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Abstract

This thesis provides a theoretical framework to control a manipulator with hyper

degrees of freedom. The term \Hyper Degrees Of Freedom" (HDOF for short) is an

emblematic word to express strong necessity of much more kinematic degrees of freedom

for a manipulator nowadays. An HDOF manipulator has ability to achieve various kind

of tasks. In order to make full use of its ability, a shape control is proposed here, that is,

not only the tip of a manipulator, but also its whole shape is controlled.

Before discussing the shape control, we rigorously de�ne a shape correspondence be-

tween an HDOF manipulator and a spatial curve used for prescribing the desired shape.

It is de�ned by using the solution of some nonlinear optimization problems termed the

shape inverse problem. We give not only the existence theorem of its solution, but also

a theorem on the existence region which allows us to convert control problems appeared

later into more tractable ones.

Shape regulation control is considered �rst to bring an HDOF manipulator onto a

given time invariant curve. The idea of estimating the desired curve parameter enables

us to �nd the shape regulation law with curve parameter estimation law by Lyapunov

design.

This crucial idea of curve parameter estimation is also e�ective for the shape tracking,

where a time-varying curve is given to prescribe the desired shape. Two shape tracking

control laws are derived by utilizing tracking control laws for conventional manipulator

tracking.

Furthermore, it is shown that joint velocity signals are not essential to achieve the

shape tracking, that is, the shape tracking using only joint angles is attained. Based on

the idea of conceptual duality, we derive an observer that does not directly estimate the

joint angle velocities, but estimate the velocity of the shape. After properly tuned, the

modi�ed shape tracking controller and shape velocity observer assure the local asymptotic

stability of the closed-loop system.

We also give an example to show that new tasks which have never done before can

be accomplished by shape control. The useful motion control for sophisticated obstacle

avoidance is achieved by shape control idea. That is the motion along a curve useful
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for going into a narrow space. Two controllers achieving this motion are shown as the

counterparts of two shape tracking controllers derived before.

We also propose the way to �nd essentials of an HDOF manipulators by increase in

DOF. Conditions for the kinematic structure are derived from a geometrically natural

requirement that its direct kinematics tends to Frenet-Serret formula by increase in DOF.

The results in this thesis give a new vision for robotic manipulator control.
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Notation

N the set of natural numbers

< the set of real numbers

<+ the set of non-negative real numbers

<n the set of real vectors with n components

<m�n the set of real m� n matrices

E3 Euclidean space

SO(n) the n-dimensional special orthogonal group

so(n) the set of n� n real skew-symmetric matrices

( the Lie algebra of SO(n) )

jaj the absolute value of a scalar a

kak the Euclidean norm of a vector a

kAk the Euclidean norm of a matrix A

AT the transpose of a matrix A

A�1 the inverse of a matrix A

A+ the pseudo-inverse of a matrix A

diagfa1; � � � ; ang a diagonal matrix with diagonal elements a1 to an
blockdiagfA1; � � � ;Ang a block diagonal matrix with diagonal blocks A1 to An

�M(P ) the maximum eigenvalue of a symmetric matrix P

�m(P ) the minimum eigenvalue of a symmetric matrix P

P > 0 a positive de�nite matrix P

P � 0 a positive semide�nite matrix P

max maximum

min minimum

sup supremum

inf in�mum

det determinant

sgn the signum function

^ and

_ or

? be perpendicular to

� outer product

[a�] For a vector a = [ax ay az]
T 2 <3 ,

[a�] :=

2
64 0 �az ay

az 0 �ax
�ay ax 0

3
75 :

� products

ex the x -directional unit vector in E3, [ 1 0 0 ] T

ey the y -directional unit vector in E3, [ 0 1 0 ] T

ez the z -directional unit vector in E3, [ 0 0 1 ] T

In the n� n elementary matrix
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Chapter 1

Introduction

1.1 Motivation and Purpose

We require more 
exible, more functional and more intelligent robotic manipulators

due to recent social changes. For example, lack of helpers to aged people and structural

change from mass production to wide-variety one according to customers' preferences are

serious problems and expected to be solved by use of robots. Robot industry is expected to

be a successor to automobile industry in twenty-�rst century coming soon. Unfortunately,

the robots of today have too poor ability to come up to our expectations.

It is kinematic degrees of freedom that is essentially insu�cient for conventional robotic

manipulators to achieve various kinds of tasks. Most of conventional manipulators have

only six degrees of freedom which is the minimum number to control its tip position and

orientation in a three-dimensional space. Kinematic degrees of freedom is one of the most

important indexes for dexterity. In other words, increase in kinematic degrees of freedom

brings increase of ability to accomplish various kinds of tasks.

That is why we study a manipulator with much more degrees of freedom than ever.

We named it a Hyper Degrees Of Freedom manipulator (HDOF manipulator, for short)

to express that "the more degrees of freedom a manipulator has, the wider range of tasks

can be achieved by it".

An HDOF manipulator has potential ability to achieve non-conventional tasks by

itself, such as moving in highly constrained environment and grasping objects of various

size and shapes which can never be attained before.

There are, however, a lot of obstacles to turn it into reality; due to di�culty to

construct mechanical hardware and control problem because of high dimensionality.

The purpose of this thesis is to establish a theoretical framework for an HDOF manip-

ulator, to clarify essentials of an HDOF manipulator based on the framework and �nally
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to realize it by putting all the obtained knowledge together.

Achievement of the purpose will bring an impact to a wide variety of �elds where

robotic manipulators are expected to be used necessarily.

1.2 Brief History

In 1997 at the IEEE International Conference on Robotics and Automation, the

largest meeting on robotics in the world, there appeared the session on manipulators with

"hyper" degrees of freedom. This fact shows a rise in hope for a new type of manipulator

with many degrees of freedom.

There are a large number of studies on manipulators with hyper degrees of freedom

[6, 7, 8, 10, 11, 13, 14, 18, 29]. Good reviews were done by Chirikjian in his Ph.D thesis

[5], and by Hirose in his book [9] from a biological point of view. Here we will review the

historical background of the studies focusing on two topics. One is the use of the whole

manipulator to handle objects, and the other is the use of spatial curves for manipulator

control.

It is sure that the tip of a manipulator is the typical part of handling objects in

environments. However, it is natural for an HDOF manipulator to use its whole arm to

make full use of its rich kinematic DOF. The concept of using the whole arm to handle

objects in environments proposed �rst by Salisbury in 1987 [23]. This concept was termed

theWhole Arm Manipulation (WAM for short). He suggested we could achieve many non-

conventional tasks by the WAM, such as pushing, shoving, striking, cradling, cushioning

and interlink grasping. To achieve this, he focused on controlling the forces of interaction

between manipulators and the environment. There were some researchers of this WAM

concept [21], but the theoretical aspects of the WAMmechanism have not been considered

for a long time.

On the other hand, it is natural to regard the macroscopic form of an HDOF manipu-

lator as a spatial curve. The curve utilization to manipulator control appeared in studies

on Variable Geometry Truss Manipulators (VGTMs) in the late 80's [22, 16, 28]. In these

studies, spatial curves were used for solving the inverse kinematics. First, a spatial curve

satisfying given task conditions is derived, then, a VGTM was �tted the curve. Due to

this outstanding strategy, high dimensional redundancy resolution problems were solved

successfully. Chirikjian and Burdick further developed this concept to a more general and

more geometric 
avor [5]. They established a kinematic framework for HDOF manipula-

tors, mainly for VGTMs. However, there were di�culties to establish a uni�ed framework
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including manipulator dynamics explicitly because of the complexity of dynamics of the

parallel link mechanism.

It should be pointed out that the ideas of whole arm manipulation and the curve

utilization for manipulator control have not been fused together completely. Salisbury

suggested the use of trajectories of the whole arm in his paper in 1988 [24], but any

concrete strategies have not been shown. Chirikjian mentioned the usefulness of the

WAM [5], but he used the word "hyper redundant", which means that the tip of the

manipulator is supposed to be used mainly for task accomplishment. This lack of harmony

arises from neglect of the manipulator dynamics. To achieve the WAM, it is necessary

to take manipulator dynamics into account, since in the WAM the manipulator needs to

interact with the environment. Otherwise, it is very dangerous to move the manipulator

in the environment. But, it is very di�cult to apply control strategy to the complex

dynamic model of an parallel-link HDOF manipulator.

Our basic policy of control of HDOF manipulators is to combine these two concepts

in order to make new values. In consideration of the historical background above, we take

the following choices:

1. Serial-link mechanism is adopted for an HDOF manipulator because it is the most

fundamental style of mechanical structures. This choice allows us to take dynamics

of an HDOF manipulator into account explicitly.

2. Shape control is proposed as a fundamental control scheme for an HDOF manipu-

lator, that is, not only the tip of an HDOF manipulator, but also its whole shape is

controlled. The shape control gives basic motions for the WAM.

To sum up, the dynamics-based shape control is the feature of this thesis.

A parallel-link mechanism has good properties from practical viewpoint; light weight

and high rigidity. Thus, most researchers of HDOF manipulators mainly recommend a

parallel-link mechanism such as VGTMs for an HDOF manipulator. As mentioned before,

however, we need to consider its dynamics explicitly. It is better to start from a simpler

mechanical structure at the �rst stage of the theoretical analysis in order to catch essences

of an HDOF manipulator. Moreover, the aforementioned good properties of a parallel-link

mechanism may not be essential, because these may change ten years later due to drastic

technological progresses. Actually, some serial-link manipulators with considerable large

number of DOF have been developed recently [26, 20].
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1.3 Problems

Two dynamics-based shape control problems will be considered. One is a shape

regulation which tries to bring the manipulator onto the desired shape. The other is a

shape tracking to make the manipulator follow the moving desired shape. In both cases,

we need some apparatus to prescribe the desired shape. In this thesis, parametric spatial

curves are used for this purpose. Then, there appears the problem of shape correspondence

between a manipulator and a spatial curve, that is, we have to de�ne the correspondence

between them in shape, before tackling the control problems.

Explicit consideration of manipulator dynamics means that a shape control problem is

a kind of stabilization problems in the sense of Lyapunov [12]. In stabilization problems

for conventional manipulators, it is possible to apply the Lyapunov design directly to look

for control laws which achieve asymptotic stability at the desired point [4]. However, we

will see that the desired point is implicitly given in shape control problems, then we need

some tips to �nd control laws.

To show not only fundamental control laws, but also how to accomplish new tasks in

shape control framework is also one of the substantial themes in this study. Specially in

this thesis, an obstacle avoidance problem will be considered.

It is also important to look for essentials of an HDOF manipulator to realize it. The

essentials could provide us highly suggestive information. There is a big problem to

establish a methodology to �nd them.

1.4 Organization

This thesis is comprised of eight chapters which are related as shown in Figure 1.1.

In Chapter 2, following this introductory chapter, two fundamental preliminaries are

given. One is on spatial parametric curves in Euclidean space which is used for prescribing

our control objective. The other is related to the kinematic and dynamic models of our

controlled plant, an HDOF manipulator.

In Chapter 3, we discuss a shape correspondence between an HDOF manipulator and

a spatial curve, and also provide important results related to the shape correspondence.

Shape control problems are addressed in Chapter 4 to Chapter 6. In Chapter 4, a

shape regulation, the most fundamental control problem, is discussed. It is shown that

estimating the desired curve parameters is a crucial key to solve this problem. This idea

allows us to achieve the control purpose of a shape regulation without solving the shape
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inverse problem directly, which is time-consuming in this case.

In Chapter 5, a shape tracking control is considered. We can see that the idea of

estimating the desired curve parameters is e�ective for the shape tracking problem as

well.

A shape tracking using only joint angle information is considered in Chapter 6. We use

an observer which has closed-loop dynamics dual to that of a shape tracking controller.

This duality of the controller and the observer brings us a successful result to solve this

problem by Lyapunov stability theory.

In Chapter 7, an obstacle avoidance problem is considered in shape control framework.

We convert the problem into a motion control problem which is solved by the idea of shape

control.

In Chapter 8, a novel way to look for essentials of an HDOF manipulator is proposed

from the viewpoint of a shape control. This is a kind of a limit analysis via increase in

DOF. A natural kinematic structure for HDOF manipulators is derived theoretically.

In Chapter 9, we summarize main contributions of this thesis.

5



1. Introduction

2. A Curve and a Manipulator

3. Shape Correspondence

4. Shape Regulation

5. Shape Tracking

6. Shape Tracking Using Only Joint Angle Information

7. Obstacle Avoidance Based on Shape Control

8. Limit Analysis

Shape Control

New Task Accomplishment in Shape Control Framework

via Increase in DOF

Figure 1.1: Organization of this thesis
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Chapter 2

A Curve and a Manipulator

In this chapter, we give descriptions of two essentials in this study. One is a spatial

curve which is used for prescribing our control objective, and the other is an HDOF

manipulator which is the plant to be controlled here.

In Section 2.1, we give descriptions of spatial parametric curves in both time invariant

and time-varying cases. Also we show Frenet-Serret formula. Kinematic and dynamic

models of an HDOF manipulator are shown in Section 2.2.

2.1 Spatial Curves

The most natural and useful expression of spatial curves is the parametric represen-

tation. In this section, notations of parametric representation of both time invariant and

time-varying curves are given and some weak assumptions on them are made for their

smoothness. Frenet-Serret formula is also shown in this section. This formula is well

known as a relation between a parametric curve and geometric parameters; a curvature

and a torsion.

2.1.1 Parametric Representation

Both time invariant and time-varying curves are considered.

Time Invariant Curves

In the parametric representation of curves, a spatial curve in Euclidean space, E3 , is

regarded as a mapping from < to E3 . Let c be a mapping of < into E3 , i.e.,

c : < ! E3 : (2:1)

We can understand that, for a parameter � 2 < , a set fc(�) 2 E3 j� 2 <g forms a

spatial curve in E3 ( see Figure 2.1 ). The parameter � is called a curve parameter.

7



z0

x0

y0

O0

curve

�

<

c : < ! E3

E3

c(�)

Figure 2.1: Time invariant parametric curve

Assume that the mapping c has the following properties:

Assumption 1 (Time Invariant Curves)

1. A mapping c is continuously di�erentiable in < .

2. There exists �0 2 < such that c(�0) = 0 . Without loss of generality, we set

�0 = 0 . 2

The �rst statement in the above assumption is related to smoothness of curves treated

here. The reason for the requirement of continuous di�erentiability will become clear in

the later chapter.

The second means that a curve passes through the origin of the world coodinate where

the base of a manipulator is �xed. If �0 6= 0 , de�ne c0(�0) := c(� � �0); then c0 is the

exactly same curve as c and has the origin at �0 = 0 . That is why we can always set

�0 = 0 .

Time-varying Curves

A time-varying curve is represented by a mapping of the direct product, < � <+ , into

E3 . Let c be a mapping of <� <+ into E3 , that is,

c : <� <+ ! E3 : (2:2)

8



A set fc(�; t) 2 E3j� 2 <g draws a curve at time t 2 <+ ( see Figure 2.2 ).

Throughout this paper, a time-varying curve, c , is supposed to have the following

properties:

Assumption 2 (Time-varying Curves)

1. A mapping c is of class C2 in < �<+ .

2. For all t 2 <+ , c(0; t) = 0 . 2

As the previous assumption, the �rst one in the above statements is the smoothness of

a curve, and also requires that it varies smoothly. The reason for smoothness of C2 comes

from the fact that a manipulator has 2nd-order dynamics since a time-varying curve is

used as a desired movement of a manipulator.

The second means that a curve passes through the origin at � = 0 all the time.

z0

x0

y0

O0

curve

c : < � <+ ! E3

t

�

< � <+

E3

c(�; t)

Figure 2.2: Time-varying parametric curve
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2.1.2 Frenet-Serret Formula

Let c be a time invariant spatial curve and assume that any tangent vectors on the curve

are normalized, that is, 




dcd� (�)





 = 1 : (2:3)

In this case, the curve parameter, � , corresponds to arc length.

Frenet-Serret formula in E3 is expressed by

dc

d�
(�) = �(�)ex ; (2.4)

d�

d�
(�) = �(�) [!(�)�] ; (2.5)

!(�) :=

2
64 � (�)

0

�(�)

3
75 ; (2.6)

where �(�) 2 SO(3) is the coordinate at c(�) and called Frenet frame ( see Figure 2.3

). Parameters �(�) 2 <+ and �(�) 2 < are curvature and torsion of the curve at �

respectively. For a = [ax ay az]
T 2 <3 , [a�] denotes

[a�] :=

2
64

0 �az ay
az 0 �ax
�ay ax 0

3
75 ; (2:7)

that is, [a�] 2 so(3) . It is important to note that, for a; b 2 <3 ,

[a�] b = a� b (2.8)

where the symbol '� ' denotes an outer product in E3 . A straight line is de�ned as the

curve with �(�) = 0 and �(�) = 0 for any � .

2.2 Manipulator Models

In this section, kinematic and dynamic models of an HDOF manipulator are shown.

Like a conventional manipulator, an HDOF manipulator is considered as an open serial

kinemaic chain of rigid bodies connected by joints. An important di�erence of mechanical

structure is use of two-degree-of-freedom (2DOF) joints ( see Figure 2.4 ). It is essential

for an HDOF manipulator to have 2DOF joints in order to form an arbitrary shape in

Euclidean space.

A new kinematics for an HDOF manipulator is introduced here. This is more rea-

sonable and more geometric than conventional kinematics based on Denavit-Hartenberg

notation.

10



curve

�

<

c : < ! E3

E3

c(�)

z0

x0

y0
�(�)

dc

d�
(�)

Figure 2.3: Frenet frame

A dynamic equation for an HDOF manipulator is given based on both Lagrange formu-

lation and Newton-Euler formulation. Some important properties of Lagrangian dyanmics

are reviewd, while Newton-Euler recursive formulas are shown for computation.

2.2.1 Kinematics for HDOF Manipulators

Coordinate Frame Setting

Consider (n+1) rigid bodies and n two-degree-of-freedom joints in E3 . We attach

coordinate frames to all rigid bodies and joints, and connect the rigid bodies with the

joints in series in the following mannars:

1. For the i -th rigid body, let pt;i and p
h;i

be connecting points to the previous

(i� 1) -th rigid body and the next (i+1) -th rigid body respectively. Let li denote

the line passing through pt;i and p
h;i

. De�ne a positive constant, li , as the distance

between these two points and call it the link length. See Figure 2.5.

