
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title 高階項書換え系の停止性に関する研究

Author(s) 岩見, 宗弘

Citation

Issue Date 1999-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/871

Rights

Description Supervisor:Yoshihito Toyama, 情報科学研究科, 博士

Termination of Higher-Order Rewrite Systems

by

Munehiro Iwami

submitted to

Japan Advanced Institute of Science and Technology

in partial ful�llment of the requirements

for the degree of

Doctor of Philosophy

Supervisor: Professor Yoshihito Toyama

School of Information Science

Japan Advanced Institute of Science and Technology

March 1999

Copyright c 1999 by Munehiro Iwami

Abstract

Higher-order rewriting is a natural extension of �rst-order term rewriting systems to

reason with higher-order equations. Higher-order rewrite systems have been widely used

as a model of higher-order functional and logic programming languages and as a basis of

higher-order theorem provers.

The termination property is one of the fundamental notions of rewrite systems as

computational models. In general, it is undecidable whether a given term rewriting system

is terminating or not. A rewrite system is said to be terminating, if there is no in�nite

rewrite sequence. In terminating term rewriting systems, any strategy can compute one

of answers for a given term.

In term rewriting systems, several su�cient conditions for proving the termination

property have been successfully developed in particular cases. These techniques can be

classi�ed into two approaches: semantic methods and syntactic methods. Simpli�cation

orderings are representatives of syntactic methods. Many simpli�cation orderings, for in-

stance, the recursive path ordering, the improved recursive decomposition ordering and so

on, have been proposed for term rewriting systems. The improved recursive decomposition

ordering is one of the most powerful simpli�cation orderings.

In higher-order rewrite systems, Jouannaud and Rubio gave a de�nition of recursive

path ordering for higher-order rewrite systems by introducing an ordering on type struc-

ture recently.

In this thesis, we study the termination of higher-order rewrite systems by syntactic

approaches.

First, we extend the improved recursive decomposition ordering to higher-order rewrite

systems for proving termination of these systems. Our extension is inspired from Jouan-

naud and Rubio's idea. This ordering is called the higher-order improved recursive decom-

position ordering. Further, we show that this ordering is more powerful than Jouannaud

and Rubio's ordering.

Next, we introduce the notion of simpli�cation orderings for higher-order rewrite sys-

tems. More precisely, we de�ne the simpli�cation ordering on algebraic terms where an

algebraic term is �-long �-normal form without �-abstractions. By this de�nition, we can

analyze the termination of higher-order rewrite systems in abstract level. Further, we

de�ne a new recursive path ordering for higher-order rewrite systems, called the higher-

order recursive path ordering. Our ordering extends Jouannaud and Rubio's ordering,

which does not allow comparing two type incompatible terms. We show through several

examples that our ordering can be applied to prove termination of higher-order rewrite

systems to which Jouannaud and Rubio's ordering cannot be applied.

Finally, we extend the persistent property of termination to order sorted term rewrit-

ing systems. Zantema showed that termination is persistent for term rewriting systems

without collapsing or duplicating rules. We show that Zantema's result can be extended

to order sorted term rewriting systems, i.e, termination is persistent for order sorted term

rewriting systems without collapsing, decreasing or duplicating rules.

i

Acknowledgments

I would like to thank my principal advisor Prof. Yoshihito Toyama and Prof. Masahiko

Sakai for their helpful discussions, encouragements and suggestions. I would like to thank

Prof. Tetsuo Ida, Prof. Hajime Ishihara and Prof. Hiroakira Ono for their useful comments

and suggestions.

I also wish to thank Dr. Takahito Aoto, Mr. Keiichiro Kusakari, Mr. Takashi Nagaya,

Dr. Hitoshi Ohsaki, Dr. Taro Suzuki and the members of Toyama-laboratory.

Finally, I wish to express my thanks to my parents and the late Dr. Yuko Yashima for

their supports.

ii

Contents

Abstract i

Acknowledgments ii

1 Introduction 2

1.1 Term Rewriting Systems . 2

1.2 Higher-Order Rewrite Systems . 3

1.3 Termination . 4

1.4 Overview and Main Results of the Thesis 5

2 Preliminaries 7

2.1 Abstract Reduction Systems . 7

2.2 Sorted Term Rewriting Systems . 9

2.3 Higher-Order Terms . 11

2.4 Higher-Order Rewrite Systems . 13

3 Orderings for Term Rewriting Systems 15

3.1 Simpli�cation Ordering . 15

3.2 Recursive Path Orderig and Decomposition Ordering 17

4 Improved Recursive Decomposition Ordering for Higher-Order Rewrite

Systems 21

4.1 Introduction . 21

4.2 Typed Improved Recursive Decomposition Ordering 22

4.3 Higher-Order Improved Recursive Decomposition Ordering 27

4.4 Related Works . 34

4.5 Conclusion . 36

5 Simpli�cation Ordering for Higher-Order Rewrite Systems 37

5.1 Introduction . 37

5.2 Simpli�cation Ordering for Higher-Order Rewrite Systems 37

5.3 Higher-Order Recursive Path Ordering . 40

5.4 Envelope for Typed Terms . 45

5.5 Related Works . 47

5.6 Conclusion . 48

iii

6 Persistence of Termination for Term Rewriting Systems on Ordered

Sorts 49

6.1 Introduction . 49

6.2 Sorting of Term Rewriting Systems . 50

6.3 Characterization of Unsorted Terms . 51

6.4 Persistence of Termination . 53

6.5 Related Works . 57

6.6 Conclusion . 57

7 Conclusions 58

A Property of Well-Partial Ordering 60

A.1 Lemma A.1.1 . 60

References 61

Publications 66

iv

List of Figures

4.1 mapList(�Nat!Nat(XNat(cNat)); nilList). 25

4.2 map(�x.X(x),cons(N ,L)) and kmap(�x.X(x),cons(N ,L))kfxg. 27

4.3 Case (1) in lemma 4.3.15 . 29

4.4 Case (2) in lemma 4.3.15 . 30

4.5 Case (3) in lemma 4.3.15 . 30

1

Chapter 1

Introduction

1.1 Term Rewriting Systems

Term rewriting systems can o�er both exible computing and e�ective reasoning with

equations and have been widely used as a model of functional and logic programming

languages and as a basis of theorem provers, symbolic computation, algebraic speci�cation

and veri�cation.

The notion of rewriting is naturally introduced from equational reasoning. Now, we

consider the following example. The equations de�ne addition of natural numbers repre-

sented by the constant 0 and the successor function s.

�
x+ 0 = x

x+ s(y) = s(x+ y)

By applying these equations, we can reason s(0) + s(s(0)) = s(s(s(0))) as follows.

s(0) + s(s(0)) = s(s(0) + s(0))

= s(s(s(0) + 0))

= s(s(s(0)))

In the above equational reasoning, the equation s(0) + s(s(0)) = s(s(s(0))) can be

interpreted as \s(s(s(0))) is the result of computing s(0) + s(s(0))", but not via versa.

This computational aspect for equational reasoning naturally leads to rewrite systems.

A rewrite system is a set of directed equations, called rewrite rules. A computation

of rewrite system is performed by replacing some objects with other objects by using

directed equations. Answers of computations are called normal forms.

If objects of rewriting are �rst-order terms, then the rewrite system is called (�rst-

order) term rewriting system. The following rewrite system computes addition of natural

numbers represented by the constant 0 and the successor function s.

2

R1 =

�
x+ 0!x

x+ s(y)! s(x+ y)

The following rewrite steps are computation of s(0) + s(s(0)) with respect to R1.

s(0) + s(s(0)) !R1
s(s(0) + s(0))

!R1
s(s(s(0) + 0))

!R1
s(s(s(0)))

Term s(s(s(0))) is a normal form of s(0) + s(s(0)) with respect to R1, i.e., it is the

answer of this computation.

A textbook and surveys on term rewriting systems are written by Baader and Nipkow

[4], Jouannaud and Dershowitz [11] and Klop [32].

1.2 Higher-Order Rewrite Systems

If objects of rewriting are higher-order terms, then the rewrite system is called higher-order

rewrite system. Higher-order rewriting is a natural extension of �rst-order term rewriting

systems to reason with higher-order equations [38, 56]. Higher-order rewrite systems have

been widely used as a model of higher-order functional and logic programming languages

like ML [41, 50], Haskell [17] and �-Prolog [65], and as a basis of higher-order theorem

provers like Isabelle [49, 51], TPS [1], Nuprl [7], and algebraic speci�cation [6, 42]. First,

Klop [32] has introduced the higher-order rewrite systems, called combinatory reduction

systems, in 1980. Further, several higher-order rewrite systems have been suggested by

Nipkow [43], van Oostrom [48], van de Pol [55], van Raamsdonk [58] and Wolfram [65].

Nipkow de�ned the higher-order rewrite systems in order to investigate the meta-theory

of systems like Isabelle and �-Prolog. The �-calculus used in this system does not work

as a computational mechanism but as a language for representing formulae. Recently the

basic results for term rewriting systems have been lifted to higher-order rewrite systems

by Nipkow and so forth. For instance, Nipkow showed critical pair lemma for higher-

order rewrite systems [43] and conuence of orthogonal higher-order rewrite systems [44].

We take an �-long �-normal form as a higher-order term and follow the de�nition of

higher-order rewrite systems introduced by Nipkow [38, 43] in this thesis.

Term rewriting systems cannot deal with the notion of higher-order directly. However,

functional programming languages may contain higher-order functions. Also, the notion

of bound variables is used in mathematics, logics and programming languages naturally.

Since higher-order rewrite systems can deal with the notion of higher-order naturally and

theoretically, they can denote higher-order functions and bound variables directly.

We consider the following higher-order rewrite system. The operation map applies the

function �x:X(x) to each element in list.

3

R2 =

8>><
>>:

map(�x:X(x); [])![]

map(�x:X(x); N : L)!X(N) : map(�x:X(x); L)

x+ 0!x

x+ s(y)! s(x+ y)

Higher-order rewrite systems have the more expressive power than term rewriting

systems as follows.

� Higher-order rewrite systems treat higher-order functions directly.

We consider the rewrite rule map(�x:X(x); N : L) ! X(N) : map(�x:X(x); L) in

R2. Since function �x:X(x) is not �rst-order, the frame of term rewriting systems

cannot express directly.

� Higher-order rewrite systems treat bound variables directly.

The rewrite system R2 has the bound variable x. However bound variables cannot

be expressed directly in the frame of term rewriting systems.

The following rewrite steps are computation of map(�x:s(0) + x; 0 : s(0) : []) with

respect to R2. Term map(�x:s(0)+x; 0 : s(0) : []) denotes the operation that applies the

function �x:s(0) + x to each element in list [0; 1] (encoded as 0 : s(0) : []).

map(�x:s(0) + x; 0 : s(0) : []) !R2
s(0) + 0 : map(�x:s(0) + x; s(0) : [])

!R2
s(0) + 0 : s(0) + s(0) : map(�x:s(0) + x; [])

!R2
s(0) + 0 : s(0) + s(0) : []

!R2
s(0) : s(0) + s(0) : []

!R2
s(0) : s(s(0) + 0) : []

!R2
s(0) : s(s(0)) : []

Term s(0) : s(s(0)) : [] is a normal form of map(�x:s(0) + x; 0 : s(0) : []) with respect

to R2. Term s(0) : s(s(0)) : [] denotes the list [1; 2].

1.3 Termination

A rewrite system is called terminating if there is no in�nite rewrite sequence. The notion of

termination for rewrite systems corresponds to the existence of answers of computations.

So termination is the fundamental notion of term rewriting systems as computation models

[12]. Huet and Lankford [18] showed that termination is undecidable for term rewriting

systems in general. However, several su�cient conditions for proving this property have

been successfully developed in particular cases. These techniques can be classi�ed into

two approaches: semantic methods and syntactic methods.

Simpli�cation orderings are representatives of syntactic methods [9, 12, 60, 63]. The

notion of simpli�cation orderings was introduced by Dershowitz [9]. Many simpli�cation

4

orderings have been de�ned on term rewriting systems. For instance, Plaisted [52, 53]

de�ned the path of subterm ordering. Dershowitz [9] de�ned the recursive path ordering.

Kamin and l�evy [30] introduced the lexicographic path ordering. Jouannaud, Lescanne

and Reinig [26] introduced the recursive decomposition ordering. Kapur, Narendran and

Sivakumar [31] de�ned the path ordering of Kapur, Narendran and Sivakumar. Rusi-

nowitch [59] de�ned the improved recursive decomposition ordering. Steinbach [61, 62]

revisited the above orderings. The improved recursive decomposition ordering is one

of the most powerful simpli�cation orderings [61, 62]. An overview and comparison of

simpli�cation orderings have been given by Steinbach [60, 63].

In a semantical methods terms are interpreted in some well-founded ordered set in such

a way that each rewrite sequence maps to a descending chain, and hence term rewriting

system is terminating. The methods were studied by Lankford [35], Ben-Cherifa and

Lescanne [5], Zantema [66] and so forth.

Termination is one of the most important properties of higher-order rewriting, like

�rst-order rewriting. Termination criteria for higher-order rewrite systems have been

studied since 1992. Lor��a-S�aenz and Steinbach [36] �rst extended recursive path order-

ing for proving termination of higher-order rewrite systems. Their extension method is

based on an interpretation that maps higher-order terms to �rst-order terms. Lysne and

Piris [37] also extended recursive path ordering for proving termination of higher-order

rewrite systems by introducing the notions of termination functions, critical positions

and dominations. We gave an extension of improved recursive decomposition ordering

to higher-order rewrite systems in [19, 20, 21] according to Lysne and Piris's method.

Jouannaud and Rubio [27] gave a simple de�nition of recursive path ordering for higher-

order rewrite systems by introducing an ordering on type structure. Further, Walukiewicz

[64] extended the Jouannaud and Rubio's ordering to AC-reduction ordering for proving

termination of higher-order rewrite systems modulo AC-theories where A stands for asso-

ciativity and C for commutativity. van de Pol [54, 55] and Kahrs [29] extended semantic

methods in term rewriting systems to higher-order rewrite systems.

In proving termination of higher-order rewrite systems by syntactic approaches, main

di�culty is to show the stability under substitutions of ordering. The partial ordering > is

called stable under substitutions if s > t implies s� #� > t� #� for any substitution � where

s� #� and t� #� are �-normal forms. By the subterm property, X(a) > a holds where X is

the higher-order variable. However, higher-order variables in a term destroy the stability

under substitutions. For instance, we consider the substitution � = fX �x:bg where

b is the new function symbol such that a > b. The ordering > is not stable under

substitutions since X(a)� #� = b < a = a� #�. Hence, the methods for guaranteeing the

stability under substitutions in term rewriting systems cannot use in higher-order rewrite

systems directly.

1.4 Overview and Main Results of the Thesis

We discuss the termination of higher-order rewrite systems by syntactic approaches in

this thesis.

In chapter 2, we introduce de�nitions and notations of abstract reduction systems,

sorted term rewriting systems and higher-order rewrite systems [3, 27, 28, 38, 56, 64].

In chapter 3, we introduce the notion of simpli�cation orderings for term rewriting

systems [9, 12, 39]. Also we give the recursive path ordering and improved recursive de-

5

composition ordering for term rewriting systems as an example of simpli�cation orderings

[12, 60, 63]. The improved recursive decomposition ordering is one of the most powerful

simpli�cation orderings for term rewriting systems.

In chapter 4, we extend the improved recursive decomposition ordering to higher-order

rewrite systems for proving termination [21, 23]. Our extension method is inspired from

Jouannaud and Rubio's one [27, 28] and the particular properties of improved recursive

decomposition ordering. This ordering is called the higher-order improved recursive de-

composition ordering. Further, we show that this ordering is more powerful than the

Jouannaud and Rubio's ordering.

In chapter 5, we introduce the notion of simpli�cation orderings for higher-order

rewrite systems [24, 25]. More precisely, we de�ne simpli�cation orderings on algebraic

terms where an algebraic term is in �-long �-normal form without �-abstractions. By

this de�nition, we can analyze the termination of higher-order rewrite systems in ab-

stract level. Further, we de�ne a new recursive path ordering for higher-order rewrite

systems, called the higher-order recursive path ordering. We show that this ordering can

be used for proving termination of higher-order rewrite systems. Our ordering extends

Jouannaud and Rubio's ordering [27, 28], which does not allow comparing two type in-

compatible terms. We show through several examples that our ordering can be applied

to prove termination of higher-order rewrite systems to which Jouannaud and Rubio's

ordering cannot be applied.

In chapter 6, we extend the persistence of termination to order sorted term rewriting

systems. First-order term rewriting systems are special cases of higher-order rewrite

systems. So we analyze the termination of �rst-order term rewriting systems using the

notion of persistence. A property P of term rewriting systems is persistent if for any

many-sorted term rewriting system R, R has the property P if and only if its underlying

term rewriting system �(R), which results from R by omitting its sort information, has

the property P . Usual many-sorted term rewriting system was extended with ordered

sorts by Aoto and Toyama [3]. And it was shown that the persistency of conuence [2]

is preserved for this extension in [3]. Zantema [66] showed that termination is persistent

for term rewriting systems without collapsing or duplicating rules. We show that the

above Zantema's result is preserved for Aoto and Toyama's extension in the subclass of

order sorted term rewriting systems, i.e., termination is persistent for order sorted term

rewriting systems without collapsing, decreasing or duplicating rules.

Finally, we summarize the main results in this thesis:

� We extend the improved recursive decomposition ordering to higher-order rewrite

systems for proving termination.

� We introduce a framework of simpli�cation ordering and the new recursive path

ordering in higher-order rewrite systems for proving termination.

� We show that termination is persistent for order sorted term rewriting systems

without collapsing, decreasing or duplicating rules.

6

Chapter 2

Preliminaries

In this chapter, we introduce the notions of abstract reduction systems, sorted term

rewriting systems and higher-order rewrite systems. We mainly follow the basic notations

in the literatures [3, 27, 28, 38, 56, 55, 64].

2.1 Abstract Reduction Systems

We introduce an abstract notion of rewriting and partial orderings, before de�ne term

rewriting systems and higher-order rewrite systems. Term rewriting systems can be con-

sidered as abstract reduction systems such that objects of rewriting are terms. Higher-

order rewrite systems can be considered as abstract reduction systems such that objects

of rewriting are higher-order terms. Many properties of rewrite systems can be stated in

abstract reduction systems.

De�nition 2.1.1 An abstract reduction system (ARS for short) is a pair A = hA;!i

consisting of a set A and a binary relation ! � A � A. Instead of (a; b) 2 ! we write

a! b.

De�nition 2.1.2 Let A = hA;!i be an ARS.

� Identity of elements in A is denoted by =.

� The relation !+ is the transitive closure of !.

� The relation !� is the reexive and transitive closure of !.

� The relation $� is the reexive, symmetric and transitive closure of !.

De�nition 2.1.3 Let A = hA;!i be an ARS. Let a 2 A be given.

� If there is no element b 2 A such that a ! b, then we say that a 2 A is a normal

form (with respect to !).

7

� If b 2 A is a normal form such that a !� b then we say that b is a normal form of

a.

� A rewrite sequence (or reduction sequence) from a is a �nite or in�nite sequence

a = a0! a1! a2! : : : .

