—the largest subvariety ofW for which the left Glivenko (right
Glivenko, Glivenko) property holds relative to the left involutive (right involutive,
involutive, respectively) variety V—is obtained by combining an axiomatization of
G(V) with one ofW . Below we give a number of varietiesW for which the axioma-
tization of GW(V) relative toW can be simplified. In particular, we obtain simpler
axiomatizations for GlW = Gl ∩W , GrW = Gr∩W and GW = G∩W relative toW .
Moreover, we study the cases where V is the variety of Boolean algebras. In this way
we showhowknown results on theGlivenko theorem can be derived fromour result.

6.1. The cyclic case. Let CyFL = Mod(∼ x ≈ −x) be the cyclic subvariety of
FL. Before we proceed, we point out that the equation for one of the division
operations in (Gl) can be simplified.

Lemma 6.1. In every cyclic FL-algebra the equations

1 ≤ ∼∼(∼∼y\y) and ∼(x\y) ≈ ∼(∼∼x\∼∼y)

are equivalent. The same holds for the equations

1 ≤ ∼∼(y/∼∼ y) and ∼(y/x) ≈ ∼(∼∼y/∼∼x).

Proof. Assume that∼(∼∼x\∼∼y) ≈ ∼(x\y) holds. Then,

∼∼(∼∼x\∼∼y) ≈ ∼∼(x\y)

holds as well. By setting x = ∼∼y and using (3), (2) and (4) of Lemma 2.2, we
obtain

1 ≤ ∼∼ 1 ≤ ∼∼(∼∼ y\∼∼ y) ≈ ∼∼(∼∼∼∼y\∼∼y) ≈ ∼∼(∼∼ y\y).

For the converse, note that (x\∼∼ y)(∼∼ y\y) ≤ x\y ≤ ∼∼(x\y), by
Lemma 2.1(4,5) and byLemma 2.2(4); so∼∼y\y ≤ (x\∼∼y)\∼∼(x\y), hence

∼∼(∼∼ y\y) ≤ ∼∼[(x\∼∼y)\∼∼(x\y)].

Moreover, by Lemma 2.2(12),

∼∼[(x\∼∼y)\∼∼(x\y)] ≈ (x\∼∼y)\∼∼(x\y)

and, by hypothesis, 1 ≤ ∼∼(∼∼ y\y), so we have 1 ≤ (x\∼∼y)\∼∼(x\y),
that is x\∼∼y ≤ ∼∼(x\y). Now, since ∼∼x\∼∼y ≤ x\∼∼y, we have
∼∼x\∼∼y ≤ ∼∼(x\y), hence ∼(∼∼x\∼∼ y) ≥ ∼(x\y). The converse
inequality follows from (11) of Lemma 2.2. ⊣

Note that GCyFL = GlCyFL = GrCyFL.

Corollary 6.2. The variety GCyFL is axiomatized relative to CyFL by the con-
junction of the following equations

(1) 1 ≤ ∼∼(y/∼∼y),
(2) 1 ≤ ∼∼(∼∼y\y),
(3) ∼(x ∧ y) ≈ ∼(∼∼x ∧∼∼y).
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Proof. Recall that GCyFL is axiomatized by the equations (Gl) in Section 4.4;
see page 1369. We will show that the identity for multiplication is redundant. For
every x, y in an algebra in the variety GCyFL, we have

∼(xy) = y\∼ x (Lemma 2.2(8))
= y\− x (∼ x ≈ −x)
= −∼ y\−∼−x (Lemma 2.2(4,10))
= ∼∼ y\∼∼∼x (∼ x ≈ −x)
= ∼(∼∼x · ∼∼y) (Lemma 2.2(8)).

By Lemma 6.1, the identities for the division operations follow from (1) and (2). ⊣

Recall that by CFL we denote the variety of commutative FL-algebras.

Corollary 6.3. GCFL is axiomatized relative to CFL by the equations

1 ≤ ∼∼(∼∼y → y) and ∼(x ∧ y) ≈ ∼(∼∼x ∧ ∼∼y).