2. Attach coordinate frame, �i 2 SO(3) , to the i -th rigid body at p
h;i

, so as to align

its x axis with line li . In this setting, the coordinate is not uniquely decided. Let

�0

i
be one of the coordinates. Then �i is represented by

�i = �0

i
R(ex; �i) ; (2:9)
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base

joint 1

joint 2

joint 3

joint n

tip

link 0

link 1

link 2

link n

link n-1

Figure 2.4: Manipulator with hyper degrees of freedom

li pt;i
link i

p
h;ili

Figure 2.5: Link
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where ex := [ 1 0 0 ] T is the x -directional unit vector, �i 2 ( �� � ] is a real

constant and R(a; �) 2 SO(3) denotes a rotational action about a unit axis a 2 E3

by the amount � 2 ( �� � ] in radians. See Figure 2.6.

link i

p
h;i

li

z

x

y
�i

Figure 2.6: Attachment of a link frame

3. For the i -th joint, there are two rotational axes. We call rotational axes connected

with the previous (i�1) -th joint and the next (i+1) -th joint the Sub-axis and the

Main-axis respectively. Let lt;i and l
h;i

be lines align with the Sub-axis and the

Main-axis respectively. Moreover, let p
i
denote the intersection point of the two

lines. See Figure 2.7.

4. Attach coordinates frames, �s;i , �m;i 2 SO(3) , to the i -th joint at p
i
, so as to

align their z axes with lt;i and l
h;i

respectively. In this case, the coordinates are

also not decided uniquely. In the same mannar as the previous step, let �0

s;i
，�0

m;i

be those coordinates. Then �s;i and �m;i are represented by

�s;i = �0

s;i
R(ez; �i) ; (2.10)

�m;i = �0

m;i
R(ez; 
i) ; (2.11)

where ez := [ 0 0 1 ] T is the z -directional unit vector and �i; 
i 2 ( �� � ] are

real constants. Let �s;i , �m;i 2 ( �� � ] be rotational angles about z axes of �s;i

and �m;i from their x axes respectively. See Figure 2.8.
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p
i

joint i

lt;i

l
h;i

Figure 2.7: 2DOF joint

p
i

joint i

lt;i

l
h;i

zs

xs

ys

�s;i

�s;i

�m;i

�m;i

zm

xm

ym

Figure 2.8: Attachment of joint frames
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5. De�ne Q0

i
2 SO(3) such that

�0

m;i
= �s;iR(ez; �s;i)Q

0

i
: (2.12)

The constant matrix, Q0

i
, denotes the relationship between the two axes of the

2DOF joint.

6. Connect the (i� 1)-th rigid body and the i-th rigid body by means of the i-th joint

such that p
h;i�1

in the (i � 1)-th rigid body, pt;i in the i-th rigid body and p
i
in

the i-th joint all coincide. Let p
i�1 2 E3 be the position vector of the connecting

point. Notice that p
i
is not the position of the i -th joint, but the position of the

(i+ 1) -th joint. Thus, we call p
i
the link position (not joint position). See Figure

2.9.

7. De�ne Q0

s;i
,Q0

m;i
2 SO(3) such that

�0

s;i
= �0

i�1Q
0

s;i
; (2.13)

�0

i
= �m;iR(ez; �m;i)Q

0

m;i
: (2.14)

These constant matrices describe the way of connection between the link and the

joint.

By the above coordinate frame setting, the relation between the adjacent link coordinates

is expressed by

�i = �i�1Rw;i ; (2:15)

The matrix Rw;i 2 SO(3) denotes 2DOF rotational action de�ned by

Rw;i := Q
s;i
R(ez; �s;i)Qi

R(ez; �m;i)Qm;i
; (2:16)

where Q
s;i
, Q

m;i
, Q

i
2 SO(3) are

Q
s;i

:= RT (ex; �i�1)Q
0

s;i
; (2.17)

Q
i

:= R(ez; �i)Q
0

i
R(ez; 
i); (2.18)

Q
m;i

:= Q0

m;i
RT (ex; �i): (2.19)

Notice that the constants �i , �i , 
i depend only on the way of the coordinate frame set-

ting, and are independent of the mechanical structure of joints. The mechanical structure

is re
ected by Q0

s;i
, Q0

m;i
and Q0

i
.

The relation between the adjacent link positions is expressed by

p
i

= p
i�1 + li�iex : (2.20)
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�m;ip
i�1

link (i� 1)

link i

p
i

�s;iez

�m;iez

�i

joint i

�s;i

�i�1

Figure 2.9: Serial connection of links and joints

Straight Line as a Reference

The constants �i , �i , 
i express arbitrariness of the coordinate frame setting men-

tioned above. Here we make an adjustment for the coordinate frame setting to remove

unnecessary arbitrariness.

Since a straight line is the most fundamental curve, we think it as a reference shape

of a manipulator. In Frenet-Serret formula, a straight line is de�ned as a curve with a

curvature and a torsion such that �(�) = 0 and � (�) = 0 for all � . This means that

any coordinate frames on a straight line are identical, that is,

8�1; �2 2 < �(�1) = �(�2) : (2:21)

We require the same thing to the link frames of an HDOF manipulator, that is, that all

link frames are identical when the HDOF manipulator shape a line, which is represented

by

8i1; i2 2 f1; � � � ; ng �i1
= �i2

: (2:22)

We assume that �s;i = �m;i = 0 for all i when the HDOF manipulator shape a line.

This means that the origin of joint angles corresponds to the reference of manipulator's

shapes, a straight line. From the relation of the adjacent link frames (2.15), �i = �i�1

if Rw;i = I3 for all i . De�nition (2.16) and the fact R(�; 0) = I3 conclude that if

8i 2 f1; � � � ; ng Q
s;i
Q

i
Q

m;i
= I3 ; (2:23)
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then all link frames of an HDOF manipulator are identical.

Suppose that the constants �i , �i , 
i have been adjusted to satisfy condition (2.23)

in the rest of the paper. Under this condition, Q
i
is expressed as

Q
i
= Q

s;i

TQ
m;i

T : (2:24)

Therefore, Rw;i is represented as

Rw;i = R(as;i; �s;i)R(am;i; �m;i) ; (2.25)

where as;i;am;i 2 E3 are constant unit vectors de�ned by

as;i := Q
s;i
ez ; (2.26)

am;i := Q
m;i

Tez : (2.27)

Note that the constant vector as;i denotes the Sub-axis of the i -th joint from �i�1 , while

am;i denotes the Main-axis of the i -th joint from �i . The above expression of Rw;i

means that Rw;i consists of the product of 1DOF rotational action with local rotational

axes as;i and am;i , and �xing these axes as;i , am;i decides a kinematic strucutre of the

manipulator completely.

Conventional Denavit-Hartenberg notation is more general than the notation here

because it can also treat the type of manipulators with translational joints. However,

Denavit-Hartenberg notation does not work well for our purpose because it is a notation

only for describing the tip of a manipulator, but we are interested in all link positions. It

is important to note that, in the coordinate frame setting proposed here, we attach the

coordinate frames not only to joints but also to links, and we mainly use the link frames

to describe the link position. Also we connect links and joints after attaching coordinate

frames to them. This careful treatment of kinematics is very important if we try to see

asymptotic properties by increase in DOF. This topic will be treated in Chapter 8.

Di�erential Kinematics

Suppose joint angles are functions of time, that is, �s;i; �m;i : <+ ! (�� �] and

�s;i(t) , �m;i(t) denote the joint angles around the sub and main axes of the i -th joint at

time t respectively. Then, the time derivative of the i -th link frame is expressed as

_�i = [!i�]�i ; (2:28)

where !i 2 <3 denotes the angular velocity of the i -th link de�ned by

!i = !i�1 +�i�1as;i _�s;i +�iam;i
_�m;i : (2:29)
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De�ne the joint angle pair, �i 2 <2 ( i = 1; � � � ; n ), as

�i :=

"
�s;i
�m;i

#
; (2.30)

and also the joint axis pair, Ai 2 <3�2 ( i = 1; � � � ; n ), as

Ai :=
h
Rw;i

Tas;i am;i

i
: (2.31)

Then, the angular velocity is expressed as

!i = !i�1 +�iAi�i: (2:32)

We also have local expression of the above:

i!i = Rw;i

T i�1!i�1 +Ai�i: (2:33)

2.2.2 Manipulator Dynamics

Ordinarily, we see two aspects of manipulator dynamics, that is, Lagrange formulation

and Newton-Euler formulation.

Lagrange Formulation

De�ne � :=
h
�1

T � � � �nT
i
2 <2n and assume that we can generate torque us;i; um;i

2 < ( i = 1; � � � ; n ) at each revolutional axes of the i -th 2DOF joint. The dynamics of

the manipulator with 2n degrees of freedom is expressed as

M (�) �� +C(�; _�) _� + g(�) = u ; (2:34)

where u := [ us;1 um;1 � � � us;n um;n ]
T 2 <2n is the control input torque vector, M (�)

2 <2n�2n is the inertia matrix, C(�; _�)2 <2n�2n is the matrix related to the Coriolis and

centrifugal forces, and g(�)2 <2n is the gravitational torque vector. Throughout this

paper, friction torques are neglected.

This dynamics has the following properties [4]:

Property 1 (Manipulator Dynamics)

1. There exist positive constants Mm and MM such that

Mm � kM (�)k � MM ; (2:35)

for any � .
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2. There exists a positive constant CM such that

kC(�;x)k � CMkxk; (2:36)

for any � and x 2 <2n .

3. For any x , y , z 2 <2n and � 2 < , C(�; �) satis�es

C(�;x)y = C(�;y)x; (2.37)

C(�;z + �x)y = C(�;z)y + �C(�;x)y: (2.38)

4. The matrix _M (�; _�)� 2C(�; _�) is skew symmetric for any � and _� . 2

Newton-Euler Formulation

Let mi , ri , I i , be the mass, the center of mass, the inertia tensor of the i -th link

with respect to the base frame respectively.

The position of the center of mass of the i -th link is expressed by

p
c;i
:= p

i�1 + ri : (2:39)

Newton-Euler equation is given by

f
i

= mi�pc;i + f
i+1 ; (2.40)

ni = I i _!i + !i � (I i!i) + ri �
�
mi�pc;i

�
+ (li�iex)� f i+1 +ni+1 : (2.41)

where f
i
;ni 2 E3 denote the force and the moment exerted on the i -th link respectively.

Let ui := [us;i um;i]
T 2 <2 be the driving torque of the i -th 2DOF joint. Then, ui is

ui = Ai

T�i

Tni: (2:42)

We call ui the joint torque pair.

Let iri ,
iI i , be the center of mass, the inertia tensor of the i -th link with respect

to the i -th frame respectively. The position of the center of mass of the i -th link with

respect to the i -th frame is expressed by

ip
c;i
:= Rw;i

T ip
i�1 +

iri : (2:43)
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Note that iri is a constant vector. Hence, we obtain the local expression of Newton-Euler

equations:

if
i

= mi

i�p
c;i
+Rw;i+1

i+1f
i+1 ; (2.44)

ini = iI i
i _!i + !i �

�
iI i

i!i

�
+ iri �

�
mi

i�p
c;i

�

+ liex �
�
Rw;i+1

i+1f
i+1

�
+Rw;i+1

i+1ni+1 ; (2.45)

and another expression of joint torque pair:

ui = Ai

T ini: (2.46)

where if
i
; ini 2 E3 are the local expressions of the force and the moment respectively.

Summary

The representation of spatial curves, and kinematic and dynamics models of HDOF

manipulators were shown. The proposed kinematics for HDOF manipulators was based

on the geometric notation di�erent from the conventional Denavit-Hartenberg notation.

We will see in Chapter 8 this kinematics is strongly related to Frenet-Serret formula and

enables a new analysis to �nd essentials of an HDOF manipulator.
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Chapter 3

Shape Correspondence

We understand intuitively "shape" of a manipulator and "shape" of a spatial curve.

But, there is no proper de�nition of these "shape" and the correspondence between them.

In this chapter, we discuss the shape correspondence between an HDOF manipulator and

a spatial curve, and also provide important theorems related to "shape".

In Section 3.1, we rigorously de�ne the shape correspondence between a manipulator

and a spatial curve by using the solution of a nonlinear optimization problem termed the

shape inverse problem. In Section 3.2, we discuss the existence of the solution of the

shape inverse problem. In Section 3.3, we change our viewpoint from local Newton-Euler

formulation to global Lagrangian formulation, and de�ne the shape Jacobian and analyze

its properties. A theorem on an existence region of the solution of the shape inverse

problem is given in Section 3.4 under an assumption on the shape Jacobian. In the �rst

four sections in this chapter, we only consider time invariant curves. In Section 3.5, we

extend the obtained results for time invariant curves to the case of time-varying curves.

3.1 Shape Inverse Problem

Suppose that there is an HDOF manipulator in E3 whose kinematics is given in

Section 2.2.1. Also suppose that there is a "desired shape" in E3 described by a spatial

parametric curve c : < ! E3 . What we would like to do here is to give a reasonable

expression meaning that "shape" of an HDOF manipulator corresponds to "desired shape"

prescribed by a spatial curve.

We start our discussion of shape correspondence from a natural requirement that if

a "shape" of an HDOF manipulator corresponds to a "desired shape", then all the link

positions of the HDOF manipulator are on the curve prescribing the "desired shape". The
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apodosis above can be expressed as

8i 2 f1; � � � ; ng p
i
(�) = c(�i

�); (3:1)

where �i
� ( i = 1; � � � ; n ) is a solution of the following equations:

c(�0
�) = 0; (3.2)

kc(�i�)� c(�i�1�)k = li; i = 1; � � � ; n; (3.3)

and �0
� = 0 , because c(�i

�) is under the kinematic constraints of a manipulator. From

(2.20), the kinematic constraints of a manipulator can be written as

p0 = 0; (3.4)




p
i
(�)� p

i�1(�)



 = li; i = 1; � � � ; n; (3.5)

and we obtain (3.2), (3.3) by replacing p
i
with c(�i

�) .

In other words, expression (3.1) requires that a given spatial curve becomes one of the

interpolated curves of a sequence of link positions, fp1; � � � ;png . Expression (3.1) can be

rewritten into a more geometric form. From (2.15), (2.20) and (3.3), we obtain

Rw;i(�s;i; �m;i)ex = �i�1
T
c(�i

�)� c(�i�1�)
kc(�i�)� c(�i�1�)k

: (3:6)

In this expression, both sides of the equation are interpreted as points on the unit sphere

which has the center at c(�i�1
�) and the radius of li = kc(�i�)� c(�i�1�)k .

However, expression (3.1) does not imply shape correspondence between manipulator

and spatial curve, because undesirable situations may occur even if (3.1) is satis�ed. In

other words, (3.1) is necessary for shape correspondence, but not su�cient.

For example, a manipulator may be ill-ordered on the curve as shown in Figure 3.1-

(b) even if (3.1) is satis�ed. Moreover, a manipulator may take a shortcut on the curve

as shown in Figure 3.2 even if (3.3) is satis�ed and the manipulator is not ill-ordered.

Existence of these undesirable situations is related to the fact that equation (3.3) has

generally multiple solutions. Multiplicity of solutions also occurs in equation (3.1) due

to the inde�niteness of joint angles with a period of 2� . Thus, we need more careful

treatments on its de�nition.

Ill-ordered situation can be described by

9i �i�1
� > �i

�: (3:7)
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p
i�1 = c(�i�1

�)

p
i
= c(�i

�)

(b) ill-ordered

p
i�1 = c(�i�1

�)

p
i
= c(�i

�)

(a) well-ordered

Figure 3.1: Well-ordered and ill-ordered situations

shortcut

p
i�1 = c(�i�1

�)

p
i
= c(�i

�)

p
i�1 = c(�i�1

�)

p
i
= c(�i

�)

Figure 3.2: Shortcut situation
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Thus, if we restrict the order of curve parameters as

0 = �0
� < �1

� < � � � < �n
�; (3:8)

or equivalently,

8i 2 f1; � � � ; ng 0 < �i
� � �i�1

�; (3:9)

then the manipulator is well-ordered on the curve like Figure 3.1-(a).

In the case of shortcut situation, we can always �nd a less value of curve parameter,

�i than �i
� satisfying equation (3.3), i.e.,

9�i 2 < (�i�1
� < �i < �i

�) ^ (kc(�i)� c(�i�1�)k = li) : (3:10)

Therefore, if we �nd a solution minimizing the interval between the adjacent curve pa-

rameters:

j�i� � �i�1
�j ; i = 1; � � � ; n; (3:11)

then shortcut situation never occurs.

The inde�niteness of the joint angles also can be avoided if we �nd a solution mini-

mizing

k�ik ; i = 1; � � � ; n: (3:12)

where �i := [ �s;i �m;i]
T 2 <2 .

Here we state the shape inverse problem and de�ne shape correspondence between ma-

nipulator and spatial curve rigorously by using the solution of the shape inverse problem

as follows:

Problem 1 (Shape Inverse Problem)

Consider

1. an HDOF manipulator with the kinematics stated in Section 2.2.1, and

2. a curve c : < ! E3 satisfying Assumption 1.

For i = 1 to n in turn, �nd the pair of joint angles, �i
� := [ �s;i

� �m;i

� ] T 2 <2 ,

minimizing

k�ik ; (3:13)

subject to

Rw;i(�s;i; �m;i)ex = �i�1
T
c(�i

�)� c(�i�1�)
kc(�i�)� c(�i�1�)k

; (3:14)

24



where �i
� is the curve parameter minimizing

j�i� � �i�1
�j ; (3:15)

subject to

�i
� � �i�1

� > 0; (3.16)

kc(�i�)� c(�i�1�)k = li: (3.17)

We call �� := [�1
�T � � � �n�T ]T 2 <2n the desired joint angle and �� := [�1

� � � ��n�]T

2 <n the desired curve parameter. 2

De�nition 1 (Shape Correspondence)

Let �� be the desired joint angle, that is, the solution of the shape inverse problem.