� a is terminating if there is no in�nite rewrite sequence a = a0 ! a1 ! a2 ! : : : .

� a is conuent if for any b, c 2 A such that a !� b and a !� c, there exists d 2 A

such that b !� d and c !� d.

� An ARS A = hA;!i is terminating (conuent) if for any a 2 A, a is terminating

(conuent).

A binary relation on A is called a (strict) partial ordering on A if it is irreexive and

transitive on A. The partial ordering is usually denoted by >. The converse of > is

denoted by <. The reexive closure of > is denoted by �.

A partial ordering > on A is total if for any a, b 2 A we have either a > b or a = b or

a < b.

De�nition 2.1.4 A partial ordering > on A is well-founded if > has no in�nite descend-

ing sequences, i.e., there is no sequence of the form a0 > a1 > a2 > : : : of elements in

A.

De�nition 2.1.5 A partial ordering > on A is a well-partial ordering if for every in�nite

sequence a0; a1; a2; : : : of elements in A there are indexes k, l (k < l) such that ak � al.

Given a well-partial ordering > on A, hA;> i is called a well-partially ordered set .

Note that h A1, >1 i, h A2, >2 i are well-partially ordered sets and A1 \ A2 = ; then

h A1 [A2,>1 [>2 i is also a well-partially ordered set.

A binary relation on A is called a quasi-ordering on A if it is reexive and transitive

on A. The quasi-ordering is usually denoted by &. The converse of & is denoted by ..
The strict part of a quasi-ordering & is a partial ordering > de�ned as & n .. Every

quasi-ordering & induces an equivalence relation � de�ned as & \ .. It is easy to see

that >=& n �.

De�nition 2.1.6 A quasi-ordering & on A is well-founded if its strict part is well-

founded.

The multiset extension and the lexicographic extension are essential methods in con-

structing more complex order structures from simple ones.

8

De�nition 2.1.7 A multiset over A is an unordered collection of elements of A in which

elements may have multiple occurrences. Given a binary relation > on A, the multiset

extension >mult or � is de�ned as the transitive closure of the following relation) on

the set of multisets of elements in A. M [fag) M [fb1,: : : ,bng where n � 0 and a >

bi for any i 2 f1,: : : ,ng.

The important property of the multiset extension is that > is a well-founded ordering

on A if and only if >mult is a well-founded ordering on multisets of elements of A [10].

De�nition 2.1.8 Given a binary relation > on A, the lexicographic extension >lex on An

for some �xed n is de�ned as follows: h a1,: : : ,ak i >
lex h b1,: : : ,bm i if and only if m < k

and 8j (1 � j � m), aj = bj, or 9j (1 � j � minfm; kg) such that aj > bj and 8i (1 �

i < j), ai = bi.

It is well-known that > is a well-founded ordering on A if and only if the lexicographic

extension >lex is a well-founded ordering on An.

2.2 Sorted Term Rewriting Systems

In this section, we introduce the basic notions of sorted term rewriting systems. Sorted

term rewriting systems are considered as higher-order rewrite systems without higher-

order functions or bound variables. Usual term rewriting systems [4] are considered as

special cases of sorted term rewriting systems.

Let S be a set of sorts or basic types and V be a set of countably in�nite sorted

variables. We assume that S is equipped with a well-founded partial ordering �. We

write b � b0 if and only if b � b0 or b = b0.

We assume there is a set Vb of countably in�nite variables of sort b for each sort b 2 S .

Let F be a set of sorted function symbols. We assume that each sorted function symbol

f 2 F is given with the sorts of its arguments and the sort of its value, all of which are

included in S. We write f :b1 � : : : � bn ! b0 if and only if f takes n arguments of sorts

b1,: : : ,bn respectively to a value of sort b0. Function symbols of 0 argument are constants.

De�nition 2.2.1 The set T (F ;V) = [b2S T (F ;V)
b of all sorted terms built from F and

V is de�ned as follows:

(1) Vb � T (F ;V)b,

(2) f :b01 � : : : � b0n ! b0, ti 2 T (F ;V)
bi and bi � b0i (i = 1,: : : ,n) then f(t1,: : : ,tn) 2

T (F ;V)b
0

. Here T (F ;V)b denotes the set of all terms of sort b.

We de�ne the set of all strict sorted terms if (2) is replaced by (20) if f :b01 � : : : � b0n
! b0, ti 2 T (F ;V)

bi , bi � b0i (i = 1,: : : ,n) and bj = b0j whenever tj 2 V then f(t1,: : : ,tn) 2

T (F ;V)b
0

. We write t : b if t is of sort b. V(t) denotes the set of all variables that appear

in t. T (F ;V)b and T (F ;V) are abbreviated as T b and T , respectively.

9

Let 2b be a special constant (hole) of sort b. Elements of T (F [f2b j b 2 Sg,V) are

called contexts over T (F ;V). We write C:b1 � : : : � bn ! b0 if and only if the sort of

context C is b0 and it has n holes 2b1,: : : ,2bn . If C:b01 � : : : � b0n ! b0 and t1:b1, : : : , tn:bn
with bi � b0i (i = 1,: : : ,n) then C[t1,: : : ,tn] denotes the term obtained from C by replacing

holes with t1,: : : ,tn from left to right. A context that contains one hole is denoted by

C[]. A term t is said to be a subterm of s if and only if s = C[t] for some context C.

A position or occurrence in a term can be viewed as a �nite sequence of natural

numbers. O(t) denotes the set of all positions of a term t. Ot(t) denotes the set of all

terminal positions (positions of all leaves) of t. The letter � denotes the root position.

The letters p, q, w, z stand for positions. We write w � z if w is a pre�x of z.

The subterm of t at position p is denoted by tjp and we write t � tjp. If t and t 6= tjp
then tjp is called a proper subterm of t, denoted by t � tjp.

A substitution � is a mapping from V to T such that x 2 Vb implies �(x) 2 T b.

Substitutions are extended to homomorphisms from T to T . �(t) is usually written as t�.

A sorted rewrite rule on T is a pair l! r such that l 62 V, V(r) � V(l), l and r are

strict and if l : b and r : b0 then b � b0.

De�nition 2.2.2 A sorted term rewriting system (STRS) is a pair (F ;R) where F is a

set of sorted function symbols and R is a set of sorted rewrite rules on T (F ;R). (F ;R)

is often abbreviated as R and in that case F is de�ned to be the set of function symbols

that appear in R.

Given a STRS R, we write s!R t if and only if s = C[l�] and t = C[r�] for some

rewrite rule l! r 2 R, context C and substitution �. We call s!R t a rewrite step or

reduction from s to t of R. l� is called redex of this rewrite step.

Usual many-sorted TRSs are special cases of STRSs, i.e, S is equipped with a empty

relation ;. Also, usual TRSs are special cases of STRSs, i.e., S is a singlton set with a

empty relation ;. We write just TRS instead of usual TRS.

If r 2 V then the rewrite rule l! r is said to be collapsing . If some variable has more

occurrences in r than it has l then the rewrite rule l! r is said to be duplicating. If l : b,

r : b0 and b � b0 then the rewrite rule l! r is said to be decreasing.

A binary relation > on T (F ;V) is said to be stable under contexts if s > t then

C[s] > C[t] for any context C[]. A binary relation > on T (F ;V) is said to be stable

under substitutions if s > t then s� > t� for any substitution �. A rewrite relation is a

bianry relation on terms that is stabel under contexts and substitutions.

10

2.3 Higher-Order Terms

In this section, we introduce the notion of higher-order terms and the simply typed �-

calculus [16]. More precisely, a higher-order term is an �-long �-normal simply typed

�-terms in this thesis. Higher-order rewrite systems de�ned by Nipkow [38, 43] have

simply typed �-calculus as a meta language.

Let S be a set of basic types or sorts, b, b0, b00,: : : . The set TS of types is generated

from the set of basic types by the constructor ! as follows: TS := S j TS ! TS . We use

�, � and � to denote types. We use the abbreviation �1 ! : : : ! �n ! � for �1 ! (: : :

! (�n ! �) : : :). If b is a basic type then �i (i = 1,: : : ,n) is called input type and b is

called output type of �1 ! : : : ! �n ! b. We denote by O(�) the output type of �.

We assume a set of variables V� and a set of constants C� for each type � 2 TS , where

V� \ V� 0 = C� \ C� 0 = ; if � 6= � 0. The set of all variables is V = [�2TSV� , which is

disjoint from the set of all constants C = [�2TSC� . C is called signature. If f :�1 ! : : : !
�n ! b 2 C and b is a basic type then arity(f) = n. Arbitrary variables are denoted by

x, y, z : : : , free variables by upper case letters F , G, X, : : : and constants by a, c, d, e,

: : : . Higher-order variable is a variable having a non-basic type.

The set of untyped �-terms is generated from C and V according to the grammar: T

:= V j C j (� V: T) j (T T). Terms are denoted by l, r, s, t, : : : . The application of s to

t is denoted by (st). We write s(t1,: : : ,tn) for (: : : (st1) : : : tn). We use FV (t) for the

set of free variables and BV (t) for the set of bound variables of t. We may assume that

bound variables are di�erent from free ones. Further, we assume that for any variable

X:�1 ! : : : ! �n ! b 2 V, b is a basic type.

De�nition 2.3.1 A type judgment stating that t is of type � is written as t : � . The

following rules inductively de�ne the set of simply typed �-terms T (C;V).

� x 2 V� implies x : � .

� c 2 C� implies c : � .

� s : �! � and t : � imply (st) : � .

� x : � and s : � imply (�x:s) : �! � .

In the rest of this paper, simply typed �-terms are written as �-terms . A �-term is

ground if it contains no free variables. T (C) denotes the set of ground �-terms.

De�nition 2.3.2 The order of a type ' = �1! : : :!�n! b, where b 2 S, is de�ned as

follows:

Ord(') =

�
1 if n = 0, i.e, ' = b 2 S
1 + k otherwise, where k = max(Ord(b1); : : : ; Ord(bn))

11

We say a symbol is of order n if it has a type of order n. A term of order n is restricted

to constants of order � n+ 1 and variables of order � n.

A term of order 1 is called a �rst-order term. A term of order n is called a higher-order

term if n > 1.

For instance, if a term X(s1; : : : ; sn) is second order, then all subterms si must be

�rst-order terms.

Substitutions are written as in fx1 t1;: : : ,xn tng where �-term ti is assumed

di�erent from variable xi and xi and ti have the same type (i = 1, : : : , n). We use

the letter � for substitutions. Substitutions behave as endomorphisms de�ned on free

variables. Letting � = fx1 t1,: : : , xn tng, dom(�) denotes the set fx1,: : : ,xng and

range(�) denotes the set ft1,: : : ,tng. A substitution � is ground if range(�) � T (C).

We assume that the usual de�nition of �-conversion between �-terms [16]. We write

s =� t if s and t are equivalent modulo �-conversion. In the following we consider that

�-equivalent terms are identi�ed. We write just s = t when s =� t.

De�nition 2.3.3 The �-reduction and �-reduction in �-calculus are de�ned as follows:

(�x:s)(t) !� s fx tg,

�x:s(x) !� s if x 62 FV (s).

Since the simply typed �-calculus is conuent and terminating with respect to �-

reduction (�-reduction), every �-term s has a �-normal form (�-normal form) which is de-

noted s #� (s #�). Let s be in �-normal form. Then, s is of the form �x1 : : : xn:�(u1; : : : ; um).

The �-expanded form of s is de�ned by

s "� = �x1 : : : xn+k.�(u1 "
�; : : : ; um "

�; : : : ; xn+k "
�)

where s:�1! : : :!�n+k! b, b is basic type and xn+1; : : : ; xn+k 62 FV (ui) (1 � i � m).

Given a �-term s, we denote by s # its unique �-long �-normal form (�-long �-normal

term), de�ned as the �-normal form of its �-expanded form. We say shortly that s is

normalized when s is in �-long �-normal form. T (C;V) # denotes the set of normalized

terms. T (C) # denotes the set of ground normalized terms.

De�nition 2.3.4 A substitution �:V !T (C;V) # is normalized if range(�) � T (C;V) #.

We suppose that for every basic type b there is a constant of type b not occurring in

C, denoted by 2 (called hole). A context is a normalized term with occurrences of 2. A

context with only one occurrence of 2 is denoted by C[].

Lemma 2.3.5 Normalized terms have one of the following two forms [27] : (� x.s) for

some normalized term s, or �(s1;: : : ;sn) for some � 2 C [V and normalized terms s1,

: : : , sn.

12

A position or occurrence in a normalized term can be viewed as a �nite sequence of

natural numbers [4]. O(t) denotes the set of all positions of a normalized term t. Ot(t)

denotes the set of all terminal positions (positions of all leaves) of a normalized term t.

The letter � denotes the root position. The letters p, q, w, z stand for positions. We write

w � z if w is a pre�x of z.

The subterm of t at position p is denoted by tjp and we write t � tjp. If t 6= tjp then

tjp is called the proper subterm of t, denoted by t � tjp.

Lemma 2.3.6 Let C[s] and t be normalized terms such that s and t have the same basic

type. Then, C[t] is normalized.

Two terms s and t are called uni�able if and only if there exists a substitution � such

that s� = t�. The term s matches the term t if and only if there exists a substitution �

such that s� = t. The problem to decide if a term s matches a term t and to compute

the substitution � is called matching problem.

2.4 Higher-Order Rewrite Systems

In this section, we introduce the notion of higher-order rewrite systems. We follow the

de�nition of higher-order rewrite systems in Nipkow [38, 43]. Higher-order rewrite sys-

tems are rewrite systems on �-long �-normal forms in this thesis. Higher-order rewrite

systems are generalizations of (�rst-order) term rewriting systems to terms with higher-

order functions and bound variables. Since the uni�ability of �-terms is undecidable in

general [15], we restrict to a certain subclass of �-terms which behave like �rst-order terms

with respect to uni�cation.

De�nition 2.4.1 A normalized term t is called a pattern if every free occurrence of a

variable X is in a subterm X(u1,: : : ,un) of t, such that u1,: : : ,un are �-equivalent to a list

of distinct bound variables.

We give the examples of pattern in the following.

Example 2.4.2 Examples of patterns are �x.c(x), F , �x.F (� z:x(z)) and �xy.F (x; y).

Examples of non-patterns are F (c), �x.F (x; x) and �x.G(H(x)).

The following theorem about uni�cation of patterns is showed by Miller [40].

Theorem 2.4.3 It is decidable whether two patterns are uni�able. If they are uni�able,

the most general uni�er can be computed.

13

A rewrite rule is a pair l ! r such that l and r are normalized terms with the same

basic type, l is not ��-equivalent to free variable, l is a pattern and FV (l) � FV (r).

A higher-order rewrite system (HRS) is a set of rewrite rules. The letter R denotes a

higher-order rewrite system. Then, the restriction FV (l) � FV (r) is preserved under

substitutions, i.e., for any substitution �:V !T (C;V) #, FV (l) � FV (r) implies FV (l� #)

� FV (r� #) holds [38].

Given a HRS R, a normalized term s is rewritten to a term t with respect to R,

written s !R t, if s = C[l� #] and t = C[r� #] for some rewrite rule l ! r 2 R, context

C[] and substitution �:V !T (C;V) #. Note that t is normalized since s is so.

The relation !R is decidable if the matching problem is decidable for the left-hand

sides of the rewrite rule in R. Since theorem 2.4.3 and the matching problem is special

case of the uni�cation problem, the relation !R is decidable for any HRS R.

14

Chapter 3

Orderings for Term Rewriting

Systems

Huet and Lankford [18] showed that termination is undecidable for TRSs in general.

Dauchet [8] showed that termination is undecidable even for one rule TRSs. However,

there are several methods for proving termination of TRSs that are successful for particular

cases. A well-known method for proving termination of TRSs is the notion of simpli�cation

orderings introduced by Dershowitz [9]. In this chapter, we introduce several orderings

and explain how to use these orderings to prove termination of TRSs [9, 12, 13, 39, 60, 63].

3.1 Simpli�cation Ordering

In this section, we introduce simpli�cation orderings, homeomorphic embedding relations

and Kruskal's tree theorem for proving termination of TRSs. Homeomorphic embedding

relations and Kruskal's tree theorem guarantee the well-foundedness of simpli�cation or-

derings. We consider some well-founded ordering > on terms. If s > t for any reduction

s!R t then TRS R is terminating. Intuitively, the notion of simpli�cation ordering guar-

antees the well-foundedness of partial ordering on terms.

The root symbol of a term is de�ned by root(�(s1,: : : ,sm)) = � (m � 0) if � 2 F [V .

A term si is called an immediate subterm of term s = �(s1, : : : , si, : : : ,sn). Then, st(s)

= hs1,: : : ,si,: : : ,sni and stm(s) = fs1,: : : ,si,: : : ,sng denote the sequence and the multiset

of immediate subterms of s, respectively.

The status is a function status:F ! fmult, left, rightg. Thus every function symbol

has one of the following statuses: mult (the arguments will be compared as multiset), left

(lexicographical comparison from left to right), right (lexicographical comparison from

right to left).

De�nition 3.1.1 A partial ordering > is a simpli�cation order on T (F) if it possesses

the following properties:

(1) s > t implies f(u1,: : : ,s,: : : ,un) > f(u1,: : : ,t,: : : ,un) for f 2 F . (the replacement

property),

15

(2) s > si for any si 2 stm(s) (the subterm property).

If signature F is �nite, then any simpli�cation order on T (F) are well-founded, by

Kruskal's tree theorem presented later. If signature F is in�nite, the subterm property is

not enough to guarantee well-foundedness.

Example 3.1.2 We consider the signature F = fai j i � 0g, where each symbol ai is

a constant. Then the ordering > de�ned by ai > aj , for all i < j. This ordering is a

simpli�cation order and yet is not well-founded.

Note that in the case that the signature F is �nite, de�nition 3.1.1 and the following

de�nition coincide, since any partial ordering on F is a well-partial ordering.

De�nition 3.1.3 Let � be a well-partial ordering on F . A partial ordering > is a

simpli�cation ordering on T (F) if it possesses the following three properties:

(1) s > t implies f(u1,: : : ,s,: : : ,un) > f(u1,: : : ,t,: : : ,un) for f 2 F . (the replacement

property),

(2) s > si for any si 2 stm(s) (the subterm property),

(3) f (u1,: : : ,un) > g(ui1,: : : ,uim) if f , g 2 F , f � g, 1 � i1 < : : : < im � n, arity(f)

= n and arity(g) = m.

De�nition 3.1.4 Let � be a partial ordering on F . The homeomorphic embedding rela-

tion �emb on T (F) is de�ned inductively as follows:

s = f (s1; : : : ; sn)�emb g(t1; : : : ; tm) = t (arity(f) = n and arity(g) = m)

if and only if either one of the following conditions holds:

(1) f � g and there exist indexes j1; : : : ; jm such that 1 � j1 < j2 < : : : < jm � n

and sji �emb ti (i = 1; : : : ;m).

(2) sj �emb t for some j.

The embedding relation >emb on T (F) is a homeomorphic embedding relation without

condition (1).

Lemma 3.1.5 Let � be a well-partial ordering on F and > be a simpli�cation ordering

> on T (F). Then, �emb �> holds.

The following Kruskal's tree theorem clari�es the relation between termination, home-

omorphic embedding relation and simpli�cation ordering.

