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Abstract

Term rewriting systems have been widely studied as a model for computation. In a
term rewriting system, they may exist an infinite reduction sequence starting with a term
having normal forms. In order to get a normal form for a given term, we require a normal-
izing strategy guaranteeing to find a normal form of terms whenever their normal forms
exist. Huet and Lévy (1979) showed that a call-by-need strategy is normalizing for every
orthogonal (i.e., left-linear and non-overlapping) term rewriting systems. Unfortunately,
in general a call-by-need strategy is undecidable. They formalized strong sequentiality
guaranteeing a decidable normalizing call-by-need strategy for orthogonal term rewriting
system. The work of Huet and Lévy has been extended to several kinds of systems.

In this thesis we first extend the class of left-linear term rewriting systems having a
decidable call-by-need strategy. We present the class of NVNF-sequential systems. This
class properly includes the class of NV-sequential systems which was introduced by Oyam-
aguchi (1993). We prove that every orthogonal NVNF-sequential system has a decidable
normalizing call-by-need strategy. Then we give growing approximations of term rewriting
systems without the assumption of the right-linearity whereas Jacuemard (1993) assumed
the right-linearity . We show that our approximations extend the class of orthogonal term
rewriting systems having a decidable normalizing call-by-need strategy.

Secondly, we investigate the normalizability of a call-by-need strategy for left-linear
overlapping term rewriting systems. We first introduced the notion of stable balanced
joinability. It is shown that a call-by-need strategy is normalizing for every stable balanced
joinable strongly sequential system. This is a generalization of Toyama’s result (1992).
We next introduce the notion of NV-stable balanced joinability and prove that every NV-
stable balanced joinable NV-sequential system has a decidable normalizing call-by-need
strategy.

Finally, we apply the results on call-by-need strategy to the E-strategy adopted by
the OBJ algebraic specification languages. The E-strategy chooses a redex according to
local strategies which are given to each function symbol. We consider how to give local
strategies to make the E-strategy normalizing. For this purpose, we introduced the notion
index-transitivity and carefulness. We show that for every index-transitive orthogonal
term rewriting system, if careful local strategies are given to each function symbol then
the E-strategy is normalizing.
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Chapter 1

Introduction

A term rewriting system consists of a set of directed equations, called rewrite rules. If
a term t contains an instance of the left-hand side of a rewrite rules [ — r, so-called
redex then t can be rewritten to the term obtained from ¢ by replacing this instance with
the corresponding instance of the right-hand side ». A term which cannot be further
rewritten is the result of the computation, and called a normal form. Term rewriting
systems play an important role in various fields of computer science such as abstract data
type specifications, implementations of functional programming languages, programming
verification and automated deduction. The fundamental properties of term rewriting
systems are strongly normalizing property (or termination) and Church-Rosser property
(or confluence). A term rewriting system is said to be strongly normalizing if there exists
no infinite reduction sequence. In a strongly normalizing term rewriting system, every
computation eventually ends in a normal form. We call a term rewriting system Church-
Rosser if any two terms that are reduced from some term can reach same term by the
reduction. If a term rewriting systems is Church-Rosser then every term can have at most
one normal form. In a term rewriting system being Church-Rosser, there may exist infinite
reduction sequences starting with a term having the normal form. In order to compute
the normal form of a given term, we require some strategies telling us which redex to
contract. A reduction strategy is said to be normalizing if we can always find the normal
form of a term having a normal form by it. It is well-known that the leftmost-outermost
reduction is a normalizing strategy in the A-calculus and the combinatory logic. However,
it has been shown that the leftmost-outermost strategy is not normalizing for arbitrary
term rewriting systems.

O’Donnell [25] was the first to consider reduction strategies for orthogonal term rewrit-
ing systems. He showed that the parallel-outermost reduction strategy is normalizing for
orthogonal term rewriting systems. Huet and Lévy investigated one-step reduction strate-
gies for orthogonal term rewriting systems in [13]. Huet and Lévy proved that every term
not in normal forms contains a needed redex and repeated rewriting of needed redexes
leads to the normal form if it exists. A needed redex is a redex which must be contract
in order to reach a normal form. However, it is undecidable whether a redex in a term
is needed. Huet and Lévy formulated the notion of strong sequentiality for orthogonal
term rewriting systems. They showed that for every strongly sequential orthogonal term
rewriting system R, index reduction is a normalizing strategy, that is, by rewriting a redex
called an index at each step, every reduction starting with a term having a normal form
eventually terminates at the normal form. Here, the index is defined as a needed redex



concerning an approximation of R which is obtained by analyzing the left-hand sides alone
of the rewrite rules of term rewriting systems. Oyamaguchi [28] introduced the notion of
NV-sequentiality which is a proper extension of strong sequentiality. NV-sequentiality is
not only based on the analysis of the left-hand sides of the rewrite rules of term rewrit-
ing systems but also on the non-variable parts of the right-hand sides. Extensions of
NV-sequentiality were proposed by Nagaya et al. [21], Comon [3] and Jacquemard [14].
The notion of strong sequentiality was extended to left-linear term rewriting systems by
Toyama [30]. He showed that index reduction is a normalizing strategy for every root
balanced joinable strongly sequential system. Kennaway [16] proved that every almost
orthogonal term rewriting system has a decidable one-step normalizing strategy. However,
the strategy of Kennaway is complicated. Antony and Middeldorp [1] proposed a simpler
and intuitive one-step reduction strategy for every term rewriting systems. They proved
that their strategy is normalizing for weakly orthogonal term rewriting systems.

The rest of this chapter gives an overview of this thesis.

Chapter 2 gives the basic definitions of term rewriting systems. We first present ab-
stract reduction systems which are set equipped with a binary relation. Term rewriting
systems are special abstract reduction systems. The notions of sequentiality and indices
are explained in Section 2.3. In Section 2.4, we introduce tree automata which are gener-
alization of sequential automata.

In Chapter 3, we introduce an extension of NV-sequentiality, which is called NVNF-
sequentiality [21]. We first show that the class of NVNF-sequential systems properly
includes the class of NV-sequential systems. We next show the decidability of indices with
respect to NVNF-sequentiality for left-linear term rewriting systems. Every orthogonal
NVNF-sequential system has a decidable normalizing call-by-need strategy. It was shown
by Comom [3] that NVNF-sequentiality of left-linear term rewriting systems is decidable.

In Chapter 4, we show that index reduction is normalizing for the class of stable bal-
anced joinable strongly sequential systems [22]. A stable balanced joinable system is a
left-linear term rewriting system in which every critical pair is joinable with balanced
stable reduction. In stable reduction, transitive index being stable under substitutions
is contracted. This class includes all root balanced joinable strongly sequential systems.
In stable balanced joinable strongly sequential systems, index reduction has the balanced
weakly Church-Rosser property. Thus we can show the normalizability of index reduction
by using Toyama’s theorem [30] concerning reduction strategies. We next show that every
NV-stable balanced joinable NV-sequential system has a normalizing strategy by intro-
ducing the notions of transitivity and stability for indices with respect to NV-sequentiality.
In Chapter 4, we do not consider more general sequential systems (NVNF-, shallow [3]
or growing [14] sequential systems). The reason is that index reduction is not balanced
weakly Church-Rosser even if the system is orthogonal.

In Chapter 5, we extend Jacquemard’s result in [14] to left-linear growing term rewrit-
ing systems [23]. Jacquemard showed that the set of normalizable ground terms is recog-
nized by a tree automaton if the term rewriting system is linear and growing. We first
show that the set of reachable terms to some recognizable set by the reduction is recog-
nized by a tree automaton if a term rewriting system is left-linear and growing. We can
remove the right-linear condition by constructing a deterministic automaton. This result
gives us better approximations of term rewriting systems which are left-linear growing
systems obtained by renaming variables in the right-side hands of rewrite rules. These
approximations yield the class of left-linear term rewriting systems for which there exists



a decidable call-by-need strategy. Moreover, this recognizability result implies the decid-
ability of reachability for left-linear growing systems. It is also shown that reachability
and joinability for some subclass of right-linear systems are decidable. We next prove
that termination for almost orthogonal growing term rewriting systems is decidable. Our
proof use Gramlich’s theorem that a weakly innermost normalizing rewriting system R
is terminating if every critical pair of R is trivial and overlay. We show that the set of
all ground term being reachable a normal form by innermost reduction is recognized by a
tree automaton for left-linear growing systems. By basic property of tree automata, the
decidability result is obtained.

In Chapter 6, we study the evaluation strategy (E-strategy) [9, 11, 20, 24]. The E-
strategy is a reduction strategy adopted by the OBJ algebraic specification languages such
that OBJ2 [9], OBJ3 [11] and CafeOBJ [24]. The outermost strategy has a better termi-
nation behavior than the innermost strategy although the outermost strategy can not be
implemented as efficiently as the innermost strategy. The E-strategy is a compromise
between the outermost and the innermost strategies. Each function symbol is given a list
of natural numbers which is called local strategy. By local strategies, it is determined
which redex is contracted. The result of the reduction by the E-strategy is not always
a normal form. We first consider a restriction for local strategies to avoid this problem.
Next we present the class of term rewriting systems for which the E-strategy is normal-
izing. Because our normalizability proof relies on Huet and Lévy’s theorem, this class is
undecidable. In Sections 6.3 and 6.4, we give a sufficient condition for normalizability of
the E-strategy and we explain how to give local strategies to function symbols for term
rewriting systems satisfying this condition.



Chapter 2

Preliminaries

In this chapter, we present the basic concept of term rewriting which is used in this thesis.
Following Klop [17], we first introduce abstract reduction systems. More details on term
rewriting can be found in [2, 7, 17]. In Section 2.3, we explain the landmark theorem of
Huet and Lévy [13] and give the notions of index and sequentiality. In Section 2.4, tree
automata are introduced. Several decidability results in this thesis are obtained by using
tree automata techniques.

2.1 Abstract Reduction Systems

In this section, we define abstract reduction systems which are set equipped with a binary
relation. Most properties of term rewriting systems are described on this abstract level.
We can avoid repeating similar definitions and properties by defining them.

Definition 2.1.1 An abstract reduction system (ARS) is a structure A = (D, —) con-
sisting of a set D and a binary relation — on D, called a reduction relation. We write
a— bif (a,b) €—

Definition 2.1.2 Let A = (D, —) be an ARS.
1. The identity of elements of D is denoted by =.

2. The transitive-reflexive closure of — is denoted by —*. The transitive closure of —
is denoted by —* and —= denotes the reflexive closure of —.

3. The set of natural numbers is denoted by A". Let k € N. Then —F* denotes the
k-steps reduction.

4. The symmetric closure of — is denoted by «. The transitive-reflexive closure of «
is denoted by =.

5. We write a — b if b — a.

6. An element a € D is a normal form if there exists no b € D such that a — b. The
set of normal forms is denoted by NF 4. An element a has a normal form if a —* b
for some normal form b.

Definition 2.1.3 Let A = (D, —) be an ARS.

4



1. A (or —) is strongly normalizing or terminating if there are no infinite reduction
sequences Tg — Tq — Tg — - .

2. A (or — ) is Church-Rosser or confluent if Vay, az,a3 € D, a; —* az and a; —* a3
imply a; —* b and a3z —* b for some b € D.

3. A (or — ) has the normal form propertyif Va € D, Vb € NF 4, a = b implies a —* b.

Definition 2.1.4 Let A = (D,—) be an ARS.

1. A relation —, on D is a reduction strategy for A (or —) if —; C —7 and every
normal form with respect to —, is also a normal form with respect to —. If —, is
a subrelation of — then it is called a one-step reduction strategy. Otherwise, — is
called a many-step reduction strategy.

2. A reduction strategy —, for A is normalizing if for each a having a normal form
with respect to —, there are no infinite sequences a = ay —, a1 —, az —, - - -.

2.2 Term Rewriting Systems

Definition 2.2.1 A signature F is a finite set of function symbols denoted by f, g, h,....
Every f € F is associated with a natural number denoting its arity. Function symbols
of arity O are called constant. F,, denotes the set of all n-ary function symbols. Hence

F = Unzofn

Definition 2.2.2 Let F be a signature and let V be an enumerable set of wvariables
denoted by z,y, z,... where F NV = ¢. The set T(F,V) of all terms built from F and
V is the smallest set such that

o VCT(F,V),
o if fe F,and ty,...,t, € T(F,V) then f(t1,...,t,) € T(F,V).

The set T(F,V) is sometimes denoted by 7. Terms not containing variables are called
ground terms. The set of all ground terms built from F is denoted by 7(F). A term ¢ is
linear if every variable in ¢ occurs only once.

Definition 2.2.3 Let O be an extra constant. A context C|,...,] is a term in 7 (F U
{0}, V). If C],...,] is a context with n occurrences of O and ty,...,t, € 7(F,V) then
Clty,...,t,] is the result of replacing from left to right the occurrences of O by ¢y, ..., t,. A
context containing precisely one occurrence of O is denoted by C[]. If ¢ has an occurrence
of some (function or variable) symbol e then we write e € t. The variable occurrence z of

Clz] is freshif z ¢ C[].
Definition 2.2.4 Let t € T(F,V).
1. The height p(t) of ¢ is defined by

(t) = 1+ max{p(t1),...,p(ty)} if t= f(ts,...,t,) and n > 0,
P =11 otherwise.