An HDOF manipulator is said to be of shape correspondence with curve c : < ! E3 if

the manipulator has the joint angle, �� . 2

As stated above, the desired joint angle which de�nes the shape correspondence is obtained

by solving two nonlinear optimization problems in turn. The problem solving the desired

curve parameter has a geometric meaning to �nd the �rst intersection between the curve

and the spherical surface which has the center at c(�i�1
�) and the radius of li . The other

problem solving the desired joint angle means �nding joint angles of the i -th 2DOF joint

such that the i -th link direction is aligned to the line connecting c(�i�1
�) and c(�i

�) .

It is one of remarkable features that the shape inverse problem is to be solved recursively

with respect to link (or joint) number, i , and written with vectors in E3 and matrices

in SO(3) . This enables us to understand the geometric meaning of two sub-problems

in Euclidean space. It is also important to notice that we can explicitly describe the

undesirable ill-ordered and shortcut situations shown in Figure 3.1 and Figure 3.2 due to

the parametric representation of curves, which leads us to the rigorous statement of the

shape inverse problem.

3.2 Existence Theorem

The solution of the shape inverse problem does not necessarily exist. Thus, we need

to give some conditions to assure the existence of the solution.

First, we make the following assumption on manipulator kinematics and spatial curves:

Assumption 3 (Manipulator Kinematics and Spatial Curves)

The following two conditions hold:
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1. The curvature of a given spatial curve is bounded by the half of the reciprocal of

the maximum link length, i.e.,

sup
�2<

�(�) � 1

2 max
i2f1;���;ng

li
; (3:18)

where � : < ! <+ is the curvature function of the curve and li denotes the i -th

link length.

2. Each Main-axis is perpendicular to the link direction, and each Sub-axis is perpen-

dicular to the corresponding Main-axis, i.e.,

8i 2 f1; � � � ; ng (am;i?ex) ^
�
Rw;i

Tas;i?am;i

�
: (3:19)

2

The following theorem is valid under Assumption 3:

Theorem 1 (Existence Theorem)

Under Assumption 3, there exists the solution of the shape inverse problem. 2

Proof. The two conditions in Assumption 3 assure the existence of �i
� at (3.16), (3.17)

and �i
� at (3.14) respectively. Thus, we show the existence of �i

� under (3.18) �rst, and

the existence of �i
� under condition (3.19).

The induction method with respect to i is used for the �rst proof. Assume that �i�1
�

exists. From Frenet-Serret formula, we can evaluate kc(�i)� c(�i�1�)k as

kc(�i)� c(�i�1�)k =







Z

�i

�i�1
�

dc

d�
(�)d�







=







Z

�i

�i�1
�

�(�)exd�







=







Z

�i

�i�1
�

 
�(�i�1

�) +
Z

�

�i�1
�

d

ds
�(s)ds

!
exd�







=







Z

�i

�i�1
�

 
�(�i�1

�) +
Z

�

�i�1
�

�(s) [!(s)�] ds
!
exd�







=







Z

�i

�i�1
�

 
�(�i�1

�)ex +
Z

�

�i�1
�

�(s) [!(s)�]exds
!
d�







=







Z

�i

�i�1
�

 
�(�i�1

�)ex +
Z

�

�i�1
�

�(s)�(s)eyds

!
d�







=







 Z

�i

�i�1
�

d�

!
�(�i�1

�)ex +

Z
�i

�i�1
�

 Z
�

�i�1
�

�(s)�(s)eyds

!
d�
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=





 (�i � �i�1
�)�(�i�1

�)ex

+
Z

�i��i�1
�

0

 Z
�+�i�1

�

�i�1
�

�(s)�(s)eyds

!
d�






=





 (�i � �i�1
�)�(�i�1

�)ex

+
Z

�i��i�1
�

0

�Z
�

0
�(s+ �i�1

�)�(s+ �i�1
�)eyds

�
d�





 : (3.20)

For a; b 2 <3 ,

kak � kbk ) ka+ bk � kak � kbk : (3.21)

Then, we obtain

kc(�i)� c(�i�1�)k � (�i � �i�1
�)

�






Z

�i��i�1
�

0

�Z
�

0
�(s+ �i�1

�)�(s+ �i�1
�)eyds

�
d�






 (3.22)
� (�i � �i�1

�)

�
Z

�i��i�1
�

0

�Z
�

0
k�(s+ �i�1

�)�(s+ �i�1
�)eyk ds

�
d�

� (�i � �i�1
�)� �M

Z
�i��i�1

�

0

�Z
�

0
ds

�
d�

� (�i � �i�1
�)� �M

Z
�i��i�1

�

0
�d�

= (�i � �i�1
�)� �M

2
(�i � �i�1

�)
2

= ��M

2

�
(�i � �i�1

�)� 1

�M

�2

+
1

2�M
; (3.23)

where �M := sup �(�) . Thus, if condition (3.18) is satis�ed, i.e.,

1

2�M
� lM ; (3:24)

where lM := max li , then the inequality

kc(�i)� c(�i�1�)k � lM ; (3:25)

holds at

�i = �i�1
� +

1

�M
: (3:26)

Since c is continuous, invoking the intermediate value theorem leads to

9�i� 2
�
�i�1

�; �i�1
� +

1

�M

�
kc(�i�)� c(�i�1�)k = li: (3:27)
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On the other hand, from the orthogonality between ex and am;i , R(am;i; �m;i)ex

draws a unit circle when �m;i moves from �� to � . Thus, from the other orthogonality

between am;i and as;i , Rw;iex = R(as;i; �s;i)R(am;i; �m;i)ex covers a unit sphere when

�m;i; �s;i move from �� to � respectively, which means that we can always �nd �s;i and

�m;i satisfying (3.14). (Q.E.D.)

The �rst conditon in Assumption 3 shows the relation between given admissible curves

and link length of a manipulator. Let L be the total length of the manipulator, i.e.,

L :=
X
i

li , and suppose that L is constant. Then we obtain

lMn � L; (3:28)

where n is the number of DOF of the manipulator. Thus, condition (3.18) also means

�M � n

2L
; (3:29)

which states that the class of admissible curves enlarges as the number of DOF increases.

The second condition in Assumption 3 is related to the mechanical structure of a ma-

nipulator. We will discuss how it should be from another theoretical viewpoint in Chapter

8. Notice that the conditions in the theorem also have an e�ect to remove unnecessary

winding curves, although these are quite conservative y.

3.3 Shape Jacobian

Up to here, we have taken the local Newton-Euler viewpoint. Then, we zoom out to

the global Lagrangian viewpoint.

Expression (3.1) can be converted to a more compact form as follows. De�ne p(�)

2 <3n by arranging all the link positions in a row as

p(�) :=

2
664
p1(�)
...

p
n
(�)

3
775 : (3:30)

De�ne also p
d
(�) 2 <3n for a given curve c : < ! E3 as

p
d
(�) :=

2
664
c(�1)
...

c(�n)

3
775 ; (3:31)

yThe conditions in the existence theorem are quite conservative since we use conservative inequality

(3.21).
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where �i 2 < ( i = 1; � � � ; n ) is a variable (not the solution of equation (3.3)) and

� := [�1 � � ��n]T 2 <n. Further de�ne e(�;�)2 <3n as the di�erence between them, i.e.,

e(�;�) := p(�)� p
d
(�): (3.32)

Then we obtain a more compact expression of (3.1):

e(�;��) = 0; (3.33)

where �� is the desired curve parameter. We call p(�) the manipulator shape, p
d
(��)

the desired shape and e(�;��) the desired shape error.

Suppose that � and � are time functions and di�erentiable with respect to time t

in <+ . Then, the derivative of e becomes

_e(q; _q) = J(q) _q; (3:34)

where q :=
h
�T�T

i
T 2 <3n and the matrix J(q) 2 <3n�3n is de�ned as

J(q) :=

�
@p

@�
(�) �@p

d

@�
(�)

�
: (3:35)

We call J(q) the Shape Jacobian. The Shape Jacobian has the following properties:

Property 2 (Shape Jacobian)

1. The norm of the Shape Jacobian is bounded, i.e., there exists a positive constant

JM such that

8q 2 <3n kJ(q)k � JM : (3:36)

Moreover, if J(q) is non-singular, then there exists a positive constant Jm such

that

8q 2 <3n Jm � kJ(q)k: (3:37)

2. The Shape Jacobian, J(q), is singular if and only if there exists a positive integer,

i 2 f1; � � � ; ng , such that at least one of the following two conditions holds:

(a) Consider the three directions in E3 ; the Sub-axis of the i -th joint, the Main-

axis of the i -th joint, and the length direction of the i -th link. At least two

among the directions align, i.e.,

det
h
li RT (am;i; �m;i)as;i am;i

i
= 0; (3:38)

where li := liex .
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(b) The i -th link direction and the tangent at the point corresponding to the i -th

link position cross at right angle, i.e.,

n
p
i
(�)� p

i�1(�)
o
T dc

d�
(�i) = 0: (3:39)

3. De�ne _J(q; _q) 2 <3n�3n as

_J(q; _q) :=

"
@J

@q1
(q) _q � � � @J

@q3n
(q) _q

#
: (3:40)

Then, there exists a positive constant JH such that

8q 2 <3n k _J(q; _q)k � JHk _qk: (3:41)

Moreover, for any x;y 2 <3n ,

_J(q;x)y = _J(q;y)x: (3:42)

2

Proof. The �rst and the third properties are immediately concluded from simple calcu-

lations and the boundedness of elements in J(q) and _J(q; _q) .

For the proof of the second property, let I i;j 2 <3n�3n be the elementary matrix

exchanging the i -th line for the j -th. This matrix has properties such that

I i;j
�1 = I i;j

T ; (3.43)

det Ii;j = �1 : (3.44)

Using this elementary matrix, de�ne P 2 <3n�3n as

P := (I2n;2n+1I2n�1;2n � � � I3;4) � (I2n+1;2n+2I2n;2n+1 � � � I6;7)

� � � (I2n+i�1;2n+iI2n+i�2;2n+i�1 � � � I3i;3i+1) � � � (I3n�2;3n�1I3n�3;3n�2)

=
n�1Y
i=1

2(n�i)Y
j=1

I2n+i�j;2n+i�j+1: (3.45)

The number of the fundamental matrices appeared in the de�nition P is

n�1X
i=1

2(n� i) = 2

(
n�1X
i=1

(n� i)

)
; (3:46)

which is always even. Thus, P has properties:

P�1 = P T ; (3.47)

detP = 1 ; (3.48)
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i.e., P 2 SO(3n) . Furthermore, using this P , de�ne �J(q) 2 <3n�3n as

�J(q) := J(q)P : (3:49)

Then, �J(q) can be represented as the following lower-triangular 3� 3 -block matrix:

�J =

2
66664
J 11

J 21 J 22

...
...

. . .

Jn1 Jn2 � � � Jnn

3
77775 ; (3:50)

where J ij 2 <3�3 is de�ned as

J ij :=

8>>>>><
>>>>>:

"
@p

i

@�s;j
(�)

@p
i

@�m;j

(�) �dc

d�
(�i)

#
; i = j ;

"
@p

i

@�s;j
(�)

@p
i

@�m;j

(�) 0

#
; i > j :

(3:51)

Thus, we obtain

detJ(q) = det �J(q)

= det

2
66664
J11

J21 J 22

...
...

. . .

Jn1 Jn2 � � � Jnn

3
77775

=
nY
i=1

detJ ii

=
nY
i=1

det

"
@p

i

@�s;i

@p
i

@�m;i

�dc

d�
(�i)

#

= (�1)n
nY
i=1

8<
:
 
@p

i

@�s;i
� @p

i

@�m;i

!
T

dc

d�
(�i)

9=
; :

The partial derivatives of p
i
with respect to �s;i and �m;i are calculated as

@p
i

@�s;i
= �i

h
RT (am;i; �m;i)as;i�

i
li; (3.52)

@p
i

@�m;i

= �i [am;i�] li: (3.53)

Therefore, since

@p
i

@�s;i
� @p

i

@�m;i

=
n
�i

h
RT (am;i; �m;i)as;i�

i
li

o
� f�i [am;i�] lig

= �i

hn�
RT (am;i; �m;i)as;i

�
� li

o
� fam;i � lig

i
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= �i

�
det

h
RT (am;i; �m;i)as;i li li

i
am;i

� det
h
RT (am;i; �m;i)as;i li am;i

i
li

�

= det
h
li RT (am;i; �m;i)as;i am;i

i
�ili

= det
h
li RT (am;i; �m;i)as;i am;i

i
(p

i
� p

i�1); (3.54)

then we obtain

detJ(q) = (�1)n
nY
i=1

(
det

h
li RT (am;i; �m;i)as;i am;i

i
(p

i
� p

i�1)
T
dc

d�
(�i)

)
; (3:55)

which completes the proof. (Q.E.D.)

There are three remarkable points for the second property. First, the singularity

condition of the Shape Jacobian can be described by completely separated n conditions

for each link, joint and curve parameter. This is very helpful for the calculation. Second,

each completely separated condition is further devided into two distinguished parts. One

part, described by (3.38), is only related to the mechanical structure and joint angles, while

the other, (3.39), depends on the tangent of the curve. Finally, the derived conditions

(3.38) and (3.39) have geometric meaning in Euclidean space. That is, they can be

explained by the geometric relation of vectors (e.g. inner product etc.) in Euclidean

space ( see Figure 3.3 ).

3.4 Existence Region Theorem

As mentioned before, the shape inverse problem is a kind of nonlinear optimization

problems, which means that we can not expect to obtain any analytical solution. Thus,

we have to use numerical methods in order to �nd some solutions. However, under a mild

condition, e = 0 implies the shape correspondence in a local region.

First we make the following assumption on the Shape Jacobian:

Assumption 4 (Shape Jacobian)

The Shape Jacobian is non-singular for the desired joint angle and curve parameter,

(��;��) , i.e.,

detJ(��;��) 6= 0: (3:56)

2

Now we state the following theorem on existence region of the shape inverse problem:
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p
i�1

�ili

link (i� 1)

link i

p
i

�i�1as;i (Sub-axis)

�iam;i (Main-axis)

(tangent at �̂i)

dc

d�
(�̂i)

�i

�i�1

Figure 3.3: Geometrical meaning of singularities of the Shape Jacobian

Theorem 2 (Existence Region)

De�ne D� � <3n as

D� :=

�
(�;�) 2 <3n

����j�s;ij < �; j�m;ij < �; � < �i � �i�1 <
1

�M

�
; (3.57)

where � 2 [�lM lM ] . Then, under Assumption 3 and Assumption 4, there exists a

unique solution satisfying that

e(�;�) = 0; (3.58)

(�;�) 2 D�; (3.59)

for any � . Moreover, the solution is exactly the pair of the desired joint angle and curve

parameter, (��;��) . 2

Proof. We can evaluate kc(�i)� c(�i�1�)k as

� �M

2

��
�i � ��

i�1

�
� 1

�M

�2

+
1

2�M
� kc(�i)� c(�i�1�)k � �i � �i�1

�; (3:60)

from (3.20) and (3.23). Figure 3.4 shows the existence region of kc(�i)� c(�i�1�)k by

the shaded region. We choose ��i := �i � �i�1
� as the horizontal axis. The values ��i

�

and ��i
�� denote the intersections between the lower bound of kc(�i)� c(�i�1�)k and
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line kc(�i)� c(�i�1�)k = lM . Thus, ��i
� corresponds to the optimal solution. From

this �gure, for any � 2 [�lM lM ]

� < �i
� � �i�1

� <
1

�M
; (3:61)

under condition (3.18). Inequality (3.61) shows that there exists a unique solution of

(3.17) in the interval

�
�

1

�M

�
.

1

2�M

lM
��i

�

existence region

1

�M

lM�lM ��i
��

kc(�i)� c(�i�1�)k

��i

Figure 3.4: Solution of the shape inverse problem

Non-singularity of the Shape Jacobian, which states the isolation of the solution of

e = 0 , and the orthogonality of joint axes assure that there exist unique solutions �s;i

and �m;i in (�� �) . (Q.E.D.)

We will see that this theorem is successfully used for control purposes in later chapters.

3.5 Extension to the Case of Time-varying Curves

The obtained results for time invariant curves in this chapter can be extended to the

case of time-varying curves.

Extended shape inverse problem for time-varying curves is stated as follows:

Problem 2 (Extended Shape Inverse Problem)

Consider
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1. an HDOF manipulator with the kinematics stated in Section 2.2.1, and

2. a curve c : < � <+ ! E3 satisfying Assumption 2.

For i = 1 to n in turn, �nd the pair of continuous joint angle functions, �i
�(t) :=

[ �s;i
�(t) �m;i

�(t) ] T , minimizing

1

T

Z
T

0
k�i(t)k dt; (3:62)

for the time interval [0 T ] , subject to

Rw;i(�s;i(t); �m;i(t))ex = �i�1
T
c(�i

�(t); t)� c(�i�1�(t); t)
kc(�i�(t); t)� c(�i�1�(t); t)k

; (3:63)

where �i
�(t) is the curve parameter function minimizing

1

T

Z
T

0
j�i�(t)� �i�1

�(t)j dt; (3:64)

subject to

�i
�(t)� �i�1

�(t) > 0; (3.65)

kc(�i�(t); t)� c(�i�1�(t); t)k = li: (3.66)

We call ��(t) := [�1
�T (t) � � � �n�T (t)]T the desired joint angle function and ��(t) :=

[�1
�(t) � � ��n�(t)]T the desired curve parameter function. 2

De�nition 2 (Shape Correspondence at Time t )

Let ��(t) be the desired joint angle, that is, the solution of the shape inverse problem.