16

Theorem 3.1.6 (Kruskal's Tree Theorem, [34]) If � is a well-partial ordering on F
then �emb is a well-partial ordering on T (F).

For a proof of this result we refer to [39]. A proof of the version for well-quasi-ordering

can be found in [14]. The following theorem is obtained by lemma 3.1.5 and theorem 3.1.6.

Theorem 3.1.7 Let � be a well-partial ordering on F and > be a simpli�cation ordering

on T (F). Then, h T (F); > i is a well-partially ordered set.

Corollary 3.1.8 Let � be a well-partial ordering on F and > be a simpli�cation ordering

on T (F). Then, > is well-founded.

Note that we assume T (F) is a nonempty set in the rest of this chapter. The following

theorem gurantees the termination property for TRSs.

Theorem 3.1.9 Let R be a TRS on T (F ;V). Let � be a well-founded ordering on F
and > a simpli�cation ordering on T (F) such that l� > r� for any ground substitution

�:V !T (F) and any rewrite rule l! r in R. Then, R is terminating on T (F ;V).

3.2 Recursive Path Orderig and Decomposition Or-

dering

In this section, we introduce the recursive path ordering (RPO) and the improved recursive

decomposition ordering (IRD). Dershowitz [9] de�ned the RPO and Rusinowitch [59]

de�ned the IRD. Steinbach [60, 63] revisited these orderings. In particular, the IRD were

given a simpli�ed version. We mainly follow the notations of Steinbach. The RPO is

known as the most useful simpli�cation ordering. It is known that the IRD is one of the

most powerful simpli�cation orderings [59, 60, 63]. The main di�erence between RPO

and IRD is method of comparing two terms. The comparison of RPO is top to bottom

sequential method and depends on the root symbols in terms. The comparison of IRD is

parallel method and depends on all subterms along the path from root to leaf in terms.

First, we introduce the RPO as follows.

De�nition 3.2.1 (RPO) Let >F be a partial ordering on F . Let s and t be terms. The

recursive path ordering (RPO) >RPO on T (F ;V) is de�ned as follows [9, 12, 63]:

s >RPO t if and only if

(1) si �RPO t for some si 2 stm(s), or

(2) root(s) >F root(t) and s >RPO ti for all ti 2 stm(t), or

(3) root(s) = root(t), status(root(s)) = mult and stm(s) >mult
RPO stm(t), or

17

(4) root(s) = root(t), status(root(s)) 6= mult, st(s) >
status(root(s))
RPO st(t) and s >RPO ti

for all ti 2 stm(t).

where >mult
RPO and >

status(root(s))
RPO are extensions of >RPO associated with the statuses mult

and status(root(s)), respectively.

We show that RPO can be used for proving termination of TRS in the following.

Theorem 3.2.2 If >F is a well-partial ordering on F then the RPO is a simpli�cation

ordering on T (F).

Lemma 3.2.3 The RPO is stable under ground substitutions.

The following theorem show that termination of TRS can be proved using the RPO.

It is obtained by the above two results.

Theorem 3.2.4 Let R be a TRS on terms. Let >F be a well-founded ordering on F . If

for any rewrite rule l ! r in R we have l >RPO r, then R is terminating.

We give the termination proof of TRS using RPO.

Example 3.2.5 We consider the following TRS R.

R =
�
x � (y + z)! (x � y) + (x � z)

Let l = x � (y + z), r = (x � y) + (x � z) and � >F +.

We show l >RPO r as follows.

� In order to show l >RPO r, we have to show that l >RPO x � y and l >RPO x � z

since � >F + and de�nition of RPO.

� l >RPO x�y and l >RPO x�z hold since fx; y+zg >mult
RPO fx; yg and fx; y+zg >mult

RPO

fx; zg.

Hence, l >RPO r holds. Therefore, R is terminating by theorem 3.2.4.

Next, we introduce the IRD as follows. IRD was de�ned by Rusinowitch [59]. Further

Steinbach [60, 61, 62, 63] gave a simple de�nition of IRD. We follow the Steinbach's

simpli�ed version of IRD in this thesis.

18

De�nition 3.2.6 Path-decomposition and decomposition [61, 62] are de�ned as follows:

� For u 2 O(t), the path-decomposition decu(t) is de�ned as follows.

�
dec�(t) = ftg

deci:v(�(t1; � � � ; tn)) = f�(t1; � � � ; tn)g [decv(ti)

Note that i:v 2 Ot(�(t1,� � � ,tn)) implies v 2 Ot(ti).

� We also de�ne the decomposition dec (ft1,� � � ,tng) = fdecu(ti) j i 2 f1,� � � ,ng, u 2

Ot(ti)g.

� For the path-decomposition decu(t), sub(decu(t),s) = fs
0 2 decu(t) j s � s0g.

� The notation
�s >1 t

�s0 >2 t
0

means s >1 t or (s = t and s0 >2 t
0).

We give the example of path-decomposition and decomposition for some term.

Example 3.2.7 Let t = (x � y) + (x � z). Then, we have the path-decomposition and

decomposition for term t as follows.

� dec21(t) = ftg [dec1(x � z) = ft; x � zg [dec�(x) = ft; x � z; xg.

� dec(ftg) = fdec11(t); dec12(t); dec21(t); dec22(t)g = fft; x � y; xg; ft; x � y; yg; ft; x �

z; xg; ft; x � z; zgg.

� sub(dec21(t); x) = ;.

� sub(dec21(t); t) = fx � z; xg.

De�nition 3.2.8 (IRD) Let >F be a partial ordering on F . Let s and t be terms.

The improved recursive decomposition ordering (IRD) on T (F ;V) is de�ned as follows

[59, 60, 61, 62, 63]:

s >IRD t if and only if dec(fsg)��EL dec(ftg) where��EL is the multiset extension

of �EL.

decp(u) 3 u0 >EL v0 2 decq(v) is de�ned by the following (1), (2) and (3).

(1) root(u0) >F root(v0), or

(2) root(u0) = root(v0), status(root(u0)) = mult, and

{ sub(decp(u); u
0) �EL sub(decq(v); v

0)

{ dec(stm(u0)) ��EL dec(stm(v0)), or

19

(3) root(u0) = root(v0), status(root(u0)) 6= mult, st(u0) >
status(root(u0))
IRD st(v0) and fu0g

�IRD stm(v0).

where >
status(root(u0))
IRD is the extension of >IRD associated with the status status(root(u0)).

We show that IRD can be used for proving termination of TRS in the following.

Theorem 3.2.9 If >F is a well-partial ordering on F then the IRD is a simpli�cation

ordering on T (F).

Lemma 3.2.10 The IRD is stable under ground substitutions.

The following theorem can be obtained directly from the above two results.

Theorem 3.2.11 Let R be a TRS on terms. Let >F be a well-founded ordering on F .

If for any rewrite rule l ! r in R we have l >IRD r, then R is terminating.

We give the termination proof of TRS using IRD.

Example 3.2.12 We consider the following TRS R.

R =
�
x � (y + z)! (x � y) + (x � z)

Let l = x � (y + z), r = (x � y) + (x � z) and � >F +. Then, we show l >IRD r as

follows.

� dec(flg) =
�
dec1(l); dec21(l); dec22(l)

	
=
�
fl; xg; fl; y + z; yg; fl; y + z; zg

	
.

� dec(frg) =
�
dec11(r); dec12(r); dec21(r); dec22(r)

	
=
�
fr; x�y; xg; fr; x�y; yg; fr; x�

z; xg; fr; x � z; zg
	
.

(1) dec1(l) = fl; xg �EL fr; x � y; xg = dec11(r).

Because sub(dec1(l); l) = sub(dec11(r); x�y) and dec(args(l)) =
�
fxg; fy+z; yg; fy+

z; zg
	
��EL

�
fxg; fyg

	
= dec(args(x � y)) hold.

(2) By the same argument of (1), dec1(l) = fl; xg �EL fr; x � z; xg = dec21(r) holds.

(3) By � >F +, dec21(l) = fl; y + z; yg �EL fr; x � y; yg = dec12(r) holds.

(4) By � >F +, dec22(l) = fl; y + z; zg �EL fr; x � z; zg = dec22(r) holds.

Since above cases (1), (2), (3) and (4), dec(flg)��EL dec(frg) holds. Hence, l >IRD r

holds. Therefore, R is terminating by theorem 3.2.11.

The next theorem shows that the IRD is more powerful than RPO in (�rst-order) TRS

[59, 63].

Theorem 3.2.13 ([59, 63]) Let s and t be terms. Then s >RPO t implies s >IRD t.

20

Chapter 4

Improved Recursive Decomposition

Ordering for Higher-Order Rewrite

Systems

4.1 Introduction

Simpli�cation orderings are representatives of syntactic methods for proving termination

of TRSs [9, 12, 60, 63]. Many simpli�cation orderings, for instance, the recursive path

ordering (RPO) [9, 12, 63], the improved recursive decomposition ordering (IRD) [59, 60,

61, 62, 63] and so on, have been de�ned on TRSs. The IRD is among the most powerful

simpli�cation orderings [59, 63]. We give the properties of RPO and IRD as follows. The

method of comparing two terms with respect to the RPO depends on the root symbols.

The relation between these symbols with respect to the precedence is responsible for

decreasing one or both of the terms in the recursive de�nition of the RPO. If one of the

terms gets empty then the other one is greater. The IRD does not use a strict structure

of terms as the RPO. More precisely, this property of the IRD can lead to a term to be

represented by the multiset of all of its subterms and the comparison of two terms is done

by comparing the corresponding multisets.

In case of HRSs, the termination property is also important. Lor��a-S�aenz and Stein-

bach [36] �rst extended RPO for proving termination of HRSs. Their extension method

is based on an interpretation that maps normalized terms to �rst-order terms. Lysne and

Piris [37] also extended RPO for proving termination of HRSs by introducing the notions

of termination functions, critical positions and dominations. We gave an extension of IRD

to HRSs in [19, 20, 21] according to Lysne and Piris's method. Jouannaud and Rubio [27]

gave a simple de�nition of RPO for HRSs by introducing an ordering on type structure.

van de Pol [55] and Kahrs [29] extended semantic method to HRSs.

In this chapter we propose IRD for HRSs, called the higher-order improved recursive

decomposition ordering (HIRD). Our method is inspired by Jouannaud and Rubio's idea

for RPO [27] and particular properties of IRD. Further we show that our ordering is more

powerful than their ordering.

In section 4.2 we de�ne the typed improved recursive decomposition ordering (TIRD) by

introducing a new concept of pseudo-terminal positions. Section 4.3 presents the de�nition

of the higher-order improved recursive decomposition ordering (HIRD) and shows that

HIRD is a powerful tool for proving termination of HRSs. Finally, we compare HIRD

21

with Jouannad and Rubio's ordering in section 4.4.

4.2 Typed Improved Recursive Decomposition Or-

dering

The higher-order improved recursive decomposition ordering on T (C;V) # is de�ned by

two comparison stages. In the �rst stage, higher-order terms s and t are interpreted as

algebraic terms s0 and t0 having the extended signature �C. In the second stage, s0 and t0

are compared by a typed improved recursive decomposition ordering on algebraic terms.

If we simply extended the improved recursive decomposition ordering (IRD) [59, 60, 61,

62, 63] to handle higher-order by using Jouannaud and Rubio's idea of type structure [27]

for the second stage, the resulting ordering would not be stable under ground normalized

substitutions. For instance, let a:�, b:� 2 C, Y :� ! � 2 V and a >C b. Let s = Y (a), t =

a. Since the improved recursive decomposition ordering >IRD is a simpli�cation ordering

[60, 61], it has a subterm property. Hence s >IRD t holds. However, the substitution �

= fY � x.bg does not preserve this ordering as s � # = b <IRD a = t � #. In order to

avoid this problem, we introduce the notion of pseudo-terminal positions.

First, we de�ne the typed improved recursive decomposition ordering on algebraic

terms. It requires a partial ordering on TS in addition to a partial ordering on C.

Note that we assume there are only �nitely many symbols of a given output type in

the signature C in the rest of this chapter.

De�nition 4.2.1 Algebraic terms are normalized terms with no �-abstractions. An al-

gebraic term is ground if it contains no variables. The type of algebraic term t is denoted

by type(t).

De�nition 4.2.2 The root symbol of an algebraic term is de�ned by root(�(s1,: : : ,sm))

= � if � 2 C [V. The size j t j of algebraic term t is de�ned as the number of symbols

occurring in t. An algebraic term si is called an immediate subterm of algebraic term s

= �(s1, : : : , si, : : : , sn). Then, st(s) = h s1,: : : ,si,: : : ,sn i and st
m(s) = fs1,: : : ,si,: : : ,sng

denote the sequence and the multiset of immediate subterms of s, respectively.

In the following, we use a partial ordering >TS on TS instead of a quasi-ordering

&TS in [27, 28]. The following de�nitions are obtained by de�nitions in [28] replacing a

quasi-ordering &TS with a partial ordering >TS .

De�nition 4.2.3 Let >TS be a partial ordering on TS . An algebraic term s : � is type

compatible if for any proper subterm t : � of s then � �TS � and t : � is type compatible.

A normalized term s : � is type compatible if for any proper subterm t : � of s then

� �TS � and t : � is type compatible.

22

Note that we assume algebraic terms and normalized terms are always type compatible

in the rest of this chapter.

De�nition 4.2.4 A type � is compatible with >TS on TS if it is a basic type or it is of

the form �1! : : :!�n! � , where � is a basic type, and � �TS �i and �i is compatible

with >TS for all i 2 f1; : : : ; ng.

De�nition 4.2.5 A partial ordering >TS on TS is consistent with the type structure if the

following conditions hold:

(1) 8f : � 2 C, type � is compatible with >TS .

(2) �! � �TS � .

Lemma 4.2.6 ([28]) Let >TS be a partial ordering on TS consistent with the type struc-

ture and let s : � be a normalized term. Then, s : � is a type compatible term if the

following conditions hold.

(1) For every x : � 2 FV (s) we have that � is a compatible type.

(2) If s : � is of the form �x1 : : : xn:u:�1! : : :!�n! b for some basic type b, then �i
is a compatible type for all xi 2 FV (u).

From here on we assume >TS is well-founded on TS in this chapter.

Let >S be a partial ordering on S and the constructor !. The RPO based on a

precedence >S on S [f!g is consistent with the type structure [28]. Hence we can take

the RPO as a partial ordering >TS on TS in the rest of this chapter.

Example 4.2.7 Let List and Nat be basic types and let List >S Nat and List >S !.

Then List >TS Nat ! Nat holds, since the ordering >TS is the RPO on TS and we

consider the type Nat ! Nat as the form !(Nat;Nat).

A partial ordering >C on C compares symbols of the same output type only and must

be well-founded. A variable x:� is considered as a constant symbol comparable only itself.

De�nition 4.2.8 The extended signature �C is de�ned by the following:

� eV = fXO(�) j X : � 2 Vg.

� eC = f�O(�) j � : � 2 Cg.

23

� �C = eC [[
�2TS

fcO(�)g [
[

�;�2TS

f��! �g.

Note that we have a constant symbol cO(�) for each type � and a unary symbol ��! �

for each type �! � . Hence if C has a �nite set of constant symbols for each type, then

�C has a �nite set of constant symbols for each type. The precedence >C on C will be

extended to the precedence >� C on � C. The symbol ��! � may have one of any status.

The compatible property for the ��! � symbol requires the �! � �TS � .

In the following, we consider algebraic terms on � C.

De�nition 4.2.9 The set of algebraic terms on � C is denoted by T (� C; eV) and the set

of ground algebraic terms on � C is denoted by T (� C).

We generalize the de�nition of a set of terminal positions. We de�ne the notion of

pseudo-terminal positions as follows.

De�nition 4.2.10 Let t be an algebraic term. A position q 2 O(t) is a pseudo-terminal

position if it satis�es both the following conditions.

(1) q 2 Ot(t) _ root(t jq) 2 eV .
(2) 8q0 � q; [root(t jq0) 62 eV].
We write q 2 Op(t) if q is a pseudo-terminal position of t.

De�nition 4.2.11 Path-decompositions and decompositions [61, 62] can be naturally

extended to higher-order terms by using pseudo-terminal positions.

� For u 2 Op(t), the path-decomposition decu(t) is de�ned as follows:

�
dec�(t) = ftg

deci:v(�(t1; � � � ; tn)) = f�(t1; � � � ; tn)g [decv(ti)

Note that i:v 2 Op(�(t1,� � � ,tn)) implies v 2 Op(ti).

� The decomposition is de�ned as follows:

dec(ft1,� � � ,tng) = fdecu(ti)j i2f1,� � � ,ng,u2Op(ti)g.

� For the path-decomposition decu(t), sub(decu(t),s) is de�ned as follows:

sub(decu(t),s) = fs
02decu(t)js�s

0g.

24

Listmap

NatNatλ

NatX

c Nat

11

2nilList

Figure 4.1: mapList(�Nat!Nat(XNat(cNat)); nilList).

Example 4.2.12 Let List and Nat be basic types. We consider the term s = mapList
(�Nat!Nat (XNat (cNat)), nilList) where XNat 2 eV. Figure 4.1 denotes the tree structure

of s. We have the set of pseudo-terminal positions Op(s) = f11, 2g. Then dec(fsg) =

fdec11(s), dec2(s)g where dec11(s) = fs, �Nat!Nat(XNat(cNat)),XNat(cNat)g and dec2(s) =

fs, nilListg. Further sub(dec11(s), �Nat!Nat(XNat(cNat))) = fXNat(cNat)g and sub(dec2(s),

s) = fnilListg.

Next, we de�ne the typed improved recursive decomposition ordering (TIRD). This

ordering is based on the improved recursive decomposition ordering (IRD) and extended

by introducing the notion of pseudo-terminal positions and ordering on types.

De�nition 4.2.13 (TIRD) Let >� C be a partial ordering on � C. Let s and t be type

compatible algebraic terms. The typed improved recursive decomposition ordering (TIRD)

on type compatible algebraic terms is de�ned as follows:

s >TIRD t if and only if dec(fsg) ��EL dec(ftg) where ��EL is the multiset

extension of �EL.

decp(u) 3 u0 >EL v0 2 decq(v) is de�ned by the following (1) and (2).

(1) type(u0) >TS type(v0), or

(2) type(u0) = type(v0), and

a) root(u0) >� C root(v
0), or

b) root(u0) = root(v0), status(root(u0)) = mult, and

{ sub(decp(u); u
0) �EL sub(decq(v); v

0)

{ dec(stm(u0)) ��EL dec(stm(v0)), or

c) root(u0) = root(v0), status(root(u0)) 6= mult, st(u0) >
status(root(u0))
TIRD st(v0) and

fu0g �TIRD stm(v0).

where >
status(root(u0))
TIRD is the extension of >TIRD associated with the status status

(root (u0)).

Example 4.2.14 We compare the following algebraic terms s and twith respect to TIRD.

Let List and Nat be basic types.

25

� s = mapList(�Nat!Nat(XNat(cNat)),consList(NNat,LNat)).

� t = consList(XNat(NNat),mapList(�Nat!Nat(XNat(cNat)),LList)).

Then we have dec(fsg) and dec(ftg) as follows:

� dec(fsg) = fdec11(s), dec21(s), dec22(s)g.

� dec(ftg) = fdec1(t), dec211(t), dec22(t)g.

