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Abstract

Many computational methods have been proposed to solve optimal control problems.

These methods are classi�ed as indirect methods and direct methods. This thesis is based

on solving optimal control problems using direct methods in which an optimal control

problem is converted into a mathematical programming problem. The direct methods

can be employed by using the parameterization technique which can be applied in three

di�erent ways: Control parameterization, control-state parameterization and state pa-

rameterization. The control parameterization and the control-state parameterization have

been used extensively to solve general optimal control problems. However, the use of the

state parameterization was limited to very special cases. In this thesis, we solve general

optimal control problems by using the state parameterization.

This thesis presents numerical methods to solve unconstrained and constrained op-

timal control problems. The solution method is based on using the second method of

the quasilinearization to replace the nonlinear optimal control problem by a sequence of

time-varying linear quadratic optimal control problems. Each of these problems is solved

by converting it into quadratic programming problem. To this end, the state parame-

terization technique is employed by using the Chebyshev polynomials of the �rst type to

approximate the system state variables by a �nite length Chebyshev series of unknown

parameters.

In addition, in this thesis we describe a method to determine the optimal feedback

control of nonlinear optimal control problems. The method is based on applying the pa-

rameterization using Chebyshev polynomials. To facilitate the computation of the optimal

feedback control law, a new property of Chebyshev polynomials called di�erentiation op-

erational matrix is derived.

The proposed methods have been applied on several examples and we �nd that the

proposed methods give better or comparable results compared with some other methods.

Additionally, to make sure that the proposed methods can handle real complex problems,

we applied these methods on two practical problems, F8 �ghter aircraft and container

crane problems.
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Chapter 1

Introduction

1.1 Motivations and Goals

The optimal control problem is to �nd a control function u�(t) which minimizes a

given cost functional (performance index) while satisfying the system state equations and

constraints. It has successful applications in many disciplines, economics, environment,

management, engineering etc. A particular important class of optimal control problems is

the linear quadratic optimal control problem, which has found a wide acceptance because

of the possibility of obtaining the feedback optimal control law.

Generally, the solutions of optimal control problems, except for the simplest cases, are

usually carried out numerically. Therefore, numerical methods and algorithms for solving

optimal control problems have evolved signi�cantly over the past thirty-�ve years. Most of

the early methods were based on �nding a solution that either satis�es the Euler-Lagrange

equations, which are the necessary conditions of optimality, or satis�es Hamilton-Jacobi-

Bellman equation, which is su�cient condition of the optimality. These methods are

called indirect methods.

The main drawbacks of the indirect methods are the following: (1) It is very di�cult

to solve Hamilton-Jacobi-Bellman equation. (2) The introduction of arti�cial costates.

(3) The lack of robustness, i.e. the iterations must start close to a local solution in order

to solve the two-point boundary value problem. (4) The user must have a deep insight

into the physical and the mathematical nature of the optimal control problem.

To overcome these drawbacks, many researchers proposed the use of the direct meth-

ods to solve the optimal control problems. In these methods, the optimal solution is

obtained by direct minimization of the performance index subject to constraints. This

can be achieved by approximating the dynamic optimal control problem by a �nite di-

mensional nonlinear programming problem. The direct methods can be applied by using

1



2 Chapter 1. Introduction

the discretization technique or the parameterization technique (control parameterization;

control-state parameterization; state parameterization). In this thesis, we use the param-

eterization technique (state parameterization) to convert the optimal control problem into

mathematical programming problem.

For the parameterization method, there are two issues to be addressed. The �rst issue

is: Which variables (state, control) should be parameterized? The second issue is: Which

functions can be used to perform the parameterization?

Concerning the �rst issue, a tremendous proliferation of papers have been published

which are based on either control parameterization or control-state parameterization.

These two approaches have some drawbacks such as: In control parameterization case,

there is a need to integrate the system state equations which is a computationally expen-

sive. While in control-state parameterization case, the optimal control problem is reduced

to a large mathematical programming problem, i.e. has a large number of unknown pa-

rameters and a large number of equality constraints.

There is a third type of parameterization, the state parameterization. So far the use

of this approach has been limited to special cases. For example, linear systems of equal

number of state variables and control variables or nonlinear systems of a single input and

in controllability canonical form. This approach, in spite of some advantages that can

o�er, has not been not used extensively because it is di�cult to apply it to general optimal

control problems. This is because it is not clear which state variables to be parameterized

in case of unequal number of state variables and control variables. Therefore the �rst

goal of this thesis is to apply the state parameterization to general optimal control prob-

lems, linear and nonlinear, constrained and unconstrained.

For the second issue, many functions to perform the parameterization have been used.

In particular, the orthogonal functions used to solve some of the optimal control prob-

lems. Among the orthogonal functions, Chebyshev polynomials have several advantages

compared with other functions. The Chebyshev polynomials have been used, in several

papers, to solve linear quadratic optimal control problems. Also Vlassenbroeck and Van

Dooren [39, 40] applied the Chebyshev polynomials to solve general unconstrained non-

linear optimal control problem and constrained optimal control problem. However, their

method has several disadvantages and drawbacks which will be discussed in the next

chapter. Hence the second goal of this thesis is to use the Chebyshev polynomials to

parameterize the system state variables to solve linear and nonlinear, constrained and

unconstrained optimal control problems, and on the same time to avoid the problems of

Vlassenbroeck and Van Dooren's method.
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In applying the direct methods, most of the researchers, convert the nonlinear optimal

control problem into a nonlinear mathematical programming problem and then the new

problem is solved by using sequential quadratic programming method. There are two ex-

ceptions: The work by Bashen and Inns [55] which converts the optimal control problem

into a sequence of quadratic programming problems. However, this method was applied

to a particular problem and the discretization method was used. Another approach was

proposed by Ma and Levine [57]. In this case an upper bound of the optimal value only

was obtained and the discretization method was also used. The third goal of this thesis

is to solve the optimal control problem by converting it directly, using state parameteri-

zation via Chebyshev polynomials, into a sequence of quadratic programming problems.

This has two advantages: the �rst advantage is that the linear and the nonlinear optimal

control problems can be solved in uniform way. The second advantage is that guessing

nominal trajectories, which we need to convert the nonlinear optimal control problem into

a sequence of linear quadratic optimal control problems, is easier than guessing the pa-

rameters of these trajectories, which we need in order to solve the nonlinear mathematical

programming problem.

The direct methods were used to obtain open loop solution of optimal control prob-

lems. But from practical point of view, it is desired to obtain the feedback optimal control

solutions because they provide robustness with respect to external disturbances, unmod-

eled dynamics and variations in the physical parameters of the system to be controlled.

Obtaining the optimal feedback control of the nonlinear optimal control problems by using

the direct method, state parameterization, is the fourth goal of this thesis.

In summary the goals of this thesis are: To propose an e�cient numerical methods to

solve linear and nonlinear, constrained and unconstrained optimal control problems and

to determine the optimal feedback control law.

1.2 Thesis Contribution

In this thesis, we propose numerical methods to solve several optimal control problems.

The basic idea of these methods is to use the second method of the quasilinearization and

the state parameterization. The quasilinearization replaces the nonlinear optimal control

problem by a sequence of linear quadratic optimal control problems. Then each of these

problems is approximated by a quadratic programming problem, which can be solved by

parameterizing the state variables by Chebyshev series of unknown parameters.

The state parameterization has several advantages compared with other types of pa-

rameterizations. The �rst advantage is that the optimal control problem is converted
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into a small mathematical programming problem, compared with control-state parame-

terization, in the sense of the number of unknown parameters and the number of equality

constraints . The second advantage is that there is no need for numerical integration of

the system equations as in the case of control parameterization. The third advantage is

that the state constraints can be approximated directly and not as in the control param-

eterization case.

The contribution of this thesis can be summarized as follows:

� Presents a new method to solve the linear quadratic optimal control problem by

using state parameterization via Chebyshev polynomials. This converts the linear

quadratic optimal control problem into a quadratic programming problem which

can be solved by matrix-vector multiplication.

� Derives an explicit formula to approximate the quadratic performance index.

� Describes numerical method to solve the nonlinear optimal control problem using

the quasilinearization and the state parameterization via Chebyshev polynomials.

� Derives a formula to perform Chebyshev series multiplications.

� Presents a numerical method to solve the nonlinear optimal control problem subject

to terminal state constraints and control saturation constraints.

� Provides a numerical method to solve the linear quadratic optimal control prob-

lem subject to state and control constraints, terminal state constraints and interior

points constraints.

� Introduces and derives a new property of Chebyshev polynomials called di�eren-

tiation operational matrix. This property simpli�es the computations of optimal

feedback control law.

� Derives an explicit formula to determine the optimal feedback control law. This

feedback control law has some advantages compared with the previous known meth-

ods. The �rst advantage is that the obtained optimal feedback control law can be

implemented easier than the optimal feedback control obtained by using power se-

ries method. The second advantage is that we do not need to store the open loop

optimal state and control trajectories as in the methods that give the neighboring

optimal feedback control [3, 19{22]. The third advantage is that the obtained op-

timal feedback control is a nonlinear one and, although it appears as a linear one,

the nonlinear terms of the states are included in the time-varying terms.
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1.3 Thesis Organization

The remaining chapters of this thesis are organized as follows:

Chapter 2 gives an overview of the optimal control theory, and reviews some com-

putational methods to solve optimal control problems. In this chapter, we classify the

computational methods into direct and indirect methods. The direct methods are, in

their turn, also classi�ed into methods based on discretization and methods based on pa-

rameterization. Also the indirect methods are classi�ed into methods that give an open

loop solution and methods that give a closed loop solution. This chapter shows the place

of this thesis compared with other works.

Chapter 3 presents a numerical method to solve the linear quadratic optimal control

problem. In this chapter, the concept of the state parameterization using Chebyshev poly-

nomials is introduced. Also it describes the most appropriate way to perform the state

parameterization. This chapter also describes a method of approximating the dynamic

optimal control problem into a standard quadratic programming problem. In addition, it

shows the derivation of two results: The �rst result is an explicit formula to approximate

the quadratic performance index. The second result is the proof that the Hessian of the

quadratic programming problem is positive de�nite. Finally, this chapter shows com-

putational results of a standard example and compares our results with those obtained

previously.

Chapter 4 generalizes the method of chapter 3 to solve the nonlinear optimal con-

trol problem and as a special case the time-varying linear optimal control problem. In

this chapter the concept of quasilinearization is introduced. It also shows the reformula-

tion of the nonlinear optimal control problem into a sequence of quadratic programming

problems. A new result is given in this chapter which is a formula to compute the multi-

plication of two Chebyshev series. In addition to a standard example which is solved for

the purpose of comparison, we present the computational results of a practical problem,

the automatic ight control problem as an application of this chapter and the previous one.

Chapter 5 describes a numerical method, which is based on the method described in

chapter 3, to solve the constrained linear quadratic optimal control problem. The con-

straints which are considered in this chapter are: state and control constraints, terminal

state constraints and interior point constraints. It also shows the reformulation of the

constrained optimal control problem into a quadratic programming problem. Moreover it

shows the computational results of a constrained optimal control problem.
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Chapter 6 presents a numerical method to solve the nonlinear optimal control prob-

lem subject to terminal state constraints and control saturation constraints. The di�cult

constrained nonlinear optimal control problem is converted into a sequence of quadratic

programming problems. This method is applied on Van der Pol oscillator problem sub-

ject to terminal state constraints and control saturation constraints. In addition, in this

chapter, we show the simulation results of a high dimension practical nonlinear optimal

control problem subject to terminal state constraints, control saturation constraints and

state constraints.

Chapter 7 describes a new method to determine the optimal feedback control law of

nonlinear optimal control problems. A new property of Chebyshev polynomials is derived.

This property, di�erentiation operational matrix property, simpli�es the computations of

the optimal feedback control law. Also this chapter presents an explicit formula to de-

termine the feedback gain matrix. Computational results of an example are also presented.

Chapter 8 contains the conclusions of this thesis and recommendations for future work.



Chapter 2

Optimal Control Problem: A

Review

2.1 Introduction

The optimal control problem has been treated in depth in many textbooks [1{7] and

in some important survey papers [8{10]. The objective of optimal control is to determine

an optimal open loop control u�(t) or an optimal feedback control u�(x; t) that forces

the system to satisfy the system physical constraints and at the same time minimizes or

maximizes a performance index.

The basic optimal control problem consists of the following three elements:

1. A mathematical model of the system to be controlled: The dynamical system to

be controlled can be described by state equations which are a set of �rst order

di�erential equations

_x = f(x(t); u(t); t) (2:1)

where x(t) 2 Rn is the state vector, u(t) 2 Rm is the control vector, f is continuously

di�erentiable with respect to all its arguments. The control functions u are assumed

to be the piecewise continuous functions from t 2 [0; tf ] into R
m. Let U be the class

of such control functions.

2. A set of boundary conditions on the state variables which gives the value of the

system states at the initial time

x(t0) = x0 (2:2)

where x0 is a known vector of initial conditions.

7
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3. A performance index which is to be minimized (maximized). The performance

index describes some desired speci�cations, expressed mathematically in form of a

scalar function. The optimal control problem helps the designer to select the \best"

control, by minimizing a given performance index. The performance index which

we are interested in can be expressed as

J = �(x(tf); tf ) +
Z tf

t0

L(x(t); u(t); t)dt (2:3)

where � and L are scalar functions, continuously di�erentiable in all arguments.

The terminal cost �(x(tf); tf) and the \loss" function L(x(t); u(t); t) are selected

depending on the performance objectives. These functions are generally nonnegative

functions of x and u, with �(0; tf) = 0 and L(0; 0; t) = 0.

2.2 Statement of the Optimal Control Problem

The unconstrained optimal control problem can be stated as follows:

Given f , x0, t0 , tf , � and L, �nd an optimal open loop control or an optimal feedback

control that minimizes the performance index

J = �(x(tf); tf) +
Z tf

t0

L(x(t); u(t); t)dt (2:4)

subject to the system state equations and the initial conditions

_x = f(x(t); u(t); t) x(t0) = x0 (2:5)

This problem, basically, can be solved by one of the following methods:

� Bellman's dynamic programming method which is based on the principle of opti-

mality (Hamilton-Jacobi-Bellman equation).

� Variational method and Pontryagin's minimum principle (Euler-Lagrange equa-

tions).

� Direct methods using discretization or parameterization (nonlinear mathematical

programming)

These methods will briey be discussed in the following sections.

In general it is not possible to solve the problem (2.4)-(2.5) analytically. However,

an analytical solution is possible for a special case of this problem, the linear quadratic

optimal control problem, in which the performance index is quadratic and the system state

equations are linear. This problem can be stated as follows: Find the optimal control that

minimizes

J = xT (tf)Sx(tf) +
Z tf

t0

(xTQx+ uTRu)dt (2:6)



2.3 Dynamic Programming: 9

subject to

_x = A(t)x+ B(t)u x(t0) = x0 (2:7)

where S, Q are positive semide�nite matrices and R is a positive de�nite matrix. For this

problem the solution can be expressed in feedback form

u�(x; t) = �R�1BT (t)P (t)x (2:8)

where P (t) is the solution of Riccati equation.

2.3 Dynamic Programming:

Hamilton-Jacobi-Bellman Equation

The use of the principle of optimality, usually known as dynamic programming, to de-

rive an equation for solving optimal control problem was �rst proposed by Bellman [11].

The application of this principle on continuous optimal control problem has led to the

invention of the famous Hamilton-Jacobi-Bellman (HJB) equation. It is a nonlinear �rst

order hyperbolic partial di�erential equation which is used for constructing a nonlinear op-

timal feedback control law. For the optimal control problem (2.4)-(2.5), the HJB equation

is given by

@J�(x(t); t)

@t
= �min

u(t)
fL(x(t); u(t); t) +

@J�(x(t); t)

@x

T

f(x(t); u(t); t)g (2:9)

and the boundary condition is

J�(x(tf); tf) = �(x(tf); tf ) (2:10)

To obtain a solution to equation (2.9), we proceed in two steps. The �rst step is to

perform the indicated minimization. This leads to a control law of the form

u� =  (
@J�

@x
; x; t): (2:11)

The second step is to substitute (2.11) back into (2.9) and solve the nonlinear, partial

di�erential equation

�
@J�(x; t)

@t
= L(x;  ; t) +

@J�(x; t)

@x

T

f(x;  ; t) (2:12)

for J�(x; t), subject to the boundary condition (2.10). Then the gradient of J�(x; t) with

respect to x is computed, and the optimal feedback control law is obtained

u� =  (
@J�

@x
; x; t) = �(x; t) (2:13)
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The derivation of HJB equation can be found in any standard optimal control text-

book, see for example [2, 4{6]. This equation is a su�cient condition for optimality. The

HJB equation is satis�ed for all time-state pairs (x(t); t) by the optimal value function

J�(x(t); t), i.e. if the system starts in state x(t) at time t, the minimum value of the

performance index is J�(x(t); t).

An advantage of using the HJB approach to solve the optimal control problem, is that

we obtain optimal feedback control law. However, the HJB equation does not in general,

possess classical solution, that is, solutions J�(x(t); t) which are di�erentiable with respect

to t and x. In recent years, a new notion of solution, called the viscosity solution, has

been introduced. For more details of this approach, the reader can consult Ahmed [13]

and the relevant references cited therein.

In general it is not possible to solve (2.12) analytically. However, in the case of

linear quadratic optimal control problem (2.6)-(2.7), the HJB equation reduces to Riccati

di�erential equation, which is given by

� _P (t) = AT (t)P (t) + P (t)A(t) +Q� P (t)B(t)R�1BT (t)P (t) (2.14)

P (tf ) = S (2.15)

This result can be obtained if the value J� = xTP (t)x is substituted in the HJB equation.

2.4 Necessary Conditions of Optimality

2.4.1 Euler-Lagrange Equations

The necessary conditions can be derived by the methods of Calculus of Variations

which are based on the fact that, at each stationary point, the variation in the cost func-

tion should vanish for arbitrary variation in the control [3].

To solve the optimal control problem (2.4)-(2.5), we shall use Lagrange multipliers

�(t) 2 Rn to adjoin the system state equations (2.5), to the performance index (2.4).

Therefore, the augmented performance index is given by,

JA = �(x(tf); tf) +
Z tf

t0

[L(x(t); u(t); t) + �(t)T (f(x(t); u(t); t)� _x)]dt (2:16)

Introducing the Hamiltonian function H de�ned by

H(x(t); u(t); �(t); t) = L(x(t); u(t); t) + �T (t)f (x(t); u(t); t) (2:17)

we can rewrite equation(2.16) in the form

JA = �(x(tf ); tf) +
Z tf

t0

H(x(t); u(t); �(t); t)dt�
Z tf

t0

�(t)T _x(t)dt (2:18)
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The integration of the last term on the right hand side by parts yields,

Z tf

t0

�(t)T _x(t)dt = �(tf)
Tx(tf)� �(t0)

Tx(t0)�
Z tf

t0

_�(t)Tx(t)dt (2:19)

and therefore equation (2.18) becomes

JA = �(x(tf); tf)� �(tf)
Tx(tf) + �(t0)

Tx(t0) +
Z tf

t0

[H(x(t); u(t); �(t); t) + _�(t)Tx(t)]dt

(2:20)

The original problem (2.4)-(2.5) has been converted to the problem of minimizing (2.20)

without constraints.

To achieve the stationarity, the �rst order e�ect of control variations on the cost

function must be zero for 0 � t � tf . Assuming that the initial time t0 and �nal time tf

are �xed, then the �rst variation of JA due to control variation is

�JA =

�
(
@�

@x
� �T )�x

�
t=tf

+ �T�x jt=t0 +
Z tf

t0

�
@H

@u
�u+ (

@H

@x
+ _�T )�x

�
dt (2:21)

Since �(t) is arbitrary so far, we may set it to be

_�T (t) = �
@H

@x
= ��T

@f

@x
�
@L

@x
(2:22)

with boundary condition,

�T (tf) =
@�

@x
jt=tf (2:23)

equation (2.22) is called costate equation and the Lagrange multiplier �(t) is called the

costate.

Since the initial condition x(t0) is �xed, this implies �x(t0) vanishes. Therefore, equa-

tion ( 2.21) reduces to

�JA =
Z tf

t0

�
@H

@u
�u

�
dt (2:24)

For a local minimum, it is necessary that �JA vanishes for arbitrary �u, hence it is neces-

sary that

@H

@u
=

�
@f

@u

�T
�+

�
@L

@u

�T
= 0 (2:25)

for all t0 � t � tf .

Equations (2.5), (2.22),(2.23) and (2.25) are necessary conditions to be satis�ed by

optimal solutions of the problem, when the �nal time is �xed. These equations are called

the Euler-Lagrange equations.



12 Chapter 2. Optimal Control Problem: A Review

In summary, to �nd the optimal control u�(t) that minimizes the performance index

(2.4) subject to the system equation (2.5), the following equations must be solved

_x = f(x; u; t) (2.26)

x(t0) = x0 (2.27)

_� = �
�
@f

@x

�T
��

�
@L

@x

�T
(2.28)

�(tf) =

�
@�

@x

�T
(2.29)

where u�(t) is determined by:

�
@f

@u

�T
�+

�
@L

@u

�T
= 0 (2:30)

Thus, the solution of the optimal control problem is determined by a two-point bound-

ary value problem, expressed by the state equation (2.26) with the initial condition (2.27)

and the costate equation (2.28) with the �nal condition (2.29).

Remarks:

(1) If L(x(t),u(t),t) and f(x(t),u(t),t) are not functions of time explicitly , then the

Hamiltonian is constant along the optimal path.

(2) In the case of free end time, in which the �nal time can be chosen to further minimize

the cost function, another necessary condition must be provided. This condition

can be derived from the �rst variation of the cost function with respect to the time.

Hence the following necessary condition is obtained for optimality with free end

time.  
@�

@t
+H

!
t=tf

= 0 (2:31)

From this equation, it is clear that if the terminal cost �(x(tf ); tf) does not depend

on the time explicitly, then

H jt=tf= 0 (2:32)

Therefore, ifH also does not depend explicitly on time, thenH = 0 for all 0 � t � tf .