An HDOF manipulator is said to be of shape correspondence with curve c : <�<+ ! E3

at time t if the manipulator has the joint angle, ��(t) at time t . 2

First, we make the following assumption on manipulator kinematics and spatial curves:

Assumption 5 (Manipulator Kinematics and Time-varying Curves)

The following two conditions hold:

1. The curvature of a given spatial curve is bounded by the half of the reciprocal of

the maximum link length, i.e.,

sup
�2<;t2<+

�(�; t) � 1

2 max
i2f1;���;ng

li
; (3:67)

where � : < � <+ ! <+ is the curvature function of the curve and li denotes the

i -th link length.
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2. Each Main-axis is perpendicular to the link direction, and each Sub-axis is perpen-

dicular to the corresponding Main-axis, i.e.,

8i 2 f1; � � � ; ng (am;i?ex) ^
�
Rw;i

Tas;i?am;i

�
: (3:68)

2

Obviously from Theorem 1, this assumption assures that there exists the solution of the

shape inverse problem for any t .

The following theorem is valid under Assumption 5:

Theorem 3 (Extended Existence Theorem)

Under Assumption 5, there exists the solution of the extended shape inverse prob-

lem. 2

Proof. It is obvious from Theorem 1 and continuous dependence of solution on param-

eters. (Q.E.D.)

In the case of a time-varying curve, de�ne p
d
(�; t) 2 <3n for a time-varying curve

c : < � <+ ! E3 as

p
d
(�; t) :=

2
664
c(�1; t)

...

c(�n; t)

3
775 : (3:69)

In this case, p
d
depends on time t . Also de�ne e(q; t) 2 <3n as

e(q; t) := p(�)� p
d
(�; t); (3.70)

which also depends on time. Its derivative becomes

_e(q; _q; t) = J(q; t) _q � @p
d

@t
(�; t); (3:71)

where J(q; t) 2 <3n�3n is de�ned by

J(q; t) :=

�
@p

@�
(�) �@p

d

@�
(�; t)

�
: (3:72)

This Shape Jacobian for a time-varying curve also depends on time. The time derivative

of the Shape Jacobian, _J(q; _q; t) 2 <3n�3n is expressed as

_J(q; _q; t) = _J q(q; _q; t) + _J t(q; t) (3.73)
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where _J q(q; _q; t) , _J t(q; t) 2 <3n�3n are de�ned as

_Jq(q; _q; t) :=
@J

@q
(q; t) _q

=

"
@J

@q1
(q; t) _q � � � @J

@q3n
(q; t) _q

#
; (3.74)

_J t(q; t) :=
@J

@t
(q; t)

=

�
0 � @2p

d

@�@t
(�̂; t)

�
: (3.75)

The property of the time-varying Shape Jacobian is almost same as the time invariant

case:

Property 3 (Time-varying Shape Jacobian)

1. The norm of the Shape Jacobian is bounded, i.e., there exists a positive constant

JM such that

8t 2 <+; 8q 2 <3n; kJ(q; t)k � JM : (3:76)

Moreover, if J(q; t) is non-singular, then there exists a positive constant Jm such

that

8t 2 <+; 8q 2 <3n; Jm � kJ(q; t)k: (3:77)

2. The time-varying Shape Jacobian, J(q; t), is singular at time t if and only if there

exists a positive integer, i 2 f1; � � � ; ng , such that at least one of the following two

conditions holds:

(a) Consider the three directions in E3 ; the Sub-axis of the i -th joint, the Main-

axis of the i -th joint, and the length direction of the i -th link. At least two

among the directions align, i.e.,

det
h
li RT (am;i; �m;i(t))as;i am;i

i
= 0; (3:78)

where li := liex .

(b) The i -th link direction and the tangent at the point corresponding to the i -th

link position cross at right angle, i.e.,

n
p
i
(�)� p

i�1(�)
o
T @c

@�
(�i; t) = 0: (3:79)
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3. There exists a positive constant JH such that

8t 2 <+; 8q 2 <3n; k _Jq(q; _q; t)k � JHk _qk: (3:80)

Moreover, for any x;y 2 <3n ,

_J q(q;x; t)y = _J q(q;y; t)x: (3:81)

for any t .

2

Proof. The proof is substantially same as the one of the time invariant case. (Q.E.D.)

We make the following assumption on the Shape Jacobian:

Assumption 6 (Time-varying Shape Jacobian)

The Shape Jacobian is non-singular for the desired joint angle function and curve

parameter function, (��(t);��(t)) , for any t , i.e.,

8t 2 <+; detJ(�
�(t);��(t); t) 6= 0: (3:82)

2

We state the following theorem on existence region of the extended shape inverse problem:

Theorem 4 (Extended Existence Region)

Under Assumption 5 and Assumption 6, there exists a unique solution satisfying

that

e(�(t);�(t)) = 0; (3.83)

(�(t);�(t)) 2 D�; (3.84)

for any � 2 [�lM lM ] , where D� is de�ned by (3.57). Moreover, the solution is exactly

the pair of the desired joint angle function and curve parameter function, (��(t);��(t)) .

2

Proof. It is concluded from Theorem 2. (Q.E.D.)

Note that all the results in this section reduce to the results in Section 3.1 to Section

3.4 when a curve is choosen to be time-invariant.
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Summary

The shape correspondence between a spatial curve and an HDOF manipulator was

de�ned by using the solution of a certain nonlinear optimization problem termed the shape

inverse problem. The existence theorem of the solution of the shape inverse problem

was provided under assumptions on a given curve and manipulator kinematics. The

existence region theorem was also provided under assumption of non-singularity of the

Shape Jacobian. This theorem will play an important role to convert control problems

appeared later into more tractable ones.
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Chapter 4

Shape Regulation

In this chapter, we discuss one of the most fundamental control problems, shape

regulation. Control purpose of shape regulation is to bring an HDOF manipulator onto

the desired shape prescribed by a time invariant parametric curve. Crucial key to solve

this problem is to estimate the desired curve parameters. This idea allows us to achieve

the control purpose of shape regulation without solving the shape inverse problem directly,

which is time-consuming.

In Section 4.1, we formulate the shape regulation problem and show the simple Pro-

portional and Derivative (PD) feedback control in task space in order to compare with our

control proposed later. In Section 4.2, the idea of estimating the desired curve parameter

is introduced. In Section 4.3, a shape regulation control based on curve parameter estima-

tion is proposed. It is proved that this control law assures local asymptotic convergence

to the desired shape using LaSalle's theorem. The derived control law is homogeneously

decomposed into recursive control laws with respect to link (or joint) numbers in Section

4.4. A geometric interpretation of the recursive estimation law is also given. Simulation

results with three-dimensional graphical animation are also provided in Section 4.5.

4.1 Problem Statement

The control objective of shape regulation is to make the shape of an HDOF manip-

ulator correspond to the desired shape prescribed by a given spatial parametric curve.

From De�nition 1, the shape regulation problem is stated as follows:

Problem 3 (Shape Regulation)

Consider

1. an HDOF manipulator with dynamics (2.34), and
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2. a curve c : < ! E3 satisfying Assumption 1.

Moreover, suppose that Assumption 3 holds. Then, �nd a control input, u , in (2.34)

achieving that

�(t) ! ��; (4.1)

_�(t) ! 0; (4.2)

as t!1 , where �� is the desired joint angle, that is, the solution of the shape inverse

problem. 2

One of the simplest ideas to solve this problem is to use proportional and derivative

(PD) feedback in joint space after solving the shape inverse problem directly. As we saw

in Section 3.1, however, the shape inverse problem includes two nonlinear optimization

problems. Thus, it is very time-consuming to solve them in advance.

PD feedback in task space [27] can also be used for our purpose. Since the task variable

is the shape error, e� := e(�;��) , in this case, we can consider the following PD feedback

control law with respect to e� and _� :

u = �
(
@p

@�
(�)

)
T

Kpe
� �Kv

_� + g(�); (4.3)

where Kp , 2 <3n�3n and Kv 2 <2n�2n are symmetric positive de�nite matrices. Achieve-

ment of the shape regulation is proved by using the following scalar function W (e�; _�) :

W (e�; _�) :=
1

2
_�
T

M (�) _� +
1

2
e�

T
Kp e

�; (4:4)

where M (�) is the inertia matrix shown in (2.34). Note that the desired curve parameter,

�� , appears in control law (4.3), that is, we still have to solve the shape inverse problem

in order to get �� before we apply control input (4.3) to the manipulator. It is necessary

to resort to some numerical method to solve the shape inverse problem in advance. This

means that we need the time to solve the nonlinear optimization problem numerically

in addition to the control time. In the following section, we will see that the idea of

estimating the desired curve parameter, �� , in the course of control gives us a more

desirable result to achieve shape regulation without solving time-consuming shape inverse

problem a priori to the control.
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4.2 Estimation of the Desired Curve Parameters

Let �̂ := [ �̂1 � � � �̂n]T 2 <n be the estimate of �� and de�ne the estimated shape

error ê 2 <3n including �̂ as

ê := e(�; �̂)

= p(�)� p
d
(�̂): (4.5)

Then, _̂e 2 <3n becomes

_̂e = J(�; �̂)

"
_�
_̂�

#
: (4:6)

Theorem 2 assures that if we achieve

ê(�; �̂) ! 0; (4.7)

_� ! 0; (4.8)

(�; �̂) 2 D�; (4.9)

then control objective of shape regulation (4.1), (4.2) is also achieved under the condition

of non-singularity of the Shape Jacobian. Notice that in the objective above,�� does

not appear any longer, which means we do not have to solve any nonlinear optimization

problems in advance to the control.

4.3 Shape Regulation Based on Curve Parameter

Estimation

Observing that the control objective of shape regulation is expressed by (4.7), (4.8)

and (4.9), we consider the following positive scalar function, V (ê; _�) :

V (ê; _�) :=
1

2
_�
T

M (�) _� +
1

2
êTKp ê: (4:10)

This function is positive de�nite with respect to (ê; _�) and becomes zero at our control

objective point (ê; _�) = (0;0) . If we compare this function with the scalar function for

simple task space PD feedback control (4.3) stated in Section 4.1, the only di�erence is

that ê is used in the above function instead of e� in function (4.4). Di�erentiating this

V along the trajectory and taking Property 1-4 into account give the following:

_V (ê; _�) = _�
T

M(�) �� +
1

2
_�
T _M(�) _� + êTKp

_̂e
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= _�
T

u� _�
T

C(�; _�) _� � _�
T

g(�)

+
1

2
_�
T _M (�) _� + êTKpJ(�; �̂)

"
_�
_̂�

#

= _�
T

2
4u+

(
@p

@�
(�)

)
T

Kpê� g(�)
3
5� êTKp

@p
d

@�
(�̂) _̂�: (4.11)

Consider a control law with a curve parameter estimation law as follows:

u = �
(
@p

@�
(�)

)
T

Kpê�Kv
_� + g(�); (4.12)

_̂� = K�

(
@p

d

@�
(�̂)

)
T

Kpê; (4.13)

where K� 2 <n�n is a symmetric positive de�nite matrix. By substituting the above

control law with curve parameter estimation into (4.11), _V becomes

_V (ê; _�) = � _�
T

Kv
_� � êTKp

@p
d

@�
(�̂)K�

(
@p

d

@�
(�̂)

)
T

Kpê

� 0; (4.14)

which shows negative semi-de�niteness of _V with respect to (ê; _�) . Using LaSalle's

theorem, we can conclude the convergence to the objective point. We summerize the

result above in the following theorem and give the proof:

Theorem 5 (Shape Regulation based on Curve Parameter Estimation)

Consider a control law with a curve parameter estimation law as follows:

u = �
(
@p

@�
(�)

)
T

Kpê�Kv
_� + g(�); (4.15)

_̂� = K�

(
@p

d

@�
(�̂)

)
T

Kpê; (4.16)

where Kp , 2 <3n�3n, Kv 2 <2n�2n and K� 2 <n�n are all symmetric positive de�nite

matrices. Then, under Assumption 4, the closed loop system with control law (4.15),

(4.16) is locally asymptotically stable at the equilibrium point, (�; _�) = (��;0) , which

means the control objective of shape regulation is achieved locally. 2

Proof. For a positive real constant, 
 , consider the following set N
 � <3n :

N
 :=

�
(�; �̂)

����12 êT (�; �̂)Kpê(�; �̂) � 


�
: (4:17)

The set N
 is not bounded because the equation ê(�; �̂) = 0 has multiple solutions. By

taking 
 su�ciently small, we can give the following properties to N
 :
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1. 8(�; �̂) 2 N
 , detJ(�; �̂) 6= 0 .

2. N
 is the union of countable disjoint sets, fN
;kg1k=1 , each of that is closed and

bounded.

Let N �



� <3n be the element of fN
;ig1i=1 that includes the desired point (��;��) , that

is, (��;��) 2 N �



. De�ne 
 � <5n as follows:


 :=
n
(�; �̂; _�)

���(�; �̂) 2 N �



; V (�; �̂; _�) � 


o
: (4:18)

Since 
 is closed and bounded and _V � 0 , 
 is positively invariant. Let E be the

set satisfying _V = 0 in 
 , and M� denotes the largest invariant set in E . Then, by

LaSalle's theorem [12], any one state starting from the inside of 
 approaches M� . From

(4.14), E is expressed as

E =

8<
:(�; �̂; _�) 2 


������ _� = 0;

(
@p

d

@�
(�̂)

)
T

Kpê(�; �̂) = 0

9=
; : (4.19)

Therefore, the largest invariant set, M� , is

M� =
n
(�; �̂; _�) 2 


��� _� = 0; ê(�; �̂) = 0
o
: (4:20)

Because, M� consists of equilibrium states, which means M� is an invariant set. Sub-

stituting _� = 0 and ê 6= 0 into the closed-loop system leads to the result _� 6= 0 , which

means that any one state outside of M� necessarily goes out from E . Thus M� given

by (4.20) represents the largest invariant set in E . From (4.20), we conclude that ê! 0

and _� ! 0 in 
 , which means that � ! �� and _� ! 0 . Local asymptotic stability of

the closed-loop system is proved. (Q.E.D.)

Compared with PD feedback control law in task space (4.3), control law (4.15) with

curve parameter esitimator (4.16) uses the estimated shape error, ê , instead of the real

shape error, e� . Therefore, this new control law is not pure PD feedback control in task

space. The great bene�t of this control law is that, instead of solving the time-consuming

shape inverse problem to obtain �� in advance. All that we have to do is very easy

calculation of estimation law (4.16) in the course of control.

4.4 Recursive Expression

The recursive expression of a control law brings not only computational advantages

but also geometric interpretation in Euclidean space. Here we decompose the control law
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derived in the previous section into homogeneous n parts of the Newton-Euler 
avor. To

do this, we restrict the gain matrices to diagonal forms as follows:

Kp = blockdiag fKp;1; � � � ;Kp;ng ; (4.21)

Kv = blockdiag fKv;1; � � � ;Kv;ng ; (4.22)

K� = diag fk�;1; � � � ; k�;ng ; (4.23)

where Kp;i 2 <3�3 , Kv;i 2 <2�2 are symmetric positive de�nite matrices and k�;i is a

real positive constant. Note that
@p

@�
has a block lower triangular form as

@p

@�
(�) =

2
66666666664

@p1
@�1
@p2
@�1

@p2
@�2

...
...

. . .
@p

n

@�1

@p
n

@�2
� � � @p

n

@�n

3
77777777775
: (4.24)

By using the following expressions

@p
j

@�s;i
= (�i�1as;i)�

�
p
j
� p

i�1

�
; (4.25)

@p
j

@�m;i

= (�iam;i)�
�
p
j
� p

i�1

�
; (4.26)

we obtain

ui = �
nX
j=i

 
@p

j

@�i

T

Kp;jêj

!
�Kv;i

_�i

= �
nX
j=i

nh
Rw;i

Tas;i am;i

i
�i

T

h�
p
j
� p

i�1

�
�
i
Kp;jêj

o
�Kv;i

_�i

= �Ai

T�i

T

nX
j=i

n�
p
j
� p

i�1

�
�Kp;jêj

o

= �Ai

T�i

T

8<
:

nX
j=i

�
p
j
�Kp;jêj

�
� p

i�1 �
nX
j=i

(Kp;jêj)

9=
;�Kv;i

_�i (4.27)

where êi := p
i
� c(�̂i) . If we de�ne �i;�i

2 <3 ( i = 1; � � � ; n ) as

�i = �i+1 +Kp;iei; (4.28)

�
i

= �
i+1 + p

i
�Kp;iei; (4.29)
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with initial values, �n+1 = �
n+1 = 0 , then we have the following recursive expression of

ui :

ui = �Ai

T�i

T

�
�
i
� p

i�1 ��i

�
�Kv;i

_�i: (4.30)

Simple calculations lead to the following recursive estimation law:

_̂�i = k�;i

(
dc

d�i
(�̂i)

)
T

Kp;iêi: (4:31)

Here we give the reason why very simple estimation law (4.16) works well by consid-

ering geometric interpretation in Euclidean space where a manipulator actually moves.

Since estimation law (4.16) is e�ective locally near the desired state, we consider the

case that a HDOF manipulator is on a given curve specifying the desired shape. That is,

a link position p
i
coinsides with the desired link position on the curve c(�i

�) , where �i
�

is the real desired curve parameter. To see the meaning of the estimator more clearly, we

set Kp;i = I3 and k�;i = 1 for all i . Then, estimation law (4.31) becomes

_̂�i =

(
dc

d�i
(�̂i)

)
T

fp
i
� c(�̂i)g : (4:32)

This decomposed estimation law states that the inner product between the tangent
@c

@�i
and the position error fp

i
� c(�i)g should be the time derivative of the estimate of curve

parameter. This is explained by using Figure 4.1 as follows.

The left one in Figure 4.1 shows that if the estimated curve parameter �̂i is larger than

the true one, estimator (4.32) makes _̂�i be negative, then �̂i decreases to the true value

�i
� . On the other hand, in the right in Figure 4.1, the estimate �̂i is smaller than the

true value �i
� so that estimator (4.32) give the answer that _̂�i should be positive, then

�̂i tends to the true value �i
� as increasing. Therefore, we can see that the estimated

value �̂i converges to the true value �i if we employ estimation law (4.32).

The reason why we can obtain such a simple and understandable estimation law comes

from the choice of physically meaningful scalar function V . This function consists of

kinetic energy and arti�cial potential energy and becomes zero at the objective point.