Given the following precedences and status: mapList >� C consList, List >S Nat, List

>S ! and status(mapList) = mult.

(1) We consider dec21(s) and dec1(t) as follows:

� dec21(s) = fs,consList(NNat,LList),NNatg.

� dec1(t) = ft,XNat(NNat)g.

s >EL t by root(s) >� C root(t) and consList(NNat,LList) >EL XNat(NNat) by List

>TS Nat. Hence, dec21(s) �EL dec1(t) holds.

(2) Next, we compare dec21(s) and dec211(t).

� dec21(s) = fs,consList(NNat,LList),NNatg.

� dec211(t) = ft, mapList (�Nat!Nat(XNat (cNat)),LList), �Nat!Nat (XNat (cNat)),

XNat (cNat)g.

We have s >EL �Nat!Nat(XNat(cNat)) by List >TS Nat ! Nat. Let t0 = mapList
(�Nat!Nat(XNat (cNat)),LList). We also have s >EL t0 since root(s) = root(t0),

status(root(s)) = mult and sub (dec21(s), s) = fconsList(NNat,LList), NNatg �EL

f�Nat!Nat(XNat (cNat)), XNat (cNat)g = sub (dec211(t), t
0). Hence, dec21(s) �EL

dec211(t) holds.

(3) We have dec22(s) and dec22(t) as follows:

� dec22 (s) = fs, consList(NNat,LList), LListg

� dec22(t) = ft, mapList(�Nat!Nat(XNat(cNat)),LList), LListg.

Then dec22(s)�EL dec22(t) holds.

Therefore, we have dec(fsg) ��EL dec(ftg), i.e., s >TIRD t.

26

map

X

λ x

map List

XNat

c Nat

cons

N L N L

consλ List

ListNat

Nat Nat

x

Figure 4.2: map(�x.X(x),cons(N ,L)) and kmap(�x.X(x),cons(N ,L))kfxg.

4.3 Higher-Order Improved Recursive Decomposition

Ordering

The higher-order improved recursive decomposition ordering on normalized terms is de-

�ned as TIRD comparing algebraic terms interpreted from given normalized terms. Thus,

we de�ne an interpretation function that maps normalized terms to algebraic terms as

follows.

De�nition 4.3.1 Let V be a set of variables. The interpretation function k kV from

normalized terms on C [
S

�2TS
fcO(�)g to algebraic terms on � C is de�ned by:

� k(�x.s):�!�kV = ��!�(kskV).

� k�(s1,� � � ,sn):�kV = ��(ks1kV ,� � � ,ksnkV) if � 2 C.

� kX(s1,� � � ,sn):�kV = X�(ks1kV ,� � � ,ksnkV) if X2VnV .

� kx(s1,� � � ,sn):�kV = c�(ks1kV ,� � � ,ksnkV) if x 2 V [
S

�2TS
fcO(�)g.

Let s be a normalized term and V � BV (s). We have kskV jp = ksjpkV for any p 2

O(s). Whenever we write kskV for normalized terms s, we assume that V � BV (s).

Example 4.3.2 Let S = fNat, Listg, C = fnil:List, cons:Nat ! List ! List,

map:(Nat!Nat) ! List ! Listg and fX:Nat ! Nat, N :Nat, L:Listg � V.

Let V = fxg. Let s = map(�x.X(x),cons(N ,L)). The following examples explain the

interpretation function.

� k s kV = mapList(�Nat!Nat(XNat(cNat)),consList(NNat,LList)). (See �gure 4.2).

� ksj11kV = kX(x)kV = XNat(cNat).

� kskV j11 = mapList(�Nat!Nat(XNat(cNat)),consList(NNat,LList)) j11 = XNat(cNat).

Next, we de�ne the higher-order improved recursive decomposition ordering by using

de�nitions 4.2.13 and 4.3.1.

27

De�nition 4.3.3 (HIRD) Let s and t be type compatible normalized terms. Then

the higher-order improved recursive decomposition ordering (HIRD) on type compatible

normalized terms is de�ned as follows: s >HIRD t if and only if kskV >TIRD ktkV where

V = BV (s) [BV (t). In the following, kskV and ktkV are abbreviated just as ksk and

ktk, respectively.

We must show that HIRD is a partial ordering that is stable under ground normalized

substitutions and ground contexts and it is well-founded on ground normalized terms.

These properties are essential for applying HIRD to termination proof of HRS. In this

chapter T (� C) denotes the set of type compatible ground algebraic terms and T (C) #

denotes the set of type compatible ground normalized terms. First, we show that the

HIRD is a partial ordering on T (C) #.

Lemma 4.3.4 The TIRD is a partial ordering on T (� C).

Proof. To prove the transitivity of ��EL, it is enough to show that >EL is transitive.

Let s0 2 decp(s), t
0 2 decq(t) and u0 2 decr(u). If type(s0) >TS type(t0) or type(t0) >TS

type(u0), the claim is trivial. If type(s0) = type(t0) and type(t0) = type(u0), we can show

that decp(s) 3 s0 >EL u0 2 decq(t) by induction on js0j + jt0j + ju0j. We next show that

s 6>TIRD s by proving the irreexivity of >EL. For any term s and s0 in decp(s), we can

easily prove that decp(s) 3 s0 6>EL s0 2 decp(s) by induction on jsj. 2

Lemma 4.3.5 The HIRD is a partial ordering on T (C) #.

Proof. It is straightforward by lemma 4.3.4. 2

Next, we show that the HIRD is well-founded on T (C) #.

Lemma 4.3.6 The TIRD has the subterm property for T (� C).

Proof. Let s and t be algebraic terms such that s � t. We can show s >TIRD t by

induction on jsj. 2

Lemma 4.3.7 The TIRD is stable under ground contexts.

Proof. Let s and t be algebraic terms with the same basic type. We have to show that

s >TIRD t implies C[s] >TIRD C[t] for any ground context C[]. It can be proved by

induction on jC[]j by the similar way to IRD. 2

Lemma 4.3.8 The TIRD is a simpli�cation order on T (� C).

28

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

s t

w z

Figure 4.3: Case (1) in lemma 4.3.15

Proof. By lemmas 4.3.4, 4.3.6 and 4.3.7, the TIRD is a partial ordering on T (� C) that

is stable under ground contexts and has the subterm property. 2

In the following lemma, we use the hypothesis that there are �nitely many symbols

for a given output type �. This is the modi�cation of Kruskal's tree theorem for �nite

signature.

Lemma 4.3.9 ([28]) Let t0; t1; t2; : : : be an in�nite sequence with type compatible ground

algebraic terms of the same type �. Then, there exist indexes i, j (i < j) such that ti
�emb tj.

Lemma 4.3.10 The TIRD is well-founded on T (� C).

Proof. By lemmas 4.3.8 and 4.3.9, the TIRD is well-founded on T (� C). 2

Lemma 4.3.11 The HIRD is well-founded on T (C) #.

Proof. It is straightforward by lemma 4.3.10. 2

We write a normalized substitution just as a substitution in the rest of this chapter.

We prove that the stability under ground substitution � where dom(�) is a singleton set.

Since any ground substitution � can be denoted by composition of ground substitutions �i
where dom(�i) is a singleton set, the stability under ground substitutions is easily reduced

from the above statement.

The �gures 4.3, 4.4 and 4.5 exhibit the cases (1), (2) and (3) in the lemma 4.3.15,

respectively.

Example 4.3.12 We consider the following normalized terms.

s = X(�xy:x) and t = X(�xy:y) where X:(Nat ! Nat ! Nat) ! Nat, x:Nat and

y:Nat. Then, k s k = XNat(�Nat!Nat!Nat(�Nat!Nat(cNat))) = k t k holds.

Let � = fX � z:z(0; 1)g where z:Nat ! Nat ! Nat, 0 : Nat and 1 : Nat. Since

s� # = 0Nat and t� # = 1Nat, k s� # k 6= k t� # k. Therefore, it does not hold that k s k =

k t k implies k s� # k = k t� # k for any ground substitution � in general.

29

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

s t

w z

Figure 4.4: Case (2) in lemma 4.3.15

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

s t

w

z

Figure 4.5: Case (3) in lemma 4.3.15

The above example explains why each bound variable is restricted into a basic type

to guarantee the stability of ground substitutions.

We assume that each bound variable in normalized terms has a basic type in the rest

of this chapter.

Lemma 4.3.13 Let s and t be normalized terms. Then, k s kV = k t kV implies k s� # kV
= k t� # kV for any ground substitution �.

Proof. We de�ne a restriction of substitution � with respect to set V .

�=V (x) =

�
�(x) if x 62 V

x if x 2 V :

We show k s kV = k t kV implies k s(�=V) # kV = k t(�=V) # kV by induction on structure

of s. We abbreviate an index V .

In the case that s = �(s1,� � � ,sm) for � 2 C or s = �x.s1 for x 2 V , the proof is

straightforward. We consider the case that s = �(s1,� � � ,sm) if � 2 V n V .

Since s = �(s1,� � � ,sm) and k s k = k t k, we have t = �(t1,� � � ,tm) such that k si k =

k ti k (1 � i � m).

Then s� = (��)(s1�,� � � ,sm�) and t� = (��)(t1�,� � � ,tm�). Letting s0 = ��, we show

ks0(s1�,� � � ,sm�)#k = ks
0(t1�,� � � ,tm�)#k by induction on size of s0.

If s0 = �x1� � �xm.xi then k si� # k = k ti� # k by induction hypothesis. Let s0 = � x1
� � � xm.f(u1,� � � ,un) (n � 0 and f 2 C). Let = fx1 s1�,� � � ,xm sm�g.

ks0(s1�,� � � ,sm�)#k

= f(ku1 #k, � � � ,kun#k)

= f(k(� x1 � � � xm.u1) (s1�, � � � , sm�)#k,� � � , k(� x1 � � � xm.un) (s1�, � � � , sm�)#k)

= f(k(� x1 � � � xm.u1) (t1�, � � � , tm�)#k,� � � , k(� x1 � � � xm.un) (t1�, � � � , tm�)#k) by

induction hypothesis. 2

30

De�nition 4.3.14 Let s be a algebraic term and � a ground substitution. s� # denotes

k t� # k for some normalized term t such that k t k = s. Let fs1,� � � ,sng be a (multi)set of

algebraic terms. fs1,� � � ,sng� # denotes fs1� #,� � � ,sn� #g.

Lemma 4.3.15 Let decw(ksk) �EL decz(ktk) where s and t be normalized terms, w 2

Op(s) and z 2 Op(t). Then for any ground substitution �, the following three claims hold.

(1) If kskjw = ktkjz and root(ktkjz) 2 eV then decw:j(ks�#k) �EL decz:j(kt�#k) for any

j 2 N� such that z:j 2 Op(kt�#k).

(2) If kskjw 6= ktkjz and root(ktkjz) 2 eV then decw:i(ks�#k) �EL decz:j(kt�#k) for any

j, i 2 N � such that z:j 2 Op(kt�#k)) and w:i 2 Op(ks�#k).

(3) If root(ktkjz) 62 eV then decw:i(ks�#k) �EL decz(kt�#k) for any i 2 N
� such that w:i

2 Op(ks�#k).

Proof. Let s0 = k s k and t0 = k t k. We show that the claim (1) ^ (2) ^ (3) by induction

on js0j + jt0j. Assume that decw(s
0) �EL decz(t

0).

(1) Consider the case s0jw = t0jz and root(t0jz) 2 eV .
Since the assumption decw(s

0)�EL decz(t
0) and the de�nition of multiset extension,

we consider the case that decw(s
0) = M [fs1,� � � ,smg, decz(t

0) = M [ft1,� � � ,tng

and for any k 2 f1,� � � ,ng, there exists l 2 f1,� � � ,mg such that decw(s
0) 3 sl >EL

tk 2 decz(t
0).

For any j 2 N� (z:j 2 Op(t0�#)), we can denote that decw:j(s
0�#) = M�# [fs1�#,

� � � , sm�#g [L and decz:j(t
0�#) = M� # [ft1�# ,� � � , tn�#g [L where L = fv j v 2

sub(decj(s
0jw�#),s

0jw�#)g by lemma 4.3.13. Hence we have to show that decw(s
0) 3 sl

>EL tk 2 decz(t
0) implies decw:j(s

0�#) 3 sl�# >EL tk�# 2 decz:j(t
0�#). We distinguish

the cases with respect to the de�nition of >EL.

(1� 1) type(sl) >TS type(tk). Then, type(sl�#) >TS type(tk�#) holds.

(1� 2) type(sl) = type(tk).

(a) If root(sl) >� C root(tk) then root(sl�#) >� C root(tk�#) holds.

(b) If root(sl) = root(tk), status(root(sl)) = mult and sub (decw(s
0),sl) �EL sub

(decz(t
0),tk) then we can show sub (decw:j(s

0�#), sl�#) �EL sub (decz:j(t
0�#),

tk�#) by induction hypothesis.

(c) We consider the case that root(sl) = root(tk), status(root(sl)) = mult, sub

(decw(s
0),sl) = sub (decz(t

0),tk) and dec(stm(sl)) ��EL dec(stm(tk)). Since

types and induction hypothesis, it follows that dec (stm(sl�#)) ��EL dec

(stm(tk�#)).

(d) Consider the case that root (sl) = root (tk), status (root(sl)) 6= mult, st

(sl) >
status(root(sl))
TIRD st (tk) and fslg �TIRD stm (tk). We can show st (sl�#)

>
status(root(sl� #))
TIRD st (tk�#) and fsl�#g �TIRD stm (tk�#) by types, in case of

type(sl)>TS type(tk) and by induction hypothesis, in case of type(sl) = type(tk).

31

(2) In case of s0jw 6= t0jz and root (t0jz) 2 eV , we have to consider only the case that

decw(s
0) = M [fs1,� � � ,smg and decz(t

0) = M [ft1,� � � ,tng. Since the assumption

decw(s
0)�EL decz(t

0) and the de�nition of multiset extension, for any k 2 f1; � � � ; ng

there exists l 2 f1; � � � ;mg such that decw(s
0) 3 sl >EL tk 2 decz(t

0). For any j 2

N� (z:j 2 Op(t0�#)) and any i 2 N � (w:i 2 Op(s0�#)), we can show that decw:i(s
0�#)

= M�# [fs1�#,� � � , sm�#g [L where L = fv j v 2 sub(deci(s
0jw�#), s

0jw�#)g and

decz:j(t
0�#) = M� # [ft1�#,� � � ,tn�#g [L0 where L0 = fv0 j v0 2 sub(decj(t

0jz�#),

t0jz�#)g by lemma 4.3.13. Since t0 jz 62 decw(s
0), t0 jz 2 ft1, � � � , tng holds. That

is, decw(s
0) 3 sl >EL t0jz 2 decz(t

0). type(sl) >TS type(t0jz) holds, by root(t0jz) 2eV. Since t0jz�# � y0 for any y0 2 L0 and the type compatibility, type(t0jz�#) �TS

type(y0). Hence type(sl�#) >TS type(y
0), i.e., decw:i(s

0�#) 3 sl�# >EL y
0 2 decz:j(t

0�#)

for any y0 2 sub(decj(t
0jz�#), t

0jz�#). Further we can show that decw(s
0) 3 sl >EL

tk 2 decz(t
0) implies decw:i(s

0�#) 3 sl� # >EL tk�# 2 decz:j(t
0�#), in similar to the

proof of (1).

(3) In case of root(t0jz) 62 eV, for any i 2 N� (w:i 2 Op(t0�#)), we can denote that

decw:i(s
0�#) = M�# [fs1� #,� � � , sm� #g [L where L = fv j v 2 sub(deci(s

0jw�#)

,s0jw�#)g and decz(t
0�#) = M�# [ft1� # ,� � � , tn�#g by lemma 4.3.13. Hence we can

show that decw(s
0) 3 sl >EL tk 2 decz(t

0) implies decw:i(s
0�#) 3 sl�# >EL tk�# 2

decz(t
0�#), in similar to the proof of (1). 2

Lemma 4.3.16 Let s and t be algebraic terms. Then dec(fsg) ��EL dec(ftg) implies

dec(fsg) \ dec(ftg) = ;.

Proof. Let M 2 dec(fsg) \ dec(ftg). Then M = decw(s) = decz(t) for some w 2 Op(s)

and z 2 Op(t). Then s = t must hold from the de�nition of the path-decomposition. This

contradicts the assumption from the irreexivity of �EL. Hence dec(fsg) \ dec(ftg) =

;. 2

Lemma 4.3.17 The HIRD is stable under ground substitutions, i.e., s >HIRD t implies

s�# >HIRD t�#.

Proof. Assume that s >HIRD t, i.e., dec(fk s kg) ��EL dec(fk t kg) where s and t

are normalized terms. We show that dec(fk s� # kg) ��EL dec(fk t� # kg) holds for any

ground substitution �. By lemma 4.3.16, we can assume that for any z 2 Op(ktk),

there exists w 2 Op(ksk) such that decw(ksk) �EL decz(ktk). Then we can show the

following claim since the de�nition of the multiset extension and lemma 4.3.15: for any z0

2 Op(kt�#k), there exists w0 2 Op(ks�#k) such that decw0(ks�#k) �EL decz0(kt�#k). 2

In order to show that the HIRD is stable under ground contexts in lemma 4.3.19, we

need the following lemma.

Lemma 4.3.18 Let s and t be normalized terms. Let V = BV (s) [BV (t). For any set

of variables V 0 such that V 0 � V , kskV >TIRD ktkV implies kskV 0 >TIRD ktkV 0 .

32

Proof. Let V 0 n V = fx1,� � � ,xmg (m � 0). Let � = fx1 c,� � � ,xm cg. By de�ni-

tion 4.3.1, we can consider that kskV 0 and ktkV 0 equal to ks� #kV and kt� #kV for � = fx1
 c,� � � ,xm cg, respectively. ks� #kV >TIRD kt� #kV holds by lemma 4.3.17. Hence

kskV 0 >TIRD ktkV 0 holds. 2

Lemma 4.3.19 The HIRD is stable under ground contexts, i.e., s >HIRD t implies C[s]

>HIRD C[t] for any ground context C and normalized terms s and t with the same basic

type such that C[s] and C[t] are normalized terms.

Proof. By de�nition 4.3.3, we prove that kskV >TIRD ktkV implies kC[s]kV 0 >TIRD

kC[t]kV 0 , where V = BV (s) [BV (t) and V 0 = BV (C[s]) [BV (C[t]) by induction on

jC[]j. Then it is obvious that V 0 � V holds. It is enough to consider the only case

that C[] = �(u1,� � � ,2,� � � ,un). Since lemma 4.3.18, kskV 0 >TIRD ktkV 0 . We consider

the following cases.

1: If � : �1!� � �!�n! � 2 C then k� (u1, � � � , s, � � � , un)kV 0 = �� (ku1kV 0 , � � � , kskV 0 ,

� � � , kunkV 0) and k� (u1, � � � , t, � � � ,un)kV 0 = �� (ku1kV 0, � � � , ktkV 0 , � � � , kunkV 0).

Hence k� (u1, � � � , s, � � � , un)kV 0 >TIRD k� (u1, � � � , t, � � � , un)kV 0 by lemma 4.3.7.

2: � = �x for some variable x of type �. k�x:skV 0 = �(kskV 0) and k�x:tkV 0 = �(ktkV 0).