Let IFL denote the variety of integral FL-algebras and set ICyFL = CyFL ∩
IFL.

Corollary 6.4. The variety GICyFL is axiomatized relative to ICyFL by the
equations 1 ≤ ∼∼(y/∼∼y) and 1 ≤ ∼∼(∼∼y\y).

Proof. We will show that the equation for the meet operation in Corollary 6.2 is
redundant. Using integrality we have,

(x/∼∼x)(∼∼x ∧ ∼∼y)(∼∼y\y) ≤ (x/∼∼x)∼∼x ≤ x.

Similarly,
(x/∼∼x)(∼∼x ∧∼∼y)(∼∼y\y) ≤ y,

so
(x/∼∼x)(∼∼x ∧ ∼∼y)(∼∼y\y) ≤ x ∧ y ≤ ∼∼(x ∧ y).

By applying Lemma 2.2(13) twice, we obtain

∼∼(x/∼∼x)(∼∼x ∧ ∼∼y)∼∼(∼∼y\y) ≤ ∼∼(x ∧ y).

Since 1 ≤ ∼∼(x/∼∼x) and 1 ≤ ∼∼(∼∼ y\y), we have

∼∼x ∧ ∼∼ y ≤ ∼∼(x ∧ y).

By (2) and (4) of Lemma 2.2, we obtain

∼(x ∧ y) ≤ ∼(∼∼x ∧ ∼∼y).

The converse inequality follows from (3) and (2) of Lemma 2.2. ⊣

The following corollary can also be obtained from Theorem 5.1 of [6].

Corollary 6.5. GICFL is axiomatized relative to ICFL by the equation

1 ≤ ∼∼(∼∼y → y).

As a consequence we obtain Theorem 1.2(3).
In [6] Glivenko’s Theorem 1.1 is generalized to logics containing BCK-logic. In
algebraic terminology and in our notation it is shown that ifW is a subquasivariety
of a natural expansion of the quasivariety of bounded BCK-algebras that satisfies
the equation 1 ≤ ∼∼(∼∼ y → y), then the Glivenko property holds forW relative
to In(W). This result extends the original theorem to expansions of quasivarieties,
but is limited to the integral, commutative case, where the negation constant 0 is
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the least element. Our result has exactly the opposite attributes and it extends to
the stronger equational Glivenko property. Both results include the extension of
Glivenko’s theorem for commutative, integral, bounded FL-algebras where 0 is the
least element, given by Corollary 6.5.

6.2. The classical case. Note that a Brouwerian algebra is (term equivalent to) a
residuated lattice that satisfies the law xy ≈ x∧y. AHeyting algebra is (term equiv-
alent to) an FL-algebra, whose residuated lattice reduct is a Brouwerian algebra and
0 is its least element.

Lemma 6.6. An FL-algebra is (term equivalent to) a Boolean algebra iff it satisfies
the equations xy ≈ x ∧ y and x\y ≈ ∼x ∨ y.

Proof. Setting x = 1 into the second equation, we have 0 ≤ y. So, in view of the
first equation the FL-algebra is a Heyting algebra; hence it has a distributive lattice
reduct. To show that it is a Boolean algebra, it suffices to show that every element
has a complement. For every x, we have x ∧ ∼x = x(x\0) ≤ 0, so x ∧ ∼x = 0.
Also, by the second equation ∼x ∨ x = x\x = 1, since every Heyting algebra is
integral. ⊣

In the case when the variety relative to which a Glivenko property holds is the
variety BA of Boolean algebras, we obtain a simpler axiomatization.

Corollary 6.7. G(BA) is axiomatized by the following equations.

(1) ∼(x ∧ y) ≈ ∼(xy).
(2) ∼(x\y) ≈ ∼(−x ∨ y).
(3) −(x\y) ≈ −(∼x ∨ y).
(4) ∼(x\y) ≈ ∼(−∼x\−∼ y).
(5) ∼(x/y) ≈ ∼(−∼x/−∼ y).