4.5 Simulation

In this section, we show the simulation results applying shape regulation control law

(4.15) with curve parameter estimation law (4.16) to a manipulator system with 20 DOF.
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p
i
� c(�̂i)

p
i

c(�̂i)

dc

d�i

p
i
� c(�̂i)

p
i

c(�̂i) dc

d�i

�i
� �i

��̂i �̂i

Figure 4.1: Geometric interpretation of the estimation law

For simplicity, we assume that the manipulator in this simulation has completely

identical links and 2DOF joints. We also suppose that the link has a cylindrical shape

and uniform distribution of mass density. The physical values related to the link are

shown in Table 4.1.

Table 4.1: Link physical parameters

the radius of a bottom surface: rb 0:05 [m]

the link length: l 0:10 [m]

the link mass: m 1:00 [kg]

The 2DOF joint used in this simulation has the mechanical structure with as;i = ey

and am;i = ez for all i . In this case, the rotational matrix of the i -th 2DOF joint, Rw;i ,

becomes

Rw;i = R(ey; �s;i)R(ez; �m;i)

=

2
64

cos �s;i cos �m;i � cos �s;i sin �m;i sin �s;i
sin �m;i cos �m;i 0

� sin �s;i cos �m;i sin �s;i sin �m;i cos �s;i

3
75 : (4.33)

The design parameters are set to Kp = kpI , Kv = kvI + kd
@p

@�

T @p

@�
and K� = k�I
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where kp = 40:0 , kd = 5:00 , kv = 1:00 and k� = 40:0 .

The following helix is given as a desired shape in this simulation:

c(�) =

2
64

���

R cos(�u(�)) + Cy

R sin(�u(�)) + Cz

3
75 ; (4.34)

where

�� := �A;

�u(�) :=

p
1� ��2

R
� + �;

Cy := �R cos�;

Cz := �R sin�; (4.35)

and �A , R and � are all constants. In this simulation, we set �A = 0:50 , R = 0:10

and � = �0:50� . The initial joint angles and joint angular velocities are all set to

zero, i.e., � = _� = 0 . The initial estimates of the desired curve parameters are set to

�i = li = 0:10i where i = 1; � � � ; n .
Figure 4.2 shows the manipulator's movement from the initial time 0:0 [s] to 1:25 [s]

every 0:25 second, from two viewpoints. We can see that the 'shape' of the manipulator

changes from a straight line to the helix smoothly. From Figure 4.3, the error approaches

zero gradually, but very slowly after 1:00 [s]. We also observe slow convergence of the

curve parameter estimation from Figure 4.5. We only assure the asymptotic stability

here.

Summary

Shape regulation control was successfully accomplished due to the idea of estimating

the desired curve parameter. The shape regulation law with curve parameter estimation

law was derived by Lyapunov design. Recursive expression of the shape regulation law

was also given for both geometric interpretation of the estimation law and computational

convenient. The simulation results applying the shape regulation law were provided with

three-dimensional graphical �gures.
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t = 0:00 [s]

t = 0:25 [s]

t = 0:50 [s]

t = 0:75 [s]

t = 1:00 [s]

t = 1:25 [s]

Figure 4.2: Manipulator movement (shape regulation)
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Figure 4.3: Estimated shape error (shape regulation)
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Figure 4.4: Estimated shape error velocity (shape regulation)

51



0 1 2 3 4 5 6 7 8 9 10
1.95

2

2.05

2.1

2.15

2.2

2.25

time [s]

R
M

S
(s

ig
m

a)
 [m

]

Figure 4.5: Estimated curve parameter (shape regulation)
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Chapter 5

Shape Tracking

If we try to achieve dynamical motion by an HDOF manipulator, we need a control

to move it along the desired shape changing continuously in time, that is, shape tracking.

In this chapter, we consider a shape tracking problem where a time-varying curve is given

to specify the desired shape. The idea of estimating the desired curve parameters is

e�ective for the shape tracking problem as well. Introducing an estimator with 2nd-order

dynamics and coupling it with manipulator dynamics allow us to utilize some familiar

design methods for manipulator tracking to solve the shape tracking problem.

After a shape tracking control problem is stated in Section 5.1, a curve parameter

estimator with 2nd-order dynamics is introduced and coupled with manipulator dynamics

in Section 5.2. We will see that the coupled dynamics has the same properties as the

original manipulator dynamics. In Section 5.3, two illustrative examples are shown to

explain how to �nd the shape tracking control law by using the tracking control law for

a conventional manipulator. One is derived by the ID(inverse dynamics)-based method

and the other by the Lyapunov-based method. We also show the recursive law and the

simulation results in Section 5.4 and Section 5.5 respectively.

5.1 Problem Statement

The objective of shape tracking control is to make manipulator's shape follow a given

time-varying curve. Shape tracking problem is stated as follows:

Problem 4 (Shape Tracking)

Consider

1. an HDOF manipulator with dynamics (2.34), and

2. a time-varying curve c : < � <+ ! E3 satisfying Assumption 2.
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Moreover, suppose that Assumption 5 holds. Then, �nd a control input, u , in (2.34)

achieving that

�(t) ! ��(t); (5.1)

_�(t) ! _�
�

(t); (5.2)

as t ! 1 , where ��(t) is the desired joint angle function, that is, the solution of the

extended shape inverse problem. 2

In the same manner as the previous chapter, let �̂ := [ �̂1 � � � �̂n]T 2 <n be the

estimate of �� and de�ne the estimated shape error for a time-varying curve ê 2 <3n

including �̂ as

ê := e(�; �̂(t))

= p(�)� p
d
(�̂(t)): (5.3)

In this case, _̂e 2 <3n becomes

_̂e := J(�; �̂(t))

"
_�
_̂�

#
� @p

d

@t
(�̂(t)): (5:4)

From Theorem 4, it is enough to aim at

ê(�; �̂) ! 0; (5.5)

_̂e(�; �̂; _�; _̂�) ! 0; (5.6)

(�; �̂) 2 D�; (5.7)

instead of objectives (5.1) and (5.2) under the condition of non-singularity of Shape Ja-

cobian for any t .

5.2 Estimation with 2nd-order Dynamics

For the shape tracking problem, we give an e�ective strategy to �nd the control law.

Consider the following estimator with 2nd-order dynamics:

M �
�̂� = u�; (5:8)

where M� 2 <n�n is symmetric positive de�nite and u� 2 <n is an input vector to

the estimator. The reason of this choice will become clear after we explore the coupled

dynamics of the manipulator and this estimator.
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The coupled dynamics of manipulator (2.34) and estimator (5.8) can be expressed as

�M(q) �q + �C(q; _q) _q + �g(q) = �u; (5:9)

where �M 2 <3n�3n, �C 2 <3n�3n, �g 2 <3n and �u 2 <3n are

�M (q) :=

"
M (�)

M�

#
; (5.10)

�C(q; _q) :=

"
C(�; _�)

0

#
; (5.11)

�g(q) :=

"
g(�)

0

#
; (5.12)

�u :=

"
u

u�

#
: (5.13)

Also de�ne constants �Mm; �MM ; �CM as

�Mm := min fMm; �m(M�)g ; (5.14)

�MM := max fMM ; �M (M�)g ; (5.15)

�CM := CM ; (5.16)

where �m(�) and �M(�) denote the minimum and maximum eigenvalues respectively.

The values Mm , MM and CM appeared in Property 1 in Section 2.2. Note that

coupled dynamics (5.9) has exactly the same form as manipulator dynamics (2.34), and

in addition, Property 1 is preserved for �M(q) and �C(q; _q) . That is, the norm of

�M(q) has the lower and the upper bounds, �Mm; �MM , and the norm of �C(q; _q) is also

bounded from above by �CMk _qk . As a result, we can apply the familiar design methods

for tracking (see the book [4], for example) to coupled system (5.9), that is the reason for

our choice of estimator with 2nd-order dynamics (5.8).

The role of the estimator can also be explained as follows. In considering an estimator

with 2nd-order dynamics, joint space is extended to one where the state variable is the

pair, (�; �̂) , and its derivative. Consequently, the extended joint space is explicitly related

to the task space of shape tracking, see (5.3) and (5.4). This fact allows us to discuss the

stability in the task space.
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5.3 Shape Tracking Based on Curve Parameter Es-

timation

In this section, we give two concrete examples to show how to derive the shape

tracking control law. One is based on inverse dynamics, while the other is Lyapunov-

based controller.

Inverse-dynamics-based Shape Tracking

For coupled system (5.9), we can consider the following ID-based control law in the

similar way as [4]:

�u = �M (q)�u0 + �C(q; _q) _q + �g(q); (5.17)

�u0 = J�1(q; t)
n
�xd � _J(q; _q; t) _q �Kpê�Kd

_̂e
o
; (5.18)

where Kp , Kd 2 <3n�3n are symmetric positive de�nite matrices, and �xd 2 <3n is

de�ned as the derivative of _xd that is interpreted as the estimated desired shape velocity

with _̂� = 0 , i.e.,

_xd :=
@p

d

@t
(�̂; t) (5.19)

= _p
d
(�̂;0; t): (5.20)

By substituting control law (5.17) and (5.18) into coupled system (5.9), we obtain the

following error system:

�̂e+Kd
_̂e+Kpê = 0; (5:21)

which shows that ê and _̂e converge to zero exponentially when Kp and Kd are sym-

metric positive de�nite.

We summarize this result in the following theorem in the form of exposing the esti-

mator:

Theorem 6 (ID-based Shape Tracking)

Consider a control law with a curve parameter estimation law as follows :

u = M(�)��d +C(�; _�) _� + g(�); (5.22)

�̂� = ��d; (5.23)

where ��d 2 <2n and ��d 2 <n are"
��d
��d

#
= J�1(q; t)

n
�xd � _J(q; _q; t) _q �Kpê�Kd

_̂e
o
; (5.24)
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and _xd 2 <3n is de�ned by

_xd :=
@p

d

@t
(�̂; t) (5.25)

and Kp;Kd 2 <3n�3n are symmetric positive de�nite matrices. Then, under Assump-

tion 6, the closed loop system with the control law is locally asymptotically stable at the

equilibrium point, (�; _�) = (��; _�
�

) , which means the control objective of shape tracking

is achieved locally. 2

Proof. Consider a map T : <6n ! <6n de�ned by

z = T (x); (5.26)

where x;z 2 <6n are

x :=

"
q � q�
_q � _q�

#
; (5.27)

z :=

"
ê
_̂e

#
: (5.28)

A map, T , is a di�eomorphism, because

det
@T

@x

�����
x=0

= det

"
J(q�; t) 0

� J(q�; t)

#

= fdetJ(q�; t)g2

6= 0; (5.29)

under Assumption 6. From (5.21),

z ! 0: (5.30)

Therefore, there exists a neighborhood of x = 0 such that x ! 0 if x starts from a

point in the neighborhood. Then local asymptotic stability is proved. (Q.E.D.)

Note that ��d and �̂�d are strongly coupled by expression (5.24), while expression (5.22)

simply means the inverse dynamics. In this controller, the desired joint angle accelleration,

��d , is generated based on the dynamic curve paramter estimator.

Lyapunov-based Shape Tracking

We apply the idea of Lyapunov-based control [4], that is originated by Slotine and Li

[25], to shape tracking control. That is, we try to bring a state of the system not directly

to the objective point, but its sliding surface.
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First, consider the following sliding surface where any states converge to the objective

point:

_̂e+�ê = 0; (5:31)

where � 2 <3n�3n is a symmetric positive de�nite matrix. Second, consider the following

surface:

J�1(q; t)
�
_̂e+�ê

�
= 0; (5:32)

that is also a sliding surface of the objective point if the Shape Jacobian is non-singular.

This sliding surface is interpreted as the sliding surface in the extended joint space. We

de�ne a sliding variable, sc 2 <3n, as the left-hand side of the surface above, i.e.,

sc := J�1(q; t)
�
_̂e+�ê

�
: (5.33)

Furthermore, we de�ne a virtual reference velocity, _q
r
2 <3n, composed of _�r 2 <2n and

_̂�r 2 <n, such that sc := _q � _q
r
, i.e.,

_q
r

=

"
_�r
_̂�r

#
(5.34)

:= _q � sc

= _q � J�1(q; t)
�
_̂e+�ê

�

= J�1(q; t)
n
J(q; t) _q � _̂e+�ê

o

= J�1(q; t)

(
J(q; t) _q � J(q; t) _q + @p

d

@t
(�̂; t) +�ê

)

= J�1(q; t)

(
@p

d

@t
(�̂; t)��ê

)
: (5.35)

Here we consider the following Lyapunov-based control law for the coupled system [1]:

�u = �M (q)�q
r
+ �C(q; _q) _q

r
+ �g(q)� JT (q; t)Kpê�Kvsc; (5.36)

where Kp 2 <3n�3n , and Kv 2 <2n�2n are symmetric positive de�nite matrices. By

substituting control law (5.36) into coupled system (5.9) and using de�nition (5.33), we

obtain the following closed-loop dynamics:

�M (q) _sc + �C(q; _q)sc +Kvsc + JT (q; t)Kpê = 0: (5:37)

Let Vc : <3n ! <+ be the following positive de�nite function with respect to (sc; ê) :

Vc(sc; ê) :=
1

2
sc

T �M (q) sc +
1

2
êTKpê: (5:38)
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Di�erentiating (5.38) along the trajectory and considering Property 1-4 yield

_V (sc; ê) = sc
T �M(q) _sc +

1

2
sc

T _�M(q) sc + ê
T
Kp

_̂e

= � scTKv sc +
1

2
sc

T

n
_�M(q)� 2 �C(q; _q)

o
sc � scTJT (q; t)Kpê+ ê

T
Kp

_̂e

= �scTKvsc � êT�TKpê; (5.39)

which shows _V is negative de�nite with respect to (sc; ê) if �TKp =Kp

T� > 0 . Thus,

by Lyapunov theorem, we conclude that ê and sc converge to zero asymptotically, that

is equivalent to asymptotic convergence of ê and _̂e to zero, by the de�nition of sc .

We show a theorem summarizing the above result:

Theorem 7 (Lyapunov-based Shape Tracking)

Consider a control law with a curve parameter estimation law as follows:

u = M (�)��r +C(�; _�) _�r + g(�) + � �; (5.40)

�̂� = �̂�r +K�� �; (5.41)

where � � 2 <2n and � � 2 <n are"
� �

� �

#
= �JT (q; t)Kpê�Kv ( _q � _q

r
) ; (5.42)

and _q
r
2 <3n , _�r 2 <2n , _̂�r 2 <n , are de�ned by

_q
r
=

"
_�r
_̂�r

#
:= J�1(q; t)

(
@p

d

@t
(�̂; t)��ê

)
; (5.43)

and Kp;� 2 <3n�3n are symmetric positive de�nite matrices with the relation �TKp =

Kp

T� > 0 , Kv 2 <2n�2n and K� :=M�

�1 2 <n�n are also symmetric positive de�nite

matrices. Then, under Assumption 6, the closed loop system with the control law is

locally asymptotically stable at the equilibrium point, (�; _�) = (��; _�
�

) , which means the

control objective of shape tracking is achieved locally. 2

Proof. This proof can be achieved in the similar mannar as the proof of the previous

theorem. (Q.E.D.)

Since M� is not a matrix of a manipulator system (not a given value), but one of

estimator (5.8) (a design value), its positive de�nite inverse K� is also a design value.

Matrix K� is regarded as a gain of the estimator. Note that this kind of estimator gain

does not appear in the ID-based control law.
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The control input u and the estimator are strongly coupled by not only (5.42) but

also (5.35), although the �rst expression seems to be an ordinary Lyapunov-based control

law.

5.4 Recursive Expression

We show the recursive expression for the shape tracking control law derived in the

previous section.

ID-based Shape Tracking

Since (5.22) is calculated recursively by the Newton-Euler method for the calculation

of manipulator dyanmics, we only show a recursive expression of (5.24).

Assume that gain matrices have the following diagonal forms:

Kp = blockdiag fKp;1; � � � ;Kp;ng ; (5.44)

Kd = blockdiag fKd;1; � � � ;Kd;ng ; (5.45)

where Kp;i;Kd;i 2 <3�3 are symmetric positive de�nite matrices.