Hence k�x:skV 0 >TIRD k�x:tkV 0 by lemma 4.3.7. 2

Note that we assume that there exists at least one constant in C for each type in the

following. Next theorem guarantees that we can use the HIRD to prove the termination

of HRSs on type compatible normalized terms.

Theorem 4.3.20 Let R be a HRS on type compatible normalized terms. Let >� C be a

partial ordering on � C. If l >HIRD r for any rewrite rule l! r in R thenR is terminating

on type compatible normalized terms.

Proof. Since terms in a rewrite sequence can always be considered as ground, we can

use the previous properties. Assume that s !R t, where s and t are ground normal-

ized terms. Then s = C[l� #] and t = C[r� #] for a rewrite rule l! r 2 R, a substitu-

tion �:V !T (C;V) # and a ground context C. Let FV (l� #) = fx1; : : : ; xng where xi:�i
(1 � i � n). Let �0 = fx1 c�1 ; : : : ; xn c�ng. Note that l��0 # is a ground term and

substitution ��0 is ground. Since the assumption l >HIRD r and lemma 4.3.17, k l��0# k

>TIRD k r��
0# k holds. Thus, it follows that k s k = kC[l��0 #] k >TIRD kC[r��

0 #] k = k t k

by lemma 4.3.19. Hence, s >HIRD t holds. Since the HIRD is well-founded on T (C) # by

lemma 4.3.11, R is terminating on type compatible normalized terms. 2

Example 4.3.21 Let S = fNat, Listg, C = fnil:List, cons:Nat ! List ! List,

map:(Nat!Nat) ! List ! Listg, fX :Nat ! Nat, N :Nat, L:Listg � V and

R =

�
map(�x:X(x); nil)!nil

map(�x:X(x); cons(N;L))! cons(X(N);map(�x:X(x); L)):

33

The termination proof uses precedences and status: List >S Nat, List >S !, mapList
>� C consList and status(mapList) = mult. Since it is obvious that map(�x.X(x),nil)

>HIRD nil, we consider the second rule. Let s = map(�x.X(x),cons(N ,L)) and t =

cons(X(N),map (�x.X(x),L)). Then we have dec(fk s kg) and dec(fk t kg).

� dec(fkskg) = fdec11(ksk), dec21(ksk), dec22(ksk)g.

� dec(fktkg) = fdec1(ktk), dec211(ktk), dec22(ktk)g.

By example 4.2.14, we have dec(fkskg)��EL dec(fktkg), i.e., ksk >TIRD ktk. Hence

s >HIRD t holds. Therefore, R is terminating on type compatible normalized terms by

theorem 4.3.20.

4.4 Related Works

In this section, we compare our higher-order improved recursive decomposition ordering

(HIRD) with the Jouannaud and Rubio's ordering [27, 28]. We denote the Jouannaud

and Rubio's ordering as higher-order recursive path ordering (HRPO) in the rest of this

chapter. The IRD is more powerful than RPO in the frame of TRSs [59, 63]. The similar

result holds in the frame of HRSs. The next theorem shows that HIRD is more powerful

than HRPO on type compatible normalized terms. We use our interpretation function

k k in de�nition 4.3.1 for HRPO instead of it de�ned in [27, 28].

Theorem 4.4.1 Let s and t be type compatible normalized terms. Then s >HRPO t

implies s >HIRD t.

Proof. This proof is obtained by a modi�cation of the proof of the following claim. u

>RPO v implies u >IRD v for any term u and v [60, 61]. It holds that s0 >HRPO t0 if and

only if ks0k >TRPO kt
0k by de�nition of the HRPO [27, 28] and s0 >HIRD t0 if and only if

ks0k >TIRD kt
0k by the de�nition 4.3.3. We have to show that s >TRPO t implies s >TIRD

t for any algebraic terms s and t. The proof is performed by using induction on jsj + jtj.

Let s = ��(t1,� � � ,tm) and t = �� (s1,� � � ,sn). We distinguish the cases with respect to the

de�nition of TRPO, typed recursive path ordering [27, 28].

(1) � >TS � . For any w 2 Op(s) and any z 2 Op(t), decw(s) 3 s >EL t 2 decz(t).

For any tj 2 decz(t), type(t) �TS type(tj) from type compatibility. Thus, decw(s) 3

s >EL tj 2 decz(t) holds since type(s) >TS type(tj). Since for any z 2 Op(t), there

exists w 2 Op(s) such that decw(s)�EL decz(t), we have dec(fsg)��EL dec(ftg).

(2) � = � .

(a) �� 62 eV and si �TRPO t for some i.

By induction hypothesis, si �TIRD t. Hence dec(fsig) ��EL dec(ftg) holds.

Then dec(fsg) ��EL dec(ftg) because for any decw(si) 2 dec(fsig), there

exists deci:w(s) 2 dec(fsg) such that deci:w(s) �EL decw(si).

34

(b) �� >� C �� and s >TRPO ti for all i.

For all i 2 f1;� � � ;ng, s >TIRD ti holds by induction hypothesis. Thus, dec(fsg)

��EL dec(ftig) (i = 1;� � � ;n) holds by de�nition 4.2.13. Note that dec(ftg)

= fd [ftg j d 2 dec(ftig), i 2 f1;� � � ;ngg. For any z 2 Op(ti), there exists

w 2 Op(s) such that decw(s) �EL decz(ti) (i = 1;� � � ;n). Since root(s) = ��
>� C �� = root(t), decw(s) 3 s >EL t 2 deci:z(t) holds. Since there exists no

subterm of t that is equal to s (otherwise s would not be greater than all ti's),

for any z0 2 Op(t), there exists w0 2 Op(s) such that decw0(s) �EL decz0(t).

Hence dec(fsg) ��EL dec(ftg) holds.

(c) �� = �� , status(��) = mult and stm(s) �TRPO stm(t).

It holds that stm(s) �TIRD stm(t) by induction hypothesis. For any tj 2

stm(t), there exists si 2 stm(s) such that si �TIRD tj and stm(s) 6= stm(t) by

the de�nition of the multiset extension. Then for any tj 2 stm(t), there exists

si 2 st
m(s) such that dec(fsig)��EL dec(ftjg) � � � (�). Note that dec(fsg)

= fd [fsg j d 2 dec(fsig), i 2 f1;� � � ;mgg and dec(ftg) = fd [ftg j d 2

dec(ftjg), j 2 f1;� � � ;ngg. We have to show that for any z 2 Op(t), there exists

w 2 Op(s) such that decw(s) 3 s >EL t 2 decz(t). Then we have to prove that

either sub(decw(s),s)�EL sub(decz(t),t) or sub(decw(s),s) = sub(decz(t),t) and

dec(stm(s)) ��EL dec(stm(t)). This can be easily shown with (�).

(d) �� = �� , status(��) 6= mult, st(s) >
status(��)
TRPO st(t) and fsg �TRPO stm(t).

Then st(s) >
status(��)
TIRD st(t) and fsg �TIRD stm(t) by induction hypothesis. 2

The following example shows that Jouannaud and Rubio's ordering is properly in-

cluded in our HIRD.

Example 4.4.2 ([60]) Let S = fformg, C = f::form ! form, �:form ! form !

form, _:form ! form ! formg, fX:form, Y :form, Z:formg � V and

R =
�
:X � (Y � Z) �! Y � (X _ Z):

Give the precedence: :form >� C �form >� C _form. Then : X � (Y � Z) >HIRD Y

� (X _ Z) but : X � (Y � Z) 6>HRPO Y � (X _ Z).

Hence, we can show the termination of R on type compatible normalized terms using

our HIRD, but Jouannaud and Rubio's ordering cannot show it. Therefore, HIRD is

more powerful than the ordering de�ned by Jouannaud and Rubio since theorem 4.4.1

and example 4.4.2.

Jouannaud and Rubio [28] showed that for some non-type compatible terms, termina-

tion is also assured by the termination of HRS on type compatible terms. However, the

restrictions for type structure is essential in their approach.

35

4.5 Conclusion

In this chapter, we have extended the IRD to HRSs for proving termination of HRSs. Our

extension method is inspired by Jouannaud and Rubio's idea [27, 28] and the particular

properties of IRD. We have shown that our ordering is more powerful than the ordering

de�ned by Jouannaud and Rubio. Hence our ordering is powerful tool for proving ter-

mination of HRS on type compatible terms. Jouannaud and Rubio [28] showed that for

some non-type compatible terms, termination is also assured by the termination of HRS

on type compatible terms. However the restriction of type structure is essential in this

chapter and Jouannaud and Rubio's works [27, 28]. In order to remove this restriction,

we consider the RPO for HRSs that is independent of an ordering on type structure in

the next chapter.

36

Chapter 5

Simpli�cation Ordering for

Higher-Order Rewrite Systems

5.1 Introduction

Recently Jouannaud and Rubio [27, 28] extended the recursive path ordering (RPO)

on �rst-order terms, called algebraic terms, to higher-order terms by using a �rst-order

interpretation on �-terms. They showed that this ordering can prove termination of

several interesting examples. However, in this ordering, two higher-order terms have to

be compared by type �rst, then by root function symbol, before the comparison can

proceed recursively on the arguments. This unnatural priority between type and function

symbol restricts their ordering to only on type compatible terms.

In this chapter we introduce the notion of simpli�cation orderings on algebraic terms

and propose a new powerful RPO on higher-order terms, called the higher-order recursive

path ordering (HRPO). Though our approach was inspired by the �rst-order interpretation

method described in Jouannaud and Rubio [27, 28], we develop the higher-order recursive

path ordering within a more natural framework of a simpli�cation ordering. Our key idea

in higher-order recursive path ordering is the concept of envelopes for typed terms that

allows us to treat higher-order variables as function symbols. We clarify that the priority

between type and function symbol introduced in Jouannaud and Rubio is not essential

and any partial ordering on function symbols can be used freely to de�ne the higher-order

recursive path ordering. Thus we can remove the type compatible term limitation in

Jouannaud and Rubio's ordering [27, 28].

Section 5.2 presents the de�nition of simpli�cation orderings on algebraic terms. We

de�ne the higher-order recursive path ordering on normalized terms in section 5.3. Section

5.4 develops the technique of envelopes, and section 5.5 compares our approach to that

of Jouannaud and Rubio.

5.2 Simpli�cation Ordering for Higher-Order Rewrite

Systems

In this section, we introduce the notion of simpli�cation orderings for HRSs. More pre-

cisely, we de�ne the simpli�cation orderings on algebraic terms. Further we show the

termination criteria for HRSs using a framework of simpli�cation orderings.

37

De�nition 5.2.1 Let L = f��!(�! �) j �, � 2 TSg and B = fc� j � 2 TSg where

��!(�! �):� ! (� ! �) and c�:� are fresh constants. We de�ne the new signature � C =

C [L [B.

Algebraic terms are typed terms over � C obtained from normalized terms over C
through the following interpretation function.

De�nition 5.2.2 The interpretation function k k from normalized terms over the sig-

nature C [B to algebraic typed terms over the signature � C is de�ned by:

� k(�x.s):�!�k = ��!(�! �)(ksfx c�gk).

� k�(s1,� � � ,sn)k = �(ks1k,� � � ,ksnk) if � 2 C [B [V.

Then, the set of algebraic terms is T (� C;V) = fk t k j t 2 T (C;V)#g and the set of

ground algebraic terms is T (� C) = fk t k j t 2 T (C) #g.

Lemma 5.2.3 Let C[s] 2 T (C) # and s 2 T (C;V) #. Let � = fx1 c�1 ,: : : ,xn c�ng

where xi:c�i (1 � i � n) and FV (s) = fx1,: : : ,xng. Then, kC[s] k = kC k[k s� k].

Proof. It is straightforward by the de�nition of the interpretation function. 2

Fun(t) denotes the set of constants in an algebraic term t. The size j t j is de�ned as

the number of symbols occurring in t.

De�nition 5.2.4 A root symbol of an algebraic term is de�ned by root(�(s1,: : : ,sm)) =

� if � 2 � C [V. Note that an algebraic term �(s1,: : : ,sn) has a basic type if and only if

� 62 L.

An algebraic term si is called an immediate subterm of an algebraic term s = �(s1,

: : : , si, : : : , sn). Then, st(s) = h s1,: : : ,si,: : : ,sn i and stm(s) = fs1,: : : ,si,: : : ,sng denote

the sequence and the multiset of immediate subterms of s, respectively.

De�nition 5.2.5 Let � be a partial ordering on � C. The homeomorphic embedding

relation �emb on T (� C) is de�ned inductively as follows:

s = �(s1; : : : ; sn) �emb �(t1; : : : ; tm) = t (arity(�) = n and arity(�) = m)

if and only if

(1) � � � and there exist indexes j1; : : : ; jm such that 1 � j1 < j2 < : : : < jm � n

and sji �emb ti (i = 1; : : : ;m), or

(2) sj �emb t for some j.

38

De�nition 5.2.6 Let � be a partial ordering on � C. A partial ordering > is a simpli�-

cation ordering on T (� C) if it possesses the following three properties:

(1) s > t implies �(u1,: : : ,s,: : : ,un) > �(u1,: : : ,t,: : : ,un) for � 2 � C. (the replacement

property),

(2) s > si for any si 2 stm(s) (the subterm property),

(3) �(u1,: : : ,un) > �(ui1,: : : ,uim) if �, � 2 � C, � � �, 1 � i1 < : : : < im � n, arity(�)

= n and arity(�) = m.

Lemma 5.2.7 Let � be a partial ordering on � C and > be a simpli�cation ordering on

T (� C). Then, �emb � > holds.

Proof. We show that s�emb t implies s > t by induction on j s j.

� Basic step: j s j = 1. Since �; � 2 � C and s = � �emb � = t, � � �. Hence, s =

� > � = t holds.

� Induction step: We consider that s = �(s1; : : : ; sn)�emb �(t1; : : : ; tm) = t.

(1) By induction hypothesis, sji � ti holds (i = 1; : : : ;m). By replacement prop-

erty, �(sj1; : : : ; sjm) � �(t1; : : : ; tm) holds. Since � � � and 1 � j1 <

j2 < : : : < jm � n, �(s1; : : : ; sm) > �(sj1; : : : ; sjm) holds. Hence, s =

�(s1; : : : ; sn) > �(t1; : : : ; tm) = t holds.

(2) By induction hypothesis, sj � t for some j. By subterm property, s > sj holds.

Hence, s > t holds. 2

Remark 5.2.8 If we assume that S and C are �nite then we can give a well-partial or-

dering > on � C, i.e., (� C,>) is a well-partially ordered set: See lemma A.1.1 in appendix.

Theorem 5.2.9 Let � be a well-partial ordering on � C. Then, a homeomorphic embed-

ding relation �emb is a well-partial ordering on T (� C).

Proof. It is straightforward by Kruskal's tree theorem [12, 39]. 2

Theorem 5.2.10 Let � be a well-partial ordering on � C. Then, simpli�cation orderings

on T (� C) are well-founded.

Proof. It is straightforward since lemma 5.2.7 and theorem 5.2.9. 2

Note that we assume that there exists at least one constant in C for each type in this

chapter. The following theorem guarantees the termination property for HRSs.

39

Theorem 5.2.11 Let R be a HRS on T (C;V) #. Let � be a well-partial ordering on

� C and > a simpli�cation ordering on T (� C) such that k l� # k > k r� # k for any ground

substitution �:V !T (C [B) # and any rewrite rule l! r in R. Then R is terminating.

Proof. Assume that R is not terminating. There is an in�nite rewrite sequence t0 !R

t1 !R t2 !R : : : . Without loss of generality, we may assume that terms in this in�nite

sequence are ground. By the de�nition of rewriting, s !R t if and only if there exist a

rewrite rule l ! r 2 R, a substitution �:V !T (C;V) # and a ground context C such that

s = C[l� #] and t = C[r� #]. FV (l� #) = fx1,: : : ,xng where xi:�i (1 � i � n). Let �0 =

fx1 c�1 ,: : : ,xn c�ng. Note that l��
0 # = l� # �0, r��0 # = r� # �0 and substitution ��0:V

! T (C [B) # is ground. Since l� # �0 and r� # �0 are ground and the assumption, k l� # �0 k

> k r� # �0 k holds. By replacement property, kC k[k l� # �0 k] > kC k[k r� # �0 k]. By

lemma 5.2.3, it follows that kC[l� #] k = kC k[k l� # �0 k] and kC[r� #] k = kC k[k r� # �0 k].

Hence, k s k > k t k. Thus we have the in�nite sequence k t0 k > k t1 k > k t2 k > : : : : con-

tradiction to the well-foundedness of > by theorem 5.2.10. Therefore, R is terminating

on T (C;V) #. 2

5.3 Higher-Order Recursive Path Ordering

In this section, we introduce the RPO for HRSs. First we de�ne the RPO on algebraic

terms, called typed recursive path ordering. Next, we de�ne the higher-order recursive

path ordering on normalized terms using the interpretation function and typed recursive

path ordering.

De�nition 5.3.1 (TRPO) Let>� C be a partial ordering on � C. Let s and t be algebraic

terms. The typed recursive path ordering (TRPO) on T (� C;V) is de�ned as follows:

s >TRPO t if and only if root(s) 62 V and

(1) si �TRPO t for some si 2 stm(s), or

(2) root(s) >� C root(t) and s >TRPO ti for all ti 2 stm(t), or

(3) root(s) = root(t), status(root(s)) = mult and stm(s) >mult
TRPO stm(t), or

(4) root(s) = root(t), status(root(s)) 6= mult, st(s) >
status(root(s))
TRPO st(t) and s >TRPO ti

for all ti 2 stm(t).

where >mult and >
status(root(s))
TRPO are the extension of >TRPO associated with the statuses

mult and status(root(s)), respectively.

We show that the TRPO is a simpli�cation ordering on T (� C). Note that a partial

ordering >� C on � C is given in the following three lemmas.

Lemma 5.3.2 The TRPO is a partial ordering on T (� C).

40

Proof. We can show the transitivity and the irreexivity of TRPO by using the same

argument as that for the RPO on �rst-order terms [9]. 2

Lemma 5.3.3 The TRPO has the subterm property on T (� C), i.e., s 2 T (� C) and s �

t imply s >TRPO t.

Proof. Let s be a ground algebraic term and t be a proper subterm of s. We show that

s >TRPO t by induction on j s j. Let s = �(s1,: : : ,sm) (m � 1). Since t is a subterm of

some si, si �TRPO t holds by induction hypothesis. Hence, s >TRPO t holds by case (1)

of de�nition 5.3.1. 2

Lemma 5.3.4 The TRPO has the replacement property on T (� C), i.e., s >TRPO t im-

plies � (u1,: : : ,s,: : : ,un)>TRPO � (u1,: : : ,t,: : : ,un) for � (u1,: : : ,s,: : : ,un), � (u1,: : : ,t,: : : ,un)

2 T (� C).

Proof. If � : b1 ! : : : ! bn ! b 2 � C and status (�) = mult then � (u1,: : : ,s,: : : ,un)

>TRPO � (u1,: : : ,t,: : : ,un) holds, since fu1,: : : ,s,: : : ,ung>
mult
TRPO fu1,: : : ,t,: : : ,ung. If status

(�) 6= mult then � (u1, : : : , s, : : : , un) >TRPO � (u1, : : : , t, : : : , un) holds, since hu1, : : : ,

s, : : : , uni >
status(�)
TRPO hu1, : : : , t, : : : , uni and � (u1, : : : , s, : : : , un) >TRPO u for all u 2

fu1, : : : , t, : : : , ung. 2

Lemma 5.3.5 Let >� C be a well-partial ordering on � C. If � >� C �, then �(u1; : : : ; un)

>TRPO �(uj1; : : : ; ujm) where �, � 2 � C, 1 � j1 < : : : < jm � n, arity(�) = n and

arity(�) = m.