Proof. Given the axiomatization of BA in Lemma 6.6, an axiomatization of
G(BA) consists of the equations (1), (2), (4) and (5) plus the equations∼(x · y) ≈
∼(−∼x · −∼ y) and ∼(x ∧ y) ≈ ∼(−∼x ∧−∼ y). We will verify that these two
equations follow from the proposed list. We have

∼(−∼x ∧ −∼y) = ∼−(∼x ∨ ∼y) (Lemma 2.2(1))
= ∼−(x\∼y) (3)
= ∼−∼(yx) (Lemma 2.2(8))
= ∼(yx) (Lemma 2.2(4))
= ∼(x ∧ y) (1).

Consequently, we have∼(xy) = ∼(x∧y) = ∼(−∼x∧−∼y) = ∼(−∼x ·−∼y),
as well. ⊣

Corollary 6.8. GCyFL(BA) is axiomatized relative to CyFL by the following
equations.

(1) ∼(x ∧ y) ≈ ∼(xy).
(2) ∼(y/x) ≈ ∼(∼ x ∨ y).
(3) ∼(x\y) ≈ ∼(∼x ∨ y).

Alternatively, (2) and (3) can be replaced respectively by

(4) 1 ≤ ∼∼(∼∼x\x).
(5) 1 ≤ ∼∼(x/∼∼x).
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Proof. For the first axiomatization, in view of Corollary 6.7, it suffices to show
that the equations for the division operations are redundant. We have

∼(y/x) = ∼(∼ x ∨ y) (2)
= ∼∼x ∧ ∼y (Lemma 2.2(1))
= ∼∼∼∼x ∧∼∼∼ y (Lemma 2.2(4))
= ∼(∼∼∼x ∨ ∼∼ y) (Lemma 2.2(1))
= ∼(∼∼y/∼∼x) (2).

Likewise, ∼(x\y) = ∼(∼∼x\∼∼y). Therefore, (1) and (2) form an axiomatiza-
tion for GCyFL(BA) relative to CyFL.
Finally, we will show that (2) and (4) are equivalent; the equivalence of (3) and
(5) follows in a similar way. If (2) holds, we have

∼∼(∼∼x\x) = ∼∼(∼∼∼x ∨ x) (2)
= ∼∼(∼ x ∨ x) (Lemma 2.2(4))
= ∼(∼∼x ∧ ∼x) (Lemma 2.2(1))
= ∼(∼∼x · ∼x) (1)
≥ ∼ 0 = 1.

Conversely, assume that (4) holds. We have, (x\∼∼y)(∼∼y\y) ≤ x\y, by
Lemma 2.1(13) and x\y ≤ ∼∼(x\y), by Lemma 2.2(3), so

(x\∼∼ y) · (∼∼ y\y) · ∼(x\y) ≤ 0.

By Lemma 2.3(3), we obtain ∼∼(x\∼∼ y) · ∼∼(∼∼y\y) · ∼∼∼(x\y) ≤ 0,
i.e., ∼∼(x\∼∼y) · ∼∼(∼∼y\y) ≤ ∼∼(x\y). Using (4) and the fact that
∼∼x\∼∼y ≤ x\∼∼y, we obtain

∼∼(∼∼x\∼∼y) ≤ ∼∼(x\y),

thus ∼(x\y) ≤ ∼(∼∼x\∼∼y).
On the other hand, x(x\y) ≤ y ≤ ∼∼y, so ∼∼x · ∼∼(x\y) ≤ ∼∼y, by
Lemma 2.3(4). Consequently, we have ∼∼(x\y) ≤ ∼∼x\∼∼ y and
∼(∼∼x\∼∼y) ≤ ∼(x\y). Therefore, ∼(∼∼x\∼∼ y) = ∼(x\y).
Additionally, we have

∼(∼ x ∨ y) = ∼∼∼(∼ x ∨ y) (Lemma 2.2(4))
= ∼∼(∼∼x ∧ ∼y) (Lemma 2.2(1))
= ∼∼(∼y ∧∼∼x)
= ∼∼(∼y · ∼∼x) (1)
= ∼(∼∼x\∼∼y) (Lemma 2.2(8)).