2. Let N, be the set of positive integers. A position (or occurrence) is a element of
./\/1, i.e., a finite sequence of positive integers. The empty position is denoted by
¢ and the concatenation of positions p and ¢ is denoted by p.q. The set Pos(t) of
positions in ¢ is defined as follows:

[ {e ifteV,
7305(@-{ {e}U{ip|1<i<n, pePos(t;)} ift=f(tr,... tn)

Positions are partially ordered by the prefix ordering <, i.e., p < g if there exists r
such that p.r = ¢. In this case we define ¢/p as r. If p £ g and ¢ £ p then we say
that p and g are disjoint, and write p L ¢q. The depth | p| of a position p is defined

by
Ip| = 0 if p=c¢,
PI= 1+]|q| if p=i.q.

3. If p € Pos(t) then the subterm t|, of ¢ at a position p is defined by

), = t if p=c¢,
Pty ift= f(ty,...,t,) and p = i.q.

If s is a subterm of ¢t then we write s C t. A subterm s of ¢ is properif s £ t. We
write s C t to indicate that s is a proper subterm of .

4. If p € Pos(t) then the symbol t(p) at p of ¢ is defined as follows:

oty it eV,
t(p)_{ Fooiftly = £t t).

The set of variable positions in t is denoted by Posy(t), ie., Posy(t) = { p €
Pos(t) | t(p) € V }. We define Posx(t) as Pos(t)\Posy(t). Hence Posz(t) = { p €
Pos(t) | t(p) € F }.

5. If p € Pos(t) and s € T(F,V) then the term t[s]|, obtained from ¢ by replacing the
subterm t|, with s is defined as follows:

[s], = s if p=-¢,
P fltay oy tifs]gy - o ytn) it = f(t1,...,t,) and p = i.q.

If p1,...,pn € Pos(t) are pairwise disjoint then we write t[s1,. .., Su]p,
of t[s1]p, ++ [Snlpn-

», instead

-----

Example 2.2.5 Let F = { f,g,a,b}. Consider the linear term t = f(g(x), f(g(a),y)).
We have p(t) = 4, Pos(t) = {¢, 1,2, 1.1,2.1,22,21.1} and Posy(t) = {1.1, 2.2
Then t|21 = g(a), t(1) = g and t[g(d)]> = f(g(z), g(b)).

Definition 2.2.6 A substitution 0 is a mapping from V to 7(F,V). Every substitu-
tion 6 is extended to a homomorphism from 7 (F,V) to T(F,V), i.e., 0(f(t1,...,t,)) =
f(0(ty),...,0(t,)) for each n-ary function symbol f and terms t,...,t,. A variable re-
naming is a bijective substitution. A term s is an instance of a term ¢ if there exists a
substitution 6 such that s = 6(t). We write t0 instead of ().



Definition 2.2.7 A term rewriting system (TRS) is a pair (F, R) consisting of a signature
F and a finite set R of rewrite rules. A rewrite rule is a pair (l,7) of terms in 7 (F,V)
such that:

(1) ¢V,

(2) any variable in 7 also occurs in [.

We write [ — r for (I,7). An instance of the left-hand side of a rewrite rule is a redex.
The rewrite rules of a term rewriting system (F,R) define a reduction relation —x on
T(F,V) as follows: t —g s iff there exist a rewrite rule [ — r € R, a position p € Pos(t)
and a substitution # such that t|, = 6 and s = t[rf],. We call 70 the contractum of (6.

We may write t 2% s or t AR s to specify the redex position p or the redex occurrence
A =10 of t in this reduction. When no confusion can arise, we omit the subscript R.

Example 2.2.8 Let F = {add, mult, s, 0} and

add(z,0) — «

add(z, 5(y)) — s(add(z,y))
mult(z,0) — 0

mult(z, s(y)) — add(mult(z,y), z).

We have the following reduction sequence (at each step the underlined redex is contracted):

mult(add(s(0),0),s(s(0))) —= add(mult(add(s(0),0),s(0)),add(s(0),0))

All notions defined in the previous section for abstract reduction systems carry over
to term rewriting systems by associating the ARS (7 (F,V), —) with the TRS (F,R).
We sometimes write R instead of (F,R) if the signature is clear from the context.

Definition 2.2.9 Let R be a TRS.
1. R is ground (linear) if for every | — r € R, | and r are ground (linear).

2. R is left-linear (right-linear) if for every | — r € R, | (r) is linear.

Example 2.2.10 Consider the TRS R of Example 2.2.8. R is left-linear. But R is not
right-linear (linear) because the right-hand side of the fourth rewrite rule is non-linear.



Definition 2.2.11 Let [ — 7 and I’ — 7' be two rewrite rules of a TRS R. We assume
that they are renamed to have no common variables. Suppose that p is a position in
Posx(l) such that [|, and I’ are unifiable with a most general unifier 0. Then we say that
| — r and ' — 7' are overlapping and the pair (I[r'],0,r'c) is called a critical pair of R.
If | - r and I’ — 7’ are same rule, then we do not consider the case p = . A critical pair
({[r']yo,7'c) with p = ¢ is an overlay. A critical pair (¢,s) is trivial if t = s.

Example 2.2.12 Let

Hg(x),y) — f(z,x)
R =4 f(z,a) = g(z)
g(b) = b
Then R has three critical pairs (f(z,z),g (9(g(z)), f(z,z)) and {f(b,y), f(b,))).

The critical pairs (f(x,z), g(g(z))) and (g f(z,z) are overlays.

Definition 2.2.13 Let R be a TRS.
1. R is non-overlapping if R has no critical pair.
2. R is orthogonal if R is left-linear and non-overlapping.

3. R is almost orthogonal if R is left-linear and all critical pairs of R are trivial overlays.

Theorem 2.2.14 ([29]) Every orthogonal TRS is Church-Rosser. O

2.3 Sequential TRSs

2.3.1 Sequentiality

Huet and Lévy [13] investigated normalizing one-step reduction strategies for orthogonal
TRSs. They proved that every orthogonal TRS has a normalizing call-by-need strategy.
We first explain this theorem.

Let A:ty — ty — --- — t, be a reduction sequence. We denote the first ¢ steps of
A by Ali] and denote the rest of A by Afi,n]. We may write A : t; —* t, instead of
Aitg—t; — - — t,.

Definition 2.3.1 Let A :t — s be a reduction step contracting the redex at p € Pos(t)
by the rewrite rule | — » € R. Let ¢ € Pos(t). The set g\ A of descendants of ¢ in s by
A is defined as follows:

{q} if g<p or ¢ Lup,
(J\A = {p-p3-]32 | 7"|p3 = l|p1 } if ¢ = p.p1.p> with p; € pOSv(l)
[0) otherwise.

If @ C Pos(t) then Q\A denotes the set U,cq ¢\A. The notion of descendant extends to
reduction sequences as follows. Let A : tg — t; — -+ — t,. The set ¢\ A is defined by
Q\A={q}if n=0and ¢\A4 = (¢\A[1))\A[L,n] if n > 0.



Example 2.3.2 Let
2 - { f(9(z),y) — [(z, f(=,a))
h(z) — g(=)
and A : t = f(h(a),a) — f(g9(a),a) — f(a, f(a,a)) = t'. Then position 1.1 has two

descendants 1 and 2.1 in #'. All positions in t except 1.1 have no descendants in t'.

Definition 2.3.3 Let R be a TRS.

1. A redex position p in a term t is needed if in every reduction sequence from t to a
normal form a redex at some descendant of p is contracted. In this case we also say
that the redex at position p is needed.

2. The needed reduction — is defined on 7 as follows: ¢t — s if t 2 s and p is
needed in .

Note that if a term ¢ does not have a normal form then all redexes in ¢ are needed.

Example 2.3.4 Consider the TRS R of Example 2.3.2 and the term t = f(h(a), h(a)).
The redex h(a) in ¢ at position 1 is needed. However, the redex h(a) in ¢ at position 2
is not needed because we have f(h(a),h(a)) — f(g(a),h(a)) — f(a, f(a,a)), which is a
needed reduction sequence.

Theorem 2.3.5 ([13]) Let R be an orthogonal TRS. The needed reduction —, is a
normalizing reduction strategy for R. O

The theorem proved in [13] is actually stronger: if a term ¢ has a normal form then
there exists no infinite reduction sequence starting with ¢ in which infinitely many needed
redexes are contracted. Middeldorp [19] generalized this theorem to computations to
root-stable term.

Definition 2.3.6 Let R be a TRS.
1. A term t is root-stable if there exists no redex s such that t —* s.

2. A redex position p (or a redex t|,) in a term ¢ is root-needed if in every reduction
sequence from ¢ to a root-stable term a redex at some descendant of p is contracted.

Theorem 2.3.7 ([19]) Let R be an orthogonal TRS.
(1) Every non-root-stable term has a root-needed redex.

(2) If a term ¢ is reducible to some root-stable term then every infinite reduction se-
quence starting with ¢ in which infinitely many root-needed redexes are contracted
contains a root-stable term. O

The above theorems give us a normalizing reduction strategy. However, needed redexes
are defined as redexes which contracted in all reduction to the normal form. Hence, in
order to decide which are needed redexes, we have search all reduction to the normal form
i.e., we require look-ahead. Huet and Lévy introduced the class of sequential TRSs in
which call-by-need computations are possible without look-ahead.



Definition 2.3.8 Let (F,R) be a TRS. We add a new constant © to F. Elements of
T(FU{Q2},V) are called Q-terms. The set 7(F U {Q},V) is abbreviated to 7g. An
Q-normal form is an (2-term without redexes, containing at least one occurrence of (2.
Only terms containing neither redexes nor 2’s are called normal forms. The set of all

normal forms is denoted by NFx%. tg denotes the {2-term obtained from ¢ by replacing all
variables in ¢t with Q. The set Red is defined by Red = { lo |l -7 € R }.

Definition 2.3.9
1. The prefiz ordering < on 7q is defined as follows:

o O < tforallte T,
o f(s1y.vey8n) < flty, .. ty)if s; < t; for any 1 < i < n,
o z <zforall xzeV.

We write t < sif t < s and t # s.

2. Two Q-terms t and s are compatible, written by t | s, if there exists an 2-term r
such that ¢ < r and s < r; otherwise, t and s are incompatible which is indicated by
t # s. The least upper bound of two 2-terms ¢ and s is denoted by tUsif ¢ T s. Let
S C7q. We write t T S if there exists some s € S such that ¢ | s; otherwise, t # 5.

Example 2.3.10 Let R be the TRS of Example 2.3.2. Then Red = { f(g(Q), ), h(Q) }.

We have £(2, f(2,2)) < F(9(), F(2,a)) and F(, F(9(a),2)) 1 F(A(Q), (2 ). We
obtain f(2, f(g(a), Q) U f(A(Q), f(2,2)) = F(H(Q), (g(a), 2)).

Definition 2.3.11 Let P be a predicate on 7q. An Q-position p of an Q-term ¢ is an
index with respect to P if for every Q-term s with ¢t < s, P(s) = true implies s|, #Z Q.
The set of indices of ¢ with respect to P is denoted by Ip(t).

Let t € 7 and p € Pos(t). Then we can see that p € Ip(t[Q],) iff P(¢[Q],) = false.

Definition 2.3.12 Let R be a TRS. We define the predicate nf on 7q as follows: nf(t) =
true iff t =% s for some normal form s.

Note that if R is a left-linear TRS then nf is a monotonic predicate, i.e., nf(t) = true
implies nf(s) = true whenever ¢t < s. The following lemma can be easily proven.

Lemma 2.3.13 Let R be an orthogonal TRS. Let t € 7. A redex position p of ¢ is
needed iff p € I4(¢[2],). O

Definition 2.3.14 A left-linear TRS is sequential if every {2-normal form has an index
w.r.t. nf

Example 2.3.15 Let R be Berry’s TRS, i.e.,
fla,b,z) —
R =< f(bz,a)—

f(z,a,b) — c.

Consider the Q-normal form t = f(Q,Q,Q). Position 1 is not an index of t w.r.t. nf
because we have the Q-term s = f(, a,b) with ¢t < s and nf(s) = true. Similaly, neither
position 2 nor 3 is an index of ¢ w.r.t. nf. Thus R is not sequential.

Unfortunately, in general neither indices w.r.t. nf nor sequentiality is decidable.
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2.3.2 Strong Sequentiality

Huet and Lévy [13] formalized strong sequentiality which is a sufficient condition for
sequentiality. Strong sequentiality is a property based on the left-hand sides of the rewrite
rules of TRSs alone. They introduced the arbitrary reduction in order to forget the right-
hand sides of the rewrite rules.

Definition 2.3.16 Let R be a TRS.

1. The arbitrary reduction —¢ on Tg is defined as follows: t —+ s iff s = ¢[s'],, for some
redex position p in ¢t and s’ € 7q.

2. The predicate nfy on Tq is defined as follows: nfq(t) = true iff t —3 s for some
normal form s.

Definition 2.3.17 A left-linear TRS is strongly sequential if every 2-normal form has
an index w.r.t. nfs.

Indices of a term ¢ w.r.t. nf; are indices of ¢t w.r.t. nf because —r C —7. Thus every
strongly sequential TRS is sequential.
Huet and Lévy [13] gave a procedure to compute the indices with respect to nfs.

Definition 2.3.18 The Q-reduction —¢q is defined on 7q as follows: t —q s iff s = ¢[Q)],
for some p € Pos(t) such that t|, T Red and t|, # Q. The set of normal forms with
respect to (2-reduction is denoted by NFgq.