Proof. It is straightforward by the de�nition of TRPO. 2

Theorem 5.3.6 If >� C is a well-partial ordering on � C then the TRPO is a simpli�cation

ordering on T (� C).

Proof. By lemmas 5.3.2, 5.3.3, 5.3.4 and 5.3.5, the TRPO is a simpli�cation ordering on

T (� C). 2

We de�ne the higher-order recursive path ordering on T (C;V) # using the interpreta-

tion function and the TRPO.

De�nition 5.3.7 (HRPO) Let s and t be normalized terms. The higher-order recursive

path ordering (HRPO) s >HRPO t is de�ned by k s k >TRPO k t k.

Example 5.3.8 We consider the following normalized terms.

s = X(�xy:x) and t = X(�xy:y) where X:(Nat ! Nat ! Nat) ! Nat, x:Nat and

y:Nat. Then, k s k = X(�Nat!Nat!Nat(�Nat!Nat(cNat))) = k t k holds.

Let � = fX � z:z(0; 1)g where z:Nat ! Nat ! Nat, 0:Nat and 1:Nat. Since s� #

= 0 and t� # = 1, k s� # k 6= k t� # k. Therefore, it does not hold that k s k = k t k implies

k s� # k = k t� # k for any ground substitution �:V ! T (C [B) # in general.

41

The above example explains why each bound variable is restricted into a basic type

to guarantee the stability of ground substitutions.

Note that we assume that each bound variable in normalized terms has a basic type

in the rest of this chapter.

Lemma 5.3.9 Let s and t be normalized terms. Then, k s k = k t k implies k s� # k =

k t� # k for any ground substitution �:V !T (C [B) #.

Proof. We show that k s k= k t k implies k s� # k= k t� # k by induction on the structure of

s. In the case that s = �(s1,� � � ,sm) with � 2 C or s = �x.s1, the proof is straightforward.

We consider the case that s = �(s1,� � � ,sm) with � 2 V.

Since s = �(s1,� � � ,sm) and k s k = k t k, we have t = �(t1,� � � ,tm) such that k si k =

k ti k (1 � i � m).

Then s� = (��)(s1�,� � � ,sm�) and t� = (��)(t1�,� � � ,tm�). Letting s0 = ��, we show

ks0(s1�,� � � ,sm�)#k = ks
0(t1�,� � � ,tm�)#k by induction on the size of s0.

If s0 = �x1� � �xm.xi then k si� # k = k ti� # k by induction hypothesis. Let s0 = �x1 � � �

xm.f(u1,� � � ,un) (n � 0 and f 2 C). Let = fx1 s1�,� � � ,xm sm�g.

ks0(s1�,� � � ,sm�)#k

= f(ku1 #k, � � � ,kun#k)

= f(k(� x1 � � � xm.u1) (s1�, � � � , sm�)#k, � � � , k(� x1 � � � xm.un) (s1�, � � � , sm�)#k)

= f(k(� x1 � � � xm.u1) (t1�, � � � , tm�)#k, � � � , k(� x1 � � � xm.un) (t1�, � � � , tm�)#k)

by induction hypothesis. 2

Lemma 5.3.10 Let root(k s k) 62 V and k t k 2 stm(k s k). Then, k t� # k 2 stm(k s� # k)

for any ground substitution �:V !T (C [B) #.

Proof. We consider the following cases.

(1) k�(t1,: : : ,tn)k = �(kt1k,: : : ,ktnk) and k�(t1,: : : ,tn)� #k = �(kt1� #k,: : : ,ktn� # k) for

� 2 C [B.

(2) k�x.s : � ! � k = ��!(�!�)(ksfx c�gk) and k(�x.s)� # : � ! �k = ��!(�!�)

(k(s� #) fx c�gk). We may consider the case that x 2 FV (s) and x 62 dom(�).

Since x 2 FV (s) and x 62 dom(�), k(s� #) fx c�g k = k(s fx c�g)� #k. 2

Lemma 5.3.11 The TRPO is stable under ground substitutions, i.e., k s k >TRPO k t k

implies k s� # k >TRPO k t� # k on T (� C) for any ground substitution �:V !T (C [B) #.

Proof. Let s and t be normalized terms and � be a ground substitution. We assume that

k s k >TRPO k t k and show k s� # k >TRPO k t� # k on T (� C) by induction on j k s k j +

j k t k j.

� Basic step: j k s k j + j k t k j = 2.

If k s k = � and k t k = � (�, � 2 � C), then k s� # k >TRPO k t� # k holds since k s� # k

= k s k and k t� # k = k t k.

42

� Induction step:

(1) root(k s k) 62 V and k si k �TRPO k t k for some k si k 2 stm(k s k).

From induction hypothesis and lemma 5.3.9, we have k si� # k �TRPO k t� # k.

By lemma 5.3.10, k si� # k 2 stm(k s� # k) holds. Since root(k s k) 62 V and

root(k s� # k) = root(k s k), root(k s� # k) 62 V holds. We have k s� # k >TRPO

k t� # k by de�nition of TRPO.

(2) root(k s k) 62 V, root(k s k) >� C root(k t k) and k s k >TRPO k ti k for any k ti k

2 stm(k t k).

By root(k t k) 2 � C, root(k t� # k) = root(k t k) holds. From lemma 5.3.10, we

have k ti� # k 2 st
m(k t� # k). Since k s k >TRPO k ti k and induction hypothesis,

k s� # k >TRPO k ti� # k holds for any k ti� # k 2 stm(k t� # k).

(3) root(k s k) 62 V, root(k s k) = root(k t k) and stm(k s k) >mult
TRPO stm(k t k).

Since root(k s k) = root(k t k) and root(k s k) 62 V, root(k s� # k) = root(k s k)

and root(k t� # k) = root(k t k) hold. Since induction hypothesis, lemma 5.3.9

and lemma 5.3.10, stm(k s� # k) >mult
TRPO stm(k t� # k) holds.

(4) root(k s k) 62 V, root(k s k) = root(k t k), st(k s k) >
status(root(k s k))
TRPO st(k t k) and

k s k >TRPO k ti k for any k ti k 2 stm(k t k).

Since root(k s k) = root(k t k) and root(k s k) 62 V, root(k s� # k) = root(k s k)

and root(k t� # k) = root(k t k) hold. Since induction hypothesis, lemma 5.3.9

and lemma 5.3.10, st(k s� # k) >
status(root(k s k))
TRPO st(k t� # k) and k s� # k >TRPO

k ti� # k for any k ti� # k 2 stm(k t� # k) hold. 2

Lemma 5.3.12 For any well-founded ordering >� C on � C there exists a well-partial

ordering >�
� C on � C such that >� C � >�

� C and >TRPO � >�
TRPO.

Proof. By structural induction we can show that if >� C � >�
� C then >TRPO � >�

TRPO.

Further we can show that every well-founded ordering is contained in a total well-founded

ordering. Since every total well-founded ordering is a well-partial ordering, there exists a

well-partial ordering >�
� C on � C. 2

Theorem 5.3.13 Let R be a HRS on T (C;V) #. Let >� C be a well-founded ordering on

� C. If for any rewrite rule l ! r in R we have l >HRPO r, then R is terminating.

Proof. Since lemma 5.3.12 and theorem 5.3.6, there exists a simpli�cation ordering

>�
TRPO on T (� C) such that >TRPO�>

�
TRPO. For any l ! r 2 R, k l� # k >TRPO k r� # k

holds on T (� C) for any ground substitution �:V !T (C [B) # because of l >HRPO r and

lemma 5.3.11. Since >TRPO�>
�
TRPO, k l� # k >

�
TRPO k r� # k holds. From theorem 5.2.11,

it follows that the HRS R is terminating. 2

Example 5.3.14 We show the termination property of the following HRS R [38].

S = fterm, formg, C = f::form! form, ^, _:form! form ! form, 8, 9:(term

! form) ! formg, fP , Q:form, P 0:term ! form, x:termg � V and

43

R =

8>>>><
>>>>:

::P !P

:(P ^Q)!(:P) _ (:Q)

:(P _Q)!(:P) ^ (:Q)

:8(�x:P 0(x))!9(�x::P 0(x))

:9(�x:P 0(x))!8(�x::P 0(x)):

We give the precedence : >� C _, : >� C ^, : >� C 9 >� C �form!(term! form), : >� C

8 >� C �form!(term! form). Then, the following relations hold.

� : : P >HRPO P .

� : (P ^ Q) >HRPO (: P) _ (: Q).

� : (P _ Q) >HRPO (: P) ^ (: Q).

� : 8 (�x.P 0(x)) >HRPO 9 (�x.: P 0(x)).

� : 9 (�x.P 0(x)) >HRPO 8 (�x.: P 0(x)).

Hence, R is terminating by theorem 5.3.13.

Example 5.3.15 We show the termination property of the following HRS R.

S = fNat, Listg, C = ff :Nat ! Nat, g:(List ! List) ! List ! Nat, h:List !

Nat, f̂ :List ! List, ĝ:(Nat ! Nat) ! Nat ! List, ĥ:Nat ! Listg, fX:List ! List,

x:List, Z:List, Y :Nat ! Nat, y:Nat, W :Natg � V and

R =

�
f(g(�x:X(x); Z))!h(Z)

f̂(ĝ(� y:Y (y);W))! ĥ(W):

We give the precedence f >� C h and f̂ >� C ĥ. Then, f(g(�x.X(x),Z)) >HRPO h(Z)

and f̂ (ĝ(� y.Y (y),W)) >HRPO ĥ(W) hold. Hence, R is terminating by theorem 5.3.13.

On the other hand, Jouannaud and Rubio's ordering [27, 28] cannot deal with this

example. Let &TS be a quasi-ordering on TS . A normalized term s : � is type compatible if

t : � is type compatible and � &TS � for any proper subterm t : � of s. Since their ordering

works on only type compatible terms and f(g(�x:X(x); Z)):Nat � �x.X(x):List! List,

we have Nat &TS List ! List when the quasi-ordering &TS is a RPO on TS . Hence, we

have Nat &S List and List 6&S Nat. Since f̂(ĝ(� y:Y (y);W)):List � � y.Y (y):Nat !

Nat and the type compatibility, it is obtained that List &TS Nat! Nat. Hence, we have

List &S Nat and Nat 6&S List. This is contradiction. Thus termination of R on type

compatible normalized terms cannot be shown by their ordering when &TS is a RPO on

TS .

44

5.4 Envelope for Typed Terms

The envelope G� is a subset of � C such that every constant symbol occurring in ground

algebraic terms with the type � is contained in G� , i.e, Fun(s) � G� for any ground

algebraic term s:� . Let X :�1 ! : : : ! �n ! b be a variable with an output type b and

let � a ground substitution such that X� = �x1 : : : xn.t:�1 ! : : : ! �n ! b 2 T (C) #.

Then, for any ground normalized terms s1:�1, : : : , sn:�n, we have Fun(kX�(s1,: : : ,sn)#k)

� Gb. This property allows us to treat the variable X as a constant symbol with the

output type b in the TRPO under appropriate conditions about Gb. In fact, if we can

give a precedence >� C satisfying � >� C � for all � 2 Gb, then �(t1,: : : ,tn) >TRPO kX�

(s1,: : : ,sn)#k follows from the de�nition of the TRPO. This means that X plays in the

TRPO like a constant with � >� C X.

First, we de�ne the envelope and the precedence between constants and free variables

as follows:

De�nition 5.4.1 We de�ne the envelope G� (� � C) inductively as follows:

(1) � f :�1 ! : : : ! �l ! � 2 C implies f 2 G� .

� ��!(�!�), c� 2 G�! �.

(2) � g:�1 ! : : : ! �n ! � 2 G� and g 2 C [B imply G�1 [: : : [G�n � G� .

� ��!(�!�) 2 G� implies G� � G� .

Example 5.4.2 We consider the following signature: C = f0:Nat, s:Nat ! Nat, +:Nat

! Nat ! Nat, nil:List, cons:Nat ! List ! List, map:(Nat ! Nat) ! List ! Listg.

Then, GNat = f0, s, +g and GList = fnil, cons, map, �Nat!(Nat!Nat), cNat, 0, s, +g.

Lemma 5.4.3 Let s be a ground algebraic term with a type � . Then, Fun(s) � G�

holds.

Proof. It is straightforward by the de�nitions of the interpretation function and algebraic

terms. 2

By using envelopes we can extend the precedence >� C on � C to that on � C [V as

follows. Let � 2 � C and let Y be a free variable with an output type b. Then we de�ne

� >� C Y if � >� C � for any � 2 Gb. We say the TRPO (HRPO) with envelopes shortly

when the TRPO is based on this extended precedence >� C on � C [V.

Lemma 5.4.4 Let s = �(s1,: : : ,sn) (n � 0) be an algebraic term and X a free variable

with an output type b. If � >� C X then s >TRPO t for any ground algebraic term t:b.

45

Proof. Trivial from the de�nitions of � >� C X and of the TRPO. 2

We next show that the TRPO with envelopes is stable under ground substitutions.

Lemma 5.4.5 The TRPO with envelopes is stable under ground substitutions, i.e., k s k

>TRPO k t k with envelopes implies k s� # k >TRPO k t� # k on T (� C) for any ground sub-

stitution �:V !T (C [B) #.

Proof. Let s and t be normalized terms and � be a ground substitution. We assume that

k s k >TRPO k t k with envelopes and show k s� # k >TRPO k t� # k on T (� C) by induction

on j k s k j + j k t k j.

� Basic step: j k s k j + j k t k j = 2.

If k s k = � and k t k = � (�, � 2 � C), then k s� # k >TRPO k t� # k holds since k s� # k

= k s k and k t� # k = k t k.

If k s k = � and k t k = X with an output type b (� 2 � C, X 2 V), then � >� C

X. From kX� # k:b and lemma 5.4.4 it follows that k s� # k = � >TRPO kX� # k =

k t� # k.

� Induction step: The cases (1), (3) and (4) in the de�nition of TRPO are straight-

forward by the proof of lemma 5.3.11. We only show the case (2) in TRPO.

Case (2) root(k s k) 62 V, root(k s k) >� C root(k t k) and k s k >TRPO k ti k for any

k ti k 2 stm(k t k).

If root(k t k) 62 V, the claim follows by the same argument as that for the case (2)

of lemma 5.3.11. Thus, we assume root(k t k) 2 V . Let root(k s k) = � and t =

X(t1,: : : ,tn) where X:�1 ! : : : ! �n ! b. Then for any ground algebraic term

k t� # k:b, we have k s� # k >TRPO k t� # k because of root(k s� # k) = root(k s k) = �

and lemma 5.4.4. 2

Lemma 5.4.6 For any well-founded ordering >� C on � C there exists a well-partial or-

dering >�
� C on � C such that >� C � >�

� C and >TRPO � >�
TRPO with envelopes.

Proof. It is straightforward by the same argument of lemma 5.3.12. 2

From now on we restrict l� # as a ground term in the reduction C[l� #]!RC[r� #] in

the rest of this chapter.

Theorem 5.4.7 Let R be a HRS on T (C;V) #. Let >� C be a well-founded ordering on

� C. If for any rewrite rule l ! r in R we have l >HRPO r with envelopes, then R is

terminating.

46

Proof. Since theorem 5.3.6 and lemma 5.4.6, there exists a simpli�cation ordering >�
TRPO

on T (� C). For any l ! r 2 R and any ground substitution �:V !T (C [B) #, k l� # k

>TRPO k r� # k holds on T (� C) since l >HRPO r and lemma 5.4.5. Since >TRPO�>
�
TRPO

with envelopes, k l� # k >�
TRPO k r� # k holds. From theorem 5.2.11, it follows that the

HRS R is terminating. 2

The following example explains how to apply the HRPO with envelopes to prove

termination.

Example 5.4.8 Consider the following basic types, signature and HRS R: S = fNat,

Listg, C = fnil:List, cons:Nat! List! List, map:(Nat!Nat)! List! List, 0:Nat,

s:Nat! Nat, +:Nat! Nat! Natg, fX :Nat! Nat, N :Nat, L:List, x:Natg � V and

R =

�
map(�x:X(x); nil)!nil

map(�x:X(x); cons(N;L))! cons(X(N);map(�x:X(x); L)):

To prove the termination property of R we use the precedence: map >� C cons, 0, s,

+ and status(map) = mult. Since it is obvious that map(�x.X(x),nil) >HRPO nil, we

consider the second rule. From de�nition 5.4.1 we can obtain GNat = f0,s,+g. Since map

>� C f for any f 2 GNat, we havemap >� C X. Hence, map (�x.X(x),cons (N;L)) >HRPO

X(N) holds. Thus map (�x.X(x),cons (N ,L)) >HRPO cons (X(N),map (�x.X(x),L))

follows. Therefore, HRS R is terminating by theorem 5.4.7.

5.5 Related Works

In this section, we compare our HRPO with Jouannaud and Rubio's ordering [27, 28].

We �rst consider the following HRS R.

S = fNat, Listg, C = fapp:(Nat! Nat)! Nat! Nat, list:Nat! List, twice:Nat

! List, cons:Nat! List! List, nil:List, 0:Nat, s:Nat! Nat, +:Nat! Nat! Natg,

fX:Nat ! Nat, Y :Nat, x:Natg � V and

R =

8<
:

list(app(�x:X(x); Y))! twice(X(Y))

twice(Y)! cons(Y; cons(Y; nil))

list(Y)! cons(Y; nil):

We �rst show termination of R by applying our ordering with envelopes. From the

de�nition of envelopes we have GNat = fapp,0,s,+,�Nat!(Nat!Nat),cNatg. Give the fol-

lowing precedence: list >� C twice >� C cons, nil and list >� C X, i.e., list >� C � for

any � 2 GNat. Then, list(app(�x.X(x),Y)) >HRPO twice(X(Y)) with envelopes. From

theorem 5.4.7 it follows that HRS R is terminating.

Jouannaud and Rubio's ordering [27, 28] cannot be applied to the above R be-

cause of the type compatible term limitation. Let &TS be a RPO on TS . In this case,

list(app(�x.X(x),Y)) is not a type compatible normalized term. More precisely, app

47

(�x.X(x),Y):Nat � �x.X(x):Nat ! Nat and Nat 6&TS Nat ! Nat. Thus termination

of R cannot be proven by their ordering.