(3) It is assumed in the previous derivations that the �nal state x(tf) is free. If the �nal

state is �xed i.e.

x(tf) = xf (2:33)

then the previous necessary conditions still hold except (2.29) which is replaced by

(2.33).
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2.4.2 Pontryagin Minimum Principle

In real problems, the control variables are usually bounded, therefore we can not

di�erentiate the Hamiltonian with respect to the control, equation (2.30). Let the bounded

control lie in the subset U 2 Rm. In this case, the necessary conditions are derived from

the Minimum Principle which was developed by Pontryagin and his school [12].

Pontryagin Minimum Principle:

Suppose that u�(t) is the optimal control with corresponding optimal trajectories x�(t),

and let the Hamiltonian be de�ned by equation (2.17). In order that u�(t) and x�(t) be

optimal of the problem (2.4)-(2.5), then there must exist a costate vector ��(t) such that

the following conditions hold:

_� = �
@H

@x

T

(2.34)

�(tf) =
�
@�

@x

�T
(2.35)

(2.36)

and

H(x�; u�; ��; t) � H(x�; u; ��; t) (2:37)

for any t 2 [t0; tf ] and for all controls u(t) 2 U , which indicates that the optimal control

must minimize the Hamiltonian.

Inequality (2.37) is very useful to obtain the optimal control if the control is bounded

by inequality constraints. It should be pointed out that Pontryagin's minimum principle

is a generalization of the calculus of variations approach. The di�erence between the cal-

culus of variations approach and the minimum principle is that equation (2.30) is replaced

by (2.37).

From the previous discussion, it is clear that the variational approach and the mini-

mum principle lead to a nonlinear two-point boundary value problem which is very di�cult

to solve analytically.

There is a very large number of methods which have been proposed to obtain a numer-

ical solutions of the HJB equation and the nonlinear two-point boundary value problem.

These methods are called indirect methods. There is another class of methods to solve the

optimal control problem, called direct methods. The direct methods are based on solving

the optimal control problem by transforming it into a nonlinear programming problem.

In the following sections, we review these methods. A block diagram which shows these

methods is depicted by Figure 2.1
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2.5 Indirect methods

These are the methods that based on solving the optimal control problem using HJB

equation or the nonlinear two-point boundary value problem. These methods can be

divided into two categories: closed loop methods and open loop methods.

2.5.1 Closed Loop Control Methods

Some of the methods which were proposed to obtain the feedback optimal control are

summarized as follows

� The �rst approach to obtain feedback optimal control is based on using the power

series expansion to solve either the HJB equation or the nonlinear two-point bound-

ary value problem successively to obtain an approximate optimal feedback control

law. This approach has been applied by Lukes [14], to �nd an approximate solution

of HJB equation of the in�nite horizon general nonlinear optimal control problem.

The solution of HJB equation is reduced to solving successively systems of linear

algebraic equation. Using the same idea, Willemstein [15] extended Lukes' work

to handle the �nite time nonlinear optimal control problem. The work of Lukes

has been applied by Garrard and Jordan [16] to control F8 �ghter aircraft. The

power series technique has also been used by Nishikawa et al. [17] to obtain the

approximate optimal solution of �nite time quadratic performance index subject to

the perturbed system given by,

_x = A(t)x+ �f(x; t) +B(t)u (2:38)

This optimal control problem was solved by expanding the costate by a power series

with respect to �, and the solution was reduced to solving a sequence of linear partial

di�erential equations. Also, similar idea was applied by Yoshida et al [18] to solve

the �nite and the in�nite time quadratic performance indices subject to the system

_x = f(x) +Bu (2:39)

In this case, the lexicographic listing vector x[k] was used to express the function f(x)

in a power series about the origin and also to express the costates by a power series

of unknown parameters. The solution of the �nite time optimal control problem

was reduced to solving a Riccati equation and a sequence of ordinary linear di�er-

ential equations, while the solution of the in�nite time optimal control problem was

reduced to solving sequence of algebraic equations.

� The second approach to obtain the optimal feedback control is to obtain the neigh-

boring optimal feedback control which can be obtained either by linearizing the
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necessary conditions of the optimality around the optimal solution or expanding

the performance index up to the second order and the constraints up to the �rst

order around the optimal solution [3,19{22].

� The third approach to �nd the optimal feedback control law is based on writing the

nonlinear state equations into a linear form state equations as follows

_x = f(x; u; t) = A(x; u; t)x+ B(x; u; t)u (2:40)

and then the quadratic optimal control problem is solved by solving the following

Riccati equation

_P (x; u; t) = P (x; u; t)A(x; u; t) + AT (x; u; t)P (x; u; t)

�P (x; u; t)B(x; u; t)R�1BT (x; u; t)P (x; u; t) +Q (2.41)

and the optimal control is given by

u�(x; t) = �R�1BT (x; u; t)P (x; u; t)x(t) (2:42)

Thus for a given state x the optimal control is found by simultaneously solving

equations (2.41) and (2.42).

This method was developed by Burghart [23], Wernli and Cook [24].

� The fourth approach to �nd the optimal feedback control solution is to solve the

inverse optimal control problem [25{28].

� Some of other approaches can be found in Nedeljkovic [29], Goh [30], and Longmuir

and Bohn [31].

2.5.2 Open Loop Control Methods

There is a great number of papers that present numerical methods for �nding the

optimal open loop control. These methods are based on solving the nonlinear two-point

boundary value problem. Some of these methods are: Gradient methods, quasilineariza-

tion, penalty function methods, neighboring extremal methods. These are standard meth-

ods to solve the optimal control problems, for details of these methods, the reader can

refer to [3{5].

2.6 Direct Methods

This is another major class of methods for solving the optimal control problems.

These methods o�er some advantages when applied to optimal control problems. The
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�rst advantage is that the di�cult dynamic optimal control problem can be converted

into static parameters optimization problem which is easier than the original one; the

second advantage is that there are well-developed algorithms to solve the nonlinear pro-

gramming problems; the third advantage is that it is possible to treat di�erent types of

constraints easily.

Due to these attractive features of the direct methods and the drawbacks, men-

tioned earlier, of the indirect methods, a number of authors has used the direct meth-

ods to solve the optimal control problem. The direct methods are based on obtaining

the solution through a direct minimization of the performance index, subject to con-

straints, of the optimal control problem. These methods can be applied by converting

the nonlinear optimal control problem into a nonlinear mathematical programming prob-

lem [32{34,37, 39{41,43, 48,49, 52,54, 55,70,75{78].

The optimal control problem can be converted into a mathematical programming

problem by using either the discretization or the parameterization techniques. The work

in this thesis is based on using the parameterization technique to convert the optimal

control problem into mathematical programming problem.

2.6.1 Discretization Methods

All discretization approaches divide the time interval into ns segments

t0 < t1 < t2 < � � � < tns = tf

where the time points are referred to as mesh points, grid points or nodes.

One approach to apply this method is to discretize both the state variables and the

control variables, therefore we have the following sequence of unknown values of state

variables and control variables,

z = (x0; x1; � � � ; xns ; u0; u1; � � � ; uns�1)

and the system state equations are replaced by a set of algebraic equations which are

considered as equality constraints. Hence this problem can be solved using any of the

nonlinear programming techniques. One of the disadvantages of this approach is the high

dimensionality of the vector z.

Another approach is to discretize the control variables only

z = (u0; u1; � � � ; uns�1)

and then the system state equations have to be integrated to �nd the state variables as

a function of the control variables. For more details of these approaches the interested

reader is referred to [35,75, 78] and the references cited therein.
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2.6.2 Parameterization Methods

The parameterization technique is an essential part of this research, therefore we will

explain this approach in some details.

The parameterization technique can be applied in one of the following three forms

1. Control Parameterization:

The control parameterization is based on approximating the control variables by

choosing an appropriate structure with �nitely many unknown parameters as follows

ul(t) =
NX
i=0

b
(l)
i �i(t) l = 1; 2; � � � ;m (2:43)

where bi's are unknown parameters, �i(t) denotes an appropriate set of functions

forming a basis of a �nite dimensional control space.

The state variables are obtained as a function of the unknown parameters of the

control variables, by integrating the system state equations. And by substituting

the approximated control variables and the corresponding state variables into the

performance index, the optimal control problem can be converted into a static pa-

rameters programming problem, which can be solved easier than the original one.

Some of the functions that have been used to approximate the control variables

are [33]: Piecewise constant functions, piecewise linear functions, piecewise polyno-

mials, splines of a given order, or functions known to be well-suited for practical

realization.

The control parameterization approach is the most widely used parameterization

approach. It has been used in many research papers and books, [33, 34, 36{38] and

the cited therein references. Applying this technique requires the integration of the

system state equations, which is a computationally expensive process [73].

2. Control-State Parameterization

The control-state parameterization approach [39{42, 48, 52, 54, 70, 71] is based on

approximating both the state variables and the control variables by a sequence of

known functions with unknown parameters as follows

xj(t) =
NX
i=0

a
(j)
i �i(t) j = 1; 2; � � � ; n (2.44)

ul(t) =
NX
i=0

b
(l)
i �i(t) l = 1; 2; � � � ;m (2.45)
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where ai, bi are unknown parameters, and �i(t) is an appropriate set of functions.

Using this method, the optimal control problem can be converted into a nonlinear

mathematical programming problem.

The main disadvantages of this approach are: A large number of unknown param-

eters which have to be determined ai and bi; the system state equations have to be

replaced by a large number of equality constraints. Therefore, using this approach

we end up with a large dimensional nonlinear mathematical programming problem,

in the sense of the number of unknown parameters and the number of equality

constraints.

3. State Parameterization

The idea of the state parameterization is to approximate only the system state

variables by a sequence of given functions with unknown parameters

xj(t) =
NX
i=0

a
(j)
i �i(t) j = 1; 2; � � � ; n (2:46)

and then the control variables are obtained from the state equations.

In comparison with the previous two approaches, control parameterization and

control-state parameterization, this method has some advantages: (1) There is no

need to integrate the system state equations as in control parameterization. (2) The

number of the unknown parameters is lower than those in control-state parameter-

ization. (3) The system state equations will be satis�ed directly and will not be

replaced by equality constraints. (4) The state constraints can be handled directly.

In spite of many advantages of this technique, it has not been used extensively

compared with the previous two approaches [43, 49, 77, 79]. The main reasons for

this are the following:

(a) It is di�cult to handle the nonlinear systems using the state parameterization,

because it is not always easy to �nd the control variables as function of the

state variables.

(b) There is no systematic way to apply this technique on general optimal control

problems of unequal number of state variables and control variables.

In this research, we overcome these di�culties by using the second method of quasi-

linearization and by proposing a method to help the user to decide which state

variables to prameterize.
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In the previous few works [43, 49, 77, 79] concerning the state parameterization, this

technique was applied on special cases, for example linear optimal control problem with

equal number of state variables and control variables or single input nonlinear systems

which can be expressed in the controllability canonical form. Also there is no detailed

treatment of this technique for general optimal control problems, linear or nonlinear, con-

strained or unconstrained. Moreover, there are no details on how to apply this technique.

Therefore, the �rst purpose of this thesis is to clarify this approach showing a systematic

way how we can apply it to convert the optimal control problem into mathematical pro-

gramming problem. Also we will generalize this technique to handle general, linear and

nonlinear, constrained and unconstrained, optimal control problems.

As we mentioned earlier, one of the problems of this technique is the di�culty of han-

dling the nonlinear systems. In this work, we overcome this problem by using the second

method of the quasilinearization [45]. In this research, all aspects of the state parameter-

ization will be considered. Moreover we will show the most appropriate methods of using

this technique.

The state parameterization can be employed using di�erent basis functions [33]. In

this work the Chebyshev polynomials will be used to parameterize the system state vari-

ables. The Chebyshev polynomials have several advantages. Some of these advantages

are fast convergence and minimax property [44]. Vlach [46] stated that, of all ultraspher-

ical polynomials, the Chebyshev polynomials of the �rst type can uniformly approximate

a much broader class of functions. This does not mean at all that we are saying that

the Chebyshev polynomials perform better than others in all applications, some other

orthogonal polynomials may perform better for certain applications.

The use of the Chebyshev polynomials to solve the optimal control problems is not new.

Paraskevopoulos [66], Wang and Nagurka [69], Chou and Horng [62], Liu and Shih [64]

used Chebyshev polynomials to solve linear quadratic optimal control problems. On the

other hand, Vlassenbroeck and Van Dooren [39,40,70,71] used the Chebyshev polynomials

to parameterize the state variables and the control variables to solve the unconstrained

nonlinear optimal control problem, and the constrained optimal control problem. In spite

of their generalization to solve nonlinear optimal control problems, their method has

some severe disadvantages [48]. Some of these disadvantages are: Extremely complicated

method of approximation; the optimal control problem is reduced to a large size nonlinear

programming problem.

The second purpose of this thesis is to use the Chebyshev polynomials to parameterize

the system state variables to solve the unconstrained linear and nonlinear optimal con-
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trol problems. Moreover, we extend this approach to solve both the constrained linear

quadratic optimal control problem subject to all types of constraints and the constrained

nonlinear optimal control problems subject to terminal state constraints and control sat-

uration constraints. Some of the advantages of our method are: (1) Easy approximation

method, (2) explicit formula to approximate the performance index, (3) small size math-

ematical programming problems.

In all the direct methods mentioned previously, the nonlinear optimal control problem

was converted into a nonlinear mathematical programming problem. One of the meth-

ods to solve the nonlinear programming problem is a sequential quadratic programming.

There are two exceptions: the work of [55] and the work of [57]. In these papers the

nonlinear optimal control problem was converted directly into a sequence of quadratic

programming problems using the discretization technique. These two works have some

drawbacks as in the �rst work a speci�c class of problems was solved, moreover there was

a need for special program to handle the control saturation constraints. For the second

work, it only gives an upper bound on the optimal value, moreover the states and costates

have to be integrated in each iteration.

The third purpose of this thesis is to reduce the nonlinear optimal control problem

directly to a sequence of quadratic programming problems using the state parameteri-

zation. Our method has the following advantages: (1) It can handle general problems,

(2) there is no need for special program to solve it, (3) there is no need to integrate the

system states or the costates, (4) the optimal solution can be obtained, (5) due to the

use of the state parameterization, each of the quadratic programming problems is a small

size problem, in the sense of the number of the unknown parameters and the number of

equality constraints.

Although the direct methods give the open loop solution of the optimal control prob-

lems, there are few works [61, 62, 64, 66, 67, 69] in which the parameterization technique,

state-costate parameterization, was used to obtain the feedback solution of the linear

quadratic optimal control problems. The fourth purpose of this thesis is to extend the use

of the direct methods to obtain the feedback optimal solution of the nonlinear optimal

control problems using the parameterization technique via Chebyshev polynomials.

In short, we can say that this thesis answers unanswered questions in the previous

works, completes and extends previous works, and develops new direction of research

concerning the computations of optimal feedback control of the nonlinear systems.

Another approach to solve the optimal control problem using the parameterization
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technique is by applying this technique on the nonlinear two-point boundary value prob-

lem, by parameterizing the states and the costates [61, 62, 64, 66, 67, 69]. Hence, the

nonlinear two-point boundary problem is reduced to solving a set of algebraic equations.



Chapter 3

Linear Optimal Control Problem

3.1 Introduction

As has been shown in the previous chapter, the linear quadratic optimal control prob-

lem is one of the few optimal control problems in which an optimal analytical feedback

solution can be obtained [2, 3]. The solution of this problem can be obtained either by

solving matrix Riccati equation, which is a nonlinear ordinary di�erential equation, or by

solving linear two-point boundary value problem.

To avoid the di�culties associated with the numerical integration of these methods,

there are two approaches: The �rst approach is to convert the linear quadratic optimal

control problem into a quadratic programming problem, Razzaghi and Elnagar [84] used

shifted Legendre polynomials to parameterize the derivative of each of the state variables;

Frich and Stech [41] used the Walsh functions to parameterize the state variables and the

control variables; Elnagar and Razzaghi [86] parameterized the state variables and the

control variables in terms of their values at Legendre-Gauss-Lobatto points. The second

approach is to solve it by converting the linear two-point boundary value problem into a

set of linear algebraic equations by parameterizing the system state variables and costate

variables [61, 62,64, 66,67, 69,85].

As has been mentioned in the previous chapter, most of the parameterization meth-

ods are based on either control parameterization or control-state parameterization. But

these two approaches have some drawbacks. Therefore, throughout this thesis the state

parameterization method is employed.

The �rst purpose of this chapter is to discuss the state parameterization and show how

we can apply it in systematic way. The second purpose is to present the reformulation

method of the optimal control problem into a quadratic programming problem. The

third purpose is to derive an explicit formula to approximate the performance index.

23
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For all of these objectives, in this chapter, we present a new numerical method to solve

the simplest optimal control problem, the linear quadratic optimal control problem, by

directly converting it into a quadratic programming problem. To this end we employ

the state parameterization method by using the Chebyshev polynomials of the �rst type,

therefore the optimal control problem is converted into quadratic programming problem

which can be solved in one iteration by performing matrix�vector multiplication. The

advantages of this numerical method are: There is no need to integrate the system state

or costate equations; the optimal control problem is converted into a small quadratic

programming problem.

3.2 Problem Statement

Consider the dynamical system described by the following state equations:

_x = Ax+ Bu (3:1)

where x 2 Rn, u 2 Rm, m � n; A and B are respectively, n� n and n�m real�valued

matrices. We have assumed that the process starts from t = 0 and ends at the �xed time

tf > 0. A process which starts from t0 6= 0 may be transformed to satisfy this assumption

by suitable shifting the time axis.

The initial condition for the state equations (3.1) are:

x(0) = x0 (3:2)

where x0 is a given vector in Rn.

The optimal control problem is to �nd an optimal control u�(t) on 0 � t � tf which

minimizes the quadratic performance index,

J =
Z tf

0

(xTQx+ uTRu)dt (3:3)

subject to the state equations (3.1) and the initial condition (3.2). Here Q is an n � n

positive semide�nite matrix and R is an m�m positive de�nite matrix.

In this chapter, we propose a method to solve this optimal control problem by con-

verting it directly into a quadratic programming problem. This method is based on

approximating the system state variables by Chebyshev series of �nite length but with

unknown parameters. This method will be generalized in the next chapter to solve the

nonlinear optimal control problem.



3.3 State Parameterization Using Chebyshev Polynomials 25

3.3 State Parameterization Using Chebyshev Poly-

nomials

Before we start discussing the state parameterization, some important properties of

the Chebyshev polynomials of the �rst type will be summarized.

3.3.1 Chebyshev Polynomials

Because the Chebyshev polynomials have some advantages, compared with other or-

thogonal polynomials, such as fast convergence and minimax properties [44], they will be

used in this research to perform the state parameterization. To facilitate the presentation

of the materials that follows, we present in this section some background on Chebyshev

polynomials.

The Chebyshev polynomials of the �rst type are de�ned on the interval � 2 [�1; 1].

These polynomials are de�ned as follows:

Tr(�) = cos(r�) cos � = � � 1 � � � 1 (3:4)

Therefore, the �rst three Chebyshev polynomials are:

T0(� ) = 1

T1(� ) = �

T2(� ) = 2�2 � 1

(3:5)

The remaining Chebyshev polynomials can be obtained from the recurrence relation,

Tr+1(� ) = 2�Tr(� )� Tr�1(� ) r � 1 (3:6)

The Chebyshev polynomial Tn(� ) is a solution of the Chebyshev equation

(1� � 2)
d2y

d�2
� �

dy

d�
+ n2y = 0 (3:7)

The polynomials Tn(� ) and Tm(� ) are orthogonal in the interval � 2 [�1; 1] with

respect to the weighting function

w(� ) =
1

(1� � 2)1=2
(3:8)

and therefore

Z 1

�1

Tn(�)Tm(�)

(1� � 2)1=2
d� =

8>><
>>:

0 n 6= m
�
2

n = m 6= 0

� n = m = 0

(3:9)

The Chebyshev polynomials have some interesting properties which will be used fre-

quently throughout this thesis. Some of these properties are:
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� The product relation

Tn(� )Tm(�) =
1

2
(Tn+m(� ) + Tjn�mj(� )) (3:10)

� The initial and �nal values

Tn(1) = 1 (3.11)

Tn(�1) = (�1)n (3.12)

� Integration property

Z 1

�1

Tn(�)d� =

8>><
>>:

0 n odd
�2

n2�1
n even

2 n = 0

(3:13)

A function x(�) can be approximated by a Chebyshev series of length N as follows,

x(�) =
a0

2
+

NX
i=1

aiTi(� ) (3:14)

where

aj =
2

K

KX
i=1

x(cos(�i)) cos(j�i) j = 0; 1; � � � ; N (3:15)

where �i =
2i�1

2K
�; i = 1; 2; � � � ;K; and K > N

The derivative of x(�) with respect to � is given by

_x(�) =
b0

2
+

N�1X
i=1

biTi(�) (3:16)

where
bN�1 = 2NaN

bN�2 = 2(N � 1)aN�1

br�1 = br+1 + 2rar r = 1; 2; � � � ; N � 2

(3:17)

3.3.2 State Parameterization

The state parameterization has several advantages over the other parameterization

methods. But so far its use was restricted to special problems. In this section, di�erent

aspects of state parameterizations are discussed.

The idea of the state parameterization, using the Chebyshev polynomials of the �rst

type, is to approximate the state variables by a �nite length Chebyshev series

xj(�) =
a
(j)
0

2
+

NX
i=1

a
(j)
i Ti(�) j = 1; 2; � � � ; n (3:18)
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where Ti(�) is the i-th order Chebyshev polynomial of the �rst type and ai's are the un-

known parameters. The control variables are determined from the system state equations

as a function of the unknown parameters of the state variables. Therefore, all the system

state equations, in most cases, are satis�ed directly. By substituting these approxima-

tions of the state variables and the control variables into the performance index, it can be

converted into a quadratic function of the unknown parameters ai. The initial conditions

are replaced by equality constraints.