Multiplying the both sides of (5.24) by J(q; t) leads to

J(q; t)

"
��d
��d

#
= �xd � _J(q; _q; t) _q �Kpê�Kd

_̂e: (5.46)

Divide ��d and ��d into n parts, and let ��d;i 2 <2 and ��d;i 2 < be their i -th elements

respectively. Furthermore, de�ne ��q
d;i

:=

�
��
T

d;i
��d;i

�
T

2 <3 . Then, ��q
d;i

can be written as

follows due to the lower-triangular structure of the Shape Jacobian (see (3.50)):

��q
d;i

=

"
��d;i
��d;i

#

= �J
�1

ii

(
�c(�̂i; 0; 0; t)�

i�1X
k=1

�J ik
��q
d;k
�

iX
k=1

_�J ik
_�q
k
�Kp;iêi �Kd;i

_̂ei

)
: (5.47)

From (3.51), the de�nition of �J ik , the second term in the bracket in the above expression

is written as

�
i�1X
k=1

�J ik
��q
d;k

=
i�1X
k=1

n�
p
i
� p

k�1

�
�� _!2;k(�; ��d)

o
; (5.48)

where � _!2;k(�; ��) 2 <3 is de�ned as

� _!2;k(�; ��) := �i�1as;i��s;i +�iam;i
��m;i: (5.49)
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The third term in the bracket becomes

�
iX

k=1

_�J ik
_�q
k

=
iX

k=1

n�
p
i
� p

k�1

�
�� _!1;k +

�
_p
i
� _p

k�1

�
��!k

o

+
@2c

@�2
(�̂i; t) _̂�

2

i
+

@2c

@�@t
(�̂i; t) _̂�i; (5.50)

where � _!1;k , �!k 2 <3 are de�ned as

� _!1;k(�; _�) := [!i�1�]�i�1as;i _�s;i + [!i�]�iam;i
_�m;i; (5.51)

�!k(�; _�) := �i�1as;i _�s;i +�iam;i
_�m;i: (5.52)

Notice that the following relationships:

!k �!k�1 = �!k;

_!k � _!k�1 = � _!1;k +� _!2;k:

This implies that

�c(�̂i; 0; 0; t) +
@2c

@�2
(�̂i; t) _̂�

2

i
+

@2c

@�@t
(�̂i; t) _̂�i = �c(�̂i; _̂�i; 0; t); (5.53)

and

i�1X
k=1

n�
p
i
� p

k�1

�
�� _!2;k(�; ��d)

o
+

iX
k=1

n�
p
i
� p

k�1

�
�� _!1;k +

�
_p
i
� _p

k�1

�
��!k

o

=
iX

k=1

��
p
i
� p

k�1

�
� � _!k(�; _�; ��d)

��� ��d;i=0
+
�
_p
i
� _p

k�1

�
��!k

�

=
iX

k=1

d

dt

n�
p
i
� p

k�1

�
��!k

o����� ��=��d;
��d;i=0

=
d

dt

iX
k=1

n�
p
i
� p

k�1

�
��!k

o��� ��=��d;
��d;i=0

= � �p
i
(�; _�; ��d)

��� ��d;i=0
: (5.54)

Then, we have the following recursive expression of �q
d
:

�q
d

=

"
��d;i
��d;i

#

= �J
�1

ii

�
�c(�̂i; _̂�i; 0; t)� �p

i
(�; _�; ��d)

��� ��d;i=0
�Kp;iêi �Kd;i

_̂ei

�

= � �J
�1

ii

 
�̂ei(q; _q; �qd)

���
�q
d;i

=0
+Kd;i

_̂ei +Kp;iêi

!
: (5.55)
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It is worth noting that �J
�1

ii
is calculated by

�J
�1

ii
=

1

�J

2
64
j1

T

j2
T

j3
T

3
75 ; (5.56)

where �J 2 < , j1; j2; j3 2 <3 are

�J = � det
h
p
i
� p

i�1 �i�1as;i �iam;i

i
ti
T

�
p
i
� p

i�1

�
; (5.57)

j1 =
n
ti
T

�
p
i
� p

i�1

�o
�iam;i �

n
ti
T�iam;i

o �
p
i
� p

i�1

�
; (5.58)

j2 =
n
ti
T�i�1as;i

o �
p
i
� p

i�1

�
�
n
ti
T

�
p
i
� p

i�1

�o
�i�1as;i; (5.59)

j3 = det
h
p
i
� p

i�1 �i�1as;i �iam;i

i �
p
i
� p

i�1

�
: (5.60)

In the expressions above, we abbreviate
@c

@�
(�̂i; t) as ti . This expression of �J

�1

ii
shows

that �J
�1

ii
is composed of four signi�cant vectors in E3 , the link vector (p

i
� p

i�1 ), the

Sub-axis (�i�1as;i ), the Main-axis (�iam;i ), and the tangent vector ( ti ).

Lyapunov-based Shape Tracking

The �rst three terms in the right-hand side of (5.40) are calculated by the same way

as the ordinary Lyapunov-based method. Since (5.42) also has the same structure as

the shape regulation law shown in the previous chapter, we only consider the recursive

expressions of _q
r
and �q

r
here.

First, choose � as

� = blockdiag f�1; � � � ;�ng ; (5.61)

where �i 2 <3�3 is symmetric positive de�nite matrix.

De�ne _�q
r;i

in the same mannar as the de�nition of ��q
d;i
. Then, we obtain

_�q
r;i

=

"
_�r;i
_�r;i

#

= �J
�1

ii

(
_c(�̂i; 0; t)�

i�1X
k=1

�J ik
_�q
r;k
��iêi

)
: (5.62)

Since the second term in the bracket in the expression above is expressed as

�
i�1X
k=1

�J ik
_�q
r;k

= � _p
i�1(�;

_�r); (5.63)
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then (5.62) can be rewritten as

_�q
r;i

=

"
_�r;i
_�r;i

#

= �J
�1

ii

�
_c(�̂i; 0; t)� _p

i
(�; _�r)

��� _�r;i=0
��iêi

�

= � �J
�1

ii

(
_̂ei(q; _qr)

���
_q
r;i
=0

+�iêi

)
: (5.64)

On the other hand, ��q
r;i

can be written as

��q
r;i

=

"
��r;i
��r;i

#

= �J
�1

ii

(
�c(�̂i; _̂�i; 0; t)�

i�1X
k=1

�J ik
��q
r;k
�

iX
k=1

_�J ik
_�q
r;k
��i

_̂ei

)
: (5.65)

The second and third terms in the bracket above are expressed as

�
i�1X
k=1

�J ik
��q
r;k

=
i�1X
k=1

n�
p
i
� p

k�1

�
�� _!2;k(�; ��r)

o
(5.66)

and

�
iX

k=1

_�J ik
_�q
r;k

=
iX

k=1

n�
p
i
� p

k�1

�
�� _!1;k(�; _�; _�r) +

�
_p
i
� _p

k�1

�
��!k(�; _�r)

o

+
@2c

@�2
(�̂i; t) _̂�i _̂�r;i +

@2c

@�@t
(�̂i; t) _̂�r;i: (5.67)

By using the following relationships

�c(�̂i; 0; 0; t) +
@2c

@�2
(�̂i; t) _̂�i _̂�r;i +

@2c

@�@t
(�̂i; t) _̂�r;i = �c(�̂i; _̂�i; _̂�r;i; 0; t); (5.68)

and

i�1X
k=1

n�
p
i
� p

k�1

�
�� _!2;k(�; ��r)

o

+
iX

k=1

n�
p
i
� p

k�1

�
�� _!1;k(�; _�; _�r) +

�
_p
i
� _p

k�1

�
��!k(�; _�r)

o

=
iX

k=1

���
_!k(�; _�; _�r; ��r)

��� ��r;i=0
�
�
+
h
!k(�; _�r)�

i h
!k(�; _�)�

i�
�klk

�

= � �p(�; _�; _�r; ��r)
��� ��r;i=0

; (5.69)
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we �nally obtain the following recursive expression of ��q
r;i
:

��q
r;i

=

"
��r;i
��r;i

#

= �J
�1

ii

�
�c(�̂i; _̂�i; _̂�r;i; 0; t)� �p(�; _�; _�r; ��r)

��� ��r;i=0
��i

_̂ei

�

= � �J
�1

ii

(
�̂ei(q; _q; _qr; �qr)

���
�q
r;i
=0

+�i
_̂ei

)
: (5.70)

Computational burden is not so heavy in the both cases since the obtained recursive

expressions, (5.55) and (5.64), (5.70) have very simple structures. Since all the calculations

are performed recursively with respect to the link number, the asymptotic complexity is

of O(n) .

5.5 Simulation

In this section, the simulation results of shape tracking are shown. The simulation

environment is exactly same as the simulation in the previous section.

We give the following contracting and expanding helix with a constant period as a

target:

c(�; t) =

2
64 �(t)�

R cos(u(�; t)) + Cy

R sin(u(�; t)) + Cz

3
75 ; (5.71)

where � : <+ ! < , u : < � <+ ! < and Cy; Cz 2 < are de�ned by

�(t) := A cos(Bt) + C;

u(�; t) :=

q
1� �2(t)

R
� + �;

Cy := �R cos(�);

Cz := �R sin(�): (5.72)

Parameters A , B , C , R and � are all constants and we assume A = 0:20 , B = 1:00� ,

C = 0:50 , R = 0:10 , and � = �0:50� .

ID-based Shape Tracking

Suppose K = kpI and Kd = kdI , and we set kp = 25:0 and kd = 10:0 in this

simulation.
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Figure 5.1 shows the manipulator movement from the initial time 0:00 [s] to the �nal

time 5:00 [s] every a half second from two di�erent standpoints. We can see that the

manipulator smoothly follow the moving helix. Figure 5.2 and Figure 5.3 show the time

responses of the root mean square of the estimated shape error ê and its velocity _̂e . We

can see rapid convergence to zero from these �gures. In this case, exponential convergence

with respect to ê and _̂e is assured.

Lyapunov-based Shape Tracking

Suppose K = kpI , Kv = kvI , K� = k�I and � = �I , and we set kp = 15:0 ,

kv = 0:05 , k� = 1:00 and � = 5:00 in this simulation.

We can also see good convergence from Figure 5.7 and Figure 5.8, Figure 5.9, although

the bigger control input than the ID-based controller is needed in this case.

In both cases, the control objective of the shape tracking is achieved, although the

motions of two control laws are di�erent.

Summary

Shape tracking was achieved by using the desired curve parameter estimator with

2nd-order dynamics. The coupled dynamics of manipulator and the estimator has the

same form as the original one, and in addition, the important properties are preserved.

That was why we could apply familiar design methods for tracking to the shape tracking

problem. Two shape tracking control laws were derived and recursive expressions were

given. Then the simulation results were also shown for both.
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t = 0:00 [s]

t = 0:50 [s]

t = 1:00 [s]

t = 1:50 [s]

t = 2:00 [s]

t = 2:50 [s]

t = 3:00 [s]

t = 3:50 [s]

t = 4:00 [s]

t = 4:50 [s]

t = 5:00 [s]

Figure 5.1: Manipulator movement (ID-based shape tracking)
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Figure 5.2: Error (ID-based shape tracking)
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Figure 5.3: Derivative of error (ID-based shape tracking)
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Figure 5.4: Estimated curve parameter (ID-based shape tracking)
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Figure 5.5: Derivative of estimated curve parameter (ID-based shape tracking)
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Figure 5.6: Input torgue (ID-based shape tracking)
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Figure 5.7: Manipulator movement (Lyapunov-based shape tracking)
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Figure 5.8: Error (Lyapunov-based shape tracking)

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time [s]

R
M

S
(e

do
t) 

[m
/s

]

Figure 5.9: Derivative of error (Lyapunov-based shape tracking)
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Figure 5.10: Estimated curve parameter (Lyapunov-based shape tracking)

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

time [s]

R
M

S
(s

ig
m

ad
ot

) [
m

/s
]

Figure 5.11: Derivative of estimated curve parameter (Lyapunov-based shape tracking)
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Figure 5.12: Input torgue (Lyapunov-based shape tracking)
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Chapter 6

Shape Tracking Using Only Joint

Angle Information

In this chapter, we consider shape tracking control using only joint angle information.

Shape tracking control laws were derived in the previous chapter. However, those control

laws need joint angle velocity signals, and we usually have di�culty to obtain them. To

solve this problem, we use a shape velocity observer which has the closed-loop dynamics

dual to that of a shape tracking controller. This duality between the controller and the

observer brings us a successful result to solve this problem by using Lyapunov stability

theory.

In Section 6.1, the shape tracking problem using only joint angle information is stated

and a strategy to solve the problem is shown. A shape velocity observer with closed-loop

dynamics dual to a shape tracking controller is proposed in Section 6.2. In Section

6.3, it is shown that the simply tuned shape tracking controller and the shape velocity

observer assure local asymptotic stability of the closed-loop system under some reasonable

assumptions on a given spatial curve.

6.1 Problem Statement

We have already proposed the shape tracking controllers to control the shape of an

HDOF manipulator to follow a given time-varying curve. The proposed shape tracking

controllers need the joint angle velocity feedback. However, it is undesirable to attach

any velocity sensors, such as tachometers, to all the joints since it causes heavy weight

and high cost. Especially for an HDOF manipulator that has many joints, it is essential

to avoid this undesirable equipment. One of the simplest method for this problem is the

use of the �rst-order numerical di�erentiation of joint angle data instead of joint velocity

measurement. Nevertheless, this method has been indicated to be inadequate because of
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inaccuracy for low and high velocities, undesirable quantization e�ects and no theoretical

justi�cation [2].

Several velocity observers for robot systems that reconstruct the joint angle velocity

signals using the high-quality joint angle information have been proposed [17, 3]. Lack of

the separation principle for general nonlinear systems does not allow us to apply directly

these velocity observers to our shape tracking controllers. To make nonlinear observer

design more systematic, Berghuis et al. have proposed a combined controller-observer

design scheme for robot systems where controller and observer structures are properly

tuned to each other after designing them separately [1]. In this scheme, the duality

between a controller and an observer plays an important role.

Following this idea, we derive an observer that does not directly estimate joint angle

velocity signals, but shape velocities. After properly tuned, the modi�ed shape tracking

controller and shape velocity observer assure local asymptotic stability of the closed-loop

system under some reasonable assumptions for a given curve.

A shape tracking control problem using only joint angle information is stated as follows:

Problem 5 (Shape Tracking Using Only Joint Angle Information)

Consider

1. an HDOF manipulator with dynamics (2.34), and

2. a time-varying curve c : <� <+ ! E3 satisfying Assumption 2.

Moreover, suppose that Assumption 5 holds. Then, �nd a control input, u , in (2.34)

achieving that

�(t) ! ��(t); (6.1)

_�(t) ! _�
�

(t); (6.2)

as t!1 without using joint angle velocity _� . 2

Clearly from the same discussion in the previous chapter, the control objective in this

chapter can be restated as

ê(�; �̂) ! 0; (6.3)

_̂e(�; �̂; _�; _̂�) ! 0; (6.4)

(�; �̂) 2 D�; (6.5)
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without using _�, instead of objectives (6.1) and (6.2) under the condition of non-singularity

of shape Jacobian for any t .

If joint angle velocity _� are available from the measurement in addition to joint angles,

we can achieve the shape tracking control using the control laws shown in the previous

chapter. Figure 6.1 shows the structure of the Lyapunov-based shape tracking controller.

We can see that there are four 
ows of joint angle velocity _� (dotted lines).

We take a strategy not to break the structure of this shape tracking controller, that

is, to replace signals with their estimates. Due to the lack of the separation principle for

general nonlinear systems, however, the proposed angle velocity observers do not work for

this shape tracking controller. In obeserver design for nonlinear systems, duality between

a controller and an observer plays an important role [1]. That is why we do not look for

an joint angle velocity observer directly, but a shape velocity observer in the next section.
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Figure 6.1: Structure of the shape tracking controller
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6.2 Shape Velocity Observer

Let p̂2 <3n be an estimate of a shape, and ~p2 <3n be a shape estimation error

which is de�ned as the di�erence between a shape and its estimate:

~p := p� p̂: (6:6)

The objective in this section is to �nd an observer achieving that ~p ! 0; _~p ! 0 . To do

this, we consider a sliding surface:

_~p+�~p = 0; (6:7)

where � 2 <3n�3n is a symmetric positive de�nite matrix. The surface:

J�1(q; t)
�
_~p+�~p

�
= 0; (6:8)

is a sliding surface in joint space. Thus, de�ne a new sliding variable so 2 <3n as

so := J�1(q; t)
�
_~p+�~p

�
: (6.9)

De�ne also _q
o
2 <3n, composed by _�o 2 <2n and _̂�o 2 <n like _q

r
, as

_q
o

=

"
_�o
_̂�o

#
(6.10)

:= _q � so

= _q � J�1(q; t)
�
_~p+�~p

�

= J�1(q; t)
n
J(q; t) _q � _~p+�~p

o

= J�1(q; t)

(
_p� @p

d

@�
(�̂; t) _̂� � _p+ _̂p+�~p

)

= J�1(q; t)

(
_̂p� @p

d

@�
(�̂; t) _̂� ��~p

)
: (6.11)

The following theorem states that shape velocity observation can be achieved:

Theorem 8 (Shape Velocity Observer)

Consider the following observer:

_̂p = z + (ldI +�) (p� p̂) + @p
d

@�
(�̂; t) _̂�; (6.12)

_z = ld� (p� p̂) + _J(q; _q; t) _q
o

+ J(q; t) �M
�1
(q)

n
�u� �C(q; _q) _q

o
� �g(q) + JT (q; t)Kp (p� p̂)��oso

o
;

(6.13)
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where _q
o
2 <3n is de�ned as

_q
o

:= J�1(q; t)

(
_̂p� @p

d

@�
(�̂; t) _̂� ��~p

)
; (6.14)

and
h
p̂TzT

i
T 2 <6n is the observer state, ld is a positive constant, �;Kp 2 <3n�3n are

symmetric postive de�nite matrices with the relation �TKp = KT

p
� and �o 2 <3n�3n

is a matrix with norm bound �o > 0 , i.e.,

k�ok � �o: (6.15)

Assume that ld is chosen to satisfy

ld �Mm � �o > 0: (6.16)

Then, the closed loop system with the observer above is locally asymptotically stable for

the equilibrium point, (~p; _~p) = (0;0) , that is, asymptotic convergences of ~p and _~p to

zero are achieved locally. 2

Proof. Eliminating z and �u from the observer in considering the e�ect of coupled

dynamics (5.9), we obatain the following closed-loop dynamics for the shape velocity

observer

�M (q) _so + �C(q; _q)so +
�
ld �M (q)��o

�
so + JT (q; t)Kp~p = 0: (6.17)

Note that this closed-loop dynamics has the substantially dual form to the closed-loop

dynamics of the shape tracking controller in the previous section, (5.37).

Consider the following scalar function Vo positive de�nite with respect to (so; ~p) :

Vo(so; ~p) =
1

2
so

T �M (q)so +
1

2
~pTKp~p: (6:18)

Due to Property 1-4, the time derivative of Vo becomes

_Vo(so; ~p) = so
T �M (q) _so +

1

2
so

T _�M (q)so + ~pTKp
_~p

= � soT
n
ld �M(q)��o

o
so +

1

2
so

T

n
_�M(q)� 2 �C(q; _q)

o
so

� soTJT (q; t)Kp~p+ ~pTKp
_~p

= � soT
n
ld �M(q)��o

o
so � ~pT�TKp~p: (6.19)

Therefore, condition (6.16) assures the negative de�niteness of _Vo . Applying Lyapunov

theorem completes the proof. (Q.E.D.)
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This observer is a kind of task space version of the observer proposed in [1]. If we choose

�o as

�o = � �C(q; _q
o
) + �M(q)J�1(q; t) _J q(q; _qo; t); (6.20)

then there appears no joint angle velocity signal in the proposed observer. We need the

condition that _q is bounded to assure the boundedness of �o as same as the case in [1].

This condition is undesirable because we can not check whether this assumption holds

or not in advance. However, in the next section, it will not be necessary to assume the

boundedness of joint velocity signals directly. It is due to a shape tracking controller and

a mild assumption for a given time-varying curve prescribing a desired shape.