Next, we consider the following HRS R:

S = fb, b0g. C = ff :(b0 ! b0) ! b, g:b0 ! b, d:b0, e:b0 ! b0, h:(b ! b0) ! b0g, fX:b0 !

b0, Y :b ! b0, x:b0, y:bg � V and

R =

�
f(�x:X(x))! g(X(d))

e(h(� y:Y (y)))! d:

Our ordering can prove termination of R. We have Gb0 = fd,e,h,�b0!(b! b0),cbg. Give

the following precedence: f >� C g, d and e >� C d and f >� C X , i.e., f >� C � for any �

2 Gb0 . Then, f(�x.X(x)) >HRPO g(X(d)) holds. Hence, HRS R is terminating.

Jouannaud and Rubio's ordering [27, 28] again cannot prove termination ofR. Let&TS

be a RPO on TS . Since e(h(� y.Y (y))):b
0, � y.Y (y):b! b0 and b0 6&TS b! b0, e(h(� y:Y (y)))

is not type compatible.

Jouannaud and Rubio [27, 28] proposed the sort ordering on TS as the other quasi-

ordering &TS . However, the sort ordering &TS does not work for this example. We have

to show f(�x.X(x)):b > X(d):b0 in the �rst rule of R. Thus we have b >S b0. Then

e(h(� y:Y (y))) is not type compatible for the sort ordering, because e(h(� y.Y (y))):b0 and

� y.Y (y):b ! b0.

Jouannaud and Rubio [28] have showed that for some non-type compatible terms, ter-

mination is also assured by termination of HRS on type compatible terms. However, their

results cannot be applied in above examples since quasi-orderings &TS are not consistent

with type structure.

5.6 Conclusion

We have introduced a natural framework of a simpli�cation ordering for analyzing termi-

nation of higher-order rewriting, and based on this framework we have proposed a powerful

RPO on higher-order terms, called the higher-order recursive path ordering (HRPO). Our

ordering has extended Jouannaud and Rubio's ordering, which does not allow comparing

two type incompatible terms. We have shown through several examples that our ordering

can be applied to prove termination of HRSs to which Jouannaud and Rubio's ordering

cannot be applied. We believe that our ordering provides very useful means of proving ter-

mination which arises in various higher-order formal systems like higher-order functional

and logic programming languages and higher-order theorem provers.

48

Chapter 6

Persistence of Termination for Term

Rewriting Systems on Ordered Sorts

6.1 Introduction

Many-sorted TRSs are HRSs without higher-order functions or bound variables. Further

usual (�rst-order) TRSs are special cases of many-sorted TRSs. In order to study the

basic property of termination of HRSs, we try to analyze the termination of TRSs using

the notion of persistence. Zantema [66] introduced the notion of persistence as follows.

A property P of TRSs is persistent if for any many-sorted TRS R, R has the property

P if and only if its underlying TRS �(R), which results from R by omitting its sort

information, has the property P . Usual many-sorted TRS was extended with ordered

sorts by Aoto and Toyama [3]. And it was shown that the persistency of conuence [2]

is preserved for this extension in [3]. Zantema [66] showed that termination is persistent

for TRSs without collapsing or duplicating rules. Ohsaki and Middeldorp [46] studied

the persistence of termination, acyclicity and non-loopingness on equational many-sorted

TRSs. In this chapter, we show that the above Zantema's result is preserved for Aoto

and Toyama's extension in the subclass of order sorted term rewriting systems. This

research was �rst appeared in [22]. Further, Ohsaki [47] studied the more general case of

equational order-sorted TRSs.

Given an arbitrary STRS R, by identifying each sort with �, we obtain an unsorted

TRS �(R) called the underlying TRS of R, i.e., �(R) is obtained by omitting sort infor-

mation of R. In this case f 2 Fn is regarded as an abbreviation for f : � � : : :� �| {z }
n

!�.

The following de�nition of persistence was given by Zantema [66].

De�nition 6.1.1 A property P of TRSs is said to be persistent if for any many-sorted

TRS R, R has the property P if and only if its underlying TRS �(R) has the property

P .

Also, Zantema showed that termination is not persistent for TRSs in general but it is

persistent for the particular class of TRSs.

49

Theorem 6.1.2 ([66]) Termination is persistent for TRSs without collapsing or dupli-

cating rules.

6.2 Sorting of Term Rewriting Systems

Aoto and Toyama [2, 3] de�ned the notion of sort attachment and formulated the notion

of persistence using sort attachment. In this section we introduce the sort attachment

and persistence de�ned by Aoto and Toyama [3]. We mainly follow basic de�nitions and

basic lemmas in Aoto and Toyama [3] in this chapter.

Let S be a set of sorts with well-founded partial ordering � on it. F is a set of arity

�xed function symbols.

A sort attachment � of F on S is a family of mapping [n(Fn!S
n+1) [(V !S).

We can assume that there are countably in�nite variables x with �(x) = b for each

b 2 S. f 2 F with �(f) = (b1,: : : ,bn,b
0) is written as f :b1 � : : : � bn ! b0. The set of

�-sorted function symbols from F and that of �-sorted variables from V are denoted by

F� and V�, respectively.

A term t is said to be well-sorted under � with sort b (written as �(t) = b) if and

only if t 2 T (F�;V�)b. A term t is said to be strict well-sorted under � with sort b if

and only if t 2 T (F�;V�)b is strict. Well-sorted contexts are de�ned by special constants

2
b1 , : : : . Well-sorted terms and contexts are often treated as sorted terms and contexts,

respectively.

De�nition 6.2.1 Let (F ;R) be a TRS. A sort attachment � of F on S is said to be

consistent with R if and only if for any rewrite rule l! r 2 R, l and r are strictly well-

sorted under � and �(l) � �(r). The set of �-sorted rewrite rules of R is denoted by

R�.

It is obvious that for given (F ;R), a sort attachment � of F on S that is consistent

with R uniquely induces a STRS (F�;R�) called the �-sorted STRS of (F ;R).

It is trivial that the following lemma holds.

Lemma 6.2.2 Let R be a TRS and � a sort attachment that is consistent with R. For

any term s which is well-sorted under �, if s!R t then t is well-sorted under � and

s!R� t.

Using the sort attachment, persistence can be alternatively formulated as follows. It

is clear that de�nition 6.1.1 and the following de�nition are equivalent when set of sorts

with empty relation on it. Aoto and Toyama [3] introduced the following de�nition.

De�nition 6.2.3 A property P of TRSs is persistent if and only if for any TRS (F ;R)

and any sort attachment � that is consistent with R,

50

(F�;R�) has property P , (F ;R) has property P.

We consider the persistence of termination for TRSs on ordered sorts using de�ni-

tion 6.2.3 in this chapter instead of Zantema's de�nition. We assume that a set S of sorts

and a TRS R are given and that an attachment � on S that is consistent with R is �xed.

6.3 Characterization of Unsorted Terms

In this section we give a characterization of unsorted terms by ordered sorts. The proofs

of the following basic lemmas were given by Aoto and Toyama [3].

De�nition 6.3.1 The top sort (under �) of an unsorted term t is de�ned by

top(t) =

�
�(t) if t 2 V

b0 if t = f(t1; : : : ; tn) with f : b1 � : : :� bn! b0

De�nition 6.3.2 Let t = C[t1; : : : ; tn] (n � 0) be an unsorted terms with C[; : : : ;] 6=

2. We write t = C[[t1; : : : ; tn]] if and only if

1. C:b1 � : : :� bn! b0 is a context that is well-sorted under �.

2. top(ti) 6� bi for i = 1; : : : ; n.

The t1,: : : ,tn are said to be the principal subterms of t.

We denote t= C hh t1; : : : ; tn ii if either t= C[[t1; : : : ; tn]] or C = 2 and t 2 ft1; : : : ; tng.

Multiset S(t) consists of all principal subterms of t = C[[t1; : : : ; tn]].

De�nition 6.3.3 Let t be an unsorted term. Rank of t is de�ned by

rank(t) =

�
1 if t is well-sorted term

1 +maxfrank(t1); : : : ; rank(tn)g if t = C[[t1; : : : ; tn]]

De�nition 6.3.4 Let t be an unsorted term. Cap of t is de�ned by

cap(t) =

�
t if t is well-sorted term

C[; : : : ;] if t = C[[t1; : : : ; tn]]

De�nition 6.3.5 A rewrite step s!R t is said to be inner (written as s!i
R t) if and

only if s = C [[s1,: : : ,C
0 [l�],: : : ,sn]] !R C [[t1,: : : ,C

0 [r�],: : : ,tn]] = t for some s1,: : : ,sn,

l! r 2 R, � and C 0, otherwise outer (written as s!o
R t).

51

De�nition 6.3.6 A rewrite step s !o
R t is said to be vanishing if and only if s =

C [[s1,: : : ,�(x),: : : ,sn]] !
o
R �(x) = t for some s1,: : : ,sn, C and � such that C 0� = C

[s1,: : : ,2,: : : ,sn] and C 0[x] ! x 2 R.

De�nition 6.3.7 A rewrite rule l! r in R is said to be decreasing if and only if top(l) �

top(r). A rewrite step s!o
R t is said to be decreasing if and only if top(s) � top(t).

De�nition 6.3.8 A rewrite step s!o
R t is said to be destructive at level 1 if and only if

s!o t is either vanishing or decreasing. The rewrite step s!R t is said to be destructive

at level k + 1 if and only if C[[s1; : : : ; sj ; : : : ; sn]] !
i
R C[s1; : : : ; tj; : : : ; sn] = t with sj

!R tj destructive at level k .

Lemma 6.3.9 The following statements hold.

1: If a rewrite step s!o
R t is not vanishing then top(s) � top(t).

2: If a rewrite step s!o
R t is not destructive at level 1 then top(s) = top(t).

Lemma 6.3.10 The following statements hold.

1: If s!R t then rank(s) � rank(t).

2: If a rewrite step s!R t is vanishing then rank(s) > rank(t).

De�nition 6.3.11 The grade (grade(t) 2 N � S) of a term t is de�ned by grade(t) =

hrank(t),top(t)i where N is the set of all natural numbers.

Let > be the lexicographic ordering on N �S induced from > on N and � on S. The

lexicographic ordering > on N � S is well-founded since orderings > on N and � on S
are well-founded.

Lemma 6.3.12 The following statements hold.

1: If s!R t then grade(s) � grade(t).

2: If a rewrite step s!R t is destructive at level 1 then grade(s) > grade(t).

52

6.4 Persistence of Termination

In this section we discuss the persistence of termination for TRSs on ordered sorts and

the examples as applications. We mainly follow the Ohlebusch's argument in [45].

Lemma 6.4.1 Let t be a strictly well-sorted term. Suppose t = C[x1; : : : ; xn] with all

variables displayed and C : b1� : : :� bn ! b0. Then for any substitution �, if xi = xj and

�(xi) is a principal subterm of t� then �(xj) is also a principal subterm of t�.

Let s1; : : : ; sn and t1; : : : ; tn be terms. We write h s1; : : : ; sn i / h t1; : : : ; tn i if and

only if for any 1 � i; j � n, si = sj implies ti = tj.

Lemma 6.4.2 If C[[s1; : : : ; sn]] !
o
R C 0 h h si1 ; : : : ; sim i i and h s1; : : : ; sn i / h t1; : : : ; tn i

then C[t1; : : : ; tn] !
o
R C 0[ti1 ; : : : ; tim].

Lemma 6.4.3 If s!o
R t is a non-destructive rewrite step and applied rewrite rule is not

duplicating, the multiset inclusion S(t) � S(s) holds.

Lemma 6.4.4

1: If s = C[[s1; : : : ; sj; : : : ; sn]] !
i
R C[s1; : : : ; tj; : : : ; sn] = t is destructive at level 2

and cap(s) 6= cap(t) then S(t) = S(s) n fsjg [S(tj).

2: If s = C[[s1; : : : ; sj; : : : ; sn]] !
i
R C[s1; : : : ; tj; : : : ; sn] = t is destructive at level 2

and cap(s) = cap(t) then S(t) = S(s) n fsjg [ftjg.

Lemma 6.4.5 The following statements hold.

1: If s!o
R t is not destructive at level 1 then cap(s)!R� cap(t).

2: If s!i
R t is not destructive at level 2 then cap(s) = cap(t).

Proof.

1: Let s = C[[s1; : : : ; sn]]!
o
R C 0 h h si1 ; : : : ; sim i i = t. Since h s1; : : : ; sn i / h2; : : : ;2 i

and lemma 6.4.2, cap(s) = C[; : : : ;] !R� C 0[; : : : ;] = cap(t).

2: Let s = C[[s1; : : : ; sj; : : : ; sn]] !
i
R C[[s1; : : : ; tj ; : : : ; sn]] = t and sj!R tj. Since

cap(s) = C[; : : : ;] and cap(t) = C[; : : : ;], it is trivial. 2

De�nition 6.4.6 For any in�nite rewrite sequence D : s0!R s1!R s2!R : : : , we de�ne

the grade of D to be grade(D) = grade(s0).

53

De�nition 6.4.7 Let > is the lexicographic ordering on N �S and >mult is the multiset

extension of it. We de�ne]s = fgrade(t) j t 2 S(s)g, i.e.,]s denote the multiset of the

grades of the principal subterms of s.

Multiset ordering >mult is well-founded since lexicographic ordering > on N � S is

well-founded [10].

Lemma 6.4.8 If s!i
R t is destructive at level 2 then]s >mult]t.

Proof. Let s and t be C[[s1; : : : ; sj ; : : : ; sn]] and C[s1; : : : ; tj; : : : ; sn], respectively.

1: cap(s) 6= cap(t). By lemma 6.4.4, S(t) = S(s) n fsjg [S(tj).

� sj!R tj is vanishing. Since rank(sj) > rank(tj) and rank(tj) > rank(u) for

any u 2 S(tj), rank(sj) > rank(u) holds. So grade(sj) > grade(u) for any

u 2 S(tj) holds. Hence,]s >
mult]t holds.

� sj!R tj is decreasing. Since rank(sj) � rank(tj) and rank(tj) > rank(u) for

any u 2 S(tj), rank(sj) > rank(u) holds. So grade(sj) > grade(u) for any

u 2 S(tj) holds. Hence,]s >
mult]t holds.

2: cap(s) = cap(t). By lemma 6.4.4, S(t) = S(s) n fsjg [ftjg.

� sj! tj is vanishing. Since rank(sj) > rank(tj), grade(sj) > grade(tj) holds.

� sj! tj is decreasing. Since rank(sj)� rank(tj) and top(sj)� top(tj), grade(sj)

> grade(tj) holds.

Therefore,]s >mult]t holds. 2

Lemma 6.4.9 Let R� be a terminating STRS. Let D : s0!R s1!R s2!R : : : be an in-

�nite rewrite sequence of minimal grade with respect toR. Then the following statements

hold.

1: There are in�nitely many outer rewrite steps in D.

2: There are in�nitely many inner rewrite steps in D which are destructive at level 2.

3: There are in�nitely many duplicating outer rewrite steps in D.

Proof. Since grade(sj) = grade(D) for any j 2 N , there is no rewrite step which is

destructive at level 1.

1: Suppose that there are only �nitely many outer rewrite steps in D. Then we can

assume that there is no outer rewrite step in D. If s0 = C[[t1; : : : ; tn]] then there

must be an in�nite rewrite sequence starting from some ti 2 S(s0). Since rank(ti) <

rank(s0) this contradicts the minimality of grade(D).

54

2: Suppose that there are only �nitely many inner rewrite steps in D which are destruc-

tive at level 2. Then we can assume that there is no inner rewrite step in D which

is destructive at level 2. By lemma 6.4.5, if s!o
R t in D then cap(s)!R� cap(t) and

if s!i
R t in D then cap(s) = cap(t). By the case 1, R� is not terminating. This is

contradiction by the assumption.

3: Suppose that there are only �nitely many outer rewrite steps which are applied

duplicating rules in D. We consider the following cases.

� If sj!
o
R sj+1 then S(sj+1) � S(sj) since the rewrite step is non-destructive

and non-duplicating and lemma 6.4.3. Then]sj �
mult]sj+1 holds.

� If sj!
i
R sj+1 is not destructive at level 2 then we have sj = C[[t1; : : : ; tk; : : : ; tn]]

!i
R C[[t1; : : : ; t

0
k; : : : ; tn]] = sj+1 where tk!R t

0
k. Then]sj �

mult]sj+1 holds

since grade(tk) � grade(t0k).

� If sj!
i
R sj+1 is destructive at level 2 then we have sj = C[[t1; : : : ; tk; : : : ; tn]]

!i
R C[t1; : : : ; t

0
k; : : : ; tn] = sj+1 where tk!R t

0
k is destructive at level 1. By

lemma 6.4.8,]sj >
mult]sj+1. By the well-foundedness of >mult, there are only

�nitely many inner rewrite steps which are destructive at level 2 in D. This

contradicts the case 2. 2

Lemma 6.4.10 LetR� be a terminating STRS. Assume thatR is not terminating. Then

R has duplicating rules and R has collapsing or decreasing rules.

Proof. By lemma 6.4.9, it is trivial. 2

Theorem 6.4.11 The following statements hold.

1: Termination is persistent for TRSs on ordered sorts without collapsing or decreasing

rules.

2: Termination is persistent for TRSs on ordered sorts without duplicating rules.

Proof. By lemma 6.4.10, it is trivial. 2

In the following, we give the examples as applications of theorem 6.4.11. To show

the termination of the following TRSs directly seems di�cult from known results. The

persistence of termination is useful to show termination of a given TRS from those of its

subsystems.

Example 6.4.12 We show that the following TRSR is terminating using theorem 6.4.11.

R =

8>>>>>><
>>>>>>:

f(x; f(x;A))!G(x; x) (r1)

f(x; G(x;B))! f(x;G(x;C)) (r2)

f(x; f(x; y))! y (r3)

A!B (r4)

F (G(C; x); x)!F (G(A; x); x) (r5)

G(C; C)!C (r6)

55

Let S = f0; 1; 2g, 1 � 0 and 2 � 0.

� =

8>><
>>:

f : 0� 1! 1

F : 0� 0! 2

A;B;C : 0

G : 0� 0! 0

Any term in T 0, T 1 or T 2 is terminating, i.e., any term in T is terminating.

Since rules applicable to terms in T 0 are (r4) and (r6), any term in T 0 is terminating.

Since rules applicable to terms in T 1 are (r1), (r2), (r3), (r4) and (r6), any term in T 1

is terminating. Since rules applicable to terms in T 2 are (r4), (r5) and (r6), any term

in T 2 is terminating. Termination of the subsystems f(r4), (r6)g, f(r1), (r2), (r3), (r4),

(r6)g and f(r4), (r5), (r6)g can be shown using RPO.

Then R� is terminating. Since R has no duplicating rules and theorem 6.4.11, R is

terminating.

Example 6.4.13 Further, we show that the following TRS R is terminating using the-

orem 6.4.11.

R =

8>>>>>>>><
>>>>>>>>:

x � F !:x _ F (r1)

x � (x ^ T)!x � (x ^ ::F) (r2)

x
 (x _ F)!x
 (x _ ::T) (r3)

x ^ T !x (r4)

x _ F !x (r5)

T !TRUE (r6)

F !FALSE (r7)

Let S = f0; 1; 2g, 1 � 0 and 2 � 0.

� =

8>>>><
>>>>:

�: 0� 0! 1

 : 0� 0! 2

^;_ : 0� 0! 0

: : 0! 0

T; F; TRUE;FALSE : 0

Any term in T 0, T 1 or T 2 is terminating, i.e., any term in T is terminating.