In applying the state parameterization, we distinguish two cases:

1. The number of the state variables is equal to the number of control variables i.e.

n = m.

If the numbers of the state variables and the control variables are equal, then each

state variable will be approximated by a �nite length Chebyshev series

xj(�) =
a
(j)
0

2
+

NX
i=1

a
(j)
i Ti(� ) j = 1; 2; � � � ; n (3:19)

and the control vector can be obtained as a function of these state variables as

follows, assuming that the matrix B is nonsingular,

u(�) = B�1[
2

tf

dx

d�
� Ax(�)] (3:20)

which can be expressed in series form as

ul(�) =
b
(l)
0

2
+

NX
i=1

b
(l)
i Ti(�) l = 1; 2; � � � ;m = n (3:21)

where b
(l)
0 , b

(l)
1 , b

(l)
2 , � � �, b(l)N are expressed in terms of a

(j)
0 , a

(j)
1 , a

(j)
2 , � � �, a(j)N .

2. The number of the control variables is less than the number of the state variables

m < n.

If the number of the control variables is less than the number of the state variables,

then there is no need to approximate all the state variables. This is because if all

the state variables are approximated then many of the state equations are replaced

by a large number of equality constraints. Therefore, in this case, we choose and

directly approximate a set of the state variables which will enable us to �nd the

remaining state variables and the control variables as a function of this set. Assume

that this set is x1; x2; � � � ; xq and q < n , then this set can be approximated by

xj(�) =
a
(j)
0

2
+

NX
i=1

a
(j)
i Ti(�) j = 1; 2; � � � ; q (3:22)
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and the remaining n� q state variables and the control variables are obtained from

the system equations

xj(� ) =
a
(j)
0

2
+

NX
i=1

a
(j)
i Ti(� ) j = q + 1; q + 2; � � � ; n (3.23)

ul(� ) =
b
(l)
0

2
+

NX
i=1

b
(l)
i Ti(� ) l = 1; 2; � � � ;m (3.24)

where a
(j)
0 ; a

(j)
1 ; � � � ; a(j)N , j = q + 1; � � � ; n and b

(l)
0 ; b

(l)
1 ; � � � ; b

(l)
N , l = 1; 2; � � � ;m are

functions of the parameters a
(j)
0 ; a

(j)
1 ; � � � ; a(j)N , j = 1; 2; � � � ; q. The advantage of not

approximating all state variables is that the optimal control problem is reduced to

a quadratic programming problem with fewer unknown parameters.

For the special case of a single input single output systems expressed in controlla-

bility canonical form, we need to approximate only one state variable and all other

state variables and the control variable can be found as a function of this state vari-

able. This special case is the main interest of previous works [43, 49, 77]. Also [79]

proposed, if the number of control variables is less than the number of state vari-

ables, to add n �m new arti�cial control variables to the system. This technique

has two disadvantages: (1) There are a large number of unknown parameters, (2)

The original problem is changed.

Remarks:

In some cases, we may face the situation that all the state variables and the control

variables are approximated but not all the state equations are satis�ed. In this case, the

unsatis�ed state equations will be converted into equality constraints.

3.4 Which State Variables to Parameterize?

It is clear from the previous section that if the number of the state variables is larger

than the number of the control variables, then the set of state variables which can be

selected and approximated is not unique. We can choose di�erent sets, each of them can

give us the remaining state variables and the control variables as in the following example

_x1 = x2 (3.25)

_x2 = x1 + x2 + u (3.26)

For this simple example, we have two possibilities: The �rst possibility is to approximate

x1 by a �nite length Chebyshev series and x2 can be found from the �rst state equation

by di�erentiating x1, while u can be found from the second state equation as a function

of both x1; x2. The second possibility is to approximate x2 and to �nd x1 from the �rst



3.4 Which State Variables to Parameterize? 29

equation by integrating x2, while u can be found from the second state equation.

To limit the number of the state variables that can be selected and directly approxi-

mated, we propose to select the set of the state variables that enables us to express the

remaining state variables and the control variables, as a function of this set, by di�eren-

tiation (i.e. same as �rst possibility of the previous example) rather than by integration.

There are three reasons to justify this proposal: (1) The �rst reason is that the length

of the series will increase at each time we perform the integration, (2) the second rea-

son is that by di�erentiation we get more accurate results, because in di�erentiation the

unknown parameters are multiplied by an integer and therefore there is no truncation

error. However, in integration, the unknown parameters are divided by an integer and

hence there is a truncation error, (3) the third reason is that the integration may lead to

a very complicated approximation e.g _x1 = x1 + x2. If x2 is approximated directly, then

x1 will have a complicated form. However, if x1 is approximated directly, then x2 will

have simple form.

These ideas are clari�ed by the following example,

Example 1: [40] Minimize

J =
Z 1

0
(x21 + x22 + 0:005u2)dt (3:27)

subject to

_x1 = x2 x1(0) = 0 (3.28)

_x2 = �x2 + u x2(0) = �1 (3.29)

The exact optimal value of this problem is J = 0:06936094. After Changing the time

interval into � 2 [�1; 1], this problem is solved by two approaches:

� The �rst approach is to approximate x1 by ninth order Chebyshev series and to

calculate x2 from the �rst state equation by di�erentiation. Then x2 will be of 8th

order Chebyshev series. The control variable u can be found from the second state

equation. In this case, we obtain the optimal value Ĵ = 0:0693689 and the initial

conditions are satis�ed exactly.

� The second approach is to approximate x2 by 9th order Chebyshev series and x1

can be calculated from the �rst state equation by integration. Then x1 will be

of 10th order Chebyshev series. The control variable is obtained from the second

state equation. In this case, we obtain Ĵ = 0:0660667 and the initial conditions

are x1(0) = 0:0586702 and x2(0) = �1. This indicates that x1(0) is not satis�ed

accurately.

From this example, it is clear that the �rst approach gives more accurate results as

expected.
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3.5 Problem Reformulation

Because the Chebyshev polynomials of the �rst type are de�ned on the interval � 2

[�1; 1], the time interval t 2 [0; tf ] of the optimal control problem is transformed into the

interval � 2 [�1; 1] using the transformation

� =
2t

tf
� 1 (3:30)

This transforms the optimal control problem (3.1)-(3.3) into: Find the optimal control

u�(�) that minimizes the quadratic performance index

J =
tf

2

Z 1

�1

(xTQx+ uTRu)d� (3:31)

subject to the state equations

dx

d�
=

tf

2
(Ax(� ) + Bu(�)) (3.32)

x(�1) = x0 (3.33)

To formulate this problem into quadratic programming problem, our method is based

on parameterizing the system state variables using Chebyshev polynomials of the �rst

type. From (3.19)-(3.24) of section 3.3.2, the state variables and the control variables can

be approximated by

xk(�) =
a
(k)
0

2
+

NX
i=1

a
(k)
i Ti k = 1; 2; � � � ; n (3.34)

ul(�) =
b
(l)
0

2
+

NX
i=1

b
(l)
i Ti l = 1; 2; � � � ;m (3.35)

where the unknown parameters are a
(k)
0 ; a

(k)
1 ; � � � ; a(k)N , k = 1; 2; � � � ; q. The parameters

of the remaining state variables and the control variables are function of these unknown

parameters.

Equations (3.34) and (3.35) can be written in a matrix form

2
6666664

x1

x2
...

xn

3
7777775
=

2
66666664

a
(1)

0

2
a
(1)

1 � � � a
(1)

N�1 a
(1)

N

a
(2)

0

2
a
(2)

1 � � � a
(2)

N�1 a
(2)

N

...
...

...
...

...
a
(n)

0

2
a
(n)
1 � � � a

(n)
N�1 a

(n)
N

3
77777775

2
6666664

T0

T1
...

TN

3
7777775

(3:36)

2
6666664

u1

u2
...

um

3
7777775
=

2
66666664

b
(1)

0

2
b
(1)

1 � � � b
(1)

N�1 b
(1)

N

b
(2)

0

2
b
(2)

1 � � � b
(2)

N�1 b
(2)

N

...
...

...
...

...
b
(m)

0

2
b
(m)

1 � � � b
(m)

N�1 b
(m)

N

3
77777775

2
6666664

T0

T1
...

TN

3
7777775

(3:37)
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or in compact form

x = �T u = �T (3:38)

By this approximation, in most of the cases, the system state equations are satis�ed

directly and replaced by the approximated state variables and control variables. If there

are state equations which are still unsatis�ed, they will be treated as equality constraints.

An example of this case is shown in section 4.5 of the next chapter.

Using the Chebyshev polynomials properties at � = �1, the initial states can also be

approximated as follows

a
(k)
0

2
� a

(k)
1 + a

(k)
2 � a

(k)
3 + � � �+ (�1)Na(k)N � xk(�1) = 0 k = 1; 2; � � � ; n (3:39)

These equations will be treated as equality constraints.

The last part of the optimal control problem which also has to be approximated is the

performance index. By substituting (3.38) into (3.31) we get,

Ĵ =
tf

2

Z 1

�1

(T T�TQ�T + T T�TR�T )d� (3:40)

where Ĵ is the approximate value of J . Let �TQ� = M and �TR� = P , and notice that

M and P are symmetric matrices. The �rst part of Ĵ , namely T TMT can be written as

T TMT =
N+1X
i=1

Ti�1

N+1X
j=1

mijTj�1 =
N+1X
i=1

N+1X
j=1

Ti�1mijTj�1 (3:41)

which can be expanded into

T TMT = m11T0T0 + 2m12T0T1 + 2m13T0T2 + � � �+ 2m1; N+1T0TN

+m22T1T1 + 2m23T1T2 + � � �+ 2m2; N+1T1TN

+m33T2T2 + � � �+ 2m3; N+1T2TN
. . .

...

+mN+1; N+1TNTN

(3:42)

The integration of all terms of (3.42) which contains TiTj, such that i + j is odd, is

zero. By considering the remaining terms, equation (3.42) reduces to

T TMT = m11T0T0 + 0 + 2m13T0T2 + 0 + 2m15T0T4 + � � �

+m22T1T1 + 0 + 2m24T1T3 + � � �

+m33T2T2 + 0 + 2m35T2T4 + � � �
. . .

...

+mN+1; N+1TNTN

(3:43)

The integration of these terms can be obtained using the following result,
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Theorem 1 The integration of the term (3.43) can be given by

Z 1

�1

T TMTd� =
1

2

�
�

2

k2 � 1

N+1�kX
i=1

2 �mi;i+k � 2
N+1�kX
i=1

1

(k � 2 + 2i)2 � 1
2 �mi;i+k

�
(3:44)

where k = 0; 2; 4; � � �,N (N even) or N-1 (N odd), and

�mi;i+k =

8<
: mi;i+k k 6= 0

mii

2
k = 0

(3:45)

Proof: (3.43) can be written as,

T TMT =
X
i=1

Ti�1miiTi�1 + 2
X
i=1

X
j=1

Ti�1mi;i+2jTi�1+2j (3.46)

= 2
X
j=0

X
i=1

Ti�1 �mi;i+2jTi�1+2j (3.47)

where �mi;i+2j is as de�ned in the theorem.

To decide the upper limits of the summation, it is clear that the largest possible value

for i� 1 + 2j is N , hence, the upper limit of i is N + 1� 2j. On the other hand, 2j can

not be greater than N , therefore, the upper limit for 2j is N if N is an even number, or

N � 1 if N is an odd one. Substituting these limits into equation (3.47) and by using the

product property of Chebyshev polynomials, we get

8>><
>>:

2
PN=2

j=0

PN+1�2j
i=1

1

2
�mi;i+2j(T2i�2+2j + T2j) N = even

2
P(N�1)=2

j=0

PN+1�2j
i=1

1

2
�mi;i+2j(T2i�2+2j + T2j) N = odd

(3:48)

which can be integrated, using the integration property of Chebyshev polynomials, to give

8>>><
>>>:

2
PN=2

j=0

PN+1�2j
i=1

1

2
�mi;i+2j(

�2

(2i�2+2j)2�1
+ �2

(2j)2�1
) N = even

2
P(N�1)=2

j=0

PN+1�2j
i=1

1

2
�mi;i+2j(

�2

(2i�2+2j)2�1
+ �2

(2j)2�1
) N = odd

(3:49)

letting 2j = k, the previous equation can be written as

2
N+1�kX
i=1

1

2
�mi;i+k(

�2

(2i� 2 + k)2 � 1
+

�2

k2 � 1
) (3:50)

where k=0, 2, 4, � � � ; N (N even) or N � 1 (N odd). Equation (3.50) is the required

result. 2

Following the same procedure, the integration of the second part of the performance

index (3.40) can be computed

Z 1

�1
T TPTd� = 2

N+1�kX
i=1

1

2
�pi;i+k(

�2

(2i� 2 + k)2 � 1
+

�2

k2 � 1
) (3:51)
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where

�pi;i+k =

8<
: pi;i+k k 6= 0

pii
2

k = 0
(3:52)

and k = 0; 2; 4; � � � N (N even) or N-1 (N odd).

The performance index (3.40) can be rewritten as follows

Ĵ = tf

N+1�kX
i=1

1

2

�
�pi;i+k + �mi;i+k

�
(

�2

(2i� 2 + k)2 � 1
+

�2

k2 � 1
) (3:53)

which can be expressed as,

Ĵ =
1

2
aTHa (3:54)

because the entries of the matrices M and P are quadratic functions of the unknown

parameters a, where aT = [a
(1)

0 a
(1)

1 � � � a(1)N a
(2)

0 � � � a(2)N � � � a(q)0 � � � a(q)N ]. The matrix H

can be obtained by �nding the Hessian of Ĵ ,

H =
@2Ĵ

@a
(k)
i @a

(k)
j

(3:55)

where i; j = 0; 1; � � � ; N , and k = 1; 2; � � � ; q.

For the special case, n = m, the matrix H can be obtained explicitly. In this case

aT = [a
(1)

0 a
(1)

1 � � � a(1)N a
(2)

0 � � � a(2)N � � � a(n)0 � � � a(n)N ]. The state variables x can be

expressed as

x = (In 
 T T )a (3:56)

where 
 denotes the Kronecker product, In denotes n � n identity matrix and T T =

[T0 T1 � � � TN ].

Using Chebyshev polynomials' di�erentiation operational matrix D ( see chapter 7 for

details), the control variables u can be obtained

u = B�1

�
2

tf
(In 
 T TDT )a� A(In 
 T T )a

�
(3:57)

By substituting (3.56) and (3.57) into (3.31), we get

Ĵ =
tf

2

Z 1

�1

�
aT (In 
 T )Q(In 
 T T )a

+aT
�
2

tf
(In 
DT )� (In 
 T )AT

�
F

�
2

tf
(In 
 T TDT )� A(In 
 T T )

�
a

�
d� (3.58)

where F = (B�1)TRB�1. Equation (3.58) can be simpli�ed further

Ĵ =
1

2
aT
�
tf

Z 1

�1

�
(Q
 TT T ) +

4

t2f
(F 
DTT TDT )�

2

tf
(FA
DTT T )

�
2

tf
(ATF 
 TT TDT ) + (ATFA
 TT T )

�
d�

�
a (3.59)
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Therefore, the matrix H is given by

H = tf

Z 1

�1

�
(Q
 TT T ) +

4

t2f
(F 
DTT TDT )�

2

tf
(FA
DTT T )

�
2

tf
(ATF 
 TT TDT ) + (ATFA
 TT T )

�
d� (3.60)

The optimal control problem (3.1)-(3.3) is converted into parameters optimization

problem which is quadratic in the unknown parameters and the new problem can be

stated as,

min
a

1

2
aTHa (3:61)

subject to the linear constrains

Fa� b = 0 (3:62)

where the linear constraints are due to the initial and �nal conditions, and in some cases

may also represent some of the system equations which are not satis�ed yet.

The optimal value of the vector a� can be obtained from the standard quadratic

programming method [34], given that H, which is the Hessian of Ĵ , is a positive de�nite

matrix.

a� = H�1F T (FH�1F T )�1b (3:63)

Lemma 1

The matrix H is a positive de�nite matrix.

Proof: Previously, we wrote x = �T , hence x can be written in another way,

x = T a (3:64)

where a is a �k� 1 vector, (�k = (N +1)q is the total number of unknown parameters used

in the approximation of all the state variables) and T is a n � �k matrix of Chebyshev

polynomials. These Chebyshev polynomials are the coe�cients of the unknown parame-

ters in the state variables approximation (3.34). The matrix T can have two forms: The

�rst form is obtained if all state variables are directly approximated, while the second

form is obtained if some of the state variables are directly approximated. In both cases,

the rows of T are linearly independent, and hence its rank is n for all � 2 [�1; 1].

Similarly, writing u as

u = La (3:65)
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where L ism��k matrix of Chebyshev polynomials which are obtained as function of state

variables such that the system di�erential equations are satis�ed. Therefore, the rank of

the matrix L is m because all of its rows are linearly independent. Hence T TQT +LTRL

will be a positive de�nite, and

H =
Z 1

�1

(T TQT + LTRL)d� (3:66)

will also be a positive de�nite. 2

The algorithm to solve the optimal control problem can be summarized as follows:

(1) Approximate the state variables by Chebyshev series, after changing the time inter-

val to � 2 [�1; 1]. Usually we do not need to approximate all the state variables.

(2) Find the control variables and the state variables, which are not directly approxi-

mated, as a function of the approximated state variables.

(3) Calculate the matrix M from �TQ�, and the matrix P from �TR�.

(4) Find an expression of Ĵ from equations (3.50) and (3.51).

(5) Determine the set of equality constraints, due to the initial and �nal conditions and

due to system di�erential equations which are not yet satis�ed, if any.

(6) Find the matrix H, by calculating the Hessian of Ĵ .

(7) Find the optimal parameters from equation (3.63), and substitute these parameters

into equations(3.34) and (3.35) to �nd the approximate optimal trajectories and the

approximate optimal control.

3.6 Computational Results

Find u�(t) that minimizes

Z 1

0

(x21 + x22 + 0:005u2)dt (3:67)

subject to

_x1 = x2 x1(0) = 0 (3.68)

_x2 = �x2 + u x2(0) = �1 (3.69)

The �rst step in solving this problem by the proposed method is to transform the time

interval to � 2 [�1; 1]. This will lead to the following problem
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minimize
1

2

Z 1

�1
(x21 + x22 + 0:005u2)d� (3:70)

subject to

dx1

d�
=

1

2
x2 x1(�1) = 0 (3.71)

dx2

d�
=

1

2
(�x2 + u) x2(�1) = �1 (3.72)

Then by approximating x1(�) by 5th order Chebyshev series of unknown parameters, we

get

x1(�) =
a
(1)

0

2
+

5X
i=1

a
(1)

i Ti(�) (3:73)

Using the Chebyshev polynomials di�erentiation property, _x1(�) is calculated and by

substituting _x1(�) into equation (3.71), x2(�) can be determined,

x2(�) = (2a
(1)

1 +6a
(1)

3 +10a
(1)

5 )T0+(8a
(1)

2 +16a
(1)

4 )T1+(12a
(1)

3 +20a
(1)

5 )T2+16a
(1)

4 T3+20a
(1)

5 T4

(3:74)

=
a
(2)

0

2
+

4X
i=1

a
(2)

i Ti(�) (3:75)

and by substituting x2(�) and _x2(� ) into (3.72), the control u(�) can also be found,

u(� ) = 2 _x2 + x2 (3.76)

= (2a
(1)

1 + 16a
(1)

2 + 6a
(1)

3 + 128a
(1)

4 + 10a
(1)

5 )T0 + (8a
(1)

2 + 96a
(1)

3 + 16a
(1)

4

+480a
(1)

5 )T1 + (12a
(1)

3 + 192a
(1)

4 + 20a
(1)

5 )T2 + (16a
(1)

4 + 320a
(1)

5 )T3

+20a
(1)

5 T4 (3.77)

=
b
(1)

0

2
+

4X
i=1

b
(1)

i Ti(�) (3.78)

From these approximations of x1(� ), x2(�) and u(�), the system state equations (3.71)

and (3.72) are satis�ed directly. This is a clear advantage of using the state parameteri-

zations.

By substituting (3.73), (3.74) and (3.77) into (3.70), and then using the result (3.53),

the following expression of Ĵ can be obtained. In this expression, for simpli�cation, we

write a
(1)

i as ai; i = 0; 1; � � � ; 5.

Ĵ = 0:25a20 + 4:3533a21 � 0:3333a0a2 + 0:32a1a2 + 23:1867a22 + 7:64a1a3

+2:88a2a3 + 71:3217a23 � 0:0667a0a4 + 1:28a1a4 + 44:1821a2a4

+11:52a3a4 + 194:321a24 + 7:9448a1a5 + 8:a2a5 + 173:359a3a5

+32:a4a5 + 505:604a25 (3.79)
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From equations (3.73) and (3.74), another two equations representing the initial states

are obtained

a
(1)

0

2
� a

(1)

1 + a
(1)

2 � a
(1)

3 + a
(1)

4 � a
(1)

5 = 0 (3.80)

2a
(1)

1 � 8a
(1)

2 + 18a
(1)

3 � 32a
(1)

4 + 50a
(1)

5 + 1 = 0 (3.81)

These two equations are considered as equality constraints.

The dynamic optimal control problem is approximated by a quadratic programming

problem. The new problem is to minimize (3.79) subject to the equality constraints (3.80)

and (3.81). The optimal parameters can be obtained using (3.63). And by substituting

these optimal parameters into (3.79), the approximate optimal value can be calculated.

For this particular case, the optimal value is found to be 0.0759522. The optimal param-

eters, the optimal value and the execution time, are summarized in Table 3.1. In this

table, Ttotal refers to the total execution time (including the time needed to reformulate

the optimal control problem into quadratic programming) needed to solve the problem

on SUN-SPARC 4/5 workstation. The time TQ is the time needed to solve the quadratic

programming problem.