Example 2.3.19 Let
me{ fin e =
] fla,b) —a
and t = f(f(Q,b), f(a,)). Then Red = { f(Q, f(Q,a)), f(a,b)} and we have the follow-

ing five Q2-reduction sequences from ¢ to the normal form of ¢ w.r.t. Q-reduction:

t —q €,

t —a f(€, f(a,Q)) —a Q,

t —a [(Q, f(a,Q)) —a [(Q2,0) —a
t—a f(f(2,0),Q) —a Q,

t —a f(f(2,0),Q) —qa f(Q,Q) —qa Q.

The following lemma holds for 2-reduction.
Lemma 2.3.20 ([18]) Q-reduction is Church-Rosser and strongly normalizing. O

Definition 2.3.21 Let ¢t be an Q-term. The normal form of ¢ with respect to Q2-reduction
is denoted by w(t).

Note that w(t) is well-defined according to the previous lemma. We write e € w(t) if
the normal form of ¢ with respect to (2-reduction has an occurrence of some symbol e.

Theorem 2.3.22 ([13]) Let ¢ be an Q-term and let p be an Q-position in ¢t. Then p is
an index of t w.r.t. nfy iff z € w(t[z],) where z is fresh. O

11



Example 2.3.23 Consider the TRS R of Example 2.3.19. Using Theorem 2.3.22, we
obtain I,f,(f(Q,2)) = {2} because w(f(z,Q)) = Q and w(f(Q,2)) = f(Q, 2).

The decidability of strong sequentiality for orthogonal TRSs was first shown by Huet
and Lévy [13] and then simplified proofs were presented by Klop and Middeldorp [18].
Jouannaud and Sadfi [15] proved the decidability of strong sequentiality assuming left-
linearity instead of orthogonality. Also this result was proven by Comon [3].

Theorem 2.3.24 Strong sequentiality of left-linear TRSs is decidable. O

We can obtain the following decidable reduction strategy for strongly sequential TRSs.

Definition 2.3.25 The index reduction — is defined on 7 as follows: ¢t —; s iff t 2 s
for some p with p € Ly, (t[],).

Huet and Lévy [13] showed that index reduction is a normalizing strategy for every
orthogonal strongly sequential TRSs. Toyama [30] generalized this result to the class of
root balanced joinable strongly sequential TRSs. The root reduction t —, s is defined by
t2 sand p=ce.

Definition 2.3.26 A TRS R is root balanced joinable if for any critical pair (p, q) of R,
there exist a term ¢ and k > 0 such that p —* ¢ and ¢ —F% ¢.

Theorem 2.3.27 ([30]) Let R be a left-linear TRS. If R is root balanced joinable and
strongly sequential then R has the normal form property and index reduction is a nor-
malizing strategy for R. O

Huet and Lévy gave a syntactic characterization, which is called left-normal [25], for
orthogonal strongly sequential TRSs in [13]. Toyama [30] removed the non-overlapping
condition.

Definition 2.3.28 A TRS R is left-normal if in every rewrite rule [ — 7 € R the function
symbols in [ precede the variable in [.

Example 2.3.29 The TRS of Example 2.3.2 is left-normal. The TRS of Example 2.3.19
is not left-normal since the variables x and y precede the constant a in the left-hand side

f(z, f(y,a)).

Theorem 2.3.30 ([30]) Let R be a left-linear left-normal TRS. Then R is strongly
sequential. Furthermore, if p is the leftmost-outermost redex position of a term ¢ then p
is an index of ¢[Q], w.r.t. nfs. O

2.3.3 NV-sequentiality

Oyamaguchi [28] introduced a more general sufficient condition for sequentiality, which
is called NV-sequentiality. NV-sequentiality is not only based on the analysis of the left-
hand sides of the rewrite rules of TRSs but also on the non-variable parts of the right-hand
sides.

Definition 2.3.31 Let R be a TRS.

12
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Figure 2.1.

1. The reduction relation —,, on 7q is defined as follows: t —,, s iff there exist a
rewrite rule | — r € R, a position p € Pos(t) and a substitution é such that ¢|, = (0
and s = t[s'], for some s’ > rq.

2. The predicate term on 7q is defined as follows: term(t) = true iff t —%, s for some

seT.

Example 2.3.32 Let
f(g(a),z) —
R =9 fla,2) = g(f ( z))
9(z) — ( )
and t = f(f(a,a),2). We have term(t) = true because t —,, f(g(f(a,a)),Q) —n,
f(g(a), ) —n, a. Note that nf(t) = false.

Definition 2.3.33 A left-linear TRS is NV-sequential if every (2-normal form has an
index w.r.t. term.

Oyamaguchi [28] showed that every NV-sequential TRS is sequential and the class of
NV-sequential TRSs properly includes the class of strongly sequential TRSs.

Theorem 2.3.34 ([28]) Let R be a left-linear TRS. Let t € 7g and p € Pos(t) with
t|, = Q. It is decidable whether p is an index of ¢ w.r.t. term in polynomial time. O

Oyamaguchi [28] also showed that NV-sequentiality of orthogonal TRSs is decidable.
This result was generalized to left-linear TRSs by Comon [3].

Theorem 2.3.35 NV-sequentiality is a decidable property of left-linear TRSs. O
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2.4 Tree Automata

Tree automata are generalization of sequential automata. Tree automata are useful for
the decision problems in term rewriting [3, 5, 6, 8, 14]. Following Comon et al. [4], we
adopt the definition of tree automata which is based on rewrite rules. More information
on tree automata can be found in [4, 10].

Definition 2.4.1 A tree automatonis a tuple A = (F, Q, @7, A) where F is a signature,
Q is a finite set of states, @/ C @Q is a set of final states and A is a set of ground rewrite
rules of the form f(q1,...,q,) — qor g — ¢’ where f € F, q1,...,¢n,q,¢ € Q. The latter
rules are called e-rules.

We use — 4 for the reduction relation — on 7(F U Q).
Definition 2.4.2
1. Aterm t € 7(F) is accepted by A if t —% ¢ for some g € Qy.
2. The tree language L(A) recognized by A is the set of all terms accepted by .A.

3. A set L C T(F) is recognizable if there exists a tree automaton A such that L =
L(A).

Definition 2.4.3

1. A tree automaton A is deterministic if there are neither e-rules nor different rules
with the same left-hand side.

2. A tree automaton A is complete if there is at least one rule f(g¢,...,¢,) — gin A
forall f € Fand ¢,...,¢, € Q.

The following properties of tree automata are well-known [4, 10].

Lemma 2.4.4 Let L be a recognizable set. Then there exists a complete and determin-
istic tree automaton recognizing L. O

Lemma 2.4.5 The class of recognizable tree languages is closed under union, intersection
and complementation. a

Lemma 2.4.6 The emptiness problem for tree automata is decidable. O
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Chapter 3

NVNF-Sequentiality of Left-Linear
TRSs

In this Chapter, we introduce an extension of NV-sequentiality [28]. This sequentiality
is called NVNF-sequentiality. Like NV-sequentiality, NVNF-sequentiality is based on the
analysis of left-hand sides and the non-variable parts of the right-hand side of rewrite
rules. However, the reachability to a normal form is considered in NVNF-sequentiality.
We first show that the class of NVNF-sequential TRSs properly includes the class of
NV-sequential TRSs. Next we prove the decidability of indices with respect to NVNF-
sequentiality. This implies that every orthogonal NVNF-sequential TRS has a decidable
normalizing call-by-need strategy.

3.1 NVNF-Sequentiality

In this section we explain the notion of NVNF-sequentiality. NVNF-sequentiality is
defined by using the reduction —,, like NV-sequentiality. But indices w.r.t. NVNF-
sequentiality are determined by the reachability to normal forms. The following predicate
was given in [28].

Definition 3.1.1 Let R be a TRS. The predicate nunf on 7Zq is defined as follows:
nonf(t) = true iff t =}, s for some normal form s.

Note that for every Q-term ¢, nunf(t) = true implies term(t) = true.

Example 3.1.2 Let 7, = { f,a,b,c} and

Consider the Q-term t = f(Q,Q,Q). Position 1 is an index of ¢ w.r.t. nonf. But the
position 1 is not an index of t w.r.t. term because we have term(f(Q,a,b)) = true.

Definition 3.1.3 A left-linear TRS is NVNF-sequential if every 2-normal form has an
index with respect to nunf.
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The decidability of NVNF-sequentiality was proven by Comon [3].
Theorem 3.1.4 NVNF-sequentiality of left-linear TRSs is decidable. O

In the remainder of this section we discuss the relationship between sequentiality,
NVNF-sequentiality and NV-sequentiality.

Lemma 3.1.5
(i) Every NV-sequential TRS is NVNF-sequential.

(ii) Every NVNF-sequential TRS is sequential.

Proof.

(i) Suppose that R is NV-sequential. Let ¢t be an 2-normal form. Then ¢ has an index
p w.r.t. term. We will show that p is an index w.r.t. nunf. Let s be an {2-term such
that t < s and nunf(s) = ture. Since term(s) = ture and p is an index of ¢ w.r.t.
term, we obtain s|, # 2. Thus p is an index of ¢t w.r.t. nunf.

(ii) Similar to (i). O
We now prove that NVNF-sequentiality is a proper extension of NV-sequentiality.

Lemma 3.1.6 The TRS (Fi,R;) of Example 3.1.2 is NVNF-sequential but not NV-
sequential.

Proof. Because the Q-normal form f(Q,,Q) has no indices w.r.t. term, R; is not NV-
sequential. In order to show that R; is NVNF-sequential, we first prove the claim: for
every Q-term ¢, if p € L,ns(t[2,) and ¢ € Lyyns(t]p) then p.g € Lyns(2).

Proof of the claim. Because —,, = —g,, nonf(t) = true iff nf(t) = true for every
Q-term ¢. Thus it suffices to show that if p € L,¢(¢[?],) and q € L,¢(t|,) then p.q € I, ¢(t).
This follows from Theorem 6.4.10 in Chapter 6 because every variable in the left-hand
side of the rewrite rule occurs at depth one.

We now prove that every 2-normal form ¢ has an index w.r.t. nunf. The proof is by
induction on the size of t. The case t = Q is trivial. Let ¢t = f(¢y,t2,t3). We have the
following four cases.

Case 1. 1y is an 2-normal form. Then by induction hypothesis, ¢; has an index w.r.t.
nonf. Since 1 € Luuf(f(€,t2,t3)), it follows from the claim that ¢ has an index w.r.t.
nvnf.

Case 2. t; = a. If t5 contains ’s then ¢, has an index w.r.t. nvnf by induction
hypothesis. Since we have 2 € I,,,¢(f(a,Q,t3)), it follows from the claim that ¢ has an
index w.r.t. nunf. Otherwise, t3 is an (2-normal form. From induction hypothesis, t3 has
an index w.r.t. nonf. We can obtain 3 € L,,.¢(f(a,t2,9Q)) because t5 is a normal form
and ty # b. Therefore from the claim, ¢ has an index w.r.t. nvnf.

Case 3. t; = b. Similar to Case 2.

Case 4. Otherwise, ts or t3 i1s an 2-normal form. Thus from induction hypothesis,
t or t3 has an index w.r.t. nunf. Because we can obtain 2 € I,,.,(f(t1,8,t3)) and
3 € Lupno(f(t1,12,9)), it follows from the claim that ¢ has an index w.r.t. nunf. a
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Figure 3.1.

Remark. The claim in the proof of Lemma 3.1.6 does not hold for arbitrary left-linear
TRSs. Let R = { f(¢9(z),a) — a}. Consider the Q-normal form f(g({2),$2). We have

1€ Lipnf(f(2,9Q)) and 1 € Lyns(9(2)). However, 1.1 & Lns(f(9(2),2)).

From Lemmas 3.1.5 and 3.1.6, we obtain the following theorem.

Theorem 3.1.7 The class of NVNF-sequential TRSs properly includes the class of NV-
sequential TRSs. O

3.2 Decidability of Indices with respect to NVNF-
Sequentiality

In this section we show that for a given )-term ¢, it is decidable whether an ()-position is
an index of ¢ w.r.t. nonf. Throughout this section we assume that we are dealing with
left-linear TRSs.

We first give a characterization of indices w.r.t. nunf. For this purpose, we introduce
the Qy-reduction [28].

Definition 3.2.1 The Qy-reduction is defined on 7 as follows: ¢ —¢,, s iff there exist
Il — r € R and p € Pos(t) such that t|, T lq, t|, Z Q and s = t[rg),.

Example 3.2.2 Let

reduction sequence t —q,, f(Q, f(Q, a)) — Qv Q(Q)
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The following lemma expresses a relationship between Qy-reduction —gq, and —,,.

Lemma 3.2.3

(i) Ift =7, s and t' <t then t' —§ s’ for some s’ < s.
(ii) If t —g, s then t' = s for some t' > t.

Proof.

(i) We will prove the claim that if £ —,, s and ' <t then ¢ —5 s’ for some 5" < s.

Let t —,, s. Then there exist | — 7 € R, p € Pos(t) and a substitution 8 such that
tl, > 160 and s = t[sy], for some s; > rq. We first consider the case p & Pos(t').
Clearly t' < s. Thus the claim holds. Next we consider the case p € Pos(t').
If /|, = Q then ' < s and therefore the claim holds. Otherwise, we can obtain
t' —q, t'[ral, because t'|, T lg. We have t'[rq], < t[s1], = s. Hence the claim holds.
Using the claim, we can prove (i) by induction on the length of t — s.