Consequently, ∼(x\y) = ∼(∼ x ∨ y). ⊣

Corollary 6.9. The variety GICyFL(BA) is axiomatized relative to ICyFL by
the equations:

(1) ∼(x ∧ y) ≈ ∼(xy).
(2) 1 ≤ ∼∼(∼∼x\x).
(3) 1 ≤ ∼∼(x/∼∼x).

Alternatively, (1) can be replaced by either one of the equations

(4) x ∧ ∼x ≤ 0.
(5) ∼(x2) ≈ ∼x.
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Proof. We will show that (1), (4) and (5) are all equivalent. First assume that
(1) holds. We have x · ∼x ≤ 0, so 1 ≤ (x · ∼x)\0 = ∼(x · ∼x) = ∼(x ∧ ∼x);
hence x ∧ ∼x ≤ 0.
Assume, now, that (4) holds. We have x · (x\∼x) ≤ x, by integrality and
x · (x\∼x) ≤ ∼x. So, x · (x\∼x) ≤ x ∧ ∼x ≤ 0. Therefore, x\∼x ≤ ∼x,
so ∼(x2) = x\(x\0) ≤ ∼x. On the other hand, x2 ≤ x, by integrality, so
∼ x ≤ ∼(x2).
Finally, if (5) holds, then we have∼(x∧y) ≤ ∼(xy), by integrality, and∼(xy) ≤

∼[(x ∧ y)(x ∧ y)] = ∼(x ∧ y)2 = ∼(x ∧ y), by (4). ⊣

Corollary 6.10. GCFL(BA) is axiomatized relative to CFL by the equations:

(1) ∼(x ∧ y) ≈ ∼(xy).
(2) ∼(x → y) ≈ ∼(∼ x ∨ y).

Alternatively, (2) can be replaced by

(3) 1 ≤ ∼∼(∼∼x → x).

Corollary 6.11. The variety GICFL(BA) is axiomatized relative to ICFL by the
equations:

(1) ∼(x ∧ y) ≈ ∼(xy).
(2) 1 ≤ ∼∼(∼∼x → x).

Alternatively, (1) can be replaced by either one of the equations

(3) x ∧ ∼x ≤ 0.
(4) ∼(x2) ≈ ∼x.

The algebraic version of Theorem 1.1 follows from the following corollary.

Corollary 6.12. The (equational )Glivenko property holds forHA relative toBA.

Proof. Note thatHA satisfies∼∼x ·x ≤ x by integrality, sox ≤ ∼∼x → x and
∼(∼∼x → x) ≤ ∼x = ∼∼∼x. Consequently, ∼∼x · ∼(∼∼x → x) ≤ 0 ≤ x,
so ∼(∼∼x → x) ≤ ∼∼x → x, hence ∼(∼∼x → x) ∧ ∼(∼∼x → x) ≤ 0.
Therefore, ∼(∼∼x → x) ≤ 0; thus 1 ≤ ∼∼(∼∼x → x).
By Corollary 6.5, HA ⊆ G, so the equational Glivenko property holds for HA
relative to In(HA) = BA, by Theorem 5.7. ⊣

For every bounded residuated lattice A, consider the FL-algebra A′, that is ob-
tained by appending to A a new bottom element ⊥ and setting 0 = ⊥. That A′ is
a residuated lattice can be easily verified; alternatively it follows form [10]. Note
that ∼ a = −a = 0, for all a ∈ A, and ∼ 0 = − 0 = 1. Using Corollary 6.7, it is
easy to see that A′ ∈ G(BA). As an example we verify Corollary 6.7(2), for x = 0
and y ∈ A; we have ∼(0\y) = ∼⊤ = 0 and ∼(− 0 ∨ y) = ∼(⊤ ∨ y) = ∼⊤ = 0.
Therefore, the variety G(BA) is neither integral, nor commutative, nor contractive.