The previous problem is also solved by expanding x1(� ) into 9th order Chebyshev

series, and the optimal value is found to be 0.0693689 which is very close to both the

exact value 0.06936094 and the result obtained in [40] which is 0.069368 using 9th order

Chebyshev series. The method of [40], which is based on control-state parameterization

using Chebyshev polynomials, requires the solution of quadratic programming problem

of 30 unknown parameters and subject to 22 equality constraints. However, our method

requires the solution of quadratic programming problem of 10 unknown parameters and

subject to 2 equality constraints. The optimal parameters and optimal value of this case

are shown also in Table 3.1.

Note that the Chebyshev coe�cients decrease rapidly as N increases. This is one of

the very important advantages of the use of Chebyshev series approximation.

The state trajectories and the approximate optimal control of this example, using 5th

order and 9th order Chebyshev series, are shown in Figures 3.1 and 3.2.

This example was solved by Hsieh [51] using a modi�ed steepest method and by

Neuman and Sen [52] using collocation and approximation by cubic splines, also Vlassen-

broack [40] solved this example using control-state parameterization via Chebyshev poly-

nomials. These results, along with our results, are shown in Table 3.2. This table is taken

from Vlassenbroeck [40] and is completed by our results.
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N=5 N=9

i a
(1)

i a
(2)

i b
(1)

i i a
(1)

i a
(2)

i b
(1)

i

0 -0.0513997 -0.146602 1.54476 0 -0.0466305 -0.134355 2.08661

1 -0.00812707 0.294704 -3.6203 1 -0.00809808 0.272406 -3.92827

2 0.0138808 -0.260695 1.9432 2 0.0134297 -0.236317 3.11599

3 -0.0121963 0.183658 -1.64579 3 -0.0114624 0.164968 -2.14518

4 0.0114786 -0.11434 -0.11434 4 0.00699568 -0.098768 1.27391

5 -0.00571701 0 0 5 -0.00369844 0.0530374 -0.67682

6 0.0017457 -0.0247992 0.287136

7 -0.000735377 0.0111405 -0.123536

8 0.000348142 -0.00420865 -0.00420865

9 -0.000116907 0 0

Ĵ = 0:0759522 Ĵ = 0:0693689

Ttotal= 0.68333 sec. Ttotal= 2.53333 sec.

TQ = 0:0166667 sec. TQ = 0:025 sec.

Table 3.1: The Chebyshev parameters of order N=5 and 9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.4

x1(t)

x2(t) N=9

N=5

Time

x(
t)

Figure 3.1: State trajectories x1(t) and x2(t)
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14
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u(
t)

N=5

N=9

Figure 3.2: Approximated optimal control u(t)

Source J Deviation error

Exact value 0.06936094 0

Hsieh [51] 0.0702 8:4� 10�4

Neuman and Sen [52]

N=4 0.0703 9:4� 10�4

N=9 0.06989 5:3� 10�4

Vlassenbroeck [40]

N=5 0.07595 6:6� 10�3

N=9 0.069368 7:1� 10�6

...
...

...

This research

N=5 0.07595646 6:59� 10�3

N=9 0.0693689 7:96� 10�6

Table 3.2: Minimum values of J of the example
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3.7 Conclusion

In this chapter, we have proposed an e�ective numerical method to solve linear quadratic

optimal control problems. The method is based on parameterizing the system states by

Chebyshev series of �nite length. Also, we have derived an explicit formula to approx-

imate the performance index. In addition, in this chapter, we have discussed the state

parameterization and have showed the most appropriate way to apply this technique.

The main advantages of the proposed numerical method are: The di�cult optimal

control problem is converted into quadratic programming problem, with a few linear con-

straints, which can be solved using the standard quadratic programming results. Another

important advantage of this approach is that the number of unknown parameters is kept

as small as possible.

Many ideas and results of this chapter will be used and extended in the following

chapters.



Chapter 4

Nonlinear Optimal Control Problem

4.1 Introduction

In this chapter, we extend the method described in the previous chapter to solve non-

linear optimal control problems, and as a special case the time-varying linear optimal

control problems.

One of the methods to solve the unconstrained nonlinear optimal control problem is

to convert it into a nonlinear programming problem by using the direct methods. For

example, Sirisena [37] proposed a method based on parameterizing the control variables

using piecewise polynomials, Frich and Stech [41] proposed to use the Walsh functions to

parameterize the state variables and the control variables, also Vlassenbroeck and Van

Doreen [39] used the control-state parameterization via Chebyshev polynomials to convert

the optimal control problem into a nonlinear mathematical programming problem. Some

other methods can be found in [32,42,75,76]. The nonlinear mathematical programming

problem, in its turn, can be solved using di�erent methods, in particular the sequential

quadratic programming method [78], which replaces the nonlinear mathematical program-

ming problem by a sequence of quadratic programming problems.

In this thesis, the nonlinear optimal control problem is converted directly into a se-

quence of quadratic programming problems, without converting it into nonlinear program-

ming problem. This approximation can be achieved by employing the second method of

the quasilinearization [45], in which the performance index is expanded up to the second

order and the state equations are expanded up to the �rst order around a nominal tra-

jectories and controls. The use of the second method of quasilinearization facilitate the

application of the state parameterization technique on nonlinear systems.

Using the quasilinearization, the nonlinear optimal control problem is replaced by

a sequence of time-varying linear quadratic optimal control problems and then each of

41
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these problems is converted into a quadratic programming problem by using the state

parameterization via Chebyshev polynomials. Since the obtained quadratic programming

problem is subject to equality constraints only, it can be solved in one iteration by matrix-

vector multiplication.

At the end of this chapter, we present the simulation results of practical problem,

optimal ight control of F-8 �ghter aircraft starting from a large initial conditions.

4.2 Problem Statement

Consider the nonlinear optimal control problem which can be stated as: Find an

optimal control u�(t) on the 0 � t � tf which minimizes the performance index

J =
Z tf

0

(xTQx+ uTRu)dt (4:1)

subject to the system state equations

_x(t) = f(x(t); u(t); t) x(0) = x0 (4:2)

where x 2 Rn, u 2 Rm , Q is n� n positive semide�nite matrix and R is m�m positive

de�nite matrix; f is continuously di�erentiable with respect to all its arguments.

As shown in chapter 2, the solution of this problem, by applying the necessary condi-

tions, leads to nonlinear two-point boundary value problem, while applying the su�cient

conditions leads to the HJB partial di�erential equation. In this chapter, we solve this

problem without using neither the necessary conditions nor the su�cient conditions.

The idea of the solution is to use the second method of the quasilinearization to replace

the nonlinear optimal control problem by a sequence of linear quadratic optimal control

problems. And then to use the state parameterization via Chebyshev polynomials to

convert each of these problems into a quadratic programming problem. Before we start

in reformulating the problem, we discuss briey the quasilinearization method.

4.3 Quasilinearization

The quasilinearization method was developed by Bellman and Kalaba [45] from an

origin in the theory of dynamic programming. The quasilinearization can be applied to

optimal control problems in two ways:

The �rst method, which is widely used, is to linearize the nonlinear two-point bound-

ary value problem around nominal trajectories and controls. As a result of this method,
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the nonlinear two-point boundary value problem is replaced by a sequence of linear two-

point boundary value problems.

Assume that @H
@u

= 0 has been solved for u(t) and substituted in both the state

equations and in the costate equations, then the nonlinear two-point boundary value

problem can be written as follows,

_x = f(x; �; t) (4.3)

_� = g(x; �; t) (4.4)

where x(t0) = x0, �(tf) = �f , f and g are nonlinear functions of x(t); �(t) and t. To apply

the �rst method of the quasilinearization, the previous two equations are expanded up to

the �rst order around nominal trajectories xk(t); �k(t). Then we obtain

_xk+1 = A11(t)x
k+1 + A12(t)�

k+1 + E1(t) (4.5)

_�k+1 = A21(t)x
k+1 + A22(t)�

k+1 + E2(t) (4.6)

where xk+1(t0) = x0; �
k+1(tf) = �f and

A11(t) =
@f

@x
(xk; �k; t) (4.7)

A12(t) =
@f

@�
(xk; �k; t) (4.8)

A21(t) =
@g

@x
(xk; �k; t) (4.9)

A22(t) =
@g

@�
(xk; �k; t) (4.10)

E1(t) = f(xk; �k; t)�
@f

@x
(xk; �k; t)xk(t)�

@f

@�
(xk; �k; t)�k(t) (4.11)

E2(t) = g(xk; �k; t)�
@g

@x
(xk; �k; t)xk(t)�

@g

@�
(xk; �k; t)�k(t) (4.12)

Therefore, the nonlinear two-point boundary value problem, (4.3) and (4.4), is replaced

by a sequence of linear two-point boundary value problems (4.5) and (4.6).

The second method of the quasilinearization is to expand the performance index up to

the second order and to expand the state equations up to the �rst order around a nominal

trajectories xk(t); uk(t). Therefore, the nonlinear optimal control problem is replaced

by a sequence of time-varying linear quadratic optimal control problems. Consider the

following general nonlinear optimal control problem,

J = �(x(tf ); tf) +
Z tf

0

L(x; u; t)dt (4:13)

and the state equations given by

_x = f(x; u; t) x(0) = x0 (4:14)
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Applying the second method of the quasilinearization, we get

Jk+1 = Jk + f�x�x+
1

2
�xT�xx�xgt=tf +

Z tf

0

�
Lx�x+ Lu�u+

1

2
�xTLxx�x

+
1

2
�uTLuu�u+ �xTLxu�u

�
dt (4:15)

and the linearized state equations

_xk+1 = A(t)xk+1 + B(t)uk+1 + hk(t) xk+1(0) = x0 (4:16)

where �x = xk+1 � xk, �u = uk+1 � uk, and

A(t) =
@f

@x
(xk; uk; t) n� n matrix (4.17)

B(t) =
@f

@u
(xk; uk; t) n�m matrix (4.18)

hk(t) = f(xk; uk; t)� A(t)xk � B(t)uk n� 1 vector (4.19)

(4.15)-(4.16) are sequences of time-varying linear quadratic optimal control problems.

It is known [65] that the Legendre-Clebsch condition and the conjugate point condition,

which are su�cient conditions for the existence of a solution, are satis�ed for second

method of the quasilinearization if the following conditions are satis�ed

� the function f is continuously di�erentiable.

� �xx is positive semi-de�nite.

� Luu is positive de�nite.

� Lxx � LT
xuL

�1
uuLux is positive semi-de�nite.

4.4 Problem Reformulation

To solve the nonlinear optimal control problem (4.1)- (4.2) using the proposed algo-

rithm, the �rst step is to apply the second method of quasilinearization, by expanding the

state equations (4.2) up to the �rst order around nominal trajectories x(t)(k),u(t)(k), and

by expanding the performance index up to the second order around the same nominal

trajectories. Then the optimal control problem is reduced to the following sequence of

problems:

Minimize

Jk+1 =
Z tf

0

�
(xk+1)TQxk+1 + (uk+1)TRuk+1

�
dt (4:20)
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subject to

_xk+1(t) = A(t)xk+1(t) + B(t)uk+1(t) + hk(t) xk+1(0) = x0 (4:21)

A(t); B(t) and hk(t) are as de�ned previously. Notice that one of the advantages of using

quadratic performance index is that by applying the second method of the quasilineariza-

tion, the form the performance index remains the same.

The sequence of linear quadratic optimal control problems (4.20)-(4.21) are solved by

converting each problem into a quadratic programming problem using the state param-

eterization via Chebyshev polynomials of the �rst type. Therefore, the second step is

to transform the time interval t 2 [0; tf ] to � 2 [�1; 1]. The optimal control problem

(4.20)-(4.21) becomes,

Jk+1 =
tf

2

Z 1

�1

�
(xk+1)TQxk+1 + (uk+1)TRuk+1

�
d� (4:22)

subject to

_xk+1(�) =
tf

2

�
A(� )xk+1(�) + B(�)uk+1(�) + hk(�)

�
xk+1(�1) = x0 (4:23)

In order to simplify the computations, we express A(�); B(�) and hk(� ) in terms of

Chebyshev polynomials. To this end, let Ajl(�) = g(�; xk(�); uk(�)) be the (j; l)th element

of the matrix A(� ) and each of the nominal trajectories xk(�); uk(�) are expressed in terms

of Chebyshev series of the previous quasilinearization iteration. By using the Chebyshev

polynomials properties, the term Ajl(�) can be expressed as a Chebyshev series of the

form [44]

Ajl(� ) =
G0

2
+

MX
i=1

GiTi(� ) (4:24)

where

Gj =
2

K

KX
i=1

cos(j�i)g

�
cos �i; x

k(cos �i); u
k(cos �i)

�
(4:25)

j = 0; 1; � � � ;M; and

�i =
2i� 1

2K
� i = 1; 2; � � � ; K K > M: (4:26)

The same approximation can be done for each element of the matrices A(�); B(� ) and

hk(� ).

The third step is to perform the state parameterization. This step can be performed

using the method of the previous chapter. However there are two di�erences: The �rst

di�erence is that, in equation (4.23), A(�) and B(� ) are time-varying matrices expressed

as functions of Chebyshev polynomials of the previous quasilinearization steps. In this

case, there is a need for an algorithm to multiply Chebyshev series. This algorithm is

given by the following lemma.
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Lemma 1 Given two Chebyshev series

X =
nX
i=0

xiTi (4.27)

Y =
mX
j=0

yjTj (4.28)

The multiplication of these two Chebyshev series is a Chebyshev series of length n+m,

given by
n+mX
k=0

zkTk (4:29)

where

zk =
1

2

nX
i=0

[xiyk�i + xiyi�k + xiyi+k] (4.30)

=
1

2

mX
j=0

[yjxk�j + yjxj+k + yjxj�k] (4.31)

Remark 1:

For k=0, the second or the third term of zk will be replaced by 0 because of the

repetition of the same term for k = 0.

Proof: The multiplication of (4.27) and (4.28) can be given by,

n+mX
k=0

zkTk =
nX
i=0

mX
j=0

xiyjTiTj (4:32)

and by using Chebyshev polynomials multiplication property, (4.32) can be written as,

n+mX
k=0

zkTk =
1

2

nX
i=0

mX
j=0

xiyj(Ti+j + Tji�jj) (4.33)

=
1

2

nX
i=0

mX
j=0

xiyj(Ti+j + Ti�j + Tj�i) (4.34)

Equating the coe�cients of both sides of the same Chebyshev polynomial order of

equation (4.34), we get

zkTk =
1

2

nX
i=0

[xiyk�i + xiyi�k + xiyi+k]Tk (4:35)

or

zkTk =
1

2

mX
j=0

[yjxk�j + yjxj+k + yjxj�k]Tk (4:36)

which is the required result. 2
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Remark 2:

In (4.34), we rede�ned the absolute value of ji � jj. It should be clear for this equa-

tion that T�x is zero (where x is any number), although the Chebyshev polynomial of a

negative order is equal to Chebyshev polynomial of positive order i,e T�x = Tx. Hence,

one of the second and the third terms will be zero for any i and j. Finally, if i = j, then

we just need one term of the last two terms of equation (4.34).

The second di�erence is that the approximation of the state variables and the control

variables, using Chebyshev series, have a di�erent form and di�erent length than that of

linear systems case. This is due to the fact that equation (4.23) is time-varying system and

due to the existence of the term hk(�). Therefore, following the state parameterization

procedure of the previous chapter, the approximations of the state variables and the

control variables can be expressed generally as follows:

xk+1
j (� ) =

a
(j)
0

2
+

NX
i=1

a
(j)
i Ti + vj(� ) j = 1; 2; � � � ; n (4.37)

uk+1
l (� ) =

b
(l)
0

2
+

NX
i=1

b
(l)
i Ti + gl(�) l = 1; 2; � � � ;m (4.38)

where N depends on N , ( the order of the Chebyshev series of the directly approximated

states), and on A(� ), B(� ) of equation (4.23). vj(�) and gl(�) are known functions which

appear as a result of the presence of hk(�). The unknown parameters are the coe�cients

of the directly approximated states.

Equations (4.37) and (4.38) can be written in matrices form as

xk+1(� ) = �T + V T (4.39)

uk+1(�) = �T +GT (4.40)

where �, � are matrices which contain the unknown parameters and V , G are matrices

of known elements. T is a vector of Chebyshev polynomials.

The fourth step is to approximate the performance index. By substituting equations

(4.39) and (4.40) in the performance index (4.22), yields

Ĵ =
tf

2

Z 1

�1

(T T (�T + V T )Q(�+ V )T + T T (�T +GT )R(� +G)T )d� (4:41)

The integration of this equation can be done using the method described in the previ-

ous chapter. However, in this case, two new terms will appear after the integration: a

constant term due to the integration of T TV TQV T + T TGTRGT , and a linear term of
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the unknown parameters due to the integration of T T (�TQV +V TQ�+�TRG+GTR�)T.

The �fth step is to approximate the initial conditions. This is the same as in the

previous chapter. The initial conditions are replaced by equality constraints.

The optimal control problem (4.22)-(4.23) is transformed into a quadratic program-

ming problem subject to equality constraints. This new problem can be stated as follows,

min
a

1

2
aTHa+ cTa+ d (4:42)

subject to the linear constrains

g(a) = Fa� b = 0 (4:43)

where d is a constant which can be obtained from the integration of T TV TQV T +

T TGTRGT ; c is a (N + 1)q � 1 vector and can be determined by �nding the Jacobian of

Ĵ

c =
@Ĵ

@a
(k)
i

�����
a
(k)

i
=0

where i = 0; 1; � � � ; N; and k = 1; 2; � � � ; q (4:44)

(�k is the number of unknown parameters). H is a (N + 1)q � (N + 1)q positive de�nite

matrix as proved in the previous chapter and can be determined by calculating the Hessian

of Ĵ . The linear constraints are due to the initial and �nal conditions, and in some cases

may appear to represent some of the system equations. The optimal parameters a� can

be calculated from the quadratic programming results [34],

a� = �H�1c+H�1F T (FH�1F T )�1(FH�1c+ b) (4:45)

From these optimal parameters a� the approximate optimal trajectories can be obtained,

by substituting the optimal parameters in equations (4.39) and (4.40). And then the

optimal trajectories and controls have to be used to perform another quasilinearization

iteration and so on.

To solve the nonlinear optimal control problem (4.1)-(4.2), we need to solve linear

quadratic optimal control problems (4.20)-(4.21) successively until some stopping criteria

is satis�ed. For example when the di�erence j Ĵ (i+1) � Ĵ (i) j is su�ciently small. In our

computational experiments, the computations are terminated when j Ĵ (i+1) � Ĵ (i) j� �.

For the �rst example of this chapter � is taken to be 1� 10�3 and for the second example

� is taken to be 1� 10�4.

The previous procedures can be summarized as follows:

1. Apply the second method of quasilinearization, starting from a nominal trajectories

and controls.
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2. Transform the time interval of the optimal control problem into the interval � 2

[�1; 1]. And express A(� ); B(�) and hk(�) in terms of Chebyshev polynomials.

3. Approximate some or all the state variables by a �nite length Chebyshev series

of unknown parameters. To decide which state variables to parameterize see the

previous chapter.

4. Find the control variables and the state variables, which are not directly approxi-

mated, as a function of the directly approximated state variables.

5. Find an expression of Ĵ , using the result of the previous chapter.

6. Determine the set of equality constraints, due to initial conditions, and due to state

equations which are not yet satis�ed, if any.

7. Find the matrix H and the vector c.

8. Find the optimal parameters from equation (4.45), and substitute these parameters

into equations (4.39) and (4.40) to �nd the approximate optimal trajectories.

9. Repeat the previous procedure, using the obtained trajectories as the new nominal

trajectories and control, until the stopping criteria is satis�ed.

For the special case n = m, the matrix H, the vector c and d can be determined

explicitly. For this case, the state variables can be approximated as follows,

xk+1 = (In 
 T T )a (4:46)

From equation (4.23), (4.46) and using Chebyshev polynomials' di�erentiation opera-

tional matrix, the control variables uk+1 can be determined

uk+1 = B�1(�)

�
2

tf
(In 
 T TDT )a� A(�)(In 
 T T )a� h(�)

�
(4:47)

Substituting (4.46) and (4.47) into the performance index (4.22), we get

Ĵ =
tf

2

Z 1

�1

�
aT (In 
 T )Q(In 
 T T )a+

�
2

tf
aT (In 
DT )� aT (In 
 T )AT (�)

�hT (� )
�
F (� )

�
2

tf
(In 
 T TDT )a� A(�)(In 
 T T )a� h(�)

��
d� (4.48)

where F (�) = (B�1(�))TRB�1(�). Equation (4.48) can be simpli�ed
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Ĵ =
tf

2

Z 1

�1

�
aT (Q
 TT T )a+

4

t2f
aT (F (�)
DTT TDT )a�

2

tf
aT (F (�)A(� )
DTT T )a

�
2

tf
aT (AT (�)F (�)
 TT TDT )a+ aT (AT (� )F (�)A(� )
 TT T )a

�
2

tf
aT (F (�)h(� )
DT ) + aT (AT (� )F (�)h(� )
 T )�

2

tf
(hT (�)F (� )
 T TDT )a

+(hT (� )F (�)A(�)
 T T )a+ hT (�)F (�)h(� )

�
d� (4.49)

From this equation H, cT and d can be obtained

H = tf

Z 1

�1

�
(Q
 TT T ) +

4

t2f
(F (� )
DTT TDT )�

2

tf
(F (�)A(� )
DTT T )

�
2

tf
(AT (� )F (�)
 TT TDT ) + (AT (�)F (� )A(�)
 TT T )

�
d� (4.50)

cT = 2tf

Z 1

�1

�
�
2

tf
(hT (�)F (�)
 T TDT ) + (hT (� )F (�)A(� )
 T T )

�
d� (4.51)

d = tf

Z 1

�1

hT (�)F (� )h(�)d� (4.52)

4.5 Computational Results

The numerical method of this chapter is tested on the well known Rayleigh problem

to �nd u�(t) that minimizes

J =
Z 2:5

0

(x21 + u2)dt (4:53)

subject to

_x1 = x2 x1(0) = �5 (4.54)

_x2 = �x1 + 1:4x2 � 0:14x32 + 4u x2(0) = �5 (4.55)

Attempts by several researchers to solve this problem by means of the second variation

method failed [80]. The di�erential dynamic programming method solved the problem in

nine iterations [80]. Also Nedeljkovic [29] solved this problem in three, four and two iter-

ations using three di�erent algorithms which are based on the �rst order Riccati equation.