6.3 Shape Tracking Controller with Shape Velocity

Observer

In this section, we combine the controller and the observer derived in the previous

section not to break the stability.

In order to get rid of joint angle velocity information from the shape trakcing control

law, �rst de�ne _q
r
as follows:

_q
r

:= J�1(q; t)

(
@p

d

@t
(�̂; t)�� (p̂� p̂

d
)

)
; (6.21)

that is, replace p in ê := p � p̂
d
with its observed value, p̂ . In the above expression,

we abbreviate p
d
(�̂; t) as p̂

d
. This re�nement of _q

r
is reasonable, because the surface:

"
sc
so

#
= 0; (6.22)

still means the sliding surface of the purpose here under this re�nement. Moreover, _̂e ,

which needs _q for the calculation, does not appear any longer in �q
r
.

Furthermore, modify the shape tracking controller as follows:

1. Replace �q
r
with �q

ro
which is de�ned as

�q
ro

:= �q
r
(q; _q

o
; p̂� p̂

d
; _̂p� _̂p

d
): (6.23)

2. Replace C(�; _�) _�r in (5.41) with C(�; _�o) _�r .

3. Replace �Kd( _q � _q
r
) in (5.42) with �Kd( _qo � _q

r
) .
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These are simple replacements of unavailable values with their observed values.

The di�erence beween the new control input and the old one by these modi�cations is

fKd +X(q; _q
r
; t)g so; (6:24)

where

X(q; _q
r
; t) := � �C(q; _q

r
) + �M (q)J�1(q; t) _J(q; _q

r
; t): (6.25)

The closed-loop dynamics for the new controller is as follows:

�M (q) _sc + �C(q; _q)sc +Kdsc + JT (q; t)Kpê = fKd +X(q; _q
r
; t)g so: (6:26)

When we compare the above closed-loop dynamics with (5.37), we �nd that the e�ect of

the modi�cation appears in the right-hand side.

On the other hand, the observer for the new controller becomes

_̂p = z + _̂p
d
+ (ldI +�) (p� p̂)�� (p̂� p̂

d
) ; (6.27)

_z = ld� (p� p̂)� J(q; t) �M�1
(q)JT (q; t)Kp (p̂� p̂

d
)

+ J(q; t) �M
�1
(q) fX(q; _q

o
; t)�Kdg sc + J(q; t) �M

�1
(q) (�o +Kd) so:

(6.28)

Note that this observer has the same closed-loop dynamics as (6.17) since any modi�ca-

tions about control inputs do not a�ect the closed-loop dynamics for the observer, which

can be seen from (6.13). If we neglect the third term in (6.28) and make the choice that

�o = �Kd we obtain the following closed-loop dynamics for the observer:

�M (q) _so + �C(q; _q)so + ld �M (q)so + JT (q; t)Kp~p = fX(q; _q
o
; t)�Kdg sc; (6:29)

which has the dual structure to closed-loop dynamics (6.26).

Consider the scalar function V := Vc + Vo , i.e.,

V (sc; ê; so; ~p) =
1

2
ê
T
Kpê+

1

2
sc

T �M(q)sc +
1

2
~pTKp~p+

1

2
so

T �M (q)so: (6.30)

By using Property 1-4, the time derivative of V along the trajectory becomes

_V (sc; ê; so; ~p) = sc
T �M (q) _sc +

1

2
sc

T _�M (q) sc + êTKp
_̂e

+ so
T �M(q) _so +

1

2
so

T _�M(q) so + ~pTKp
_~p
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= � scTKdsc +
1

2
sc

T

n
_�M(q)� 2 �C(q; _q)

o
sc

� scTJT (q; t)Kpê+ ê
T
Kp

_̂e+ sc
T fKd +X(q; _q

r
; t)g so

� soT ld �M(q)so +
1

2
so

T

n
_�M (q)� 2 �C(q; _q)

o
so

� soTJT (q; t)Kp~p+ ~pTKp
_~p+ so

T fX(q; _q
o
; t)�Kdg sc

= � scTKdsc � (ê� ~p)
T
�TKpê+ sc

TX(q; _q
r
; t)so

� soT ld �M(q)so � ~pT�TKp~p+ so
TX(q; _q

o
; t)sc: (6.31)

Here we make the following assumption:

Assumption 7 (Boundedness of the Change of the Desired Shape)

There exist some positive constants vc and vt such that

vc = sup
t2<+;�̂2<n






@pd@t
(�̂; t)






 ; (6.32)

vt = sup
t2<+;�̂2<n






 @
2p

d

@�@t
(�̂; t)






 : (6.33)

2

This assumption requires only that given time-varying curves do not vary very rapidly.

Under this assumption, we can evaluate kXk as

kX(q; _q; t)k � � k _qk+ �; (6.34)

where � and � are de�ned as

� := �MMJm
�1JH + �CM ; (6.35)

� := �MMJm
�1vt: (6.36)

Using �; � , we can evaluate the cross terms of sc and so in (6.31) as

sc
TX(q; _q

r
; t)so + so

TX(q; _q
o
; t)sc

� f� (k _q
r
k+ k _q

o
k) + 2�g ksck ksok

� f� (k _q
r
k+ ksck+ k _qrk+ ksok) + 2�g ksck ksok

� f� (k _q
r
k+ ksok) + �g ksck2 + f� (k _q

r
k+ ksck) + �g ksok2 : (6.37)
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Moreover, Property 3-1 allows us to evaluate k _q
r
k as

k _q
r
k =






J�1(q; t)

(
@p

d

@t
(�̂; t)�� (ê� ~p)

)





� Jm

�1 (vc + �M (�)kêk+ �M (�)k~pk) : (6.38)

Thus, _V is evaluated as

_V (sc; ê; so; ~p)

� �
h
�m(Kd)� � � �

n
Jm

�1 (vc + �M (�)kêk+ �M (�)k~pk) + ksok
oi
ksck2

�
h
ld �Mm � � � �

n
Jm

�1 (vc + �M (�)kêk+ �M (�)k~pk) + ksck
oi
ksok2

� 1

2
�m(�

TKp) kêk2 �
1

2
�m(�

TKp) k~pk2 : (6.39)

If a part of coordinates (ê; so; ~p) satis�es the condition:

1

2
max�1(�M (�); Jm)

n
Jm�

�1 (�m(Kd)� �)� vc
o
�









2
64 ê

so
~p

3
75







 ; (6.40)

then negativeness of the coe�cient of ksck2 is assured. On the other hand, if a part of

coordinates (sc; ê; ~p) satis�es the condition:

1

2
max�1(�M (�); Jm)

n
Jm�

�1
�
ld �Mm � �

�
� vc

o
�









2
64 scê

~p

3
75







 ; (6.41)

then negativeness of the coe�cient of ksok2 is assured. Thus, if the set of full coordinates

(sc; ê; so; ~p) satis�es the condition:

1

2
max�1(�M (�); Jm)

h
Jm�

�1
n
min

�
�m(Kd); ld �Mm

�
� �

o
� vc

i
�












2
6664
sc
ê

so
~p

3
7775










;

(6.42)

then negative de�niteness of _V is assured. Thus, if the gain condition

Jm�
�1
n
min

�
�m(Kd); ld �Mm

�
� �

o
� vc > 0 (6.43)

is satis�ed, there exists a region to satisfy (6.42).

We summarize the above discussion in the following theorem:
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Theorem 9 (Shape Tracking Controller with Shape Velocity Observer)

Consider the following controller based on curve parameter estimation:

u = M (�)��ro +C(�; _�o) _�r + g(�) + � �; (6.44)

�̂� = �̂�ro +K�� �; (6.45)"
� �

� �

#
= �JT (q; t)Kpê�Kd ( _qo � _q

r
) ; (6.46)

with the following shape velocity observer:

_̂p = z + _̂p
d
+ (ldI +�) (p� p̂)�� (p̂� p̂

d
) ; (6.47)

_z = ld� (p� p̂)� J(q; t) �M�1
(q)JT (q; t)Kp (p̂� p̂d) ; (6.48)

where _q
r
; _q

o
2 <3n and �q

ro
2 <3n are de�ned as

_q
r
=

"
_�r
_̂�r

#
:= J�1(q; t)

(
@p

d

@t
(�̂; t)�� (p̂� p̂

d
)

)
; (6.49)

_q
o
=

"
_�o
_̂�o

#
:= J�1(q; t)

(
_̂p� @p

d

@�
(�̂; t) _̂� �� (p� p̂)

)
; (6.50)

�q
ro
=

"
��ro
�̂�ro

#
:= �q

r
(q; _q

o
; p̂� p̂

d
; _̂p� _̂p

d
); (6.51)

and
h
p̂TzT

i
T 2 <6n is the observer state, �;Kp 2 <3n�3n are symmetric postive de�nite

matrices with the relation �TKp =KT

p
� , Kd 2 <2n�2n and K� 2 <n�n are symmetric

positive de�nite matrices and ld is a positive constant. Under Assumption 7, suppose

ld and Kd are chosen to satisfy

Jm�
�1
n
min

�
�m(Kd); ld �Mm

�
� �

o
� vc > 0; (6.52)

where �; � are

� := �CM + �MMJm
�1JH:; (6.53)

� := �MMJm
�1vt: (6.54)

Then, shape tracking using only joint angle information is achieved locally. 2

Proof. It is clear from the above discussion. (Q.E.D.)

Figure 6.2 shows the block diagram of the modi�ed shape tracking controller. As stated

before, we never change the controller structure. Instead, we replace the unavailable

signals with their estimated values. The dual structure between the controller and the

observer is the crucial key to solve this problem by Lyapunov theorem.
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Summary

It was shown that shape tracking using only joint angles was attained by utilizing a

shape velocity observer. This observer has a Lyapunov function dual to that of a shape

tracking controller. It was proved that the simply tuned shape tracking controller and

the shape velocity observer assured local asymptotic stability of the closed-loop system

under some reasonable assumptions for a given spatial curve.
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Chapter 7

Obstacle Avoidance Based on Shape

Control

In this chapter, we consider new task accomplishment from the viewpoint of shape

control. An HDOF manipulator is expected to move in a highly constrained environment,

especially to go into a very narrow space like a tube in order to look the deep inside among

obstacles that can never be observed from the outside. Any conventional control methods

for manipulators do not give any solution of this kind of obstacle avoidance problems.

If we achieve a motion control along the curve which never collides any obstacles, then

it is useful for the obstacle avoidance. It is shown that this motion control problem is

successfully solved through the shape control concept.

In Section 7.1, the main idea for utilizing shape control to the obstacle avoidance

is shown. In Section 7.2, a motion control problem is stated. This problem is to �nd

a control to move the manipulator along a collision-free curve speci�ed in advance. In

Section 7.3, two control laws are given as the counterparts of two tracking controllers in

Chapter 5.

7.1 Strategy for Obstacle Avoidance

Going into a narrow space is one of typical and useful obstacle avoidance tasks for

an HDOF manipulator. For example, an HDOF manipulator with a camera at the tip is

expected to look inside objects without any collisions. (See Figure 7.1.) It is also possible

to a�ect forces to the point in deep inside of objects where one can never reach.

One of the simplest strategies to accomplish this task is the "follow the leader" method

[20]. This is a literally ad hoc method that the previous target position of the next link

(leader's) position is given as the present target position of each link. In this method,

however, manipulator dynamics is completely neglected so that there is no theoretical
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Figure 7.1: Going into a narrow space

assurance to avoid the obstacles, even if we completely know the desirable path that

never crosses the obstacles in advance.

It is important to note that the motion along manipulator's length is essential to go

into a narrow space. Then we consider a useful motion control problem for an obstacle

avoidance, that is, to move along a speci�ed curve. Before we formulate the problem, we

have to observe that mobility is essential in order to attain the task. Because, we assume

in this context that manipulator has only revolute joints. This type of joints basically

generates the motion perpendicular to the manipulator's length direction. Mobility is

introduced to make the motion of the direction along the length. Ma and Hirose developed

a manipulator called the moray drive manipulator [9] that is an example to show that a

manipulator with mobility is adequate for going into a narrow space, although they use

a translational joint to make the motion of the manipulator's length direction.

There are some ways to give mobility to an HDOF manipulator: for example, to mount
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Figure 7.2: HDOF manipulator with mobility

it on a car, legs, plane and so on. Here we divide an HDOF manipulator into two parts,

the upper one and the lower one. The lower part is used for mobility, while the shape of

the upper part is controlled to avoid obstacles. The boundary point of two parts is called

the base point. (See Figure 7.2.)

7.2 Problem Statement

Suppose that the base point is at p
k
, the k -th link position. De�ne �L 2 <2k and

�U 2 <2(n�k) as

�L :=

2
664
�1
...

�k

3
775 ; (7.1)

�U =

2
664
�k+1
...

�n

3
775 : (7.2)
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We call �L the lower joint angles, �U the upper joint angles. Also de�ne p
U
2 <3(n�k)

as

p
U

=

2
664
p
k+1
...

p
n

3
775 : (7.3)

We call p
U

the upper shape of the manipulator.

Consider m obstacles, Oj; (j = 1; � � � ;m) , in Euclidean space. Suppose that , for

some positive real constant r , we know a curve �c : < ! E3 satisfying the following

condition:

8j T (�c; r) \Oj = ;; (7:4)

where T � E3 is de�ned as

T (�c; r) :=
n
p 2 E3

��� kp� �c(�)k � r; � 2 <
o
: (7:5)

That is, �c is a collision-free curve assured to be amount r apart from any obstacles

( see Figure 7.3 ). Therefore, an HDOF manipulator never collides the obstacles if it

moves along the curve. Then, we consider a control to move the upper part of an HDOF

manipulator along this curve.

r

collision-free curve:c

tube:T (c; r)

O1

O2

O3

O4

Figure 7.3: Collision-free curve
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Let �k
� be the desired curve parameter corresponding to the base point, p

k
. We will

give this value �k
� as a command to move it forward or backword along the curve. If

_��
k
> 0 , then the desired base position moves forward along the curve.

Consider a time-varying curve, c : < � <+ ! E3 , de�ned by

c(�; t) := �c(� + �k
�(t))� �c(�k

�(t)): (7.6)

Let �U
�(t) be the solution of the extended shape inverse problem for the upper part of

the manipulator and time-varying curve (7.6). Then, a control problem achieving the

motion along a collision-free curve is stated as follows:

Problem 6 (Motion Control along a Collision-free Curve)

Consider

1. an HDOF manipulator with dynamics (2.34) and the base point at p
k
,

2. a collision-free curve �c : < ! E3 satisfying Assumption 1, and

3. a desired curve parameter corresponding to the desired base position, �k
�(t) , which

is a continuously di�erentiable function of time.

Moreover, suppose that Assumption 5 holds. Then, �nd a control input, u , in (2.34)

achieving that

�U(t) ! �U
�(t); (7.7)

_�U(t) ! _�
�

U
(t); (7.8)

and

p
k
(�L(t)) ! �c(�k

�(t)); (7.9)

_p
k
(�L(t); _�L(t)) ! _�c(�k

�(t); _��
k
(t)); (7.10)

as t ! 1 , where �U
�(t) is the desired joint angle function for the upper part of the

manipulator, that is, the solution of the extended shape inverse problem for the upper

part and the time-varying curve c(�; t) := �c(� + �k
�(t))� �c(�k

�(t)) . 2

Control objective (7.7), (7.8) requires that the upper shape corresponds to the desired

shape, while objective (7.9), (7.10) means the base point error to be zero. We need to see

that the con�guration of the upper part of the manipulator consists of not only its shape,

but also its position and orientation [19].
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Consider a part of the estimated curve parameter, �̂U := [�̂k+1 � � � �̂n]T 2 <n�k and

de�ne p
U;d
(�̂U) 2 <3(n�k) as

p
U;d

(�̂U) :=

2
664
c(�̂k+1)

...

c(�̂n)

3
775 : (7.11)

This vector means the estimated desired upper shape. De�ne also � 2 <3(n�k+1) as

�̂(�; �̂U ;�k
�) :=

"
p
k
(�)� �c(�k

�)

p
U
(�)� p

U;d
(�̂U )

#
; (7.12)

which is called the estimated con�guration error.

If we de�ne J �(�;�U) 2 <3(n�k+1)�(3n�k) and x 2 <3(n�k+1) as

J�(�;�U ) :=

2
6664

@p
k

@�
(�) 0

@p
U

@�
(�) �@p

U;d

@�U

(�U)

3
7775 ; (7.13)

x�(�k
�) =

"
�c(�k

�)

0

#
; (7.14)

then the time derivative of �̂ can be written as

_̂
�(�;�U ; _�; _�U ;�k; _�k) = J �(�; �̂U) _q� � _x�(�k

�; _��
k
); (7.15)

where q
�
:=
h
�T �̂

i
T 2 <3n�k .

Here we make the following assumption for J �(�; �̂U ) :

Assumption 8 (Time-varying Shape Jacobian)

The matrix J �(�; �̂U) is of full rank for any (�; �̂U ) which satisfy �̂ = 0 . 2

De�ne DU;� � <3n�k as

DU;� :=

�
(�U ;�U) 2 <3(n�k)

����j�s;ij < �; j�m;ij < �; � < �i � �i�1 <
1

�M

�
; (7.16)

where � 2 [�lM lM ] and i = k + 1; � � � ; n . From Theorem 4, under Assumption 8, if

�̂(�; �̂U ;�k
�) ! 0; (7.17)

_̂
�(�; �̂U ; _�; _̂�U ;�k

�; _��
k
) ! 0; (7.18)

(�U ; �̂U ) 2 DU;�; (7.19)

then, the control objective (7.7), (7.8), (7.9) and (7.10) is achieved.
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7.3 Obstacle Avoidance Controllers

In the same manner as Chapter 5, we show two controllers achieving the control

objective in this chapter.