(ii) This is proven by induction on the length of t —§ s. The case of zero length
is trivial. Assume that t —gq, s; —§, s where t|, 1 lg, t[, Z Q and s; = t[rq],
for | — r € R and p € Pos(t). From induction hypothesis, there exists an Q-term
s such that so —%, s and so > s;. Let ¢ = soft|, U lg],. Because so|, > rq, we
have t' —,, s and thus ' —* s. Since sy > t[rg], and t|,Ulg > t|,, we obtain

t' = solt]p,U la], > tt|p]p =t O
We use t, to denote the term obtained from ¢ € 7 by replacing all {2’s with x.

Lemma 3.2.4 Let ¢ be an -term and let p be an Q-position in ¢t. Let z be a variable
such that z ¢ ¢. Then p is not an index of t w.r.t. nunf iff t[z], —g, s for some s
containing neither redexes nor z’s.

Proof.

(=) Suppose that p is not an index of ¢ w.r.t. nunf. Then there exists an -term ¢’
such that ¢’ > ¢, t’|, = Q and nvnf(t') = true. Because ¢t does not contain z’s, we
can assume w.l.o.g. that t' —* s for some normal from s with z € s. From the left-
linearity of R, we obtain #'[z], —, s. According to Lemma 3.2.3 (i), '[z], —§, &'
for some s’ < s. Becase s contains neither redexes nor z’s, neither does s'.

*
nv
*

nv

(<) We assume that t[z], —¢, s for s containing neither redexes nor 2’s. Then from
by Lemma 3.2.3 (ii), t' —7, s for some t' > t[z],. Let t" =t/ [Q], and &' = 5,. We
can easily show t” —* ~s'. Because s does not cotain redexes, s’ is a normal form
and hence nunf(t") = true. Clearly ¢t > t and t"|, = Q. Therefore p is not an

index of t w.r.t. nunf. O

We next show that if there exists an {2-term s containing neither redexes nor 2’s such
that t[z], —§, s then we have an upper bound of the least hight of such Q-terms.

Definition 3.2.5 Let R be a TRS. The set RHz is defined by RHg = {rq |l — r € R}.
RHZ is the smallest set such that RHr C RH} and if t € RH%, p € Pos(t) and » € RHg
then t[r], € RH%.
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It is clear that if » € RHgz and r —g ¢ then t € RH%.

Lemma 3.2.6 Ift —{ s then there exist p,...,p, € Pos(t) which are pairwise disjoint
and satisfy the following conditions.

Los=t[s|ps s Slpnlprpns

2. for each 1 < ¢ < n, there exists r; € RHg such that |, —>5V Ti =0, Slpi-

7

Proof. We assume the following 2y -reduction sequence:

tEt02QthgQV"'q$Qth+l = S
where n > 0. Let ¢i,,...,q, be the minimal positions in {qo,q1,...,¢.} W.r.t. <. Then
Qirs - - -5, € Pos(t) and they are pairwise disjoint. By the minimality of ¢;,, ..., ¢;,, they
satisfy the conditions in the lemma. O

Definition 3.2.7 Let R be a TRS. The maximum hight of the left-hand sides and the
right-hand sides of rewrite rules in R is denoted by px.

Lemma 3.2.8 Let »r € RHg. Let 7 —§ s and p(s) > pr x n for some n > 0. Then
there exist pg, p1,...,Pn € Pos(s) such that:

Lo po<p1 <-++ < pp,

2. for each 0 <@ < n, there exists r; € RHg such that r —§  s[ri],, and 7; —§ s,

Proof. We prove the lemma by induction on n. Base step. The case n = 0 is trivial
because we can take ¢ as pp. Induction step. We use induction on the length m of r —g_ s.
Assume that

r = to ggv tl ggv """ —Qy tm = 8.

Let S be the set of minimal positions in {qo, ¢1,...,gm 1} W.r.t. <. Because p(s) > pg,
S is not empty and for any ¢ € S, ¢ € Pos(r) and g € Pos(s).

Case 1. S = {ec}. Then we have t; € RHg for some j > 1. Applying induction

hypothesis on m to t; —§ s, we obtain po,p1,---,pn € Pos(s) such that: 1. py < p; <
- < Pn, 2. for each 0 < 7 < n, there exists r; € RHg such that ¢t; —§  s[r],, and
i =0, Slp- Clearly r —§  s[ri],, for each 0 <4 < n. Thus the lemma holds.

Case 2. S # {e}. Let S = {qy,...,¢,,,} with m’ > 0. Then from the minimality
of gy s @i 8 = 7lslg, -5 8lg lgp,.¢ , and for each 1 < @ < m' there exist r} €
RHz such that |y —§, i —§, slg. Because p(s) > pr x n, we have j such that
p(s|q;) > pr X (n —1). Applying induction hypothesis on n to r; —q s|q;, we obtain
Doy s Pn_1 € Pos(s|q;) such that: 1. pg < -+ < pp_1, 2. for each 0 < ¢ < n — 1, there
exists r; € RHr such that 7j —§  s|g[rily, and ri =5, |y, Let py = € and p} = ¢;.pi—s
for each 1 < i < n. Then pj < py < --- < p), € Pos(s) and we have r —§_ s[r|,, and
v Slp. Because r —g  s[ri]y, we obtain v —g  s[s[g[rici]p 1]y = s[ri-ily and
Ti 1 =0, 5|p2 for each 1 <1 < n. Therefore the lemma holds. O

*
THQ

Definition 3.2.9 Let R be a TRS. Let t be an Q-term. The prefiz Q-term prefy(¢) of ¢
is defined by prefz(t) = t[Q, ..., Q.. p. Where {p1,...,pn} ={p € Pos(t) | |p| = pr}
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Lemma 3.2.10 Let t and s be Q-terms without redexes. Let p € Pos(t). If prefy(t|,) =
prefr(s) then t[s], does not contain redexes.

Proof. From the left-linearity of R. a
Definition 3.2.11 Let R be a TRS. The constant pr is defined as follows:

pr = pr X ([{ prefr(t) | t € RHz }| x [R| + 1)
where |A| denotes the number of elements in a set A.

Lemma 3.2.12 Let ¢ be an Q2-term and let p be an 2-position in ¢t. Let z be a variable
with z € t. Then p & Ly,nf(t) iff there exists an (2-term s containing neither redexes nor
z’s such that t[z], —§ s and p(s) < p(t) + ur-

Proof.

(=) Assume that p & L,,,f(t). Using Lemma 3.2.4, we can obtain the minimal -
term s containing neither redexes nor z’s such that t[z], —§  s. Suppose p(s) >

p(t) + pr. Since s does not contain 2’s, t[z], —¢, s. From Lemma 3.2.6, there
exist pi,...,pn € Pos(s) such that: 1. s = t[z],[s]p,-- - Slpnlpr,.pn, 2. for each

*

1 < i < n, there exists r; € RHg such that t[2],|p; —§, 7 —§, s|pi. By the
assumption that p(s) > p(t) + kr, p(s|,) > pr for some j. From Lemma 3.2.8 and
the definition of uz, we can obtain r € RHg and g1, g2 € Pos(s|,,) with ¢; < gz such
that prefr(s|,,.q,) = prefr(s|p;.q) and for i = 1,2, 7; =5 s|p.[rlg, and 7 =& s|p, 4
Let s' = s[s|p,.4,]p;.q1» s€€ Figure 3.2. Then 2 ¢ s’ and it follows from Lemma 3.2.10
that s’ does not contain redexes. Because r; —§  s|,[r]g and r —§ s, 4, We
have t[z], =0, s[rily; =0, slsly[T]ale = sl a0 =0, 5l8lp.0lpa =5’ However,
this contradicts the minimality of s.

(<) From Lemma 3.2.4. O

By Lemma 3.2.12, in order to determine whether an (2-position p in an (2-term ¢ is an
index w.r.t. nonf, we need to check the reachability from t[z], to a finite number of Q-
terms by Qy-reduction. It was shown by Oyamaguchi [28] that Q-reduction is simulated
by the usual reduction of some TRS.

Definition 3.2.13 Let R be a TRS. The TRS Rgq is defined as follows:
Ro={l—=rqg|l—=reR}U{Q—t|tClg, | —>reR}.

From the assumption that R is left-linear, Rq is left-linear and right-ground (i.e., all
the right-hand side of its rewrite rules is ground).

Lemma 3.2.14 ([28]) Let R be a left-linear TRS.
(i) Ift —§, s thent —%_ s.
(ii) If t =% s and #' <t then ' —§ s for some s’ < s. O

We can replace —¢  with —% in Lemma 3.2.12.
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Figure 3.2.

Lemma 3.2.15 Let ¢ be an 2-term and let p be an {2-position in ¢t. Let z be a variable
with z € t. Then p & L, f(t) iff there exists an 2-term s containing neither redexes nor
2’s such that ¢[z], =% s and p(s) < p(t) + pxr.

Proof. From Lemmas 3.2.12 and 3.2.14. O

It has been shown that the reachability problem is decidable for left-linear and right-
ground TRSs [5, 26]. Thus we obtain the following theorem.

Theorem 3.2.16 Let R be a left-linear TRS. Let ¢t € T and p € Pos(t) with t|, = Q.
It is decidable whether p is an index of t w.r.t nunf. O
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Chapter 4

Index Reduction of Overlapping
TRSs

In this chapter, we investigate normalizing strategies for left-linear overlapping TRSs.
Huet and Lévy [13] showed that every orthogonal strongly sequential TRS has a decidable
normalizing strategy which is called index reduction. Toyama [30] extended this result
to root balanced joinable strongly sequential TRSs. In Section 4.1, we prove that index
reduction is normalizing for stable balanced joinable strongly sequential TRSs. This
class properly includes the class of root balanced joinable strongly sequential TRSs. In
Section 4.2, we discuss reduction strategies for NV-sequential TRSs which were introduced
by Oyamaguchi [28]. We introduce the notion of NV-stable balanced joinability and prove
that every NV-stable balanced joinable NV-sequential TRS has a decidable normalizing
strategy.
In this chapter we are dealing with left-linear TRSs only.

4.1 A Normalizing Strategy for Stable Balanced
Joinable TRSs

4.1.1 Stable Balanced Joinability

In this subsection, we define stable balanced joinable TRSs. For that purpose, we need
the notions of transitivity, which was introduced by Toyama et al. [31], and stability for
indices w.r.t nf;. In the following we will refer to an index w.r.t. nf; as an index for
short. We write C[€);] if the displayed occurrence of 2 in C[Q] is an index. Thus by
Theorem 2.3.22, C[Qy] iff z € w(C[z]) where 2 is fresh. Let C[€;] and let A be a redex.
Then A is also called an index of C[A] and we write C[Aj].

Definition 4.1.1 The displayed index in C[;] is transitive if C'[C[€]] for any C'[Qy].
The transitive index is denoted by C[Sr].

Example 4.1.2 Let Red = { f(g(?)) }. The Q-occurrence in ¢(Q2) is an index. However,
this index in g(£2) is not transitive because the Q-occurrence in f(g(£2)) is not an index.

We recall properties of indices and transitive indices [13, 15, 18, 31].

Lemma 4.1.3
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(i) If C[Q] and Clz] < C'[z] where z is fresh, then C'[{].
(ii) If C[C'"[€2]] then C'[Qy]. O
Lemma 4.1.4 If C[Q7] and C[z] < C'[z] where z is fresh, then C'[Q7].

Proof. Let C"[Q]. Since C[Qr], we have C”[C[Q;]]. Clearly C"[C[z]] < C"[C'[#]]. By
Lemma 4.1.3 (i), it is obtained that C"[C'[Q/]]. Thus C'[Q7]. O

Definition 4.1.5

e The displayed transitive index in C[Q7| is stable, which is denoted by C[Qs], if
CO[27] for any substitution 6.

o The stable reduction —g is defined as C[l0] —g C[rf] where C[Qg] and | — 7 € R.
Lemma 4.1.6 If t —5 s and C[Qy] then C[td] — C[s0] for any 0.

Proof. Let t = C'[l0'] —5 C'[r0'] = s. From C'[Qs], it follows that C'0[Qr] for any
0. By the definition of transitivity, we have C[C'0[Q;]]. Thus C[t0] = C[C'0[10'0]] —
ClC'0[r0'6]] = C|[s6). O

Definition 4.1.7 A critical pair (p, q) is stable balanced joinable if p —% t and q¢ —% ¢
for some t and k£ > 0. A TRS R is stable balanced joinable if every critical pair is stable
balanced joinable.

Note that every root balanced joinable TRS is stable balanced joinable because —, C

—S.

4.1.2 Normalizability of Index Reduction

In this subsection, we show that index reduction is normalizing for every stable balanced
joinable strongly sequential TRS. Our proof uses the theorem of Toyama [30] concerning
reduction strategies. We first explain this theorem.

Definition 4.1.8 Let A = (D, —) be an ARS. We write a «—> b if there exists a connec-
™ - —=Me . " b with Sm; > Y n;. We write a «— b if

ma n2 .,

tion ¢ =™ - &ML ST

b—a.

Definition 4.1.9 Let A = (D, —) be an ARS. A reduction relation — on D is balanced
weakly Church-Rosser if Vaq, as, a3 € D, a; — ay and a; — ag imply ay —* b and a3 —F b
for some b € D and k£ > 0.