To solve this problem by using the proposed algorithm, the second method of the quasi-

linearization is applied on this problem around nominal trajectories x
(k)
1 (t) and x

(k)
2 (t).

The expanded performance index is

Jk+1 =
Z 2:5

0
f(xk+1

1 )2 + (uk+1)2gdt (4:56)
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Q.L.step(i) Ĵ j Ĵ (i+1) � Ĵ (i) j Ttotal [sec.] TQ [sec.]

1 36.8601 { 3.3 0.05

2 29.4414 7.4187 4.36 0.05

3 29.4101 0.0313 4.45 0.05

4 29.4032 0.0069 4.4 0.05

5 29.4022 0.0010 4.38 0.05

Table 4.1: Approximate optimal value of 5 quasilinearization

and the linearized state equations are

_x
(k+1)

1 = x
(k+1)

2 (4.57)

_x
(k+1)

2 = �x(k+1)

1 + (1:4� 0:42(x
(k)
2 )2)x

(k+1)

2 + 4u(k+1) + 0:28(xk2)
3 (4.58)

After changing the time interval t 2 [0; 2:5] to the interval � 2 [�1; 1], x1(� ) is ap-

proximated by a 9th order Chebyshev series, x2(� ) is determined from (4.57) while u(�)

is determined from (4.58). The linear quadratic optimal control problems (4.56)-(4.58)

are solved successively until the di�erence j Ĵ (i+1) � Ĵ (i) j� 1 � 10�3. This di�erence

is achieved in �ve quasilinearization iterations. The approximate optimal value and the

di�erence j Ĵ (i+1) � Ĵ (i) j of these �ve quasilinearization iterations, starting from zero

nominal trajectories, are summarized in Table 4.1. In this table, Ttotal is the time needed

to reformulate the problem into quadratic programming problem and then to solve the re-

sulted quadratic programming problem, while TQ is the time needed to solve the resulted

quadratic programming problem on SUN-SPARC 4/5. The same problem but with dif-

ferent time interval, t 2 [0; 0:5] has been solved by Frick and Stech [41] using parallel

implementation on Intel eight processor hypercube in 5 iterations each iteration took 3:95

seconds.

Table 4.2 shows a comparison between the optimal value of the �fth quasilinearization

iteration of our method with the results obtained by other researchers.

The approximate optimal control and the corresponding state trajectories are shown

in Figures 4.1 and 4.2 for the �ve quasilinearization iterations.

4.6 Practical Application

As a practical application of the proposed method in this chapter and the previous one,

the optimal ight control problem of F8 �ghter aircraft is considered. This problem was
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Source J

Nedeljkovic [29] 29.419

Sirisena [37] 29.451

This research 29.4022

Table 4.2: Approximate optimal values of the Rayleigh problem

0 0.5 1 1.5 2 2.5
−4

−2

0
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10

Time

u(
t)

Figure 4.1: Control u(t) of Rayleigh problem for 5 quasilinearization iterations. (� � �) 1st

Q.L., (-.-.) 2ed Q.L., (- - -) 3rd Q. L., (� � �) 4th Q.L., (|) 5th Q.L.
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0 0.5 1 1.5 2 2.5
−6
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0
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Time

x(
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x2

x1

Figure 4.2: States x(t) of Rayleigh problem for 5 quasilinearization iterations. (� � �) 1st

Q.L., (-.-.) 2ed Q.L., (- - -) 3rd Q. L., (� � �) 4th Q.L., (|) 5th Q.L.

treated by Garrard and Jordan [16], using Lukes' method [14]. The dynamic equations of

this aircraft are [16],

2
664

_x1

_x2

_x3

3
775 =

2
664
�0:877 0 1

0 0 1

�4:208 0 �0:396

3
775
2
664
x1

x2

x3

3
775+

2
664
�x21x3 � 0:088x1x3 � 0:019x22 + 0:47x21 + 3:846x31

0

�0:47x21 � 3:564x31

3
775+
2
664
�0:215

0

�20:967

3
775u (4.59)

where x1 is the wing angle of attack, x2 is the pitch angle, x3 is the pitch rate and control

input u is the tail deection angle.

The optimal control problem, which was considered by Garrard and Jordan, was to

�nd the optimal control u�(t) which minimizes the performance index

J =
1

2

Z
1

0

(xTQx+ ru2)dt (4:60)

where Q = diag [0:25; 0:25; 0:25] and r = 1

Since the proposed method does not deal with in�nite time problems, we consider the

�nite horizon version of this problem. Arbitrary, we select tf = 10 seconds.
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Remark 3:

Lee and Bien [47] proved that the in�nite time optimal performance index can be

approximated by �nite time optimal performance index if the states x�(tf) and x
y(tf) are

near the origin, where x�(tf) is the optimal state of the in�nite time problem at time

t = tf and xy(tf) is the optimal state of the �nite time problem at the end time.

Two cases of this problem are considered, the linearized system of (4.59) around the

origin and the nonlinear system (4.59).

In the linearized case and after changing the time interval to � 2 [�1; 1], x1 and x2

are approximated by Chebyshev series and x3 is calculated from the second state equa-

tion while u is calculated from the �rst state equation. For this problem the third state

equation is not satis�ed yet, therefore, this equation in addition to the initial conditions

represents equality constraints.

Figures 4.3-4.6 show the optimal trajectories for di�erent lengths of Chebyshev series

approximations along with the exact trajectories, which are obtained by using the linear

feedback control of the linearized system. The optimal trajectories are obtained for the

initial conditions x1(0) = 30:1�, x2(0) = 0 and x3(0) = 0. From these Figures, it is clear

that the Chebyshev series approximation converges to the correct optimal trajectories as

the length of the series increases.

The optimal value of the linearized system of in�nite horizon is 0.0222032 while the

optimal value of the �nite horizon problem, using the Chebyshev series of order 17, is

0.0222109 which gives an error of 7:7� 10�6. By using the estimate of Lee and Bien [47],

we can calculate the maximum error in the optimal value of the performance index due

to approximating the in�nite time problem by �nite time one. This maximum error is

found to be of order 1:66� 10�6.

For the nonlinear case, the system equations (4.59) are expanded up to the �rst order

around nominal trajectories. Then after changing the time interval to � 2 [�1; 1], x1
and x2 are approximated by Chebyshev series of order 17, while x3 is calculated from

the second di�erential equation and the control u is calculated from the �rst di�erential

equations. In this case, the third di�erential equation in addition to the initial conditions

represents equality constraints.

The termination criteria, � = 1� 10�4, for this problem is satis�ed after �ve quasilin-

earization iterations starting from the zero nominal trajectories. The optimal trajectories

are shown in Figures 4.7-4.10. From these Figures, it is clear that the trajectories converge

to the optimal ones nearly after the third quasilinearization step. Also Table 4.3 shows

the optimal value and the di�erence j Ĵ (i+1) � Ĵ (i) j for �ve quasilinearization iterations.
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Figure 4.5: State variable x3(t)
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Q.L.step(i) Ĵ j Ĵ (i+1) � Ĵ (i) j

1 0.0222109 {

2 0.0823456 0.0601

3 0.0831956 0.00085

4 0.0823616 0.000834

5 0.0823724 0.0000107

Table 4.3: Approximate optimal value of 5 quasilinearization
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Figure 4.7: x1(t) for 5 quasilinearization steps

4.7 Conclusion

In this chapter an e�cient method is proposed to solve the unconstrained nonlinear

optimal control problems. The method is based on using the second method of the

quasilinearization and the state parameterization to convert the problem into a sequence

of quadratic programming problems which can be solved easily. As it is clear from the

simulation, this method gives comparable results compared with other methods.
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Figure 4.8: x2(t) for 5 quasilinearization steps
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Figure 4.9: x3(t) for 5 quasilinearization steps
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Chapter 5

Constrained Linear Quadratic

Optimal Control Problem

5.1 Introduction

The optimal control problems considered in the last two chapters are assumed to be

free of constraints. However, practical optimal control problems usually do have some

constraints. Most of the constraints encountered in the practice can be classi�ed as

follows:

1. Control saturation constraints

Umin � u(t) � Umax (5:1)

2. Terminal state constraints

	(x(tf); tf) = 0 (5:2)

3. Interior point constraints

N(x(ti); ti) = 0 0 < ti < tf (5:3)

4. Equality constraints on functions of the state and control variables

C(x; u; t) = 0 (5:4)

5. Inequality constraints on functions of the state and control variables

C(x; u; t) � 0 (5:5)

The presence of these constraints often causes both analytical and computational dif-

�culties. Theoretical treatment of the optimal control problems subject to the constraints

60
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can be found in [3,4]. On the other hand, there are many computational techniques and

methods proposed by researchers to handle each of the constraints. Most of these meth-

ods are reviewed in [36] and the articles cited therein. One of the widely used methods

to solve the constrained optimal control problems is to convert them into mathematical

programming problem [33, 34, 40, 52, 75, 78] by using either the discretization or the pa-

rameterization.

As has been pointed out previously, the state parameterization method was applied on

special cases of unconstrained optimal control problems. And concerning the constrained

case, Yen and Nagurka [79] applied Fourier-based state parameterization on special case

linear quadratic optimal control problem in which the number of state variables and

control variables is equal. Moreover, they treated only the state-control inequality con-

straints. The authors proposed to add an extra arti�cial control inputs if the number of

control inputs is less than the number of state variables. This technique results in a large

number of unknown parameters and in a new problem that may di�er from the original

one.

In this chapter, we extend the method proposed in the previous chapters to solve

linear optimal control problems subject to state and control constraints, terminal state

constraints and interior point constraints. The advantages of the proposed method can

be summerized as follows:

1. Easy method of approximation.

2. The method can be applied on constrained optimal control problems with unequal

number of state variables and control variables.

3. Inequality and equality constraints can be handled.

The presence of the interior point constraints usually complicate severely the optimal

control problem. But, as we will see in this chapter, the proposed algorithm can handle

these constraints easily.

In this chapter we show the simulation results of a numerical example and compare

our results with the results obtained by using control-state parameterization.

5.2 Problem Statement

In this chapter, we consider the following optimal control problem. Find the optimal

control u�(t), which minimizes the performance index

J = x(tf)
TSx(tf) +

Z tf

0
(xTQx+ uTRu)dt (5:6)

subject to the following constraints:
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1. System state equations and initial conditions

_x = A(t)x+ B(t)u x(0) = x0 (5:7)

where x 2 Rn,u 2 Rm, m � n, A(t) and B(t) are respectively n� n and n�m real

valued matrices de�ned on [0; tf ].

2. Terminal state constraints

	(x(tf)) � 0 (5:8)

3. Interior point constraints

N [x(ti); ti] � 0 (5:9)

where 0 < ti < tf

4. State and control constraints

a(t)x(t) + b(t)u(t) � c(t) (5:10)

Where Q,S are positive semide�nite matrices and R is a positive de�nite matrix, 	(x(tf))

is linear in x(tf ) and N [x(ti); ti] is linear in x(ti). a(t) is s � n matrix and b(t) is s�m

matrix, s is the number of state and control inequality constraints.

To solve this problem, we propose to convert it into a quadratic programming problem

by parameterizing the system state variables using the �rst type Chebyshev polynomials.

5.3 State Parameterization Using Chebyshev Poly-

nomials

The Chebyshev polynomials of the �rst type are de�ned on the interval � 2 [�1; 1]. To

use the Chebyshev polynomials to parameterize the state variables of the stated optimal

control problem, the �rst step is to transform the time interval t 2 [0; tf ] into the interval

� 2 [�1; 1]. This can be done using the transformation,

� =
2t

tf
� 1 (5:11)

This transforms (5.6)-(5.10) into

J = x(1)TSx(1) +
tf

2

Z 1

�1
(xTQx+ uTRu)d� (5:12)

subject to the following constraints:

1. System state equations and initial conditions

dx

d�
=
tf

2
(A(� )x(�) + B(�)u(� )) x(�1) = x0 (5:13)
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2. Terminal state constraints

	(x(1)) � 0 (5:14)

3. Interior point constraints

N [x(�i); �i] � 0 (5:15)

where �i =
2ti
tf
� 1

4. State and control constraints

a(�)x(�) + b(�)u(� ) � c(�) (5:16)

The next step, in order to simplify the computations, is to expressA(� ); B(�); a(� ); b(�)

and c(� ) in terms of Chebyshev series. To this end let the (i; j)th entry of A(�) = g(� ),

then g(� ) can be approximated by a Chebyshev series of �nite length as follows [44],

g(� ) =
G0

2
+

MX
i=1

GiTi(�) (5:17)

where

Gj =
2

K

KX
i=0

g(cos �i) cos(j�i) (5:18)

j = 0; 1; 2; � � � ;M and

�i =
2i� 1

2K
� i = 1; 2; � � � ;K K > M (5:19)

The same procedure can be repeated for each entry of A(�); B(�); a(� ); b(�) and c(� ).

The third step is to apply the state parameterization approach as described in Chapter

3.

5.4 Optimal Control Problem Reformulation

After performing the state parameterization, we can generally express the state vari-

ables and the control variables as,

xj(� ) =
a
(j)
0

2
+

NX
i=1

a
(j)
i Ti(� ) j = 1; 2; � � � ; n (5.20)

ul(� ) =
b
(l)
0

2
+

NX
i=1

b
(l)
i Ti(� ) l = 1; 2; � � � ;m (5.21)

Where N is the order of the longest approximation of state variables or control variables.

Here we should clarify that all the directly approximated states are of length N . The

previous two equations can be written in a matrix form as

x(�) = �T (�) (5.22)

u(� ) = �T (� ) (5.23)
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where � is n�N matrix of unknown parameters [a
(j)
0 ; � � � ; a(j)N ], � is m�N matrix of the

unknown parameters [b
(j)
0 ; � � � ; b(j)

N
] which are linear function of [a

(j)
0 ; � � � ; a(j)

N
]. T (�) isN�1

vector of Chebyshev polynomials. These approximations will be used in reformulating the

optimal control problem into quadratic programming problem as follows:

� Initial states approximation:

Using the Chebyshev polynomials property at � = �1, the initial states can be

approximated by,

xj(�1) = x
(j)
0 =

a
(j)
0

2
+

NX
i=1

(�1)ia(j)i j = 1; 2; � � � ; n (5:24)

which will represent equality constraints in the new problem formulation.

� Terminal state constraints:

Also, by using Chebyshev polynomials property at � = 1, we can express the value

of the state variables at t = tf or equivalently � = 1 as follows,

xj(1) = x(tf)
(j) =

a
(j)
0

2
+

NX
i=1

a
(j)
i j = 1; 2; � � � ; n (5:25)

and by substituting this equation in (5.8), we get

	(x(1)) � 0 (5:26)

� Performance index approximation:

Substituting (5.22) and (5.23) into (5.12), we get

Ĵ = min
a

�
xT (1)Sx(1) +

tf

2

Z 1

�1

�
T T (�)�TQ�T (�) + T T (� )�TR�T (�)

�
d�

�
(5:27)

where Ĵ is the approximate value of J ; a is q(N + 1) � 1 vector of all unknown

parameters aT = [a
(1)

0 a
(1)

1 � � � a(1)N a
(2)

0 � � � a(2)N a
(q)
0 � � � a(q)N ] and q is the number of

directly approximated state variables.

Using the Chebyshev polynomials property at � = 1, equation (5.27) can be written

as

Ĵ = min
a

�
T T (1)�TS�T (1) +

tf

2

Z 1

�1

�
T T (� )MT (�) + T T (�)PT (� )

�
d�

�
(5:28)

where T (1) is N � 1 vector whose all elements are 1's; M = �TQ� and P = �R�.

This equation can be approximated using the result derived in chapter 3, to get
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Ĵ = min
a

�
T T (1)�TS�T (1)+

2tf

2

N+1�kX
i=1

1

2

�
�mi;i+k+�pi;i+k

�
:

�
�2

(2i� 2 + k)2 � 1
+

�2

k2 � 1

��

(5:29)

where k=0,2,4,� � �,N (N even) or N � 1 (N odd), and

�mi;i+k =

8<
: mi;i+k k 6= 0

mii

2
k = 0

(5:30)

�pi;i+k =

8<
: pi;i+k k 6= 0

pii
2

k = 0
(5:31)

mij; pij are the (i; j)th entry of matrix M and matrix P , respectively.

Equation (5.29) is a quadratic function of the unknown parameters and can be

written as,

Ĵ = min
a

1

2
aTHa (5:32)

� Interior point constraints:

The interior point constraints can be expressed easily, by substituting the value of

�i in

N [x(�i); �i] � 0 (5:33)

to get

N [�T (�i); �i] � 0 (5:34)

These are inequality constraints which are a function of the unknown parameters a

� State and control constraints:

The initial states constraints, the terminal states constraints and the interior points

constraints are �nite dimension constraints. However, the state and control con-

straints are in�nite dimension constraints that have to be satis�ed at every time

� 2 [�1; 1]. To handle such constraints, we will satisfy them at discrete points,

�1 = �0 < �1 < �2 < � � � < �r = 1. As r approaches in�nity, these constraints

approach the continuous constraints. Therefore each of these constraints is replaced

by r + 1 constraints. This technique was used by [52, 54]. By substituting (5.22)

and (5.23) into (5.16), we get

a(� )�T (� ) + b(� )�T (� ) � c(�) (5:35)

and this equation can be replaced by r + 1 �nite dimension constraints as,

a(�h)�T (�h) + b(�h)�T (�h) � c(�h) h = 0; 1; � � � ; r (5:36)



66 Chapter 5. Constrained Linear Quadratic Optimal Control Problem

From the previous reformation, we can express the new problem as

min
a

1

2
aTHa (5:37)

subject to

F1a� b1 = 0 (5.38)

F2a� b2 � 0 (5.39)

where the equality constraints represent the state and control equality constraints, initial

states, terminal state equality constraints and interior points equality constraints . The

inequality constraints represent the state and control inequality constraints, terminal state

inequality constraints and interior point inequality constraints.

The optimization problem (5.37)-(5.39) is a standard quadratic programming problem

which can be solved using the active set method [34].

5.5 Computational Results

In this section, we consider linear quadratic optimal control problem subject to one

of three constraints: �rst order state inequality constraint; second order state inequality

constraint or interior point constraint.

Example 1 Find u�(t) that minimizes

J =
Z 1

0

(x21 + x22 + 0:005u2)dt (5:40)

subject to the system dynamic equations, initial conditions,

_x1 = x2 x1(0) = 0 (5.41)

_x2 = �x2 + u x2(0) = �1 (5.42)

and to the �rst order state inequality constraint 1.

x2(t)� 8(t� 0:5)2 + 0:5 � 0 0 � t � 1 (5:43)

Example 2 Find u�(t) that minimizes (5.40) subject to (5.41), (5.42) and to the second

order state inequality constraint given by,

x1(t)� 8(t� 0:5)2 + 0:5 � 0 0 � t � 1 (5:44)

Example 3 Find u�(t) that minimizes (5.40) subject to (5.41), (5.42) and to the follow-

ing interior point constraint

x1(0:5) = 0:5 (5:45)

1The control variable will appear by di�erentiating the inequality constraint once
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The �rst two examples have been solved by several researchers using di�erent ap-

proaches, but the results obtained by Valssenbroeck [40] using control-state parameteri-

zation were the best results, therefore we will compare our results with those in [40].

To solve these examples using the proposed algorithm, x1(� ) is approximated by

13th order Chebyshev series of unknown parameters, after changing the time interval

to � 2 [�1; 1], then x2(�); u(� ) are found from the �rst and second state equations respec-

tively. In each case, the optimal control problem is converted into quadratic programming

problem and then it is solved using MATLAB program which is based on the active set

method.

In Example 1, we �nd Ĵ = 0:1707848 in 3:7 seconds on SUN-SPARC 4/5. However,

by looking very closely at the inequality constraint, we �nd that there is a very small

violation (< 3� 10�4) for very short period of time (about 0.06 second). To prevent this

violation, we modify the inequality state constraint as proposed in [40].

x2(t)� 8(t� 0:5)2 + 0:5 + � � 0 (5:46)

By solving this example for � = 0:0005, we obtain Ĵ = 0:17102286, and there is no vi-

olation of the inequality constraint at all, moreover, x2(t) does not touch the constraint

boundary. On the other hand, Vlassenbroeck [40], obtained J = 0:17185 in 21:4 seconds,

on a CDC Cyber 170/750, by using � = 0:0035 to get rid of the inequality constraint

violation. This means that our algorithm, before adding �, violates the constraints very

much less than his approach.

In Example 2, we �nd Ĵ = 0:7394399 in 1.67 seconds. Also, in this case, there is a

very small violation of the constraint (< 5� 10�4) for about 0.02 seconds, but by adding

� = 0:0005 we prevent any violation of the constraint and obtain Ĵ = 0:7409643. On the

other hand in [40] the author obtained J = 0:74096 in 31 seconds and needed to add

� = 0:012 to get rid of the constraint violation, which means that our algorithm solves

the original problem with very much less violation than his algorithm.

From the results of Examples 1 and 2, it is clear that our algorithm gives better or

comparable results with that of Vlassenbroack algorithm, although, the amount of com-

putations in our method is very much less than in his algorithm.

To have an idea concerning the computations complexity of both methods: In our

method we approximate each problem by 14 unknown parameters only, while in Vlassen-

broack method each problem was approximated by 56 unknown parameters. Using our

algorithm, we need to solve a quadratic programming problem of 14 unknown parame-
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ters subject to 2 equality constraints (due to initial conditions) and 41 inequality con-

straints (due to discretization of the inequality constraints), however by using Vlassen-

broack method, there was a need to solve nonlinear programming problem of 56 unknown

parameters subject to 44 equality constraints.