6.3. The basic logic case. A basic-logic algebra or BL-algebra is an integral,
commutative FL-algebra that satisfies the equations

0 ≤ x, x(x → y) ≈ x ∧ y and (x → y) ∨ (y → x) ≈ 1.

A many-valued algebra orMV-algebra is an integral, commutative FL-algebra that
satisfies the equations 0 ≤ x and (x → y) → y ≈ (y → x) → x. For term
equivalent definitions and basic properties, see [15] and [4].
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A (pointed ) generalized BL-algebra or (pointed ) GBL-algebra is a (pointed)
residuated lattice that satisfies the equation

y(y\x ∧ 1) ≈ x ∧ y ≈ (1 ∧ x/y)y(GBL)

and a (pointed ) generalized MV-algebra or (pointed ) GMV-algebra is a (pointed)
residuated lattice that satisfies

x/(y\x ∧ 1) ≈ x ∨ y ≈ (1 ∧ x/y)\x.(GMV)

It is not hard to see that commutative, representable (as a subdirect product
of totally ordered algebras), bounded, pointed GBL-algebras in which 0 is the
least element are term equivalent to BL-algebras. Similarly, MV-algebras are just
commutative, bounded, pointed GMV-algebras in which 0 is the least element.
In both cases, integrality follows from the fact that the algebras are bounded.
For a study of GBL-algebras and GMV-algebras, representations of them and a
characterization of their cancellative members, see [1] and [13]. We denote the
varieties of BL-algebras, pointed GBL-algebras, MV-algebras and pointed GMV-
algebras by BL, GBL0,MV, and GMV0, respectively. It is not difficult to see that
(pointed) GMV-algebras are (pointed) GBL-algebras. Under the assumption of
involutiveness the converse is true as well.

Lemma 6.13. Involutive pointed GBL-algebras are pointed GMV-algebras.

Proof. For every x, y in an involutive pointed GBL-algebra, we have

x ∨ y = ∼−(x ∨ y) (x ≈ ∼−x)
= ∼((− x) ∧ (− y)) (Lemma 2.2(1))
= ∼[(− x)((− x)\(−y) ∧ 1)] (GBL)
= ∼[(− x)((∼−x)/y ∧ 1)] (Lemma 2.2(9))
= ∼[− x(x/y ∧ 1)] (x ≈ ∼−x)
= (x/y ∧ 1)\∼−x (Lemma 2.2(8))
= (x/y ∧ 1)\x (x ≈ ∼−x).

Likewise we obtain the opposite equation. ⊣

It is observed in [5] that BL satisfies the equation 1 ≤ ∼∼(∼∼y → y), and
thatMV coincides with the variety In(BL), so, by Theorem 5.7 and Corollary 6.5,
Glivenko’s theorem holds for BL relative toMV. We will obtain a generalization
by dropping the assumption of representability and by replacing the commuta-
tivity assumption by cyclicity. We first establish the following non-commutative
generalization of a property observed in [5]; the proof is essentially the same.

Lemma 6.14. Every cyclic pointed GBL-algebra in which 0 is the least element
satisfies the equations 1 = ∼∼(x/∼∼x) and 1 = ∼∼(∼∼x\x).

Proof. First note that every pointed bounded GBL-algebra in which 0 is the
least element is integral; see [1] or [13] for details. We have

∼ x · ∼∼x = ∼x(∼ x\0) ≤ 0 ≤ x,

so ∼x ≤ x/∼∼x, hence ∼(x/∼∼x) ≤ ∼∼x. Consequently, we have

∼(x/∼∼x) = ∼∼x ∧ ∼(x/∼∼x)
= (∼∼x)((∼∼x)\∼(x/∼∼x)) (GBL)
= (∼∼x) · ∼((x/∼∼x)(∼∼x)) (Lemma 2.2(8))
= (∼∼x) · ∼(∼∼x ∧ x) (GBL)
= (∼∼x) · ∼x ≤ 0 (Lemma 2.2(3)).