Theorem 4.1.10 ([30]) Let A = (D, —) be an ARS. Let —, be a reduction strategy
for — such that:

(i) —. is balanced weakly Church-Rosser,
(ii) If a — bthen a =, bor a+, < -«—,b.

Then — has the normal form property and —, is a normalizing strategy. O
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Let A and A’ be two redex occurrences of t € 7. Let A = Clsy,...,s,| and
Cl1Q,...,Q] € Red. We say that A and A’ (or A" and A ) are overlapping if A’ C A and
A & s; forany 1 < i < mn.

Lemma 4.1.11 Let R be stable balanced joinable. Let ¢ 2, ¢ andt A t”, where A’ C A
and A and A’ are overlapping. Then ¢’ —% s and " —% s for some s and k > 0.

Proof. Let ¢t = C[A] = C[C'[A"]]. Then ¢ = C[¢f] and t" = C[pd] for some critical

pair (p, ¢) and 6. Since R is stable balanced joinable, we have p —% s’ and ¢ —% &'

for some s’. Thus, from Lemma 4.1.6 and C[Q;], we obtain t' = C[gf] —% C[s'0] and
t" = Clpo] —* C[s'0). O

Lemma 4.1.12 ([30]) Let C[A;, A’]. Then C[A},t] for any t. O

Lemma 4.1.13 Let R be stable balanced joinable. If ¢ —; ¢/ and t — ¢ then t' —% s
and t" —% s for some s and k > 0.

Proof. Let t éq t' and ¢ g[ t". If A and A’ are disjoint then from Lemma 4.1.12 the
lemma follows. If A and A’ are not disjoint, then by Theorem 2.3.22, A and A’ must be
overlapping. Thus the lemma holds by Lemma 4.1.11. O

The parallel reduction t —+— s is defined as t = C[Aq,..., A,)] ST (n >0). We

AA,
write t 4=’ s if t ——> s and n > 0.

Lemma 4.1.14 Let R be strongly sequential and stable balanced joinable and t —+- s.
Then t =;r s or t+——>;- 4 - «—7s.

Ap-Ag
Proof. Lett —> s. We prove the lemma by induction on n. The case n = 0 is trivial.

IR
Let t - s (n > 0). There are two cases.

Ag-Dn
(1) Some A,, say Ay, is an index. Let ¢ ﬁ] ¢ LS s, Applying induction hypothesis
AgAp
tot! o s, we obtain the lemma.

(2) No A, is an index. Since R is strongly sequential, ¢ has an index. Let A be an

index of ¢t and ¢ g[ t". Furthermore, consider the following two cases.

(2-1) A and A,; are non-overlapping for any i. Using the left-linearity of R and
Lemma 4.1.12, we can easily show that ¢’ +- s’ and s —; s’ for some s’. Thus we
have t «—»;+ > - «—7s.

As-An,
(2-2) A and some A;, say A;, are overlapping. Let ¢ 21 ¢ "L5" 5. By The-

orem 2.3.22, we have A; C A. From Lemma 4.1.11, it follows that t” —% s’ and

t' —* s’ for some s’ and k£ > 0. Thus we have t < t'. Applying induction hypothsis
Ag-rAp
tot! o s, we obtain the lemma. O

Theorem 4.1.15 Let R be strongly sequential and stable balanced joinable. Then R
has the normal form property, and index reduction —; is a normalizing strategy for R.
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Proof. It is obvious that —; is a reduction strategy for -+'. Take — as —, and —+-'
as — in Theorem 4.1.10. From Lemmas 4.1.13 and 4.1.14, the conditions (i) and (ii) in
Theorem 4.1.10 are satisfied. Thus, from — C -+’ C —*, the theorem follows. O

Definition 4.1.16 The Quasi-index reduction (or hyper-index reduction) is defined as

_>* . _>I'

In Theorem 4.1.15 index reduction can be relaxed into quasi-index reduction.

Theorem 4.1.17 Let R be strongly sequential and stable balanced joinable. Then quasi-
index reduction —* - — is a normalizing strategy for R.

Proof. Similar to Theorem 7.2 in [30]. O

4.1.3 Decidability of Stable Transitive Indices

Stable balanced joinability is an undecidable property for left-linear TRSs. Because the
halting problem for Turing machines is reducible to this problem by the construction
of a left-linear TRS which can simulate the computations of a Turing machine. (For a
construction, see [17].) In this subsection, we show that for a given C[{2] we can determine
whether the displayed occurrence of 2 in C[{?] is a stable transitive index. Then we have
the semi-decidablity of stable balanced joinability for left-linear TRSs as follows. Let R
be a left-linear TRS. Let (p, ¢) be a critical pair of R. We first generate all 1-step stable
reductions from p and ¢. In next step we generate all 2-step stable reductions from p and
g, then all 3-step stable reductions, .... If there exist t € 7 and k € A such that p —% ¢
and ¢ —% ¢ then we can find such ¢t and k. Thus, stable balanced joinability of (p, q) is
semi-decidable. Since a number of critical pairs of R is finite, stable balanced joinability
of R is semi-decidable.

Lemma 4.1.18 Let C[t,Q;]. Then C[z, ;] where « is a fresh variable.

Proof. Suppose that the displayed occurrence of Q in Clz, )] is not an index. Thus
z & w(Clz, z]) where z is fresh. Let @ be a substitution such that 26 = ¢t and yf = y for

any y Z . Then C[t,z] = Clz, z]0. Because Q-reduction is closed under substitutions,
Clt,z] = Clz, z]0 —§ w(C[z, 2])0. Since w(Clt, z]) < w(C[z, 2])0 and z & w(Cz, 2])0, we
obtain z ¢ w(Ct, z]). However, this is contradictory to C[t, §2;]. O

Definition 4.1.19 The set Red* is defined as follows:
Red* = {tq | l=C[t], C[Q], l = r € R}.

Note that the above definition of Red* is different from the original one by Toyama
et al. [31]. In fact, our Red* is a subset of theirs, and these two sets are equal if R is
orthogonal.

Example 4.1.20 Let

fla,z) — a
Ri=14 f(bg(x)) — g(b)
b— b

Then Red* = { f(a,Q), f(b,9(2)), a, b}.

25



Lemma 4.1.21 Let C[;] and C[t] T Red. Then t | Red*.

Proof. Since C[t] T Red, there exists a left-hand side [ of R such that C[t] T lo. Because
C[Q;], we have [ = C'[s] for some s and C'[ ] such that ¢ T sq and C[z] T Cq[z] where z is
fresh. Now we show that sq € Red*. Without loss of generality, we may state that C|z] =

C"[s1y. ey 8ny2,2,...,Q] and C'[z] = C"[zy, ..., T0, 2,11, .., ty] where C”[,... ] does
not contain variables and 2 < t;q forz = 1,..., m. Repeated application of Lemma 4.1.18
yields C"[xy,..., 2., 05, Q,...,Q]. Since C"[z1,...,20,2,9Q,...,0Q] < C'[z], it follows
from Lemma 4.1.3 (i) that C'[Q7]. Thus sq € Red*. O

Lemma 4.1.22 Let C[Q] € Tq. Then C[Qr] iff z € w(C[z]) and w(C[z]) # Red* where 2

is fresh.

Proof.

(=) Since we have C[Q], z € w(C[z]). Let C'[z] = w(C]z]). Suppose C'[z] | s for
some s € Red*. Then there exists C"[ | such that C"[Q;] and Cg[s] € Red. Since
C"[C'[Z]] T Red, w(C"[Cz]]) = w(C"[C']z]]) = Q. But this contradicts C[Qy].
Hence w(C|[z]) # Red*.

(<) We obtain C[Qg] because z € w(C[z]). We will prove C'[C[Q]] for any C'[Q].
Let w(C[z]) = C4]z] and w(C'[z]) = C}[z]. It suffices to show that C{[Ci[z]] € NFq.
Suppose C{[Ci[z]] ¢ NFq. Since Ci[z] € NFq and Cj[z] € NFgq, there exists
C"[Ch[z]] C C1[C1[z]] such that C"[C1[z]] T Red. From C{[Q;] and Lemma 4.1.3 (ii),
C"[Qy]. By using Lemma 4.1.21 we obtain C;[z] T Red*. But this contradicts
w(C[z]) # Red*. O

Lemma 4.1.23 Let C[QQ] € Tg. Then C[Qs] iff Cq[Qr].

Proof.
(=) Let 6 be a substitution such that z6 is a redex for any z € C[]. Note that

CO[Qr| and w(CO[z]) = w(Cqlz]). We will show that C'[Cq[§2/]] for any C'[Q;]. Be-
cause C'[CO[€Y]], we have 2z € w(C'[CO[2]]) = w(C'[w(CO[2])]) = w(C'w(Calz])]) =
w(C'[Cqlz]]). Thus C'[Cq[Q]].

(<) Clearly Cqlz] < CO|z] for any 6. From Lemma 4.1.4 and Cq[Q7], it follows that
C0[Qr| for any 6. Therefore we obtain C'[Qg]. O

Lemma 4.1.24 Let C[Q] € 7. Then C[Qg] iff 2 € w(Cq[z]) and w(Cq|z]) # Red* where
2 is fresh.

Proof. It is trivial from Lemmas 4.1.22 and 4.1.23. O
Therefore, by the previous lemma, we can decide whether C'[Qg] for a given C[Q].

Example 4.1.25 Let

{ flg(z),y) — h(g(z))
Rz =

Ry has only one critical pair (f(g(b),y), h(g(a))). Red” = { f(9(2), ©2), 9(), 9(a), a, c}.
Because w(h(z)) = h(z) # Red*, it follows from Lemma 4.1.24 that h(Qg). Since

f(g9(b),y) —s h(g(b)) «—s h(g(a)), Ra is stable balanced joinable. Note that R, is
not root balanced joinable. R, is strongly sequential from Theorem 2.3.30 since R, is
left-normal. Thus, from Theorem 4.1.15, index reduction is a normalizing strategy for

Ro.
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4.2 A Normalizing Strategy for NV-Stable Bal-
anced Joinable TRSs

4.2.1 NV-Stable Balanced Joinability and a Normalizing
Strategy

In this subsection, similar to Subsection 4.1.1, we define NV-stable balanced joinability for
left-linear TRSs. We prove that NV-index reduction is normalizing for NV-stable balanced
joinable NV-sequential TRSs. In the following indices w.r.t. term are called NV-indices.
If the displayed occurrence of 2 in C[f2] is an NV-index then we write C'[Qy,]; otherwise

ClQnr,]. If C[Q,] then a redex occurrence A in C[A] is also called an NV-index. If A
is an NV-index of C[A] then we write C'[Af,]; otherwise C[Ayr,|. The following lemma
is used later.

Lemma 4.2.1 ([28])
(i) If C[Qy,] and C[z] < C'[z] where z is fresh, then C'[Qy,].
(i) If C[C"[Q4,]] then C'[Qr,]. 0

Definition 4.2.2 The displayed NV-index in C[Qy,] is transitive if C'[C[Qy,, ]| for any
Q-term C'[Qr,]. If the displayed occurrence of 2 in C[Q] is a transitive NV-index then
we write C[Qq,]; otherwise C[Qyr,|.

The following example shows that a transitive index is not always a transitive NV-
index.

Example 4.2.3 Consider R; of Example 4.1.20. We can show ¢(Q7) by using Lemma
4.1.22. However, we have g(Qyry, ) because f(b, g(Qnr,)) for f(b, 2y, ).

Definition 4.2.4

e The displayed transitive NV-index in C[Qq, ] is stable if CO[Qr, | for any 6. If the
displayed occurrence of Q in C[Q] is a stable transitive NV-index then we write

C[Qs,]; otherwise C[Qys, ]

o The NV-stable reduction —g, is defined as C[l0] —5, C[rf] where C[Qs,] and
l—reR.

Lemma 4.2.5 If t —5, s and C[Q,] then C[t] — 1, C|[sf] for any 6.
Proof. Similar to Lemma 4.1.6. d

Definition 4.2.6 A critical pair (p, q) is NV-stable balanced joinable if p —>’§.V t and
q —>I§V t for some t and £ > 0. A TRS R is NV-stable balanced joinable if every critical
pair is NV-stable balanced joinable.

27



Note that the class of NV-stable balanced joinable TRSs includes all root balanced
joinable TRSs. However, this class does not include all stable balanced joinable TRSs.
Consider R, of Example 4.1.20 which is stable balanced joinable. R; has only one critical
pair (f(b,g(x)), g(b)). Because g(Qy7, ), g(b) cannot be reduced by —g,. Thus, R; is
not N'V-stable balanced joinable. Figure 4.1 shows the relationship between these classes.
Areas (1), (2) and (3) denote the class of root balanced joinable, stable balanced joinable
and stable balanced joinable TRSs, respectively. Note that stable balanced joinable TRS
R, of Example 4.1.25 is also NV-stable balanced joinable. In Example 4.2.25, we will give
NV-stable balanced joinable TRS R3 which is not stable balanced joinable.

NV-sequential TRSs

Strongly sequential TRSs
(3)

[ ) R3
(2)

° e Ry
= M

Figure 4.1.

We now define NV-index reduction as follows.

Definition 4.2.7 The NV-index reduction —p, is defined on 7 as follows: t —, s iff

t & s for some NV-index A.