In Example 3, we obtained Ĵ = 1:0749928 and the interior point constraint is satis�ed

exactly.

The optimal control and the optimal states for the three examples are shown in Figures

5.1-5.3
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Figure 5.1: x1(t) for the 3 Examples

5.6 Conclusion

An e�ective computational method is proposed to solve the linear quadratic optimal

control problem subject to terminal state constraints, state and control constraints and

interior point constraints. The use of the state parameterization technique enables us to

handle the state inequality constraints and interior point constraints easily. The main

advantage of this algorithm is that the di�cult constrained optimal control problem is

transformed into quadratic programming problem.
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Chapter 6

Constrained Nonlinear Optimal

Control Problem

6.1 Introduction

In this chapter, we treat the constrained nonlinear optimal control problem. Basically,

the method of this chapter is based on that proposed in the previous chapters. Namely,

it is based on using the second method of the quasilinearization and the state parameter-

ization using Chebyshev polynomials.

The direct methods have been applied on di�erent classes of constrained nonlinear

optimal control problem. Cullum [72], Kraft [75], Stryk and Bulirsch [73] and Betts [78]

have applied the discretization method to convert the problem into a nonlinear mathe-

matical programming problem. On the other hand, using the parameterization technique,

Goh and Teo [36], Troch et al. [33] applied the control parameterization on general con-

strained nonlinear optimal control problems. Sirisena and Tan [50] also applied control

parameterization using piecewise polynomials on nonlinear optimal control problems sub-

ject to terminal state constraints and saturation control constraints. In addition, the

control-state parameterization has been applied by Vlassenbroeck [40] using Chebyshev

polynomials to solve the constrained nonlinear optimal control problem, also it has been

applied by Frick and Stech [42] using Walsh functions to solve nonlinear optimal control

problems subject to control saturation constraints.

The use of the state parameterization to solve constrained optimal control problems

was only used by [79] to solve linear quadratic control problem, subject to state and con-

trol inequality constraints, with equal number of state variables and control variables.

In this chapter, we use the state parameterization to solve nonlinear optimal control

70
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problem subject to terminal state constraints and control saturation constraints. Other

types of constraints can also be used by modifying the proposed method. At the end of

the chapter, we present simulation results of a practical nonlinear optimal control problem

subject to terminal state constraints, control saturation constraints and state saturation

constraints.

The direct methods have been applied in two ways to solve nonlinear optimal control

problems subject to terminal state constraints and control saturation constraints. These

two methods are:

1. The �rst method is to convert the nonlinear optimal control problem into a nonlinear

mathematical programming problem, and then to use Han's method [81, 82] to re-

place the nonlinear mathematical programming problem by a sequence of quadratic

programming problems. Lin [83] applied this method on nonlinear optimal control

problem subject to control saturation constraints and terminal state constraints,

by discretizing the nonlinear optimal control problem, then by replacing the new

problem by a sequence of quadratic programming problems.

2. The second method is to replace the nonlinear optimal control problem by a sequence

of linear quadratic optimal control problems, each of which is approximated by a

quadratic programming problem. This method was used by Bashein and Enns [55]

to solve nonlinear optimal control problem subject to terminal state constraints and

control saturation constraints. In their approach, the terminal state constraints were

satis�ed up to the �rst order and the control saturation constraints were handled by

using the bounded variable quadratic programming algorithm. Recently the same

method is used by Ma and Levine [56, 57] to replace a nonlinear optimal control

problem subject to terminal state constraints and control saturation constraints

by a sequence of quadratic programming problems. Their algorithm gives only an

upper bound of the optimal value. Moreover, the nonlinear system state equations

and the costate equations have to be integrated in each iteration.

In Bashein and Enns [55]; Ma and Levine [56,57]; Lin's [83] methods a large dimension

quadratic programming problem, in the sense of the number of unknown parameters and

the number of constraints, has to be solved in each iteration. A large dimension problem

arises because of the use of the discretization technique.

In this chapter, we present a new method to solve the nonlinear optimal control prob-

lem subject to terminal state constraints and control saturation constraints. Our method

avoids the problems associated with the previous methods, namely: We do not need a

special program to solve the quadratic programming problem as in Bashin and Enns [55];

we do not need to integrate the system state equations or costate equations; the exact
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optimal value can be obtained. Moreover, we obtain small size quadratic programming

problems, which can be solved easily by matrix�vector multiplication.

The method is based on using the second method of the quasilinearization and the

state parameterization to convert the constrained nonlinear optimal control problem into

a sequence of standard quadratic programming problem.

As an application of the proposed algorithm, at the end of this chapter, we present a

real practical nonlinear constrained optimal control problem.

6.2 Problem Statement

In this chapter, we consider the following optimal control problem: Find the optimal

control u�(t), which minimizes the performance index

J = x(tf)
TSx(tf) +

Z tf

0
(xTQx+ uTRu)dt (6:1)

subject to the following constraints

1. System state equations and initial conditions

_x = f(x(t); u(t); t) x(0) = x0 (6:2)

where x 2 Rn, u 2 Rm and m � n.

2. Terminal state constraints

	(x(tf); tf) = 0 (6:3)

3. Saturation control constraints

u(t) � Umax u(t) � Umin (6:4)

we will assume, for simpli�cation, that each of the saturation constraints is a scalar.

The proposed method to solve the stated optimal control problem consists mainly of

two steps:

1. replacing the constrained nonlinear optimal control problem by a sequence of con-

strained linear optimal control problems by using the quasilinearization technique.

2. solving successively the constrained linear problems until an acceptable convergence

is achieved. To accomplish this step, we propose to use the parameterization tech-

nique, speci�cally state variables parameterization using Chebyshev polynomials,

to transform the di�cult dynamic optimal control problem into static quadratic

programming one. These two steps will be discussed in the following section.
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6.3 Proposed Method

6.3.1 Quasilinearization

In order to apply the second method of quasilinearization to constrained optimal con-

trol problem, we can adjoin all types of constraints to the performance index using suitable

penalty functions [4]. In this work, the saturation control constraints will be adjoined to

the performance index using Kelly's penalty function [58]. The terminal state constraints

will be satis�ed to the �rst order [55], hence the stated problem reduces to: Minimize

J1 = J +
Z tf

0

�
(Umax � u)2H[Umax � u] + (u� Umin)

2H[u� Umin]

�
dt (6:5)

subject to (6.2) and (6.3). H is the Heaviside function given by,

H[z] =

8<
: 0 z � 0

K1 z < 0
(6:6)

and K1 is a positive weighting constant.

Applying the second method of the quasilinearization by expanding J1 up to the second

order and by expanding the state equations and the terminal constraints up to the �rst

order, around nominal trajectories xk(t) and uk(t), we get

J
(k+1)

1 = x(k+1)T (tf)Sx
(k+1)(tf) +

Z tf

0

�
x(k+1)TQx(k+1) + u(k+1)TRu(k+1)

+

�
U2
max � 2Umaxu

k+1 + (uk+1)2
�
H[Umax � uk+1]

+

�
(uk+1)2 � 2Uminu

k+1 + U 2
min

�
H[uk+1 � Umin]

�
dt (6:7)

subject to

_xk+1 = A(t)xk+1 + B(t)uk+1 + hk(t) (6:8)

xk+1(0) = x0

and the linearized terminal state constraints

	x(x
k(tf ); tf )(x

k+1(tf)� xk(tf )) + 	(xk(tf ); tf) = 0 (6:9)

where

hk(t) = f (xk; uk; t)� A(t)xk �B(t)uk (6.10)

A(t) =
@f(x; u; t)

@x

����
xk;uk

(6.11)

B(t) =
@f(x; u; t)

@u

����
xk;uk

(6.12)
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Remark 1: It is possible to handle the general nonlinear performance index and other

nonlinear constraints (control and state constraints) by adjoining these constraints to the

performance index using penalty functions [4]. Then the augmented performance index

is expanded up to the second order and the state equations are expanded up to the �rst

order around nominal trajectories.

6.3.2 State Parameterization

The constrained linear quadratic optimal control problem (6.7)-(6.9) can be solved

by converting it into standard quadratic programming problem. To this end, we use

the Chebyshev polynomials of the �rst type as described in the previous chapters to

reformulate the optimal control problem as follows:

� System state equations approximation:

Using the state parameterization method proposed in previous chapters, the state

variables and the control variables can be approximated in matrix form as follows,

xk+1(�) = �T (�) + V T (�) (6.13)

uk+1(� ) = �T (� ) +GT (� ) (6.14)

where �, � are matrices of unknown parameters; V ,G are matrices of known param-

eters and T (�) is a vector of Chebyshev polynomials. The dimension of the vector

T (� ) depends on the longest series of the state variables and the control variables.

Assume that its dimension is N � 1.

� Performance index approximation:

By substituting (6.13) and (6.14) into the performance index (6.7) and using the

Chebyshev polynomials property at � = 1, we get

Ĵ
(k+1)

1 =
�
T T (1)(�T + V T )S(�+ V )T (1)

�

+
tf

2

Z 1

�1

�
T T (� )(�T + V T )Q(�+ V )T (�) + T T (�)(�T +GT )R(� +G)T (�)

+

�
U2
max � 2Umax(�c +Gc)T (� ) + ((�c +Gc)T (�))

2

�
H[Umax � uk+1]

+

�
((�c+Gc)T (� ))

2�2Umin(�c+Gc)T (�)+U
2
min

�
H[uk+1�Umin]

�
d� (6:15)

where Ĵ
(k+1)

1 is the approximate value of J
(k+1)

1 , �c and Gc are the row of (6.14)

which corresponds to the constrained control.
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All terms of (6.15) can be integrated using the result of chapter 3, except the con-

stant terms (U 2
max, U

2
min) and the terms (2Umax(�c +Gc)T (�), 2Umin(�c +Gc)T (�))

which can be integrated easily using Chebyshev polynomials integration property

[44]

Z 1

�1

Tn(� )d� =

8>><
>>:

0 n odd
�2

n2�1
n even

2 n = 0

(6:16)

After performing the integration, the performance index will be reduced to

minimize

a

�
1

2
aTHa+ cTa+ d

�
(6:17)

where a is a vector of the unknown parameters which are the coe�cients of the

directly approximated states, d is a constant and c is a constant vector.

� Initial and terminal state constraints:

By using Chebyshev polynomials properties [44], the initial conditions can be ex-

pressed in general as

xj(�1) =
a
j
0

2
� aj1 + aj2 � � � �+ (�1)NajN + vj(�1) (6:18)

= x0

and the �nal state conditions can be expressed as

xj(1) = x(T ) =
a
j
0

2
+ aj1 + aj2 + � � �+ ajN + vj(1) (6:19)

where j = 1; 2; � � � ; n. The terminal state constraints (6.9), reduce to

	x(x
k(1); 1)(xk+1(1)� xk(1)) + 	(xk(1); 1) = 0 (6:20)

From the previous formulation, the optimal control problem is reduced to quadratic

programming problem of the form

minimize

a

�
1

2
aTHa+ cTa+ d

�
(6:21)

subject to the linear equality constraints

Fa� b = 0 (6:22)

where the equality constraints represent the initial states (6.18) and the terminal state

constraints (6.20). The optimal value of the unknown parameters a� can be obtained

using the standard quadratic programming results [34].
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a� = �H�1c+H�1F T (FH�1F T )�1(FH�1c+ b) (6:23)

The linear quadratic optimal control problems (6.7)-(6.9) have to be solved successively

until a stopping criteria is satis�ed. In this research the computations are terminated when

the di�erence j Ĵ (i+1) � Ĵ (i) j is su�ciently small.

Remark 2: Another method to handle the control saturation constraints

u(� ) � Umax u(�) � Umin (6:24)

is to satisfy them at discrete points, �1 = �0 � �1 � �2 � � � � � �r = 1. Therefore each

of these constraint will be replaced by r + 1 �nite dimension inequality constraints as

follows.

b
(l)
0

2
+

NX
i=1

b
(l)
i Ti(�h) + gl(�h) � Umax (6:25)

�
b
(l)
0

2
�

NX
i=1

b
(l)
i Ti(�h)� gl(�h) � �Umin (6:26)

where h = 0; 1; 2; � � � ; r. This technique has been used by [52,54].

Yet another possibility to handle the inequality constraints is by converting them into

equality constraints using slack variables as in [39]. However the use of the slack variables

has two disadvantages namely it converts a linear problem into a nonlinear one and sec-

ondly it increases the number of the unknown parameters.

Generally, from the previous reformulation the constraints can be expressed as

F1a = b1 (6.27)

F2a � b2 (6.28)

where the equality constraints represent the initial states, terminal state constraints, while

the inequality constraints represent the saturation constraints if the conversion into �nite

dimension scheme is employed. In this case, the active set method can be used to solve

the resulted quadratic programming problem.

Remark 3: If the control should appear in bang-bang form, as pointed out by Vlassen-

broeck and van Dooren [39], then the time interval has to be divided into sections at the

discontinuities, and the original problem can be solved by solving subproblems in each

section and taking into account the continuity of states at the point of control disconti-

nuities.
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Iteration Ĵ j Ĵ (i+1) � Ĵ (i) j

1 1.6858217 {

2 1.4334359 0.2524

3 1.4334872 5:13� 10�5

Table 6.1: Optimal value of the �rst case

6.4 Computational Results

In this section, we consider Van der Pol oscillator problem. The system state equations

are:

_x1 = x2 (6.29)

_x2 = �x1 + (1� x21)x2 + u (6.30)

The cost function to be minimized, starting from the initial states x1(0) = 1 and x2(0) = 0,

is:

J =
1

2

Z 5

0
(x21 + x22 + u2)dt (6:31)

Based on this problem, we consider three cases: unconstrained problem, terminal states

constrained problem and terminal states and control constrained problem.

� Free end point and no control constraints: J was found by Bullock and Franklin [59]

to be 1:433508 using the second variation method. Based on the quasilinearization and

discretization, Bashein and Enns [55] found J starting from u(t)(0) = 0 and u(t)(0) = 1,

in four and �ve iterations respectively, they obtained J = 1:4380970.

By using the proposed algorithm, quasilinearization and state parameterization, and

starting from zero nominal trajectories, the stopping criteria (j Ĵ (i+1)� Ĵ (i) j� 1�10�3) is

satis�ed after three iterations only. We obtain Ĵ = 1:4334872, which is smaller than both

of the results reported earlier. In this problem, we approximate x1(�) by a Chebyshev se-

ries of ninth order and x2(�), u(�) are found from the system equations. The approximate

optimal control and state trajectories are shown in Figure 6.1, while Ĵ of each iteration

with the di�erence j Ĵ (i+1) � Ĵ (i) j are shown in Table 6.1

� Terminal state constraint:

	(x(tf)) = 1� x2(tf ) + x1(tf) = 0 (6:32)

Using the second order method, Bullock and Franklin [59] found J = 1:6857 and

	(x(tf)) = �5 � 10�6 after seven iterations, while Bashein and Enns [55] found J =
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Figure 6.1: Approximate optimal control and state trajectories, case 1

Iteration Ĵ j Ĵ (i+1) � Ĵ (i) j 	

1 1.9246170 { 4:4� 10�9

2 1.6856769 0.2389 3:4� 10�9

3 1.6857113 3:44� 10�5 �5:0� 10�9

Table 6.2: Approximate optimal value of the second case

1:6905756 and 	(x(tf)) = �7:5 � 10�6 in �ve iterations. In this work, x1(�) is approx-

imated by ninth order Chebyshev series and x2(� ), u(� ) are obtained from the system

equations. We obtain Ĵ = 1:6857113 and 	(x(tf)) = �5� 10�9 in three iterations. Fig-

ure 6.2 shows the approximate optimal control and state trajectories for this case and

Table 6.2 summarizes Ĵ and the di�erence j Ĵ (i+1) � Ĵ (i) j of each iteration.

� Terminal state constraints and saturation constraints on control: The constraints are

ju(t)j � 0:75 (6.33)

	1 = x1(tf ) + 1 = 0 (6.34)

	2 = x2(tf) = 0 (6.35)

This problem has been solved by Bashein and Enns [55], they obtained J = 2:1439039,

	1 = 1�10�7 and 	2 = 7�10�7 after seven iterations. In this work, x1(�) is approximated

by 12th order Chebyshev series and x2(�), u(�) are found from the state equations .
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Figure 6.2: Approximate optimal control and state trajectories, case 2

This problem is solved for di�erent values of K1. The computations are terminated

when the di�erence j Ĵ (i+1) � Ĵ (i) j< 1 � 10�5 is satis�ed. The obtained results are

summarized in Table 6.3, while Figure 6.3 shows the approximate optimal control and

the state trajectories of the 7th iteration for K1 = 20000.

To show the violation of the control constraints, Figure 6.4 shows part of the optimal

control for di�erent values of K1.

In addition, the last problem is solved by converting the inequality constraints into

�nite dimensional constraints using discretization. In this case, x1(t) is approximated by

K1 Ĵ j Ĵ (i+1) � Ĵ (i) j 	1 	2 no. of iter.
max. juj
violation

1 2.0660665 4:8� 10�7 0 �2:77� 10�16 4 < 0:2

100 2.1358300 5:1� 10�6 0 �2:77� 10�16 5 < 0:014

600 2.1419409 6:2� 10�6 0 2:22� 10�16 6 < 0:0036

1500 2.1429523 2:4� 10�6 0 �2:77� 10�16 7 < 0:002

5000 2.1437176 7:4� 10�6 0 �2:77� 10�17 7 < 0:001

20000 2.1443893 3:6� 10�6 0 3� 10�16 7 < 0:0004

Table 6.3: Approximate optimal value in case of using penalty function to handle inequal-

ity constraints
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Iteration Ĵ j Ĵ (i+1) � Ĵ (i) j 	1 	2

1 3.2428173 { 4:57� 10�8 1:4� 10�8

2 2.2120969 1.0307 �1:8� 10�8 �8:7� 10�9

3 2.1439884 0.0681 1:24� 10�8 1:27� 10�9

4 2.1439199 6:9� 10�5 2:56� 10�8 8:69� 10�9

Table 6.4: Approximate optimal value in case of using discretization of inequality con-

straints

a 12-th order Chebyshev series and x2(t), u(t) are found from the state equations . After

four iteration, we get Ĵ = 2:1439194, 	1 = 2:56 � 10�8 and 	2 = 8:7 � 10�9. Figure

6.5 shows the state and control trajectories while Table 6.4 shows Ĵ and the di�erence

j Ĵ (i+1) � Ĵ (i) j.
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Figure 6.5: Approximate optimal trajectories in case of using discretization of inequality

constraints

6.5 Practical Application

In this section, we consider a realistic and complex problem of transferring containers

from a ship to a cargo truck at the port of Kobe [74]. The container crane is driven by a

hoist motor and a trolley drive motor. For safety reason, the objective is to minimize the
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swing during and at the end of the transfer.

Without going into the details of the modeling aspect, we shall summarize the problem

as follows: Minimize

J =
1

2

Z 9

0
(x23 + x26)dt (6:36)

subject to the dynamical equations

_x1 = x4 (6.37)

_x2 = x5 (6.38)

_x3 = x6 (6.39)

_x4 = u1 + 17:2656x3 (6.40)

_x5 = u2 (6.41)

_x6 =
1

x2

�
u1 + 27:0756x3 + 2x5x6

�
(6.42)

where

x(0) = [0; 22; 0; 0;�1; 0]T (6.43)

x(9) = [10; 14; 0; 2:5; 0; 0]T (6.44)

and

ju1(t)j � 2:83374 8t 2 [0; 9] (6:45)

� 0:80865 � u2(t) � 0:71265 8t 2 [0; 9] (6:46)

with continuous state inequality constraints

jx4(t)j � 2:5 8t 2 [0; 9] (6:47)

jx5(t)j � 1 8t 2 [0; 9] (6:48)

This problem was solved by Sakawa and Shindo [74], but no optimal value was re-

ported. Also it was solved by Goh and Teo [34] using piecewise constant functions and

piecewise linear functions to parameterize the control variables. In the �rst case, the

authors found J to be 0:005361, while in the second case they found J = 0:005412 and

they concluded that as the controls become smoother the optimal value become larger.

Using our algorithm, we apply the second method of the quasilinearization and then

approximate the x1; x2; x5 by 9th order Chebyshev series of unknown parameters. The

remaining states and controls are obtained from the system state equations. All the state

equations are satis�ed directly except the last equation, which is replaced by equality

constraints. The problem is solved for three iterations and the Ĵ is found to be 0:00562.
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This optimal value is higher than that reported by Goh and Teo [34], but the control

is a smooth function and there is no violation of the constraints at all. The optimal

trajectories are shown in Figures 6.5 and 6.6

6.6 Conclusion

In this chapter we have proposed a computational method to solve the constrained non-

linear optimal control problems. This problem is converted into a sequence of quadratic

programming problems. The solution method is based on using the second method of

quasilinearization and the state parameterization. The inequality constraints are handled

either by using penalty functions or by converting them into �nite dimensions inequality

constraints.

For the sake of comparison, we have applied the proposed method on Van der Pol

oscillator problem . Moreover, we have used the proposed method to solve a real practical

constrained nonlinear optimal control problem, the container crane problem.
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Chapter 7

Construction of Optimal Feedback

Control

7.1 Introduction

The optimal feedback control law of linear quadratic optimal control problems can be

obtained by solving the matrix Riccati equation, or by determining the transition matrix

of the Hamiltonian system [2,3]. However, for general nonlinear optimal control problems,

it is not possible to obtain the exact optimal feedback control solution analytically. But

nevertheless suboptimal feedback control can be obtained by using either power series

expansion method [14,16{18,63], or neighboring optimal control method [3,19,21]. Also,

the optimal feedback control can be obtained using dynamic programming method [60],

but this method su�ers from the curse of dimensionality.