Since rules applicable to terms in T 0 are (r4), (r5), (r6) and (r7), any term in T 0

is terminating. Since rules applicable to terms in T 1 are (r1), (r2), (r4), (r5), (r6) and

(r7), any term in T 1 is terminating. Since rules applicable to terms in T 2 are (r3), (r4),

(r5), (r6) and (r7), any term in T 2 is terminating. Termination of the subsystems f(r4),

(r5), (r6), (r7)g, f(r1), (r2), (r4), (r5), (r6), (r7)g and f(r3), (r4), (r5), (r6), (r7)g can

be shown using RPO.

Then R� is terminating. Since R has no duplicating rules and theorem 6.4.11, R is

terminating.

56

6.5 Related Works

It is possible that theorem 6.4.11 is extended to equational rewriting. An equational

rewriting s!R = E t if and only if there are terms u, v such that s =E u!R v =E t

where E is an equational system [13]. After our research in [22], Ohsaki [47] studied the

persistence of termination for order-sorted equational TRSs. The following theorem in

equational order-sorted TRSs is more general case of theorem 6.4.11.

Theorem 6.5.1 ([47]) Termination is persistent for S-sorted equational TRSR =E such

that E is a non-collapsing, variable-preserving, non-decreasing equational system and R
is either a non-collapsing and non-decreasing TRS or a non-duplicating TRS.

The following theorem was given as an application of theorem 6.5.1 in [47].

Theorem 6.5.2 ([47]) Let (F [G;R1) be a non-duplicating TRS and let (G;R2) be a

non-duplicating conuent TRS. If R1 and R2 are terminating and for any rewrite rule

l! r in R1,

(1) root(l) 62 G and root(l0) 62 Fun(l) [Fun(r) for any l0! r0 2 R2,

(2) Every subterm s of l (and r) satis�es root(s) 2 F or s 2 T (G;V) and

(3) Every subterm f(s1; : : : ; sn) of l and subterm g(t1; : : : ; tm) of l or r such that si = tj
and si; tj 2 V imply f; g 2 F or f; g 2 G,

then (F [G;R1 [R2) is terminating.

6.6 Conclusion

In this chapter, we have shown that the Zantema's result [66] is preserved for Aoto and

Toyama's extension [3] in the subclass of order sorted term rewriting systems. That is, we

have shown that termination is persistent for TRSs on ordered sorts without collapsing,

decreasing or duplicating rules. Further, we have given some examples as applications of

our results. Usual TRSs are special cases of HRSs. In order to study the basic property

of termination of HRSs, we have tried to analyze the termination of usual TRSs using the

notion of persistence.

57

Chapter 7

Conclusions

In this thesis, we have discussed the termination of higher-order rewrite systems by syn-

tactic approaches. We summarize the main results in this thesis.

(1) We have extended the improved recursive decomposition ordering to higher-order

rewrite systems for proving termination. Our extension method is inspired by Jouan-

naud and Rubio's idea [27, 28] and the particular properties of improved recursive

decomposition ordering. First, we have introduced the typed improved recursive

decomposition ordering on algebraic terms. In order to obtain the stability under

ground substitutions, we have introduced the notion of pseudo-terminal positions.

Next, we de�ned the higher-order improved recursive decomposition ordering based

on the typed improved recursive decomposition ordering and interpretation function

from normalized terms to algebraic terms. Further, we have compared our higher-

order improved recursive decomposition ordering with the Jouannaud and Rubio's

ordering [27, 28]. The improved recursive decomposition ordering is more powerful

than recursive path ordering in the frame of term rewriting systems. The similar

result holds in the frame of higher-order rewrite systems. We have shown that our

ordering is more powerful than the ordering de�ned by Jouannaud and Rubio.

(2) We have introduced a natural framework of a simpli�cation ordering for analyzing

termination of higher-order rewriting, and based on this framework we have pro-

posed a powerful recursive path ordering on higher-order terms, called the higher-

order recursive path ordering. Though our approach has been inspired by the �rst-

order interpretation method described in Jouannaud and Rubio [27, 28], we have

developed the higher-order recursive path ordering within a more natural framework

of a simpli�cation ordering. Our key idea in higher-order recursive path ordering is

the concept of envelopes for typed terms that allows us to treat higher-order vari-

ables as function symbols. We clarify that the priority between type and function

symbol introduced in Jouannaud and Rubio [27, 28] is not essential and any partial

ordering on function symbols can be used freely to de�ne the higher-order recur-

sive path ordering. Thus we could remove the type compatible term limitation in

Jouannaud and Rubio's ordering. We have shown through several examples that

our ordering can be applied to prove termination of higher-order rewrite systems

to which Jouannaud and Rubio's ordering cannot be applied. We believe that our

ordering provides very useful means of proving termination which arises in vari-

ous higher-order formal systems like higher-order functional and logic programming

58

languages and higher-order theorem provers.

(3) Many-sorted TRSs are HRSs without higher-order functions or bound variables.

Further usual TRSs are special cases of many-sorted TRSs. In order to study the

basic property of termination of higher-order rewrite systems, we have tried to

analyze the termination of term rewriting systems using the notion of persistence.

Zantema [66] showed that termination is persistent for TRSs without collapsing or

duplicating rules. Usual many-sorted TRS was extended with ordered sorts by Aoto

and Toyama [3]. We have shown that the above Zantema's result is preserved for

Aoto and Toyama's extension in the subclass of order sorted term rewriting systems.

That is, we have shown that termination is persistent for term rewriting systems on

ordered sorts without collapsing, decreasing or duplicating rules. Further, we have

given some examples as applications of our results.

59

Appendix A

Property of Well-Partial Ordering

A.1 Lemma A.1.1

Lemma A.1.1 We can give a well-partial ordering > on � C, i.e., (� C,>) is a well-

partially ordered set.

Proof. � C = C [L [B where C is a �nite set.

(1) As C is �nite, (C; ;) is a well-partially ordered set where ; is the empty relation.

(2) We show that a well-partial ordering >� can be de�ned on L. Let S be fb1,: : : ,bng

where bi is a basic type (i = 1,: : : ,n). The total precedence on basic types and the

constructor ! is given by b0 < b1 < : : : < bn < !. Then, for any � , � 2 TS , either

� >LPO � or � <LPO � (� 6= �) holds where >LPO is the lexicographic path ordering

[4] on TS . Since >LPO is total and well-founded, it is a well-partial ordering. Hence,

(TS ,>LPO) is a well-partially ordered set. The partial ordering �� >� �� is de�ned

by � >LPO � . Thus, (L,>�) is a well-partially ordered set.

(3) By the same argument as that in case (2), we can give a well-partial ordering c� >c

c� on B by � >LPO � . Thus, (B,>c) is a well-partially ordered set.

Therefore, (� C,>) is a well-partially ordered set where > = >� [>c by cases (1), (2)

and (3). 2

60

Bibliography

[1] P. B. Andrews, A. Issar, D. Nesmith and F. Pfenning, \The TPS theorem prov-

ing system," Proc. 10th International Conf. on Automated Deduction, LNCS, 449,

pp.614{642, 1990.

[2] T. Aoto and Y. Toyama, \Persistency of conuence," J. Universal Computer Science,

3, pp.1134{1147, 1997.

[3] T. Aoto and Y. Toyama, \Extending persistency of conuence with ordered sorts,"

Research report, IS-RR-96-0025F, School of Information Science, JAIST, 1996.

[4] F. Baader and T. Nipkow, \Term rewriting and all that," Cambridge University

Press, 1998.

[5] A. Ben-Cherifa and P. Lescanne, \Termination of rewriting systems by polynomial

interpretations and its implementation," Science of Computing Programming, 9(2),

pp.137{159, 1987.

[6] M. Broy, \Equational speci�cation of partial higher order algebras," Theoretical

Computer Science, 57, pp.3{45, 1988.

[7] R. Constable, S. Allen and H. Bromly, \Implementing mathematics with Nuprl proof

development system," Prentice-Hall, New Jersey, 1986.

[8] M. Dauchet, \Simulation of Turing machines by a regular rewrite rules," Theoretical

Computer Science, 103, pp.109{120, 1992.

[9] N. Dershowitz, \Orderings for term-rewriting systems," Theoretical Computer Sci-

ence, 17, pp.279{301, 1982.

[10] N. Dershowitz and Z. Manna, \Proving termination with multiset orderings," Com-

mun. ACM, 22 (8), pp.465{476, 1979.

[11] N. Dershowitz and J. P. Jouannaud, \Rewrite systems," In Handbook of Theoretical

Computer Science, vol.B, ed. J.van Leeuwen, pp.243{320, The MIT Press/Elsevier,

1990.

[12] N. Dershowitz, \Termination of rewriting," J. Symbolic Computation, 3, pp.69{116,

1987.

[13] M. C. F. Ferreira, \Termination of term rewriting: well-foundedness, totality and

transformations," Ph.D. thesis, Utrecht University, 1995.

61

[14] J. H. Gallier, \What's so special about Kruskal's theorem and the ordinal �0 ?

A survey of some results in proof theory," Annals of Pure and Applied Logic, 53,

pp.199{260, 1991.

[15] J. H. Goldfarb, \The undecidability of the second-order uni�cation problem," The-

oretical Computer Science, 13, pp.225{230, 1981.

[16] J. R. Hindley and J. P. Seldin, \Introduction to combinators and �-calculus," Cam-

bridge University Press.

[17] P. Hudak, S. P. Jones and P. Walder, \Report on the programming language Haskell:

A non-strict, purely functional language," ACM SIGPLAN Notices, 27(5), 1997.

[18] G. Huet and D. Lankford, \On the uniform halting problem for term rewriting

systems," Report 238, INRIA, 1978.

[19] M. Iwami, M. Sakai and Y. Toyama, \On the termination of higher order rewrite

systems," Technical Report of IEICE, COMP95-85, pp.113{121, 1996 (in Japanese).

[20] M. Iwami, \Termination of higher-order rewrite systems," Master thesis, School of

Information Science, JAIST, 1996 (in Japanese).

[21] M. Iwami, M. Sakai and Y. Toyama, \An improved recursive decomposition ordering

for higher-order rewrite systems," Technical Report of IEICE, COMP96-73, pp.17{

24, 1997.

[22] M. Iwami and Y. Toyama, \On the persistency of termination of term rewriting

systems with ordered sorts," Proc. 14th Conf. on Japan Society for Software Science

and Technology, pp.357{360, 1997 (in Japanese).

[23] M. Iwami, M. Sakai and Y. Toyama, \An improved recursive decomposition ordering

for higher-order rewrite systems," IEICE Transactions on Information and Systems,

E81-D, pp.988{996, 1998.

[24] M. Iwami and Y. Toyama, \Simpli�cation ordering for higher-order rewrite systems,"

Research Report, IS-RR-98-0024F, School of Information Science, JAIST, 1998.

[25] M. Iwami and Y. Toyama, \Simpli�cation ordering for higher-order rewrite systems,"

To appear in IPSJ Transactions on Programming.

[26] J. P. Jouannaud, P. Lescanne and F. Reinig, \Recursive decomposition ordering,"

Working Conf. on Formal Description of Programming Concepts 2 (IFIP), North-

Holland Publishing Company, pp.331{353, 1982.

[27] J. P. Jouannaud and A. Rubio, \A recursive path ordering for higher-order terms in

�-long �-normal form," Proc. 7th International Conf. on Rewriting Techniques and

Applications, LNCS, 1103, pp.108{122, 1996.

[28] J. P. Jouannaud and A. Rubio, \Rewrite orderings for higher-order terms in �-long

�-normal form and the recursive path ordering," Theoretical Computer Science, 208,

pp.33{58, 1998.

62

[29] S. Kahrs, \Towards a domain theory of termination proofs," Proc. 6th International

Conf. on Rewriting Techniques and Applications, LNCS, 914, pp.241{ 255, 1995.

[30] S. Kamin and J. J. Le�vy, \Attempts for generalizing the recursive path orderings,"

University of Illinois, 1980.

[31] S. Kapur, P. Narendran and G. Sivakumar, \A path ordering for proving termina-

tion of term rewriting systems," Proc. 10th Colloquium on Trees in Algebra and

Programming, LNCS, 185, pp.173{187, 1985.

[32] J. W. Klop, \Term rewriting systems," In Handbook of Logic in Computer Science,

vol.2, pp.1{112, ed. S. Abramsky, D. Gabbay and T. Mabiaum, Oxford University

Press, 1992.

[33] J. W. Klop, \Combinatory reduction systems," Ph.D. thesis, Mathematical Centre

Tracts 127, CWI, Amsterdam, 1980.

[34] J. B. Kruskal, \Well-quasi-ordering, the tree theorem, and Vazsonyi's conjecture,"

Transactions of the American Mathematical Society, 95, pp.210{225, 1960.

[35] D. S. Lankford, On proving term rewriting systems are noetherian," Technical

Report MTP-3, Louisiana Technical University, Ruston, 1979.

[36] C. Lor��a-S�aenz and J. Steinbach, \Termination of combined (rewrite and �-calculus)

systems, " Proc. 3rd International Conf. on Rewriting Techniques and Applications,

LNCS, 656, pp.143{147, 1992.

[37] O. Lysne and J. Piris, \A termination ordering for higher order rewrite systems,"

Proc. 6th International Conf. on Rewriting Techniques and Applications, LNCS, 914,

pp.26{40, 1995.

[38] R. Mayr and T. Nipkow, \Higher-order rewrite systems and their conuence," The-

oretical Computer Science, 192, pp.3{29, 1998.

[39] A. Middeldorp and H. Zantema, \Simple termination of rewrite systems," Theoretical

Computer Science, 175, pp.127{158, 1997.

[40] D. Miller, \A logic programming language with lambda-abstraction, function vari-

ables, and simple uni�cation," J. Logic and Computation, 1 (4), pp.497{536, 1991.

[41] R. Milner, M. Tofte and R. Harper \The de�nition of standard ML," MIT Press,

1990.

[42] B. M�oller, \Algebraic speci�cation with higher-order operators," IFIPTC2 Working

Conf. on Program Speci�cation and Transformation, pp.367{392, 1986.

[43] T. Nipkow, \Higher-order critical pairs," Proc. IEEE Symp. on Logic in Computer

Science, pp.342{349, 1991.

[44] T. Nipkow, \Orthogonal higher-order rewrite systems are conuent," Proc. 1st

International Conf. on Typed Lambda Calculi and Applications, LNCS, 664, pp.306{

317, 1993.

63

[45] E. Ohlebusch, \A simple proof of su�cient conditions for the termination of the

disjoint union of term rewriting systems," Bullen of the EATCS, 49, pp.178{183,

1993.

[46] H. Ohsaki and A. Middeldorp, \Type introduction for equational rewriting," Proc.

4th Symp. on Logical Foundations of Computer Science, LNCS, 1234, pp.283{293,

1997.

[47] H. Ohsaki, \Termination of term rewriting systems: transformation and persistence,"

Ph.D. thesis, Tsukuba University, 1998.

[48] V. van Oostrom, \Conuence for abstract and higher-order rewriting," Ph.D. thesis,

Vrije Universiteit, 1994.

[49] L. C. Paulson, \Isabelle: The next 700 theorem provers," Proc. IEEE Symp. on

Logic in Computer Science, pp.361{385, 1990.

[50] L. C. Paulson, \ML for the working programmer," Cambridge University Press,

1991.

[51] L. C. Paulson, \Isabelle: A generic theorem prover," LNCS, 828, 1994.

[52] D. A. Plaisted, \A recursively de�ned ordering for proving termination of term

rewriting systems," Technical Report, UIUCDS-R-78-943, Department of Computer

Science, University of Illinois at Uranbana-Champaign, 1978.

[53] D. A. Plaisted, \Well-founded orderings for proving termination of rewrite rules,"

Technical Report, UIUCDS-R-78-932, Department of Computer Science, University

of Illinois at Uranbana-Champaign, 1978.

[54] J. van de Pol, \Termination proofs of higher-order rewrite systems," Proc. 1st

International Workshop on Higher-Order Algebra, Logic and Rewriting, LNCS, 816,

pp.305{325, 1993.

[55] J. van de Pol, \Termination of higher-order rewrite systems," Ph.D. thesis, Utrecht

University, 1996.

[56] C. Prehofer, \Solving higher-order equations from logic to programming," Progress

in theoretical computer science, Birkh�auser, 1998.

[57] C. Prehofer, \Solving higher-order equations from logic to programming," Ph.D.

thesis, Technische Universit�at M�unchen, 1995.

[58] F. van Raamsdonk, \Conuence and normalisation for higher-order rewriting," Ph.D.

thesis, Vrije Universiteit, 1996.

[59] M. Rusinowitch, \Path of subterms ordering and recursive decomposition ordering

revisited," J. Symbolic Computation, 3, pp.117{131, 1987.

[60] J. Steinbach, \Termination of rewriting-extension, comparison and automatic gener-

ation of simpli�cation orderings," Ph.D. Thesis, University of Kaiserslautern, 1994.

64

[61] J. Steinbach, \Term orderings with status," SEKI Report SR-88-12, University of

Kaiserslautern, 1988.

[62] J. Steinbach, \Extensions and comparison of simpli�cation orderings," Proc. 3rd

International Conf. on Rewriting Techniques and Applications, LNCS, 335, pp.434{

448, 1989.

[63] J. Steinbach, \Simpli�cation ordering: history of results," Fundamenta Informaticae,

24, pp.44{87, 1995.

[64] D. Walukiewicz, \A total AC-reduction ordering on higher-order terms," Proc.

25th International Conf. on Automata, Languages and Programming, LNCS, 1443,

pp.530{542, 1998.

[65] D. A. Wolfram, \The clausal theory of types," Cambridge University Press, 1993.

[66] H. Zantema, \Termination of term rewriting: interpretation and type elimination,"

J. Symbolic Computation, 17, pp.23{50, 1994.

65

Publications

[1] M. Iwami, M. Sakai and Y. Toyama, \Termination of higher-order rewrite systems,"

Proc. the Joint Conf. of Hokuriku Chapters of Institutes of Electrical Engineers,

Japan, E-28, pp.314, 1995 (in Japanese).

[2] M. Iwami, M. Sakai and Y. Toyama, \On the termination of higher order rewrite

systems," Technical Report of IEICE, COMP95-85, pp.113{122, 1996 (in Japanese).

[3] M. Iwami, M. Sakai and Y. Toyama, \Termination of higher-order rewrite systems,"

Proc. LA Symp., Summer, pp.55{60, 1996 (in Japanese).

[4] M. Iwami, M. Sakai and Y. Toyama, \An improved recursive decomposition ordering

for higher-order rewrite systems," Technical Report of IEICE, COMP96-73, pp.17{

24, 1997.

[5] M. Iwami and Y. Toyama, \On the persistency of termination of term rewriting

systems with ordered sorts," Proc. 14th Conf. on Japan Society for Software

Science and Technology, pp.357{360, 1997 (in Japanese).

[6] M. Iwami, M. Sakai and Y. Toyama, \An improved recursive decomposition ordering

for higher-order rewrite systems," IEICE Transactions on Information and Systems,

E81-D, pp.988{996, 1998.

[7] M. Iwami and Y. Toyama, \Simpli�cation ordering for higher-order rewrite sys-

tems," Research Report, IS-RR-98-0024F, School of Information Science, JAIST,

1998.

[8] M. Iwami and Y. Toyama, \Simpli�cation ordering for higher-order rewrite sys-

tems," To appear in IPSJ Transactions on Programming.

66