We can easily show that if R is NV-sequential then NV-index reduction is a reduction
strategy for R. We can prove the following theorems by an argument similar to that in
Subsection 4.1.2.

Theorem 4.2.8 Let R be NV-stable balanced joinable NV-sequential TRS. Then R has
the normal form property, and NV-index reduction —, is a normalizing strategy for R.
|

Definition 4.2.9 The Quasi-NV-index reduction (or hyper-NV-index reduction) is de-

fined as —=* - —, .
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Theorem 4.2.10 Let R be NV-sequential and NV-stable balanced joinable. Then quasi-

NV-index reduction —* - —, is a normalizing strategy for R. O

Since —; C —7,,, we obtain the following corollary. The calculating on index is much
easier than NV-index.

Corollary 4.2.11 Let R be strongly sequential and NV-stable balanced joinable. Then
index reduction —; is a normalizing strategy for R. O

4.2.2 Decidability of Stable Transitive N'V-Indices

NV-stable balanced joinability is also an undecidable property of left-liner TRSs. In this
subsection, we show that for a given C[Q] it is decidable whether C'[Qg,]. By a similar
method to stable balanced joinability, we have the semi-decidability of NV-stable balanced
joinability for left-linear TRSs. The next two lemmas express properties of NV-indices.

Lemma 4.2.12 ([28]) Let C|z] € 7o where z is a fresh variable. C[Qyy, ] iff there exist
C'[z] C C[z] and t such that C'[z] —§ t,t T Red and z € . O

Lemma 4.2.13 Let C[t,{;,]. Then Clz, ;] where z is fresh.
Proof. Similar to Lemma 4.1.18. O
Definition 4.2.14 The set Redj is defined as follows:
Red}, = {tq | 1 =C[t], ClQp, ], l = r€R}.
Lemma 4.2.15 Let C[€y,] and C[t] T Red. Then t | Red;,.
Proof. Similar to Lemma 4.1.21. a

Lemma 4.2.16 Let C[Qr,]. Then C[Qyr, | iff there exists ¢ such that C[z] —§ ¢ and
t T Redj, where 2 is fresh.

Proof.

(=) Let C'[C[Qnr,]] for C'[Qr,]. Then by Lemma 4.2.12 and C[Qy, ], there exist
C"[C[z]] € C'[C[#]] and s such that C"[C[z]] —§, s, s T Red and z € s. We have
s = C{[C1]7]] for some C{[ ] and Cy[ ] such that C"[z] —¢  Cf[z] and C[z] —§,
C1lz]. By Lemma 4.2.1 (ii) and C'[y,], C"[Qr,] and therefore C7[Qr,]. From
Lemma 4.2.15, it is follows that Cy[z] T Red;,.

(<) Let s be an Q-term such that ¢t T s and s € Red;,. Then by the definition of
Redy, there exists C'[Qg, ] such that C[s] € Red. It is clear that C'[C[z]] —§, C'[t]
and C'[t] T Red. Since C[Qy,], z € t and therefore z € C'[t]. From Lemma 4.2.12,
it follows that C'[C[Qyr,]]. Thus C{Qn7,]- O

We use tree automata techniques in our proof.

Definition 4.2.17 ([5]) A ground tree transducer G over a signature F is a pair (\Ay, Az)
where A; = (F,Q1, @1, A1) and Az = (F, Q2, Qr, Az) are tree automata.
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The relation —¢ associated with G is defined on 7(F) by t —g t' iff there exists
s € T(FUQr) such that t —% s &4, t'. A relation associated a ground tree transducer
is called a GTT-relation.

Lemma 4.2.18 Let C[Q,]. Then C[Qys,] iff CO[Qn7,] for some 6 such that yo €
T (F,{z}) for any y € C[].

Proof.

(=) 1If ClQys, ] then CO[Qy7,] for some 6. From Lemma 4.2.16, there exists ¢ such
that CO[z] —§, t and ¢ | Redj, where z is fresh. Let 6’ be a substitution such
that 20’ = z and y0' = z for any y € C0] |. Because Qy-reduction is closed under
substitutions, C0[z]0' —§,  t0'. Since Q-terms in Redj, do not contain variables,
td' 1 Red},. Let 8" be a substitution such that y8"” = y#6’ for any y. Then y6” €
T(F,{z}) for any y € C[ ]. From C9"[z] = C0[z]¢' and Lemma 4.2.16, C8"[Q 7, |.

(<) Trivial. O

By the previous lemma, stability of transitive NV-indices in ¢t € 7 only depends on
instances of t in 7(F U {Q},{z}). In the Qy-reduction, every variable can be considered
as constant. Thus we fix 7/ = F U {Q,x, 2} and after this we restrict the Qy-reduction
to T(F') x T(F'). Let Tp = {t € T(F') [ t =5, s, s | Redy, }. We will show that 77 is

recognizable.

Lemma 4.2.19 ([6]) Let L be a recognizable set and let —g be a GTT-relation. Then
theset { t |t —¢ s, s € L} is recognizable.

Let Tr = {s € T(F') | s | Red}, }. According to the previous lemma, it suffices to
show that T is recognizable and —g is a GTT-relation. t* denotes the term obtained
from t by replacing all variables and Q’s in ¢ with x.

Lemma 4.2.20 T} is a recognizable set.

Proof. Let A = (F,Q,Q¢,A), where @ = {¢ |t C s*,s € Red} } U{q., qa},
Qf={q@|t=s" s € Red}y } U{qq} and A consists of the following rules:

(i) f(atyy---,q,) — q where f € F, f(t1,...,tn) | tg and t £ Q,

(i) Q= qga, — @ 2 — Ga
We show that L(A) = Tk.

(C) We first prove the following claim: if s € 7(F’) and s —% ¢; then s | tg. The
proof is by induction on the size of s. Base step: Trivial. Induction step: Let
s = f(s1,...,8,). Then there exists a rule f(g,,...,¢,) — ¢ in A such that
$; —% q, for any i. Note that f(ti,...,t,) ] tq. By induction hypothesis, we have
$; | tiq for any 4. If tg = Q then trivially s T tq. Otherwise, tq = f(¢},...,t)) and
t; 1 t. for any i. We now show that s; 1 ¢, for any i. If t; = Q then s; = Q by
construction of A. Therefore s; 1 t.. If ¢t; # (2 then we obtain ¢, > t, from t; T ¢
because 2 ¢ t; and ¢, does not contain variables. Hence s; | ¢.. Thus the claim
follows. Assume s € 7(F') and s —% ¢ with ¢ € Q. If t = Q then s = Q and
therefore s € Tr. Otherwise, from the claim, it follows that s | tq, i.e., s T Red, .
Thus s € T'g.
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(D) Tt is clear that Q € Tg is accepted by A. If s € Tk and s Z Q then s | tq for
some ¢; € Q5 with ¢ # (). Hence we prove that for any s Z ), if s T tg and ¢, € Q
with ¢ #  then s —% ¢;. The proof is by induction on the size of s. Base step:
Trivial. Induction step: Let s = f(s1,...,8,). Case 1. t =z. Let t, = Q if 5, =
otherwise, let t. = . From induction hypothesis, it follows that s; —% gy, for any 1.
Since f(qu,..-,qn) — ¢ € A, s = f(S1,-++,80) =0 G- Case 2. t = f(ty,...,ts).
Note that s; T tiq, ¢, € @ and t; £ Q for any i. Let t. = Q if s; = Q; otherwise,
let ¢; = ¢;. From induction hypothesis and the rule Q — gq, we have s; —% qu
for any 7. Because f(t},...,t,) T ta, there exists f(qy,...,q2) — ¢ in A. Thus
s = f(81,--+,8n) =% @ O

Lemma 4.2.21 —§ is a GTT-relation.

Proof. We define tree automata .4; and A, as follows. A; = (F',Q1,Qr, A1), where

Qi=1{q|tCs*, s€Red}U{q qa}, Qr=1{q |t=s" s€ Red} and A; consists of
the following rules:

(1) f(qt17"'7qtn)HQt Wheref6f7 f(t177tn)TtQ andt¢Q7

(11) QHQQ, T —= Qzy 2 — Qg

Ay = (F',Q2,Qr,As) where Q2 = QU {¢q |t Crq,l — r € R} and A, consists of the

following rules:

1) fla,,---q,) — @ where f(t1,...,t,) =1,

(i) ¢, — ¢+ wheret =1* and s = rq for some [ — r € R.
We can prove the following claims by a argument similar to that in Lemma 4.2.20.
(1) Let s € T(F') and ¢; € Q;. Then s =% ¢, iff s | tg and s # Q.

(2) Let s € T(F') and ¢; € Q;. Then s =% ¢ iff s = rq and t = [* for some
l—reR.

Let G = (A1, A3). Then it follows from the above claims that —q,C —g C —q, - Because

the transitive-reflexive closure of a GTT-relation is a GTT-relation [5], —¢  is a GTT

relation. a
Lemma 4.2.22 T is a recognizable set.
Proof. From Lemmas 4.2.19, 4.2.20 and 4.2.21. O

By Lemmas 4.2.22 and 2.4.4, there exists a complete and deterministic automaton Ay
such that L(Ar) = Tr. The number of states in Az is denoted by |Qr|.

Lemma 4.2.23 Let C[Qp,]. Then CQys, ] iff CO[Qyr, ] for some 6 such that p(yd) <
|Qr| and y8 € T(F,{z}) for any y € C[].

Proof.
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(=) From Lemmas 4.2.16 and 4.2.18, C'¢'[z] is accepted by Ar for some 6’ such that
yb' € T(F,{z}) for any y € C[]. Because Agr is complete and deterministic, for
any y € C[] there is exactly one state ¢ of A such that y¢' —%_ ¢. Since there
exists s € T(F,{z}) such that p(s) < |Qr| and s —%_ ¢ by pumping lemma [10],
we define §” by y0"” = s. Then it is obvious that C'0"[z] is accepted by Azp. Thus,
from Lemma 4.2.16, C8"[Qyr, |.

(<) Trivial. O
Theorem 4.2.24 It is decidable whether C[(Qg, ] for a given C[Q2].

Proof. It is decidable whether C[Qyr, ] [28, 3]. If C[Qyy, | then C[Qys,|. Otherwise, by
Lemma 4.2.23, it is suffices to check whether C0[Qr,] for any 6 such that p(y0) < |Qr|
and y8 € 7(F,{z}) for any y € C[], which is also decidable. O

Example 4.2.25 Let
R3 -

The critical pair is only (f(a, h(b),y), g(h(y), h(a))). Rs is NV-stable balanced joinable
because we can show that f(a,h(b),y) —s, g(h(y),h(d)) —s, g(h(y),h(a)). Note that
R is not stable balanced joinable. Rj is strongly sequential by Theorem 2.3.30 since R
is a left-normal TRS. Thus, from Corollary 4.2.11, index reduction — is a normalizing
strategy for Rs.

4.3 Remarks

It is not easy to generalize our results to more general sequential TRSs (NVNF- | shal-
low [3] or growing [14] sequential TRSs). Because the reduction contracting index w.r.t.
NVNF-, shallow or growing sequentiality does not have the balanced weakly Church-
Rosser property. For example, consider the following TRS:

{ flz) —b
R =<2 b— g(b)
h(a) — a.

We can show that R is NVNF-sequential. Since redexes f(b) and bin f(b) are indices w.r.t.
NVNF-sequentiality, we have two reductions f(b) — b and f(b) — f(g(b)). However b and
f(g(b)) are not balanced joinable. Thus the reduction contracting index w.r.t. NVNF-
sequentiality is not balanced weakly Church-Rosser. T'wo indices of a term w.r.t. NVNF-
(shallow or growing) sequentiality not being disjoint are not necessarily overlapping.
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Chapter 5

Growing Term Rewriting Systems

In this chapter we investigate properties of growing TRSs. A TRS is called growing if
for every its rewrite rule variables occurring both the left-hand side and the right-hand
side occur at depth zero or one in the left-hand side. Jacquemard [14] showed that the
set of ground terms having a normal form is recognized by a tree automaton if a TRS is
linear growing. In Section 5.1, we generalize Jacquemard’s result to left-linear growing
TRSs. This implies the decidability of reachability and joinability for subclasses of TRSs.
Moreover, this gives us decidable better approximations of TRSs. These approximations
extend the class of left-linear term rewriting systems having a decidable call-by-need
strategy. In Section 5.2, we prove that termination is decidable for almost orthogonal
growing TRSs.

5.1 Left-Linear Growing TRSs

In this section, we regard pairs of terms as rewrite rules without restrictions. Hence the
left-hand side of a rewrite rule may be a variable and the right-hand side of a rewrite rule
can have variables not occurring in the left-hand side. This is convenient for approxima-
tions of TRSs. Moreover, we consider rewriting on ground terms only. This entails no
loss of generality and would simplify matters.

The definition of growing was given by Jacquemard in [14]. Unlike Jacquemard, we
do not assume linearity for growing TRSs.

Definition 5.1.1 A rewrite rule | — r is growing if all variables in V(1) N V(r) occur at
depth O or 1 in [. A TRS R is growing if every rewrite rule in R is growing.

Example 5.1.2 Let
_ | F(f(=z,y),2) — f(z,9(2))
R_{gw%ﬁﬂﬂwﬁ)

Then R is growing. But the following R’ is not growing.

o) f(f(=y), 2) — f(z,9(2))
R—{amafmw@.
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5.1.1 Recognizability

In this subsection, we show that if R is a left-linear growing TRS then the set (—%)[L] =
{teT(F)|dse L t—%s } isrecognizable for every recognizable tree language L.