On the other hand, during the last twenty years, the orthogonal functions have been

used extensively for determining the optimal feedback control of the linear quadratic op-

timal control problems. For example, [61] used the Walsh functions, [66] used the Cheby-

shev polynomials of the �rst type, [62], [64], [69] used the Chebyshev polynomials of the

second type, [67] used Block pulse functions, [87] used the Fourier series. The solution

method in all of the previous works is based on using the forward or backward integra-

tion operational matrix, associated with the used orthogonal polynomials, to transform

the Hamiltonian system (state and costate di�erential equations) into algebraic equations.

In the previous chapters, we presented algorithms to solve di�erent classes of optimal

control problems. However, the solutions were obtained as a function of the time i.e open

loop control. The purpose of this chapter is to use the Chebyshev polynomials of the

�rst type to determine the optimal feedback control law of the nonlinear optimal control

problem. Also, in this chapter, the di�erentiation operational matrix of Chebyshev poly-

86
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nomials of the �rst type is introduced. This operational matrix can also be de�ned for

each of the other orthogonal polynomials.

Our approach to determine the optimal feedback control law of the nonlinear optimal

control problem consists of two steps: The �rst step is to determine the open loop optimal

control and trajectories, by using the quasilinearization and the state variables parame-

terization via Chebyshev polynomials of the �rst type. Therefore the nonlinear optimal

control problem is replaced by a sequence of small quadratic programming problems which

can be solved easily. The second step is to use the results of the last quasilinearization

iteration (when the stopping criteria j Ĵ (i+1) � Ĵ (i) j� � is satis�ed) to obtain the opti-

mal feedback control law. To this end, the matrix Riccati equation and another n linear

di�erential equations are solved using the Chebyshev polynomials of the �rst type.

The proposed method has some advantages over the power series method [15, 17, 18]

and over the methods that give the neighboring optimal feedback control [3,19{22]. These

advantages are:

1. The obtained optimal feedback control can be implemented easier than the control

obtained by using the power series method.

2. We do not need to store the optimal open loop state and control trajectories as in

the methods of [3,19{22] .

3. The obtained closed loop control is a nonlinear one and, although it appears as a

linear one, the nonlinear terms of the states are included in the time varying terms.

While the neighboring optimal control approach gives linear feedback control due

to perturbed initial conditions from the optimal open loop solution.

7.2 Di�erentiation Operational Matrix

To facilitate the computation of optimal feedback control, we derive a new property

of Chebyshev polynomials called di�erentiation operational matrix.

The Chebyshev polynomials can be obtained from the recurrence relation,

Tr+1(� ) = 2�Tr(� )� Tr�1(� ) r = 1; 2; 3 � � � (7:1)

where T0(�) = 1; T1(� ) = � .

Also a function x(� ) can be approximated by Chebyshev series of length m as follows,

x(� ) =
a0

2
+

mX
i=1

aiTi(�) (7:2)
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where the coe�cients an; n = 0; 1; � � � ;m can be determined using the following formula

[68]

an =
2

K

KX
i=1

x(cos(�i))cos(n�i) (7:3)

where �i =
2i�1

2K
�; i = 1; 2; � � � ;K, and K > m. As m approaches in�nity the previous

approximation approaches the exact x(� ). Equation (7.2) can be expressed in vector form

as

x(�) = [
a0

2
a1 � � � am]T (�) (7:4)

where T (� ) = [T0(�) T1(�) � � � Tm(� )]T . It is easy to prove that the derivative of x(�)

with respect to � can be given by

_x(�) = [
a0

2
a1 � � � am]DT (�) (7:5)

where the matrix D is the di�erentiation operational matrix. This matrix can be given

as follows

D =

2
666666666666666666666666664

0 0 0 0 0 0 0 0 � � � 0

1 0 0 0 0 0 0 0 � � � 0

0 4 0 0 0 0 0 0 � � � 0

3 0 6 0 0 0 0 0 � � � 0

0 8 0 8 0 0 0 0 � � � 0

5 0 10 0 10 0 0 0 � � � 0

0 12 0 12 0 12 0 0 � � � 0

7 0 14 0 14 0 14 0 � � � 0

0 16 0 16 0 16 0 16 � � � 0
...

...
...

...
...

...
...

...
...

...

m 0 2m 0 2m 0 2m 0 � � � 0

3
777777777777777777777777775

(7:6)

In the previous matrix it is assumed that m is odd. However, if m is even then the

last row of D becomes

[0 2m 0 2m 0 2m � � � 0]

Proof:

Di�erentiating the recurrence relation (7.1) with respect to � , we get

_Tr+1(� ) = 2Tr(� ) + 2T1(� ) _Tr(�)� _Tr�1(�) (7:7)

which can be written as

_Tr(� ) = 2Tr�1(�) + 2T1(� ) _Tr�1(�)� _Tr�2(�) (7:8)
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_Tr�1(�) is a polynomial of order r � 2 and _Tr�2(� ) is also a polynomial of order r � 3.

These can be expressed as

_Tr�1(�) =
b0

2
+ b1T1 + b2T2 + � � �+ br�2Tr�2 (7:9)

_Tr�2(�) =
c0

2
+ c1T1 + c2T2 + � � �+ cr�3Tr�3 (7:10)

substituting (7.9 ) and (7.10) into (7.8), we get

_Tr = 2Tr�1 + 2T1(
b0

2
+

r�2X
i=1

biTi)�
c0

2
�

r�3X
j=1

cjTj (7:11)

By expanding the second term on the right hand side using Chebyshev polynomials prod-

uct property and collecting the coe�cients of similar Chebyshev polynomials, we get

_Tr = (b0 �
c0

2
) +

r�2X
i=1

�
(bi�1 + bi+1 � ci)Ti

�
+ (br�2 + 2)Tr�1 (7:12)

Note that _T0 = 0 and _T1 = T0. Applying equation (7.12) recursively, the matrix D can

be obtained.

Also, from (7.5), it can be proved that

dk

d�k
T (� ) = DkT (�) (7:13)

The di�erentiation operational matrix will be used in the next section to convert the

di�erential equations into algebraic equations.

The advantages of the di�erentiation operational matrix over the integration opera-

tional matrix are: all its elements are integers and hence there is no truncation error; easy

to construct because it has special structure. This matrix is a lower triangular matrix,

also if r is odd then
d

d�
Tr(�) = [r 0 2r 0 2r 0 2r � � � 0]T (� ) (7:14)

however if r is even, then

d

d�
Tr(� ) = [0 2r 0 2r 0 2r 0 � � � 0]T (�) (7:15)

7.3 Solution of Nonlinear Optimal Control Problem

This section reviews the approach that proposed in chapter 4 to solve the nonlinear

optimal control problem in open loop form. This method is based on transforming the

nonlinear optimal control problem into a sequence of linear quadratic optimal control
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problems using the second method of quasilinearization. Then, each linear quadratic op-

timal control problem is converted into a standard quadratic programming problem by

employing the state parameterization using Chebyshev polynomials.

The problem we are considering is to �nd the optimal control u�(t) that minimizes the

performance index

J =
1

2
x(tf)Sx(tf) +

1

2

Z tf

0

(xTQx+ uTRu)dt (7:16)

subject to the system state equations

_x = f(x(t); u(t); t) x(0) = x0 (7:17)

where x 2 Rn; u 2 Rm;m � n, S;Q are positive semide�nite matrices and R is a positive

de�nite matrix. The �rst step to solve this problem, in open loop form, is to apply the

second method of the quasilinearization ( expand the system state equations up to the

�rst order and the performance index up to the second order around a nominal trajectories

xk(t); uk(t) ). The problem will be reduced to: Minimize

Jk+1 =
1

2
x(k+1)T (tf )Sx

(k+1)(tf) +
1

2

Z tf

0

(x(k+1)TQx(k+1) + u(k+1)TRu(k+1))dt (7:18)

subject to

_xk+1 = A(t)xk+1 +B(t)uk+1 + hk(t) xk+1(0) = x0 (7:19)

where

hk(t) = F (xk; uk; t)� A(t)xk � B(t)uk (7.20)

A(t) =
@F (x; u; t)

@x

����
xk ;uk

(7.21)

B(t) =
@F (x; u; t)

@u

����
xk ;uk

(7.22)

The second step is to use the Chebyshev polynomials of the �rst type to parameterize

the state variables and to convert the linear quadratic optimal control problem (7.18)-

(7.19) into quadratic programming problem. The optimal control problems (7.18)-(7.19)

have to be solved successively until the di�erence j Ĵ (i+1) � Ĵ (i) j is su�ciently small. Ĵ i

is the approximate value of J i due to the parameterization approximation.

7.4 Determination of Optimal Feedback Gain

The idea to obtain the local optimal feedback control law is to use the results of the

last quasilinearization iteration of the previous section, and then to linearize the system
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state equations and to expand the performance index up to the second order around this

solution (i.e. apply the quasilinearization one more time).

Since we are using the Chebyshev polynomials, which are de�ned on the interval

� 2 [�1; 1], the time interval t 2 [0; tf ] of the optimal control problem is transformed

into the interval � 2 [�1; 1]. The problem becomes: Find the optimal feedback control

u�(x; �) on �1 � � � 1, that minimizes

J =
1

2
xT (1)Sx(1) +

1

2

tf

2

Z 1

�1

(xTQx+ uTRu)d� (7:23)

subject to
dx

d�
=
tf

2

�
A(�)x(�) + B(� )u(�) + h(�)

�
x(�1) = x0 (7:24)

Note that A(� ); B(� ); h(�) are expressed in terms of the the optimal trajectories and op-

timal control determined in the previous section.

The necessary conditions to determine the optimal solution of this problem are the

Euler-Lagrange equations given by

_x(�) =
tf

2

�
A(� )x(�) +B(�)u(� ) + h(� )

�
(7.25)

_�(�) =
tf

2

�
�Qx(� )� A(�)�(� )

�
(7.26)

u(�) = �R�1BT (� )�(�) (7.27)

where x(�1) = x0 and �(1) = Sx(1). The linear two-point boundary value problem

(7.25)-(7.26) can be solved by assuming that �(� ) has the form [65],

�(�) = l(�) +K(� )x(�) (7:28)

where l(�) is an n vector and K(� ) is an n � n symmetric matrix. From (7.25), (7.26),

(7.27) and (7.28), we can get the solution for K(�) and l(�) by solving the following

di�erential equations

_K(�) =
tf

2

�
K(�)B(�)R�1BT (�)K(�)�K(t)A(�)� AT (� )K(�)�Q

�
(7.29)

_l(� ) =
tf

2

��
�AT (� ) +K(� )B(�)R�1BT (� )

�
l(� )�K(� )h(�)

�
(7.30)

where K(1) = S, l(1) = 0. Equation (7.29) is the matrix Riccati equation, and equation

(7.30) is a vector of n linear di�erential equations. These two equations will be solved

using the Chebyshev polynomials.
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The solution of the matrix Riccati equation can be obtained by solving the following

system of linear di�erential equations [6],

2
4 _U(� )

_V (� )

3
5 = tf

2

2
4 A(�) �B(� )R�1BT (� )

�Q �AT (� )

3
5
2
4 U(� )

V (� )

3
5 (7:31)

where U(� ) and V (�) are n� n matrices that satisfy the following boundary conditions

2
4 U(1)

V (1)

3
5 =

2
4 In�n

S

3
5 (7:32)

where I is the identity matrix. The solution of the matrix Riccati equation (7.29) is then

given by K(� ) = V (�)U�1(� ).

To solve equation (7.31) subject to (7.32) using Chebyshev polynomials, these equa-

tions are rewritten as,

_Y (� ) = F (� )Y (� ) (7.33)

Y (1) = Yf (7.34)

where

Y (� ) =

2
4 U(�)

V (� )

3
5

F (�) =
tf

2

2
4 A(� ) �B(� )R�1BT (� )

�Q �AT (�)

3
5

Yf =

2
4 In�n

S

3
5

Y (� ) is 2n � n matrix, F (� ) is 2n � 2n matrix, and Yf is 2n � n matrix. Then each

component of equation (7.33) can be approximated by Chebyshev series of �nite length

m. The approximation of F (�) can be given by

F (�) =
F0

2
+

mX
i=1

FiTi(� ) (7:35)

which can be written in matrix form as

F =
h
F0=2 F1 � � � Fm

i
T (� ) (7:36)

where Fi, i = 0; 1; � � � ;m is 2n�2n matrix of known parameters which can be determined

from (7.3). Also the matrix Y (�) can be approximated by a Chebyshev series as follows,

Y (� ) = T T (�)
h
Y0=2 Y1 � � � Ym

iT
(7:37)
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where Yi, i = 0; 1; � � � ;m is 2n� n matrix of unknown parameters.

Using the di�erentiation operational matrix, _Y (�) can be determined,

_Y (�) = T T (�)DT
h
Y0=2 Y1 � � � Ym

iT
(7:38)

Substituting (7.36), (7.37) and (7.38) into (7.33) yields

T T (�)DT [Y0=2 Y1 � � �Ym]
T = [F0=2 F1 � � �Fm]T (�)T

T (� )[Y0=2 Y1 � � � Ym]
T (7:39)

the right hand side can be simpli�ed using the result of [64], although this result is derived

for Chebyshev polynomials of the second type, it will be the same for the Chebyshev

polynomials of �rst type also,

[F0=2 F1 � � �Fm]T (�)T
T (�) = T T (� ) ~F (7:40)

where

~F =

2
6666666666664

F0=2 F1=2 F2=2 � � � Fm=2

F1 (F0 + F2)=2 (F1 + F3)=2 � � � Fm�1=2

F2 (F1 + F3)=2 (F0 + F4)=2 � � � Fm�2=2

F3 (F2 + F4)=2 (F1 + F5)=2 � � � Fm�3=2
...

...
... � � �

...

Fm Fm�1=2 Fm�2=2 � � � F0=2

3
7777777777775

(7:41)

Hence equation (7.39) is reduced to

T T (� )DT [Y0=2 Y1� � �Ym]
T=T T (�) ~F [Y0=2 Y1� � �Ym]

T (7:42)

The left hand side of this equation is a polynomial of order m� 1, because the last row

of DT is zero, while the right hand side is a polynomial of order m. We will equate the

coe�cients of Chebyshev polynomials up to order m� 1, after [68], to get

D̂T [Y0=2 Y1 � � � Ym]
T = F̂ [Y0=2 Y1 � � � Ym]

T (7:43)

where D̂T and F̂ are DT and ~F respectively, but with the last row discarded in both

matrices.

The �nal condition (7.34), can also be expressed using the Chebyshev polynomials

property at � = 1,

Y (1) = Y0=2 + Y1 + � � �+ Ym = Yf (7:44)
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This condition must also be satis�ed to �nd solution of equation (7.33). Combining this

condition with (7.43) gives

Dmod

2
6666666664

Y0=2

Y1
...

Ym�1

Ym

3
7777777775
= ~Fmod

2
6666666664

Y0=2

Y1
...

Ym�1

Ym

3
7777777775
+

2
6666666664

02n�n

02n�n
...

02n�n

Yf

3
7777777775

(7:45)

Note that in this equation all the multiplications has to be performed block-wise. To

allow element-wise multiplications, the left hand side can be rewritten as follows,

(Dmod 
 I2n)

2
6666666664

Y0=2

Y1
...

Ym�1

Ym

3
7777777775
= ~Fmod

2
6666666664

Y0=2

Y1
...

Ym�1

Ym

3
7777777775
+

2
6666666664

02n�n

02n�n
...

02n�n

Yf

3
7777777775

(7:46)

where Dmod is D
T but with the last row is replaced by a row of 1's, ~Fmod is ~F but with

the last row is replaced by 0's, each 0 is 2n � 2n matrix with all its elements are zeros,

and 
 denotes the Kronecker product. From equation (7.46), the solution of the unknown

parameters can be obtained,

2
6666666664

Y0=2

Y1
...

Ym�1

Ym

3
7777777775
=

�
(Dmod 
 I2n)� ~Fmod

��1

2
6666666664

02n�n

02n�n
...

02n�n

Yf

3
7777777775

(7:47)

and the matrices U(�), V (� ) and K(�) can be determined.

Another equation (7.30) has also to be solved for l(�),

_l(�) = M(�)l(�)�H(�) l(1) = 0 (7:48)

where

M(�) =
tf

2

�
�AT (� ) +K(�)B(�)R�1BT (� )

�
(7.49)

H(�) =
tf

2
K(�)h(� ) (7.50)

M(�) and H(�) are known because K(� ) is known after solving (7.47).
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To �nd the solution of (7.48), M(�); l(�) and H(�) are approximated by Chebyshev

series of �nite length m as follows,

M(�) = [M0=2 M1 � � � Mm]T (� ) (7.51)

H(�) = T T (�)[H0=2 H1 � � �Hm]
T (7.52)

l(� ) = T T (�)[l0=2 l1 � � � lm]
T (7.53)

where Mi; i = 0; 1; � � � ;m is n � n matrix of known parameters, Hi; i = 0; 1; � � � ;m is

n � 1 vector of known parameters and li; i = 0; 1; � � � ;m is also n� 1 vector of unknown

parameters. From (7.53), _l(�) can be expressed as

_l(� ) = T T (� )DT [l0=2 l1 � � � lm]
T (7:54)

Substituting (7.51),(7.52), (7.53) and (7.54) into (7.48) and using the fact that

[M0=2 M1 � � �Mm]T (� )T
T (�) = T T (� ) ~M

gives

T T (�)DT [l0=2 l1 � � � lm]
T = T T (� ) ~M [l0=2 l1 � � � lm]

T � T T (�)[
H0

2
H1 � � �Hm]

T (7:55)

where ~M is de�ned the same way as ~F . The left hand side is a polynomial of length

m � 1 while the right hand side is a polynomial of length m. Equating the coe�cients

of the �rst m� 1 Chebyshev polynomials and taking into account the �nal conditions of

l(1) = 0, gives 2
6666664

l0=2

l1
...

lm

3
7777775
= �

�
(Dmod 
 In)� ~Mmod

��1

2
6666666664

H0=2

H1

...

Hm�1

0

3
7777777775

(7:56)

where ~Mmod is ~M but with the last row is replaced by 0's, each 0 is n� n matrix with all

its elements are zeros.

After obtaining K(�) and l(�), the optimal feedback control law can be formed from

(7.27) and (7.28),

u(x; �) = �R�1BT

�
l(�) +K(� )x(�)

�
(7:57)

which can be expressed in terms of t 2 [0; tf ], by the transformation � =
2t
tf
�1, as follows,

u(x; t) = �L(t)�K 0(t)x(t) (7:58)

This control law is a nonlinear optimal control law of the nonlinear optimal control prob-

lem, although it appears as linear in states. The nonlinear parts enter the time varying

terms. A block diagram showing the optimal feedback control is depicted in Figure 7.1.



96 Chapter 7. Construction of Optimal Feedback Control

Nonlinear Plant

-
-

x(t)L(t)

K(t)

Figure 7.1: Optimal feedback control

7.5 Computational results

Example 1: Time-varying linear quadratic probelm:

Find the optimal feedback control u � (x; t) the minimizes

J =
1

2

Z 1

0

�
x2(t) + u2(t)

�
dt (7:59)

subject to

_x = tx(t) + u(t) (7:60)

After Changing the time interval from t 2 [0; 1] into � 2 [�1; 1], we used the Chebyshev

polynomials of the 3rd order to solve the Riccati equation. The optimal feedback control

is

u�(x; � ) =
0:5179� 0:5243T1 + 0:0060T2 + 0:0003T3

0:9187� 0:04643T1 + 0:1239T2 + 0:0037T3
x(�) (7:61)

The exact solution of Riccati equation using numerical integration and the approxi-

mate solution using the proposed method are shown in Figure 7.2

Example 2: Van der Pol problem

In this section, we consider �nding the optimal feedback control law for the Van der Pol

oscillator problem. The system state equations are:

_x1 = x2 (7.62)

_x2 = �x1 + (1� x21)x2 + u (7.63)

The cost function to be minimized, starting from the initial states x1(0) = 1 and x2(0) = 0,

is:

J =
1

2

Z 5

0
(x21 + x22 + u2)dt (7:64)



7.5 Computational results 97

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

K
(t

)

Figure 7.2: Solution of Riccati equation (|) using numerical integration, (���) using

the proposed algorithm (Example 1)

The �rst step to solve this problem is to obtain the optimal open loop solution. This was

obtained in the last chapter. The open loop optimal trajectories are given by

x�1 =

�
0:30483 � 0:559136 0:211342 0:012940 � 0:037916

0:019442 � 0:004024 0:000828 0:000168 � 0:000011

�
T (�)

x�2 =

�
�0:166962 0:196425 0:113385 � 0:141723 0:082327

�0:020392 0:004559 � 0:001078 � 0:000077 0

�
T (�)

The second step is to �nd the optimal feedback control. To this end, the quasilin-

earization is applied one more time i.e. to expand the performance index and the state

equations , around the optimal trajectories and optimal control, up to the second order

and up to the �rst order respectively. We get the following problem: Find the optimal

feedback control u�(x; �) of the system

2
4 dx1

d�
dx2
d�

3
5 =

2
4 0 2:5

2:5(�1� 2x�1x
�
2) 2:5(1� x�1

2)

3
5
2
4 x1

x2

3
5+

2
4 0

2:5

3
5u+

2
4 0

5x�1
2x�2

3
5 (7:65)

and the performance index is

J =
1

2

Z 1

�1

�h
x1 x2

i 24 2:5 0

0 2:5

3
5
2
4 x1

x2

3
5+ 2:5u2

�
d� (7:66)



98 Chapter 7. Construction of Optimal Feedback Control

The feedback control can be obtained for this system by solving the following matrix

Riccati equation for K(�) and 2 linear di�erential equations for l(� ),

_K11(�) = 2:5K12K21 �K12A21 �K21A21 � 2:5 (7.67)

_K12(�) = 2:5K12K22 � (K11A12 +K12A22)�K22A21 (7.68)

_K21(�) = 2:5K21K22 �K22A21 � (K11A12 +K21A22) (7.69)

_K22(�) = 2:5K2
22 � (K21A12 +K22A22)� (K12A12 +K22A22)� 2:5 (7.70)

_l1(�) = M12l2(�)�H11 (7.71)

_l2(�) = M21l1(�) +M22l2(� )�H21 (7.72)

where

A12 = 2:5

A21 = 2:5(�1� 2x�1x
�

2)

A22 = 2:5(1� x�1
2)

M12 = �A21 + 2:5K12(�)

M21 = �A12

M22 = �A22 + 2:5K22(�)

H11 = 5K12(�)x
�

1
2x�2

H21 = 5K22(�)x
�

1
2x�2

The �nal conditions of the Riccati equations are K11(1) = K12(1) = K21(1) = K22(1) = 0

and the �nal conditions of l(1) are l1(1) = l2(1) = 0.