GLIVENKO THEOREMS FOR SUBSTRUCTURAL LOGICS OVER FL 1381

Thus, ∼∼(x/∼∼x) = 1. Similarly we prove the other equation. ⊣

It follows from Corollary 6.4 and Lemma 6.14 that the variety CyGBL⊥ of cyclic
pointed bounded GBL-algebras where 0 is the least element is contained in the
Glivenko variety G. Moreover, In(CyGBL⊥) is equal to the variety CyGMV⊥ of
cyclic pointed bounded GMV-algebras where 0 is the least element, by Lemma 6.13
and the fact that pointed GMV-algebras are pointed GBL-algebras. Thus, in view
of Theorem 5.7, we have the following corollary, which is implies Theorem 1.2(2).

Corollary 6.15. The (equational ) Glivenko property holds for CyGBL⊥ relative
to CyGMV⊥. Consequently, the (equational ) Glivenko property holds forBL relative
toMV , as well.

Following [5], a SBL-algebra is a BL-algebra that satisfies x ∧ ¬x = 0. The
last equation can be replaced by either of the equations x(x → y) ≤ y and
∼(x2) ≈ ∼x. We denote the variety of all SBL-algebras by SBL. In [5] it is
shown that the Glivenko property holds for SBL relative to BA, a fact that also
follows fromLemma 6.14 and Corollary 6.11. We generalize this result by dropping
representability and replacing commutativity with cyclicity. The following corollary
is a consequence of Corollary 6.9.

Corollary 6.16. The (equational ) Glivenko property holds for CyGBL⊥ ∩
Mod(∼(x2) ≈ ∼x) relative toBA. Consequently, the (equational )Glivenko property
holds for SBL relative to BA.

Note that Theorem 1.2(1) follows from the preceding corollary.

§7. Generalized Kolmogorov translation. Propositional intuitionistic logic can be
interpreted in propositional classical logic via the Glivenko double negation trans-
lation as well as via the Kolmogorov translation. Having studied generalizations of
the former property, we now discuss the latter.
Let ã be a unary (pointed) residuated lattice term. The ã-Kolmogorov translation
Kã(t) of a (pointed) residuated lattice term t is defined inductively on the structure
of t as follows: Kã(1) = ã(1), Kã(0) = ã(0), Kã(x) = ã(x) for every variable x,
and Kã(s ⋆ r) = ã(Kã(s) ⋆ Kã(r)), where ⋆ ∈ {∧,∨, ·, \, /}. Note that the standard
Kolmogorov translation is obtained for ã(x) = ∼∼x.
For every variety V of (pointed) residuated lattices, let Vã be the subvariety of V
axiomatized relative to V by the equation ã(x) ≈ x. We say that the ã-Kolmogorov
translation holds forW relative to V , if for every set of equations E ∪ {s ≈ t} in the
languageof (pointed) residuated lattices,E |=V s ≈ t iffKã [E] |=W Kã(s) ≈ Kã(t),
where Kã [E] = {Kã(u) ≈ Kã(v) | (u ≈ v) ∈ E}. Also, if K and L are substructural
logics, we say that the ã-Kolmogorov translation holds for K relative to L, if for every
set of formulas Φ ∪ {ø} in the language of (pointed) residuated lattices, Φ |=K ø
iff Kã [Φ] |=L Kã(ø), where Kã [Φ] = {Kã(φ) | φ ∈ Φ}. Corollary 7.6 shows the
connection between these two definitions.
Note that ifW is a subvariety of FL and ã is a unary (pointed) residuated lattice
term, then ãA is a nucleus on A for all A ∈ W iffW satisfies the equations

x ≤ ã(x), ã(x) ≤ ã(x ∨ y), ã(ã(x)) ≈ ã(x), ã(x)ã(y) ≤ ã(xy).(nuc)

Theorem 7.1. Let V be a variety of (pointed ) residuated lattices and ã a unary
term that contains only the connectives ∧, \, /, and also the constant 0 only if ã(0) ≈ 0
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holds in V . Moreover assume that for every algebra A in V , ãA is a nucleus on A;
equivalently, assume that V satisfies the equations (nuc). Then, the ã-Kolmogorov
translation holds for V relative to Vã .