Let R be a left-linear growing TRS and let L be a tree language recognized by Ap =
(F,Qr, Q{, Ar). We now construct a tree automaton recognizing (—%)[L] from R and
Ap. Let L={1 e T(F,V)|1l ¢V, f(...,l,...) = r € R }. Since the set of all
ground instances of a linear term is recognizable, we assume that for each [ € £, A, =
(F,Q1,Qf,A}) is an automaton such that L(A;) = { lo | ¢ : V — T(F) }. Without
loss of generality, we assume that Q, N Qp = ¢ for any a,b € {L} U L with a £ b. A
tree automaton A4, = (F, QU,Qé,AU) is defined by Qu = Uje, Q1 U Qp, QL = @ and
Ay =Ues ATUAL.

Then we construct tree automata Ay, Ay, ..., A as follows. Let Ag = (F, Qo, Ql, Ap)
where Qo =29, Q) ={ A€ Qo | g€ A, ge @l } and Ay contains the following rules:

FlAr,. . A) — A
fA={qeQu|3qneA, ..3@me A, flar, @) =l a0}

A1 = (F,Qir1, sz+17 Aiq) (or Ay = (F, Qy, Q,]:, Ay)) is obtained from A4; as follows:

o If there exist f(Ay,...,A,) — A€ A, | - r € R and A’ € Q; satisfying the
following Condition 1 or 2:

— Condition 1:
Lol= flhy. .0,
2. foreach 1 < j <n,l; €V implies q € Q{Z for some ¢ € A;,
3. there exists 6 : V — @); such that:
(a) 78 =75 A,
(b) for each x € r, if & = [; for some j then zf = A;,
otherwise t —% 26 for some t € T(F),
4 ACAUA,
— Condition 2:
1. leV,
2'. there exists 6 : YV — @, such that:
(@) 16 —%, A,
(0') for each « € 7, if & = [ then z0 = A,
otherwise t —% 0 for some t € T(F),

3. ACAUA,

then Qir1 = Qs, Q1 = @/ and
ANy = (AN{f(A1,...,Ay) = A U{f(AL,...,A,) = AU A}

e Otherwise, A, = A,;.

From 4 of Condition 1 and 3’ of Condition 2, it is clear that the process of con-
struction terminates. Note that Aq, Ay, ..., A; are deterministic and complete.
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Example 5.1.3 Let F = { f, g, a, b} and

Let L ={a}and A, = (F,{¢}, {0}, {a — ¢}). Then £ = {g(z)} and we assume
that the automaton Ay, = (F, Qg(m),Qg(:ﬂ),Ag(m)) is defined by Quu) = {4 %) 1
Q) = { o} and Agiay = {a@ = @, b = @, [(¢2,%) = @ 9(@:) = @ 9(@) —
g(z) - We have the automaton A, = (F, Qo,Qg,AO) where Qo = 2ttt} Qf =
{{4}, {¢a @}, {40s q9(:c)}7 {44, ¢z, qg(;c)}} and A, is the following set of rules:

a — {qa, 4z }
b— {a.}
An — f(A1, Az) — {qz} if ¢, € Ay and ¢, € A,
0 (Ah A2) if 4z € Al OI gy g A2
g9(A )%{qz,qgm)} if g, € A
9(4) — if ¢ & A.

We can see that f({qy2)}, {99e)}) = ¢ € Do, f(9(2),y) — y € R and {gy)} € Qo satisfy
Condition 1. Thus we first replace the right-hand side of the rule f({q42)}, {99()}) —

¢ € Ag with {ggz)}. Then the right-hand side of the rule g({gy=)}) — ¢ € Ay can be
replaced with {gy.)} because we have f({qy)},{02)}) =4 {29} Consequently, Ay
includes the following new rules:

a— {qavqmqg(ﬂv)}
f(A1:A2) - A2 1f Al € { {Qg z)} {QCHQQ }} a*nd
Ay # ¢
f(A1:A2) - A2 lf Al € {{Qz7QQ } {qa7Qz7Qg }} and

A2¢{%{%}}
9({‘19(:6)}) - {‘Jg(w)}

g({qa)qg(:v)}) - {Qa)qg(:c)}
g({Qa, 9z, QQ(Ii)}) — {qaa Qz, Qg(:c)}-

Consider two terms f(g(b), g(a)) € (—%)[L] and f(g(a), g(b)) &€ (—%)[L]. We have

f(9(0),9(a)) =%, f9({a}), 9{des Gs Gy2) }))
=% f{%: %)} {90 % Go(a) })
=4, {0 @) Qo) } € QL

Hence f(g(b),g(a)) is accepted by Aj. The term f(g(a),g(b)) is not accepted by A
because

flgla),g(b)) =%, F(9({4ar G 99)}), 9{ e }))
=% f({9a: %) Qo) 1+ {920 Q) })
=4, {0er G} € QF

35



Remark. Jacquemard’s construction in [14] does not necessarily generate a tree automa-
ton A such that L(A) = (—%)[L] for a non-right-linear TRS R. Consider the left-linear
non-right-linear growing TRS: F = {a, b, f, g} and

R { g9(z) = f(z,2)

a — b.

Let L = {f(a’7b)} and AL = (f‘7QL7Q{,7AL) where QL = {Qa7 b, C_If}a Q]Ic, = {Qf}
and Ar = {a — ¢u, b = @, f(qas®) — ¢5}. We add only the rule a — ¢ to Ag
at Jacquemard’s construction process and hence we obtain the tree automaton A =
(F,Qu,Q%, AL U{a — q}). Note that the rule g(g,) — gs is not added to Ay because
we do not have f(gs,q.) —% ¢5. Although we have g(a) —% f(a,b) € L, g(a) is not
accepted by A. In order to accept g(a), the automaton needs the information that a can
be reduced to both of g, and ¢p.

In the following we prove that L(Ax) = (—%)[L]. We may omit the subscript ¢ of Q;
and Qf .

Lemma 5.1.4 Let t € 7(F,V),0:V — Q and 0 : V — T(F) such that z0 =% - =% ¢
for any = € t and g € 6. For any 0 <1 < k, if t0 —7%. A € Q then to —% - —7% g for
any q € A.

Proof. We prove the lemma by induction on .

Base step. We use induction on the structure of ¢. The case of t = « is trivial. Let
t = f(ty,...,tn). We assume that t0 = f(t1,...,1,)0 =%, f(A1,...,An) =4, A Let
q € A. Then there exist ¢; € Ay,...,q, € A, such that f(qu,...,¢,) =%, ¢ By induction
hypothesis, for each 1 < j < n there exists s; such that t;0 —% s; —7%  ¢;. Thus we have
to = f(t10,...,ta0) =% f(51,...,80) =5, fla1,--- @) =0, @

Induction step. We use induction on the number m of application of the rule that
A;_1 does not have in the reduction t0 —% A. If m =0 then t0 —%  A. Thus it follows
from induction hypothesis on ¢ that toc —% - —% ¢ for any ¢ € A. Let m > 0. Suppose
that

t0 =t0[f(t1,...,ta)0], =5, O[f(A1,..., An)], —u tO[A], =2 A

with f(Ay,...,A,) — A" € A,_. Let t = t[z], where z ¢ t. We define 0:V — Q and
G:V — T(F) as follows: if = z then 20 = A" and 26 = f(t1,...,t,)0, otherwise
20 = 20 and 25 = zo. Clearly {0 = t0[A'], and {5 = to. We will show the following
claim:

TG0 —R- —u, q forany x € fand q € z6.

Then by applying induction hypothesis on m to = t[A'], —%. A, we can obtain
to =to —5% - —%, q for any g € A. Thus the lemma holds.

Proof of the claim. Let x € t. If © # z then it follows from the assumption of the
lemma that =6 —% - —% ¢ for any ¢ € z6. We consider the case z = z. Assume
that f(Ay,...,A4,) — Al € A, 1, | = r € R and A} € @, ; satisfy Condition 1 or 2
and A" = A} U AS. Since f(ty,...,t,)0 =% | f(A1,...,An) —a,_, Al, it follows from
induction hypothesis on ¢ that

f(t1, ... ty)o =% - =74, q forany g € Aj. (5.1)
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We consider the following two cases.

Case 1. Condition 1 is satisfied. Let | = f(l1,...,l,). By applying induction
hypothesis on i to t;6 —%  A;, we obtain tjo0 —% - —% ¢ for any ¢ € A;. For each
1 <j < n,let s; be a term such that if [; € V then s; = t;0, otherwise t;0 —% s; —7
q € Qlf] From disjointness of the sets of states, s; —% ¢ € Q{, implies s; =%, ¢ € Qlf]

J
Hence f(sy,...,$,)is an instance of f(ly,...,l,). Let 8': V — @ be a substitution defined
by 3 of Condition 1. Let ¢': V — T(F) be a substitution such that for any y € r if
y = l; then yo' = s;, otherwise yo' —7% . y#. Then we have the following reduction:

[t tn)o =% f(s1,...,8,) =R 10’

and by using induction hypothesis on ¢, we can show that yo' —% - =% qforany y € r

and g € yf'. Applying induction hypothesis on i to ¢’ — AL, it is obtained that
ro' —%- =% qforany ¢ € A,. Thus we have

f(t1,... ty)o =% - =4, g for any g € Aj. (5.2)

Because 20 = A’ = A} U A, and 25 = f(ty,...,t,)0, it follows from (5.1) and (5.2) that
20 =g —y, qforany q € 6. Therefore the claim holds.

Case 2. Condition 2 is satisfied. Let #': V — @ be a substitution defined by 2’ of
Condition 2. Let ¢’ : V — T(F) be a substitution such that for any y € r if y =1
then yo' = f(t1,...,t,)0, otherwise yo' —%. 0. Using (5.1) and induction hypothesis
on %, we can show that yo' —% - =% ¢ for any y € r and ¢ € yf'. Applying induction

hypothesis on i to 70" —%_ A5, it is obtained that ro’ —%- —% ¢ for any ¢ € A). Since
f(ti, ... ty)o —r 70,

f(t1, ... ty)o =5 - =%, q for any g € Aj. (5.3)

Therefore, it follows from (5.1) and (5.3) that 26 —% - —%_ ¢ for any q € z0. Hence the
claim holds. a

Lemma 5.1.5 L(A;) C (—3)[L].

Proof. Lettc L(Ag)ie.,t—% A forsome A€ Q’. By the definition of @7, A has a
final state ¢ of A;. From Lemma 5.1.4, there exists s € 7(F) such that ¢t —% s =% g¢.

By disjointness of the sets of states, we have s =% ¢ € QJ]-: Thus ¢t € (—5)[L]. a

Lemma 5.1.6 Let t € 7(F,V). Let 0,0 : V — Q with 20 C 26 for any = € ¢. If
t0 —%. A€ Q then t0' —% A’ for some A’ € Q with A C A".

Proof. We prove the lemma by induction on .

Base step. We use the induction on the structure of £. The case of ¢ = z is trivial. Let
t = f(t1,...,ts). Then we suppose that f(ti,...,%,)0 =% f(A1,...,4n) =4, A € Q.
By induction hypothesis, for each 1 < 7 < n there exists A; € Q such that ¢;0' -7 A;
and A; C A}, By the definition of Ag, Ag has a rule f(Aj,...,4)) — A" with A C A"
Then by the construction of Ay, Ay has a rule f(A],..., A)) — A” with A’ C A”. Thus
we obtain f(t1,...,t.)0 =%, f(A},..., 4,) —a4, A" and A C A"

Induction step. We use the induction on the structure of ¢. The case of t = x is
trivial. Let t = f(ty,...,t,). Suppose that f(ty,...,1,)0 =% f(A1,...,Ax) =4, A€ Q.
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By induction hypothesis on the structure of ¢, for each 1 < j < n there exists A’ € Q
such that ¢;0" —7% A’ and A; C A%. Since Ay is deterministic and complete, there exists
exactly one A" € @ such that f(A},...,A) — A" € A,. We will show that A C A". If
f(A1,...,A,) — A € A; ; then from induction hypothesis on i it follows that A C A'.
Otherwise, we assume that f(A;,...,A,) — B1 € A; 1,1 — r € R and B € Q satisfy
Condition 1 or 2 and A = B; U B,. From induction hypothesis on i, we get B; C A'.
We consider the following two cases.

Case 1. Condition 1 is satisfied. Let | = f(l1,...,0,) and let §; : V — @ be a
substitution defined by 3 of Condition 1. Then let 85 be a substitution from V to @
such that for every x € r if z = [; then x0; = A}, otherwise t —7% 0, for some t € T(F)
with ¢ —7%.  26;. Using induction hypothesis on i, we can show that zf; C z6, for every
x € r. Applying induction hypothesis on ¢ to rf; —%. | Bs, we obtain rf; —% B; for
some B} € Q with By C B). Therefore f(A},...,Al) — A" € A, - r € Rand B, € Q
satisfy 1,2 and 3 of Condition 1. By the construction of Ay, they must not satisfy 4 of
Condition 1. Thus we have A’ = A’ U B). Hence A= B;U By C AU B, = A.