To determine K(�) using the method of this chapter, each of A21 and A22 is approx-

imated by a Chebyshev polynomial of order 10, and the matrix F is constructed. After

solving equation (7.47), the matrices U(� ) and V (�) are extracted from the matrix Y (� ),

then K(� ) is determined.

The exact solution of equations (7.67)-(7.70) which is obtained by backward numer-

ical integration starting from K(1) = 0, and the solution obtained using the algorithm

proposed in this chapter are shown in Figure 7.3

To determine l(� ), each ofM12,M21;M22; H11 andH21 is approximated by a Chebyshev

polynomial of order 10. The matrix of the unknown parameters of l(� ) is determined from

equation (7.56). Figure 7.4 shows the exact solution of equations (7.71) and (7.72) using

backward numerical integration starting from l(1) = 0 and the solution obtained using

the proposed method.
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Figure 7.3: Solution of Riccati equation (|) using numerical integration, (���) using

the proposed algorithm (Example 2)

Using l(t) and K(t), The feedback control can be constructed. Figure 7.5 shows the

open loop optimal control and optimal trajectories, it also shows the closed loop control

law and the corresponding trajectories. From this �gure, it is clear that the optimal open

loop control is expressed accurately by the optimal feedback control, and the optimal

trajectories of the closed loop system match accurately with those of the open loop system.

To show that the derived feedback control law can stabilize the system starting from

di�erent initial conditions, Figure 7.6 compares the feedback control and the state trajec-

tories starting from the initials conditions [1; 0] and [2;�1]. It is interesting here to notice

that the initial condition [1; 0] is inside the limit cycle of the unforced system u=0, while

the initial condition [2;�1] is outside the limit cycle.

7.6 Conclusion

A method is proposed to determine the optimal feedback control law of the nonlinear

optimal control problem. Using this method, we do not need to integrate the matrix

Riccati equation and the associated n linear di�erential equations. The simulation results

show that the closed loop control and the corresponding state trajectories approximate

the open loop optimal control and trajectories. Also using the closed loop control, the

system can be stabilized locally starting from di�erent initial conditions.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, we proposed numerical methods to solve several types of optimal con-

trol problems. These methods are based on using the second method of quasilinearization

and on parameterizing the system state variables using Chebyshev polynomials of the

�rst type. And then the control variables are obtained from the system state equations.

Therefore, the system state equations, in most cases, are satis�ed directly and will not be

replaced by a large number of equality constraints. The use of the state parameterization

is motivated by several advantages it o�ers compared with control parameterization and

control-state parameterization.

Applying the proposed methods, convert the linear optimal control problem into

quadratic programming problem and convert the nonlinear optimal control problem into

sequence of quadratic optimal control problems.

The numerical methods proposed in this thesis have the following advantages: Easy

method of approximation; no integration of the state equations or costate equations is

needed; explicit formula is derived to approximate the quadratic performance index; small

quadratic programming problems are to be solved.

Although we have no mathematical proof of the convergence of the proposed algo-

rithms, a property that is shared by many other numerical methods to solve the optimal

control problem, we applied our methods on several test examples which were solved by

other researchers using di�erent methods. Also we applied the proposed methods on two

real practical optimal control problems: F8 �ghter aircraft and container crane problems.

From the computational results obtained for these examples and problems, we can con-

clude that the proposed algorithms give better or comparable results compared with some

other methods.

102
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The solutions of the optimal control problems in Chapters 3, 4, 5 and 6 are open loop

solutions. But the feedback solution is desired to obtain because of several advantages

it can o�er, therefore in Chapter 7, we proposed a method to give an optimal feedback

control solution of nonlinear optimal control problems and as a special case the optimal

feedback control of time-varying linear optimal control problem. The idea to obtain the

optimal feedback control is to solve the problem successively as proposed in Chapter 3

and 4 and then, when acceptable convergence error is achieved, we perform the second

method of the quasilinearization once more to obtain the feedback control law. To the

best of our knowledge this is the �rst time the orthogonal polynomials are used in com-

puting the optimal feedback of nonlinear optimal control problems.

To facilitate the computation of the optimal feedback control, we derived a new prop-

erty of Chebyshev polynomials called di�erentiation operational matrix. The proposed

algorithm to �nd the optimal feedback control is based on using the di�erentiation oper-

ational matrix.

The di�erentiation operational matrix can be derived for several other orthogonal

polynomials which can be used to solve several problems. Therefore, we believe that the

derivation of this new property of Chebyshev polynomials will lead to active research

based on this property.

8.2 Future Work

The work of this thesis can be extended in two ways:

� As we mention earlier, still we do not have mathematical proof of the convergence of

the proposed method. Therefore one of the problems that can be treated in future

studies is the convergence of the proposed algorithm. This problem is not trivial.

� In chapter 7, we proposed a method to �nd the optimal feedback control of nonlinear

optimal control problem without considering any constraints. This can be extended

to �nd the optimal feedback of nonlinear problems subject to constraints.



Bibliography

[1] Lee E. B. and L. Markus, Foundations of Optimal Control Theory, John Wiley, USA,

1967.

[2] Anderson, B. and J. Moore: Optimal Control � Linear Quadratic Methods , Engle-

wood Cli�s, NJ: Prentice Hall, 1990.

[3] Bryson A. and Y. C. Ho, Applied Optimal Control , Hemisphere Publishing Corpora-

tion, Washington D.C, 1975.

[4] Sage, A. and Chelsea White, Optimum Systems Control , Prentice-Hall, NJ: Engle-

wood Cli�s, 1977.

[5] Kirk D. E., Optimal Control Theory, an Introduction, Prentice-Hall, Englewood

Cli�s, 1970.

[6] Dorato Peter, Chaouki Abdallah and Vito Cerone, Linear�Quadratic Control: An

Introduction , Prentice�Hall, 1995.

[7] Lewis F. L. and V. Syrmos, Optimal Control , John Wiley, USA, 1995.

[8] Athans M., The status of optimal control theory and applications for deterministic

systems, IEEE Transactions on Automatic Control , 11 , 580-596, 1966.

[9] Bryson A. E., Optimal control� 1950 to 1985, IEEE Control Systems Magazine, 16,

26-33, 1996.

[10] Sussmann H. J. and J. C. Willems, 300 years of optimal control: From the Brachys-

tochrone to the Maximum Principle, IEEE Control Systems Magazine, 17, 32-44,

1997

[11] Bellman R. E. and S. E. Dreyfus, Applied Dynamic Programming , Princeton NJ.:

Princeton University Press, 1962.

[12] Pontryagin L. S., V. G. Boltyanskii, R.V. Gamkrelidze and E.F. Mischenko, The

Mathematical Theory of Optimal Process, Wiley, New York, 1962.

104



Bibliography 105

[13] Ahmed N. U., Elements of Finite Dimensional Systems and Control Theory, Long-

man Scienti�c & Technical, UK, 1988.

[14] Lukes D. L., Optimal regulation of nonlinear dynamical system, Automatica, 7, 75-

100, 1969.

[15] Willemstein A. P., Optimal regulation of nonlinear dynamical systems on a �nite

interval, SIAM J. Control , 15, 1050-1069, 1977.

[16] Garrard W. and J. Jordan, Design of nonlinear automatic ight control systems,

Automatica, 13, 497-505 1977.

[17] Nishikawa Y., N. Sannomiya and H. Itakura, A method for suboptimal design of

nonlinear feedback systems, Automatica, 7, 703-712 1971.

[18] Yoshida T. and K. Loparo, Quadratic regulatory theory for analytic non-linear system

with additive controls, Automatica, 25-4, 531-544, 1989.

[19] Kugelmann B. and H. J. Pesch, New general guidance method in constrained optimal

control, part 1: Numerical method, Journal of Optimization Theory and Applica-

tions, 67, 421-435, 1990.

[20] Kugelmann B. and H. J. Pesch, New general guidance method in constrained optimal

control, part 2: Application to Space Shuttle Guidance, Journal of Optimization

Theory and Applications, 67, 437-446, 1990.

[21] Psech H.J., Real-time computation of feedback controls for constrained optimal con-

trol problems, part 1: Neighboring extremals, Optimal control Applications & Meth-

ods, 10, 129-145, 1990.

[22] Roenneke A. and K.Well, Linear optimal control for reentry ight, Computational

Optimal Control , Ed: R. Bulirsch and D. Kraft, Birkhauser,Germany, pp. 339-348,

1994

[23] Burghart J. H., A technique for suboptimal feedback control of nonlinear systems,

IEEE Transactions on Automatic Control, 14,530-533, 1969.

[24] Wernli A. and G. Cook, Suboptimal control for the nonlinear quadratic regulator

problem, Automatica, 11,75-84, 1975.

[25] Bass R. W. and R. F. Webber, Optimal nonlinear feedback control derived from quar-

tic and higher order performance criteria, IEEE Transactions on Automatic Control ,

11, 448-454, 1966.



106 Bibliography

[26] Moylan P. J. and B. D. Anderson, Nonlinear regulator theory and an inverse optimal

control problem, IEEE Transactions on Automatic Control , 18, 460-465, 1973.

[27] Sandor J. and D. Williamson, Design of nonlinear regualtor for linear plants, IEEE

Transactions on Automatic Control , 22, 47-50, 1977.

[28] Bernstein D., Nonquadratic cost and nonlinear feedback control, Int. J. of Robust

and Nonlinear Control , 3,211-229, 1993.

[29] Nedeljkovic N. B., New algorithms for unconstrained nonlinear optimal control prob-

lems, IEEE Trans. Automat. Cont., 26, 868-884, 1981.

[30] Goh C. J., On the nonlinear optimal regulator problem, Automatica, 29, 751-756,

1993.

[31] Longmuir A. G. and E. Bohn, Synthesis of supoptimal feedback control laws , IEEE

Trans. Automat. Cont., 12,755-758, 1967.

[32] Tabak D., Applications of mathematical programming techniques in optimal control:

A survey, IEEE Trans. Automatic Control , AC-15-12, 688-690, 1970.

[33] Troch I., F.Breitenecker and M.Grae�, Computing optimal controls for systems with

state and control constraints, IFAC Control Applications of Nonlinear Programming

and Optimization, France, 39-44, 1989.

[34] Teo K., C. Goh and K. Wong, A Uni�ed Computational Approach to Optimal Control

Problems, Longman Scienti�c & Technical, England, 1991.

[35] Polak E., Computational Methods in Optimization, Academic Press, New York, 1971.

[36] Goh, C. J. and K. L. Teo, Control parameterization: A uni�ed approach to optimal

control problems with general constraints, Automatica, 24-1, 3-18, 1988.

[37] Sirisena H. R., Computation of optimal controls using a piecewise polynomial pa-

rameterization, IEEE Trans. Automat. Cont., AC-18, 409-411, 1973.

[38] Spangelo I., Trajectory optimization for vehicles using control vector parameterization

and nonlinear programming, Phd thesis, 1994.

[39] Vlassenbroeck J. and R. Van Doreen, A Chebyshev technique for solving nonlinear

optimal control problems, IEEE Trans. Automat. Cont., 33, 333-340, 1988.

[40] Vlassenbroeck J, A Chebyshev polynomial method for optimal control with state

constraints, Automatica, 24, 499-506, 1988.



Bibliography 107

[41] Frick P. A. and D. J. Stech, Solution of optimal control problems on a parallel machine

using the Epsilon method, Optimal Control Applications & Methods, 16, 1-17, 1995.

[42] Frick P. A. and D. J. Stech, Epsilon�Ritz method for solving optimal control prob-

lems: Useful parallel solution method, Journal of Optimozation Theory and Appli-

cations, 79, 31-58, 1993.

[43] Sirisena H. R. and F. S. Chou, An e�cient algorithm for solving optimal control

problems with linear terminal constraint, IEEE Trans. Automat. Cont., AC-21,

275-277, 1976.

[44] Fox L. and I. B. Parker, Chebyshev Polynomials in Numerical Analysis, Oxford Uni-

versity Press, England, 1968.

[45] Bellman R. and R. Kalaba, Quasi-linearization and Nonlinear Boundary Value Prob-

lems, Elsevier, New York, 1965.

[46] Vlach J., Computerized Approximation and Synthesis of Linear Networks, London,

Wiley, 1969.

[47] Lee J. and Z. Bien, A computational method for in�nite-time optimal regulation

problems, IEEE Trans. Automat. Cont., AC-31, 1146-1149, 1986.

[48] Elnagar G., M. Kazemi and M. Razzaghi, The Pseudospectral Legendre method for

discretizing optimal control problem, IEEE Trans. Automatic Control , AC-40-10,

1793-1796, 1995.

[49] Sirisena H. R. and F. S. Chou, State parameterization approach to the solution of

optimal control problems, Optimal Control Applications & Methods, 2-3, 289-298,

1981.

[50] Sirisena H. R. and K. S. Tan, Computation of constrained optimal controls using

parameterization techniques, IEEE Trans. Automatic Control , 19-8,431-433, 1974.

[51] Hsieh H. C., Synthesis of adaptive control systems by function space methods, Ad-

vances in Control Systems , Ed: C. T. Leondes, Vol. 2, 117-208, New York, Academic

Press, 1965.

[52] Neuman C. P. and A. Sen, A suboptimal control algorithm for constrained problems

using cubic splines, Automatica, 9 , 601-613,1973.

[53] Mehar R. and R. Davis, A generalized gradient method for optimal control problems

with inequality constraints and singular arcs, IEEE Trans. Automatic Control , AC-

17-1, 69-79, 1972.



108 Bibliography

[54] Fegley K., S. Blum, J. Bergholm, A. Calise, J. Marowitz, G. Porcelli and L. Sinha,

Stochastic and deterministic design and control via linear and quadratic program-

ming, IEEE Trans. Automatic Control, AC-16-6, 759-766, 1971.

[55] Bashein G. and M. Enns, Computation of optimal control by a method combining

quasi-linearization and quadratic programming, Int. J. Control , 16, 177-187, 1972.

[56] Ma B. and W. S. Levine, An algorithm for solving control constrained optimal con-

trol problem, Proc. of 32ed IEEE Conference on Decision and Control (CDC), San

Antonio, 784-3790, 1993.

[57] Ma B. and W. S. Levine, An algorithm for solving optimal control problem with

control and terminal state constraints, Proc. of 32ed IEEE Conference on Decision

and Control (CDC), San Antonio, 1374-1380, 1994.

[58] Kelly H. J., Method of Gradients, In Optimization Techniques Ed: G. Leitman,

Academic press, New York, 1962.

[59] Bullock T. and G. Franklin, A second order feedback method for optimal control

computations, IEEE Trans. Automat. Cont., 12, 666-673, 1967.

[60] Bellman R., 1971, Introduction to Mathematical Theory of Control Processes, (New

York: Academic Press).

[61] Chen C.F., and C. H. Hsiao, Design of piecewise constant gains for optimal control

via Walsh functions, IEEE Transactions on Automatic Control , 20, 596-603, 1975.

[62] Chou J., and I. Horng, Application of Chebyshev polynomials to optimal control of

time�varying linear systems, International Journal of Control , 41, 135-144, 1985.

[63] Glad S.T., Robustness of nonlinear state feedback � A survey, Automatica, 23 ,

425-435, 1987.

[64] Liu C., and Y. Shih, Analysis and optimal control of time�varying systems via

Chebyshev polynomials, International Journal of Control , 38, 1003-1012, 1983.

[65] Mitter S.K., Successive approximation methods for the solution of optimal control

problems, Automatica, 3, 135-149, 1966.

[66] Paraskevopoulos P.N., Chebyshev series approach to systems identi�cation, analysis

and optimal control, Journal of the Franklin Institute, 316, 135-157, 1983.

[67] Rao V.P., and K. R. Rao, Optimal feedback control via Block�Pulse functions, IEEE

Transactions on Automatic Control , 24, 372-374, 1979.



Bibliography 109

[68] Urabe M., Numerical solution of boundary value problems in Chebyshev series � A

method of computation and error estimation. Lecture Notes Math., 109, 40-86, 1969.

[69] Wang S.K., and M. L. Nagurka, Designing linear optimal regulator vis Chebyshev

polynomials, In Proceeding of the American Control Conference, San Francisco, pp.

2685-2689, 1993.

[70] Van Doreen R. and J. Vlassenbroeck, A computational method in optimal systems

control with various applications, Third IMA conference on Control Theory , Ed:

W.D.Collins, C.J.Harris and D.H.Owens, Academic Press, Lodon, pp. 407-429, 1981.

[71] Van Doreen R., A Chebyshev technique applied to a controlled nuclear reactor sys-

tem, Optimal control Applications & Methods, 10,285-291, 1989.

[72] Cullum J., Discrete approximations to continous optimal control problems, SIAM J.

Control, 7-1, 32-49, 1969.

[73] Stryk O. and R. Bulirsch, Direct and indirect methods for trajectory optimization,

Annals of Operations Research, 37, 357-373, 1992.

[74] Sakawa Y. and Y. Shindo, Optimal control of container cranes, Automatica, 18-3,

257-266, 1982.

[75] Kraft D., On converting optimal control problems into nonlinear programming prob-

lems, Computational Mathematical Programming , Vol. F15 , Ed: K. Schittkowski,

Springer, Berlin, 261-280, 1985.

[76] Schwartiz A. L., Theory and implementation of numerical methods based on Runge-

Kutta integration for solving optimal control problem, Phd thesis, 1996.

[77] Nair G. G., Suboptimal control of nonlinear systems, Automatica, 14, 517-519, 1978.

[78] Betts J., Issues in the direct transcription of optimal control probem to sparse non-

linear programs, Computational Optimal Control , Ed: R. Bulirsch and D. Kraft,

Birkhauser,Germany, 3-17, 1994.

[79] Yen, V. and M. Nagurka, Optimal control of linearly constrained linear systems

via state parameterization, Optimal Control Applications & Methods, , 13, 155-167,

1992.

[80] Jacobson D. H. and D. Q. Mayne, Di�erential Dynamic Programming, Elsevier, New

York, 1990

[81] Han S. P., A globally convergent method for nonlinear programming, Journal of

Optimization Theory and Applications, 22, 297-309, 1977.



110 Bibliography

[82] Han S. P., Superlinearly convergent variable metric algorithm for general nonlinear

programming problems, Mathematical Programming, 11, 263-283, 1976.

[83] Lin S. Y., Complete decomposition algorithm for nonconvex separable optimization

problems and applications, Automatica, 28, 1249-1254, 1992.

[84] Razzaghi M. and G. Elnagar, Linear quadratic optimal control problems via shifted

Legendre state parameterization, Int. J.Systems Science, 25,393-399, 1994.

[85] Yang C. Y. and C. K. Chen, Analysis and optimal control of time varying systems

via Fourier series, Int. J. Systems Science, 25 , 1663-1678, 1994.

[86] Elnagar G. and M. Razzaghi, A collocation-type method for linear quadratic optimal

control problems, Optimal Control Application & Methods, 18, 227-235, 1997.

[87] Razzaghi M., Optimal control of linear time varying system via Fourier series, J. of

Optimization Theory and Applications, 65,375-384, 1990.



Publications

[Journal Papers]

[1] H. Jaddu, E. Shimemura: \Computation of Optimal Control Trajectories Using

Chebyshev Polynomials Parameterization and Quadratic Programming", Submitted

to Optimal Control Applications and Methods.

[2] H. Jaddu, E. Shimemura: \Solution of Constrained Linear Quadratic Optimal Con-

trol Problem Using State Parameterization", Trans. of SICE, Vol. 34, No. 9,

1998.

[3] H. Jaddu, E. Shimemura: \Computational Algorithm Based on State Parameteri-

zation for Constrained Nonlinear Optimal Control Problem", To appear in Interna-

tional Journal of Systems Science, 1998.

[4] H.Jaddu, E. Shimemura: \Construction of Optimal Feedback Control for Nonlinear

Systems via Chebyshev Polynomials", To appear in International Journal of Systems

Science, 1998.

[Reviewed Proceedings]

[5] H.Jaddu, E. Shimemura: \Computation of Optimal Control Trajectories Using

Chebyshev Polynomials Parameterization", Proc. of the 7th International Sym-

posium on Dynamic Games and Applications, Vol. 1, 362-373, 1996.

[6] H. Jaddu, E. Shimemura: \Solution of Nonlinear Optimal Control Problem Using

Chebyshev Polynomials", Proc. of 2nd Asian Control Conference, Vol. 1, 417-420,

1997.

[7] H. Jaddu, E. Shimemura: \An Algorithm for Solving Constrained Linear Quadratic

Optimal Control Problem", Proc. of IEEE Singapore International Symposium on

Control Theory and Application, 450-454, 1997.

111



112 Publications

[8] H. Jaddu, E. Shimemura: \Computational Algorithm based on State Parameteri-

zation for Constrained Nonlinear Optimal Control Problem", Proc. of 36th IEEE

Conference on Decision and Control, Vol.4, 4908-4911, 1997.

[9] H. Jaddu, E. Shimemura: \Optimal Closed Loop Control for Nonlinear Systems

Using Chebyshev Polynomials", Proc. of 1998 American Control Conference, Vol.

1, 667-671, 1998.

[10] H. Jaddu, E. Shimemura: \Computation of Optimal Feedback Gains for Time Vary-

ing LQ Optimal Control", Proc. of 1998 American Control Conference, Vol. 5,

3101-3102, 1998.