Proof. Using induction on the length of t, we can show that if t is a (pointed)
residuated lattice term, A ∈ V and ā is an element of an appropriate power of A,
then

Kã(t)
A(ā) = tAã (ãA(ā)),(∗)

where we have abbreviated AãA to Aã ; see Lemma 5.3 for the definition of AãA . To
see this note that Kã(t)A(ā) is just the application on ãA(ā) of the term function
that corresponds to the term t, where every application of an operation is followed
by ã; on the other hand tAã (ãA(ā)) is the the application on ãA(ā) of the term
function that corresponds to the term t, where every operation is computed in
Aã . The operations ·,∨ and 1, when computed in Aã are, by definition, equal to
the corresponding operations on A followed by ã. The same holds for the other
operations trivially, because the result of those operations on elements of Aã is
already an element ofAã , so the application or not of ã does notmake any difference.
For example, for the term t = x · y, we have Kã(t)A(a, b) = ã(ã(a) ·A ã(b)) and
tAã (ã(a), ã(b)) = ã(a) ·ã ã(b) = ã(ã(a) ·A ã(b)).
Recall that ã contains only the connectives ∧, \, /, and also the constant 0 only
if ã(0) ≈ 0 holds in V , so ãAã (a) = ãA(a), for every element a of Aã . Moreover,
ãA(a) = a, since ã is a nucleus. Hence ãAã (a) = a, for all a ∈ Aã , and Aã ∈ Vã .
We will show that the ã-Kolmogorov translation holds for V relative to Vã . First
suppose that E |=Vã s ≈ t; we will show that Kã(E) |=V Kã(s) ≈ Kã(t). Let A

be in V and ā be an element of an appropriate power of A, such that Kã(u)A(ā) =
Kã(v)A(ā), for all (u ≈ v) ∈ E. Then, uAã (ãA(ā)) = vAã (ãA(ā)) by (∗), and Aã ∈
Vã . So, by assumption, s

Aã (ãA(ā)) = tAã (ãA(ā)), hence Kã(s)
A(ā) = Kã(t)

A(ā).
Conversely, if E 6|=Vã s ≈ t, then there exists an algebra B ∈ Vã ⊆ V and a

sequence b̄ of elements of B such that uB(b̄) = vB(b̄) for all (u ≈ v) ∈ E, but
sB(b̄) 6= tB(b̄). Since B satisfies ã(x) ≈ x, we have B = Bã . For every (u ≈ v) ∈ E,

we have Kã(u)B(b̄) = uBã (ãB(b̄)) = uB(b̄) = vB(b̄) = Kã(v)B(b̄) and Kã(s)B(b̄) =

sB(b̄) 6= tB(b̄) = Kã(t)B(b̄). Consequently, Kã(E) 6|=V Kã(s) ≈ Kã(t). ⊣

Recall the definition of ë from Section 5. As shown in Lemma 5.2, if we assume
cyclicity, then ë is a nucleus.

Corollary 7.2. IfV is cyclic, then theë-Kolmogorov translation holds forV relative
to Vë.

The ë-Kolmogorov translation is simply called the Kolmogorov translation in the
literature.
The following observation shows one of the differences between the Kolmogorov
translation and the Glivenko property.

Theorem 7.3. Assume thatW is a subvariety of FL, that ã is a unary (pointed )
residuated lattice term that contains only the connectives ∧, \, /, and also the constant
0 only if ã(0) ≈ 0 holds in W , and that W satisfies the equations (nuc). Then the
ã-Kolmogorov translation holds forW relative to V iffWã = V .
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Proof. One direction follows from Theorem 7.1. For the forward direction,
suppose that the ã-Kolmogorov translation holds forW relative to V . Then, for all
sets of equations E ∪ {s ≈ t}, E |=V s ≈ t iff Kã(E) |=W Kã(s) ≈ Kã(t). On the
other hand, by Theorem 7.1, we have E |=Wã s ≈ t iff Kã(E) |=W Kã(s) ≈ Kã(t).
Thus, E |=V s ≈ t iff E |=Wã s ≈ t; hence V =Wã . ⊣

Corollary 7.4. The variety InFLew is the only subvariety ofFL relative to which
the ë-Kolmogorov translation holds for FLew .