Theorem 10 (ID-based Obstacle Avoidance)

Consider a control law with a curve parameter estimation law as follows :

u = M(�)��d +C(�; _�) _� + g(�); (7.20)

�̂�U = ��U;d; (7.21)

where ��d 2 <2n and ��U;d 2 <n�k are"
��d
��U;d

#
= J �

+(q
�
)

�
�x� � _J �(q�; _q�) _q� �Lp�̂ �Ld

_̂
�

�
: (7.22)

and Lp;Ld 2 <3(n�k+1)�3(n�k+1) are symmetric positive de�nite matrices, the symbol

'+ ' denotes the pseudo-inverse of a matrix. Then, under Assumption 8, the control

objective of the motion control along a collision-free curve is achieved locally. 2

Proof. From (7.20), (7.21), (7.22), we obtain the closed loop system

�q = J �

+(q
�
)

�
�x� � _J�(q�; _q�) _q� �Lp�̂ �Ld

_̂
�

�
: (7.23)

Multiplying both sides of the expression above by J � leads to

�̂
� +Ld

_̂
� +Lp�̂ = 0; (7:24)

which shows � ! 0 , _� ! 0 . (Q.E.D.)

Theorem 11 (Lyapunov-based Obstacle Avoidance)

Consider a control law with a curve parameter estimation law as follows:

u = M (�)��r +C(�; _�) _�r + g(�) + � �; (7.25)

�̂�U = �̂�U;r +L�� �;U ; (7.26)

where � � 2 <2n and � �;U 2 <n�k are"
� �

� �;U

#
= �J �

T (q
�
)Lp�̂ �Ld

�
_q
�
� _q

�;r

�
; (7.27)

and _q
�;r
2 <3n�k , _�r 2 <2n , _̂�U;r 2 <n�k , are de�ned by

_q
�;r

=

"
_�r
_̂�U;r

#
:=

n
I � J+

�
(q

�
)J �(q�)

o
_q
�
+ J �

+(q
�
)
�
_x� ���̂

�
; (7.28)
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and Lp;�2 <3(n�k+1)�3(n�k+1), Ld 2 <3(n�k)�3(n�k) and L� 2 <(n�k)�(n�k) are all sym-

metric positive de�nite matrices. Then, under Assumption 8, the control objectives of

the motion control along a collision-free curve are achieved locally. 2

Proof. De�ne s�;c := _q
�
� _q

�;r
. Consider the following scalar function:

V (s�;c; �̂) =
1

2
s�;c

T �M (q) s�;c +
1

2
�̂
T

Kp�̂: (7:29)

This function has the following time-derivative:

_V (s�;c; �̂) = �s�;cTKds�;c � �̂
T

�TKp�̂; (7.30)

which completes the proof. (Q.E.D.)

Obviously, these controllers are the counterparts of tracking controllers in Chapter 5.

Summary

One obstacle avoidance scheme was proposed as an example of new task accom-

plishment by shape control. This is based on a motion control along the curve which

never collides any obstacles. Two controllers achieving this motion were shown as the

counterparts of two shape tracking controller derived before.
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Chapter 8

Limit Analysis via Increase in DOF

In the previous chapters, we mainly consider to control the shape of an HDOF manip-

ulator. In this chapter, we discuss essentials of an HDOF manipulator from the viewpoint

of shape control. The feature of an HDOF manipulator is its rich kinematic DOF. When

we imagine to increase its DOF, we know by intuition that the "zig-zag" form of the

manipulator approaches a smooth curve in shape, which is related to the idea of shape

control. Thus, it is natural to expect that its essentials are getting clear as the DOF of a

manipulator increases. Then we discuss asymptotic properties of an HDOF manipulator

by increase in DOF.

In Section 8.1, the operation of increase in DOF is de�ned. In Section 8.2, we prove

by using the operation that the "zig-zag" form of the manipulator on a smooth curve

approaches the curve in shape. In Section 8.3, as one trial to look for essentials by

increase in DOF, a speci�c kinematic structure for an HDOF manipulator is considered.

It is reasonable in the sense that its direct kinematics tends to Frenet-Serret formula of

spatial curves.

8.1 Increase in DOF

First we de�ne a special sequence of position vectors in order to represent increase in

DOF.

De�nition 3 (Chain)

A sequence of position vectors in E3 , � , is said to be a chain if any distances

between adjacent position vectors are constant. 2

For a chain, � , let p
i
(�) 2 E3 be the i -th position vector in � and n(�) denotes

the number of position vectors in � . De�ne also the chain �neness, mes(�) , as the
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maximum distance between any two adjacent position vectors in � :

mes(�) := max
i

li(�); (8:1)

where li(�) :=



p

i
(�)� p

i�1(�)



 . De�ne sub-length of a chain, Li(�) , by

Li(�) :=
iX

j=1

lj(�): (8:2)

The total length of a chain is expressed by Ln(�)(�) .

By using chains, we de�ne increase in DOF as follows:

De�nition 4 (Increase in DOF)

Consider a sequence of chains, f�kg1k=0 . An operation increasing k in the sequence

is called increase in DOF if the sequence satis�es the following conditions:

1. The number of position vectors of a chain in the sequence increases strictly with

respect to the indexes, i.e.,

8k1; k2 2 N k1 < k2 ) n(�k1
) < n(�k2

):

2. The total length of a chain in the sequence is invariant, i.e.,

8k1; k2 2 N Ln(�k1
)(�k1

) = Ln(�k2
)(�k2

):

3. The sub-length of a chain is preserved, i.e.,

8k1; k2 2 N

k1 < k2 ) 9�(i; k1; k2) 2 N Li(�k1
) = L�(�k2

):

4. The �neness of a chain in the sequence converges to zero asymptotically, i.e.,

lim
k!1

mes(�k) = 0:

2

8.2 Convergence to a Smooth Curve

Using the operation de�ned by De�nition 4, we can rigorously prove the intuitively

clear fact that the "zig-zag" form of an HDOF manipulator on a curve converges to the

curve.
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Theorem 12 (Convergence to a Smooth Curve)

Consider

1. an HDOF manipulator whose direct kinematics is expressed by (2.20), (2.15) and

(2.25),

2. a continuously di�erentiable curve c : < ! E3 , and

3. a chain sequence f�kg1k=0 , generated by increase in DOF, which has link positions

of the manipulator as the initial chain:

�0 = fp
i
gn
i=0 : (8:3)

Suppose that any position vectors in any chains in the chain sequence are on the curve,

i.e.,

8k 2 N 8i 2 f0; � � � ; n(�k)g 9�i(�k) 2 <

p
i
(�k) = c(�i(�k)): (8.4)

Then, the following equation holds:

lim
k!1

p
i
= c(Li); (8:5)

where Li :=
iX
j

lj . This means that link position p
i
on a curve converges to c(Li) by

increase in DOF. 2

Proof. The left-hand side of (8.5) is

lim
k!1

p
i

= lim
k!1

p
�(i;0;k)(�k)

= lim
k!1

c(��(i;0;k)(�k))

= c( lim
k!1

��(i;0;k)(�k)): (8.6)

On the other hand, the right-hand side of (8.5) is

c(Li) = c( lim
k!1

L�(i;0;k)(�k)): (8.7)

Then it is enough to show that

lim
k!1

�
��(i;0;k) � L�(i;0;k)

�
= 0; (8:8)
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Li

c(Li)p
i

k !1

Figure 8.1: Convergence to a smooth curve

for the proof.

lim
k!1

�
��(i;0;k) � L�(i;0;k)

�
= lim

k!1

 Z
��

0






dcd� (�)





 d� �

�X
s=1

ls(�k)

!
; (8.9)

where we abbreviate �(i; 0; k) just as � . If we write
dc

d�
(�) as

dc

d�
(�) =

2
64 _cx(�)

_cy(�)

_cz(�)

3
75 ; (8:10)

then by the mean value theorem, there exist �x;s; �y;s; �z;s 2 [�i�1 �i] such that

ls(�k) =
n
_c2
x
(�x;s) + _c2

y
(�y;s) + _c2

z
(�z;s)

o 1

2
(�s � �s�1): (8.11)

Therefore, we obtain

lim
k!1

�
��(i;0;k) � L�(i;0;k)

�
= lim

k!1

�X
s=1

��n
_c2
x
(�s) + _c2

y
(�s) + _c2

z
(�s)

o 1

2

�
n
_c2
x
(�x;s) + _c2

y
(�y;s) + _c2

z
(�z;s)

o 1

2

�
(�s � �s�1)

�
:

(8.12)
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Since _cx; _cy; _cz are uniformly continuous because of their continuity, for any positive

constant � , we can �nd k such that

j _cx(�s)� _cx(�x;s)j < �;

j _cy(�s)� _cy(�y;s)j < �;

j _cz(�s)� _cz(�z;s)j < �: (8.13)

Thus, we obtain

n
_c2
x
(�s) + _c2

y
(�s) + _c2

z
(�s)

o 1

2 �
n
_c2
x
(�x;s) + _c2

y
(�y;s) + _c2

z
(�z;s)

o 1

2

� j _cx(�s)� _cx(�x;s)j+ j _cy(�s)� _cy(�y;s)j + j _cz(�s)� _cz(�z;s)j

< 3�: (8.14)

Therefore,

�����(i;0;k) � L�(i;0;k)

��� < 3�

�����
�X

s=1

(�s � �s�1)

�����
= 3���(i;0;k); (8.15)

which concludes (8.8) since ��(i;0;k) is bounded from above and we can make � be arbi-

trarily small by taking su�ciently large k . (Q.E.D.)

8.3 Kinematic Structure for HDOF Manipulators

Up to here, we have said nothing about a kinematic structure of the 2DOF joint.

Increase in DOF enables us to consider the kinematic structure deeply. The conditions

for a speci�c kinematic structure are derived from the geometrically natural requirement

that its direct kinematics tends to Frenet-Serret formula by increase in DOF.

Let �i(�k) 2 SO(3) be the i -th link coordinate in chain �k . By increase in DOF,

�i (= �i(�0) ) converges to the coordinate on the curve whose origin is at c(Li) by

Theorem 12. Let �(Li) be the limit coordinate, i.e.,

�(Li) := lim
k!1

�i: (8:16)

The following theorem gives the conditions for axes as;i , am;i such that �(Li) satis�es

Frenet-Serret formula.
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Theorem 13 (Kinematic Structure)

Direct kinematics of an HDOF manipulator (2.20), (2.15), (2.25) converges to Frenet-

Serret formula (2.4), (2.5) by increase in DOF if and only if

8i 2 f1; � � � ; ng as;i = ex; am;i = ez: (8.17)

This means that the manipulator have 2DOF joints with twisting and bending axes uni-

formly. 2

c(Li)

Li

�i

�(Li)

k !1

p
i

Figure 8.2: Frame convergence

Proof. First, we check that �(Li) satis�es equation (2.4). The derivative of c(Li) is

dc

d�
(Li) = lim

��i!0

c(L�(�k))� c(L�(�k)� ��i)

��i
:

(8.18)

If we choose ��i , depending on �k , as

��i(�k) = l�(�k); (8:19)

then k !1 implies ��i ! 0 . Thus, we obtain

dc

d�
(Li) = lim

��i!0

lim
k!1

p
�
(�k)� lim

k!1

p
��1(�k)

��i(�k)
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= lim
k!1

p
�
(�k)� p��1(�k)

l�(�k)

= lim
k!1

��(�k)ex

= �(Li)ex; (8.20)

which shows that equation (2.4) in Frenet-Serret formula is satis�ed.

The derivative of �(Li) becomes

d

d�
�(Li) = lim

��i!0

lim
k!1

��(�k)� lim
k!1

���1(�k)

��i(�k)

= lim
k!1

��(�k)����1(�k)

l�(�k)

= lim
k!1

��(�k) lim
k!1

I3 �Rw;�

T

l�(�k)

= �(Li) lim
k!1

I3 �Rw;�

T

l�(�k)
: (8.21)

Comparing the above expression and Frenet-Serret formula (2.5), we obtain the following

condition:

[!(Li)�] = lim
k!1

I3 �Rw;�

T

l�(�k)
: (8:22)

By Rodrigues' Formula [15], Rw;i is evaluated as

Rw;i = R(as;i; �s;i)R(am;i; �m;i)

= exp ([as;i�] �s;i) exp ([am;i�] �m;i)

=
n
I3 + sin �s;i [as;i�] + (1� cos �s;i) [as;i�]2

o
n
I3 + sin �m;i [am;i�] + (1� cos �m;i) [am;i�]2

o

= I3 + sin �s;i [as;i�] + sin �m;i [am;i�] +Z(�k);

where Z(�k)2 <3�3 is a matrix which consists of more than second order terms of �s;�

and �m;� .

Consider the curve projected on the plane perpendicular to as;i and let �s;i 2 < be

the curvature of the projected curve. If rotational axes are orthogonal y, the following

expression is derived geometrically (see Figure 8.3):

sin �s;i

li
=

sin(�� + ��)

li

yIn case that rotational axes are not orthgonal, we need more complicated discussion. However, we

can obtain the same result.
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=
l0
i�1 cos ��

2liri�1
+
l0
i
cos ��

2liri

= kex � fR(as;i; �s;i)am;igk
li�1 cos ��

2liri�1
+ kam;i � exk

cos ��

2ri
(8.23)

p0
i�1

p0
i�2

p0
i

l0
il0

i�1

��

��

ri

ri�1

Ci�1

Ci

��

��
�s;i

Figure 8.3: Projected curve

Since lim
k!1

1

ri�1
= lim

k!1

1

ri
= �s;i , we obtain

lim
k!1

sin �s;�

l�
=

(
� (Li) (as;i = ex)

kas;i � exk�s;i(Li) (otherwise)
: (8.24)

As the same manner,

lim
k!1

sin �m;�

l�
=

(
unde�ned (am;i = ex)

kam;i � exk�m;i(Li) (otherwise)
: (8.25)

Thus, lim
k!1

sin �s;�

l�
and lim

k!1

sin �m;�

l�
are bounded, which leads to Z(�k)=l� ! 0 as

k !1 . Since increase in DOF does not e�ect on a kinematic structure,

lim
k!1

[as;��] = [as;i�] ; lim
k!1

[am;��] = [am;i�] :

102



Thus, the right-hand side of (8.22) becomes

lim
k!1

I3 �Rw;�

T

l�(�k)
=

" 
lim
k!1

sin �s;�

l�
as;i + lim

k!1

sin �m;�

l�
am;i

!
�
#
:

Therefore, condition (8.22) can be rewritten into the following vector equation:

�(Li)ex + �(Li)ez = lim
k!1

sin �s;�

l�
as;i + lim

k!1

sin �m;�

l�
am;i: (8.26)

We have to choose as;i = ex since it is the only way to obtain torsion �(Li) . Furthermore,

curvature �m;i(Li) is given by

�m;i(Li) = sgn fdet [ex ey am;i]g
kam;i � eyk
kam;i � exk

�(Li): (8.27)

This shows that we have to take am;i = ez , which completes the proof. (Q.E.D.)

Vectors as;i and am;i are relative to link coordinates �i�1 and �i respectively.

Every link coordinate has been attached to the corresponding link such that its x -axis

align with the link length direction. Therefore, as;i = ex means that a rotation about

the Sub-axis contributes to a twist, while am;i = ez denotes that a rotation about the

Main-axis brings a bend. This result is very natural because Frenet-Serret formula has

such a structure. However, it is important to note that there is an order in the bend

and the twist; twist �rst, and then bend. This order can not be observed directly from

Frenet-Serret formula. In other words, this order of the bend and the twist disappears at

the limit of increase in DOF.

By the de�nition of curvature, � � 0 . This indicates that it is enough to use one-

directional DOF for bending. Actually, almost of bending mechanisms in animals includ-

ing human beings are one-directional. This is very helpful information to consider to

construct real hardwares of an HDOF manipulator.

Summary

The essentials of an HDOF manipulator were discussed from the viewpoint of shape

control. The underlying philosophy is that there are the essentials at the limit of increase

in DOF. Then, an operation of increase in DOF was de�ned by using a sequence of

position vectors. After the proof of the intuitively clear fact that the "zig-zag" form of

an HDOF manipulator on a curve converges to the curve, the conditions of a speci�c

kinematic structure were derived from the geometrically natural requirement that its

direct kinematics tends to Frenet-Serret formula by increase in DOF. The result said
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that the manipulator had to have 2DOF joints with twisting and bending mechanisms

uniformly.
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Chapter 9

Conclusions

The main contributions of this thesis are summarized as follows:

New Concepts for Shape Control

We formulated some basic new concepts for shape control of an HDOF manipulator.

These concepts include the shape correspondence between a spatial curve and a manipu-

lator ( Chapter 3 ), the shape inverse problem in order to de�ne the shape correspondence

( Chapter 3 ), the Shape Jacobian which expresses the relation between the joint angu-

lar velocity and the shape velocity error ( Chapter 3 ) and the increase in DOF to �nd

essentials of an HDOF manipulator ( Chapter 8 ). These new concepts enabled rigorous

discussions on shape control.

Dynamics-based Shape Control

We established the framework of shape control based on the dynamic model of an

HDOF manipulator ( Chapters 2 { 5 ). The success of the establishment owes to the idea

of estimating the desired curve parameters in the course of control. This estimation idea

allowed us to apply Lyapunov stability theory to our control problems. The estimation

law was derived in the similar manner to adaptive control. However, we do not estimate

any real physical values, but do the curve parameters which are virtual. This feature of

the estimation distinguishes our framework from the conventional one in robot control

theory.

New Task in the Shape Control Framework

We showed that, in the shape control framework, we could accomplish a new task

which was never done before ( Chapter 7 ). The task is the motion control along a
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collision-free curve useful for an obstacle avoidance. There will appear a lot of creative

uses of an HDOF manipulator in this control framework.

Novel Analysis to Obtain the Essentials of an HDOF Manipulator

We proposed the new kinematics for HDOF manipulators which was based on the

geometric notation di�erent from the conventional Denavit-Hartenberg notation ( Chapter

2 ). Based on the kinematics, we gave a novel analysis in order to look for essentials of

an HDOF manipulator ( Chapter 8 ). The conditions of a speci�c kinematic structure

were derived from the geometrically natural requirement that its direct kinematics tends to

Frenet-Serret formula by increase in DOF. We have obtained a result that the manipulator

has to have 2DOF joints with twisting and bending mechanisms uniformly. Substantial

information on the manipulator will be discovered by this kind of limit analysis.
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