Theorem 7.5. Assume that V andW are two subvarieties of FL and ã is a unary
(pointed ) residuated lattice term such that W satisfies the equations (nuc). The
following are equivalent.

(1) For every set of equations E ∪ {s ≈ t} in the language of (pointed ) residuated
lattices,

E |=V s ≈ t iff Kã [E] |=W Kã(s) ≈ Kã(t).

(2) For every set of formulasΦ∪{ø} in the languageof (pointed ) residuated lattices,

{1 ≤ φ | φ ∈ Φ} |=V 1 ≤ ø iff {1 ≤ Kã(φ) | φ ∈ Φ} |=W 1 ≤ Kã(φ).

Proof. We first show that for every FL-algebra term s , the varietyW satisfies

1 ≤ Kã(s) ⇔ Kã(1) = Kã(s ∧ 1)(∗)

and

1 ≤ Kã(s\t) ⇔ Kã(s) ≤ Kã(t).(∗∗)

For (∗), if 1 ≤ Kã(s) thenKã(1) = ã(1) ≤ ã(Kã(s)) = Kã(s), soKã(1) = Kã(s)∧
Kã(1), hence Kã(1) = ã(Kã(1)) = ã(Kã(s) ∧ Kã(1)) = Kã(s ∧ 1). Conversely, if
Kã(1) = Kã(s ∧ 1), then 1 ≤ ã(1) = Kã(1) = Kã(s ∧ 1) = ã(Kã(s) ∧ Kã(1)) ≤
ã(Kã(s)) = Kã(s).
For (∗∗), wehaveKã(s\t)=ã(Kã(s)\Kã(t))≤ã(Kã(s))\ã(Kã(t))=Kã(s)\Kã(t),
since W satisfies the equations (nuc), so if 1 ≤ Kã(s\t) then 1 ≤ Kã(s)\Kã(t);
hence Kã(s) ≤ Kã(t). Conversely, if Kã(s) ≤ Kã(t), then 1 ≤ Kã(s)\Kã(t); hence
1 ≤ ã(1) ≤ ã(Kã(s)\Kã(t)) = Kã(s\t), by the definition of Kã .
Assume that (1) holds. Note that {1 ≤ φ | φ ∈ Φ} |=V 1 ≤ ø is equivalent to

{1 ≈ 1 ∧ φ | φ ∈ Φ} |=V 1 ≈ 1 ∧ ø, and, by (1), to {Kã(1) ≈ Kã(1 ∧ φ) | φ ∈
Φ} |=W Kã(1) ≈ Kã(1∧ø). By (∗), this is equivalent to {1 ≤ Kã(φ) | φ ∈ Φ} |=W

1 ≤ Kã(φ).
Now, assume that (2) holds. We have E |=V s ≈ t iff {1 ≤ u\v, 1 ≤ v\u | (u ≈
v) ∈ E} |=V {1 ≤ s\t, 1 ≤ t\s} iff {1 ≤ Kã(u\v), 1 ≤ Kã(v\u) |(u ≈ v) ∈ E} |=W

{1 ≤ Kã(s\t), 1 ≤ Kã(t\s)}, by (2), iff {Kã(u) ≤ Kã(v), 1 ≤ Kã(v) ≤ Kã(u) | (u ≈
v) ∈ E} |=W {Kã(s) ≤ Kã(t), Kã(t) ≤ Kã(s)}, by (∗∗), iff {Kã(u) ≈ Kã(v) | (u ≈
v) ∈ E} |=W Kã(s) ≈ Kã(t). ⊣

The following corollary is a direct consequence of Theorem 2.5 and of Theo-
rem 7.5.

Corollary 7.6. Let K and L be substructural logics. The ã-Kolmogorov transla-
tion holds for K relative to L iff it holds for V(K) relative to V(L).
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