Case 2. Condition 2 is satisfied. Let ; : V — @ be a substitution defined by 2’
of Condition 2. Then let 85 : V — @ be a substitution such that for every = € r if
z = [ then z0; = A’, otherwise t —7% 0, for some ¢ € T(F) with t =% z6;. Using
induction hypothesis on 7, we can show that y8; C yf, for every y € r. Applying induction
hypothesis on i to 76; —%. = B,, we obtain rf; —% B; for some Bj € Q with B, C B;.
Thus f(A),...,Al) = A" € Ay, l — r € R and B € @Q satisfy 1’ and 2 of Condition 2.
By the construction of A they must not satisfy 3’ of Condition 2, ie., A’ = A’ U B).
Hence A= B, UB, C AUB,=A. ]

Lemma 5.1.7 Let t € 7(F) and t =% A€ Q. Ift =% ¢ € Q, then g € A

Proof. Since Ay is complete, there exists A’ € @ such that t —% A’. By induction of
the structure of ¢, we can show that A’ ={¢ge Qu |t =% ¢ }. Thus,ift =% ¢€ Qu
then g € A’. Because Ay, is deterministic, we get A’ C A by Lemma 5.1.6. Hence ¢ € A.

O

Lemma 5.1.8 L(A) 2 (—3)[L].

Proof. Assume that t —% s for some s € L. We show that ¢ € L(.A;) by induction on
the length m of this reduction. If m = 0 then ¢t € L. Thus t —% ¢ for some ¢ € Q}:
Since Ay is complete, there exists A € @ such that t —% A. According to Lemma 5.1.7,
q € A and therefore A € Q7. Hence t € L(Ag). Let m > 0. Then we assume that

t =tllo], —r tfro], = s € L

with | — r € R. By induction hypothesis, t[ro], is accepted by Ai. Since Ay is deter-
ministic, there exists 6 : V — @) such that

tlroly =%, trol, =%, tlAl, =4, B € Q'
where A € (). By completeness of Ay, we assume that
t=t[f(ty, o ta)lp =0, (AL Ad)]p —a tA], =0, B €Q

where f(Ay,...,A,) = A" € Ay and n > 0. We consider the following two cases.

38



Case 1. | = f(ly,...,ln). If l; € V then t; is accepted by A;; and thus A; has

q € Ql]; by Lemma 5.1.7. Because A is deterministic, for any « € r, + = [; implies
z0 = A;. Therefore f(Ay,...,A,) = A € Ay, l - r€Rand A€ Q fulfill 1, 2 and 3 of
Condition 1. By the construction of Ay, they must not satisfy 4 of Condition 1. Thus
A C A'. Since Lemma 5.1.6 yields B C B’, we obtain B’ € Qf. Therefore t € L(Ay).
Case 2. | = x for some = € V. Because A;, is deterministic, if z € r then 26 =
A’. Therefore f(Ay,...,A,) — A" € A, I — 7 € R and A € @ fulfill 1" and 2’ of
Condition 2. By the construction of A, they must not satisfy 3’ of Condition 2
and thus A C A’. According to Lemma 5.1.6, B C B’ and therefore B’ € Q. Hence
t € L(Ayg). O

Lemma 5.1.9 L(A;) = (—%)[L]
Proof. From Lemmas 5.1.5 and 5.1.8. O
Thus we obtain the following theorem.

Theorem 5.1.10 Let R be a left-linear growing TRS and let L be a recognizable tree
language. Then the set (—%)[L] is recognized by a tree automaton. O

5.1.2 Reachability and Joinability

The reachability problem for R is the problem of deciding whether ¢ —% s for given two
terms ¢t and s. It is well-known that this problem is undecidable for general TRSs. Oyam-
aguchi [27] has shown that this problem is decidable for right-ground TRSs. Decidability
for linear growing TRSs was shown by Jacquemard [14]. Since a singleton set of a term
is recognizable, we can extend these results by using Theorem 5.1.10.

Theorem 5.1.11 The reachability problem for left-linear growing TRSs is decidable. O

For a TRS R, we define R" ! by R°!={r - 1|l —r € R }. Clearly t —% s iff
s —%-1 t. By Theorem 5.1.11, we obtain the following theorem.

Theorem 5.1.12 Let R be a TRS such that R ! is left-linear and growing . The reach-
ability problem for R is decidable. O

If R is right-ground TRS then R ! is left-linear and growing. Thus, the above theorem
is a generalization of Oyamaguchi’s result.

The joinability problem for R is the problem of deciding for given finite number of
terms t,...,t,, whether there exists a term s such that t;, —* s for any 1 < ¢ < n.
Oyamaguchi [27] has shown that this problem is decidable for right-ground TRSs. This
result is extended as follows.

Theorem 5.1.13 Let R be a TRS such that R ! is left-linear and growing. The join-
ability problem for R is decidable.

Proof. Let ty,...,t, be terms. Then tq,...,t, are joinable iff
(==t N N (=2 )[{ta}] # ¢

By Theorem 5.1.10, (—%_:)[{t:}] is recognizable for any 1 < ¢ < n. Thus from Lem-
mas 2.4.5 and 2.4.6 the theorem follows. a
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5.1.3 Decidable Approximations

Durand and Middeldorp [8] studied approximations of TRSs to call-by-need computations.
They presented the framework for decidable call-by-need computations without notions
of index and sequentiality.

Definition 5.1.14 A TRS R'is an approzimation of a TRS R if =% C —%,. An approz-
imation mapping T is a mapping from TRSs to TRSs such that 7(R) is an approximation

of R for every R.

Jacquemard introduced right-linear growing approximations in [14]. A right-linear
growing approximation of R = { l; — r; | 1 < ¢ < n } is a right-linear growing TRS
{l; = 7|1 <i<n}whereforany 1 <i < mn,r!isobtained from r; by replacing variables
which do not satisfy the right-linearity or growing condition with fresh variables. We say
that an approximation mapping 7 is right-linear growing if 7(R) is a right-linear growing
approximation of R for every R. We now give better approximations than Jacquemard’s
ones based on the result of Subsection 5.1.1.

Definition 5.1.15 Let R ={ 1, — r; | 1 <i¢ < n }. The growing approzimation of R is
defined as a growing TRS { l; — r,0; | 1 <1 < n } where o; is a variable renaming such
that for every variable z, if  occurs at depth more than 1 in [; then zo; & V(I;), otherwise
zo; = z. An approximation mapping 7 is growing if 7(R) is a growing approximation of
R for every R.

If R is a growing TRS then the growing approximation of R is R itself. If R is a
left-linear TRS then the growing approximation of R is also left-linear.

Example 5.1.16 Let
_ ) flg(@),y) = f(@, f(y,z))
o= { g(z) = f(z,2).

Then the growing approximation of R is

v fle(x),y) — f(z, f(y,2))
R = { g(z) = f(z,2).

The following definition gives sufficient conditions for neededness.

Definition 5.1.17 Let R be a TRS. Let 7 be an approximation mapping. The redex at
a position p in ¢t € T(F) is 7-needed if there exists no s € NFx such that ¢[Q], —7 ) s.

Lemma 5.1.18 Let R be an orthogonal TRS whose rewrite rules satisfy the restrictions
in Definition 2.2.7. Let 7 be an approximation mapping. If a redex in a term is 7-needed
then it is needed.

Proof. By using Lemma 2.3.13. O

In order to obtain a decidable call-by-need strategy, every term that is not a normal
form has a decidable needed redex. Thus the following classes of TRSs are formulated.
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Definition 5.1.19 Let 7 be an approximation mapping. The class C, of TRSs is defined
as follows: R € C, iff every term that is not a normal form has a 7-needed redex.

Lemma 5.1.20 Let 7 be a growing approximation mapping. Let R be an orthogonal
growing TRS whose rewrite rules satisfy the restrictions in Definition 2.2.7. Then R € C,.

Proof. Since R is a growing TRS, 7(R) = R. Using Lemma 2.3.13, we can show that
a redex is needed iff it is 7-needed. Thus it follows Lemma 2.3.5 that R € C,. d

Theorem 5.1.21 Let 7 be a growing approximation mapping and let 7/ be a right-linear
growing approximation mapping. Then C, C C, even if these classes are restricted to
orthogonal TRSs.

Proof. Because H:(R)C —>:,(R), 7'-needed redexes are 7-needed. Thus C,» C C,. Let

and let Ry = RLU {g(z) — h(z,z)}. By Lemma 5.1.20, R, € C,. We will show that
Ro & Cri. Let 1 = f(a,a,b). A right-linear growing approximation 7/(Rs) of R, is one
of Rs = RLU{g(z) — h(z,y) }, Ra = REU{g(z) = h(y,z) } and Rs = RLU { g(z) —
h(y,z) }. In any case, we can show that f(r,r,r) does not have 7"-needed redexes. Thus

Ro & Co. O

Durand and Middeldorp gave a sufficient condition for the decidability of T-neededness
and membership of C,.

Theorem 5.1.22 ([8]) Let R be a TRS. Let 7 be an approximation mapping. If the set
{teT(FU{Q})]|ds€ NFr t =7 (%) s } is recognizable then

(1) it is decidable whether a redex in a term is 7-needed,

(2) it is decidable whether R € C,. O

If R is left-linear then the set NFz is recognizable. Hence we have the following
decidability result from Theorems 5.1.10 and 5.1.22.

Theorem 5.1.23 Let R be a left-linear TRS. Let 7 be a growing approximation mapping.
(1) Tt is decidable whether a redex in a term is 7-needed.

(2) It is decidable whether R € C,. O

Corollary 5.1.24 Let R be an orthogonal growing TRS whose rewrite rules satisfy the
restrictions in Definition 2.2.7. It is decidable whether a redex in a term is needed. O
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5.2 Termination of Almost Orthogonal Growing
TRSs

In this section, we show that termination of almost orthogonal growing TRSs is decidable.
We assume that every rewrite rule [ — r satisfy the restrictions that [ is not a variable
and any variable in 7 also occurs in [. If a TRS R contains a rewrite rule which does not
satisfy either of these restrictions then R is not strongly normalizing. We first explain
the theorem of Gramlich [12], which is used in our proof.

We say that a term t is strongly normalizing if there exists no infinite reduction se-
quence starting with t. A reduction t %5 s is innermost if every proper subterm of tlp is
a normal form. The innermost reduction is denoted by —7. A term t is weakly innermost
normalizing if t —7 s for some normal form s. A TRS is weakly innermost normalizing if
every term is Weakly innermost normalizing.

Theorem 5.2.1 ([12]) Let R be a TRS such that all critical pairs of R are trivial over-
lays.

(a) R is strongly normalizing iff R is weakly innermost normalizing.

(b) For any term ¢, ¢ is strongly normalizing iff ¢ is weakly innermost normalizing. O

According to Theorem 5.2.1, if we can prove the decidability of weakly innermost
normalizability then termination is decidable. The following lemma shows that it is
sufficient to consider rewriting on ground terms only.

Lemma 5.2.2 Let R be a TRS. R is strongly normalizing iff every ground term is
strongly normalizing. O

We will show that for every left-linear growing TRS, the set of ground terms being
weakly innermost normalizing is recognizable. From here on we assume that R is left-
linear growing TRS.

We must construct a tree automaton which recognizes the set of ground terms being
weakly innermost normalizing. We start with the deterministic and complete tree au-
tomaton Ay p by Comon [3] which accepts ground normal forms. The set Sg is defined as
follows: Sg = {t€Tq |t Clg, | = 7€ R }. S is the smallest set such that Sg C Sk
and if t,s € 8 and ¢t | s then t Us € Sy. Ayp = (F, QNF,Q{VF,ANF) is defined
by Qnr ={ q | t € S and t does not contain redexes } U { gq, grea } Where red ¢ F,
QNF = QnF\{ Grea } and Ayp consists of the following rules:

o (@) — @
if f(t1,...,t,) is not a redex and

t is a maximal Q-term w.r.t. < such that ¢t < f(¢1,...,t,) and ¢, € Q{VF,
o f(qy--,G1,) — Grea if f(ty1,...,t,) is a redex,

4 f(QD"':Qn)HQred ifqrede{q17"'7qn }

The following lemma shows that Ay p recognizes the set of ground normal forms.
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Lemma 5.2.3 ([3]) Let t € T(F).
(i) Anp is deterministic and complete.

(i) If t —np 9s Where g, # Greq then t is a normal form, s < ¢ and u < s for any
Gu € QL » with u < ¢.

(iii) If £ —%_ . Grea then ¢ is not a normal form. O

We construct tree automata Ag, Ay, ..., Ay as follows. Let Aq = (F,Qo, Qf, Ao) =
Ayp. A = (F, Qi+1anf+1,Az’+1) (or A, = (F, Qk,Q};,Ak)) is obtained from A; as

follows:

o If there exist ¢, € Q,...,q, € Q7 f(ly,...,ln) = r € R and ¢ € Q; such that

(1) Flye s l)a < Fltn ..o ts)

(2) there exists § : V — @Q; such that rf —7%. ¢ and z = [; implies 20 = ¢, for
every x € r and 1 < 7 < n,

(3) f(qtl""7qtn) _>Q€Au

then Qi1 = Qi, @1y = Qf and Aipy = A U{f(an,- - q.) — q}-
e Otherwise, A, = A,.

The process of construction terminates by the condition (3). Note that Ay, ..., A are
non-deterministic. In the following we prove that

L(Ay) ={teT(F)|tis weakly innermost normalizing }.
We may omit the subscript ¢ of @); and sz

Lemma 5.2.4 Let t € T(F). Forany 0 < i < k,ift =% g€ Q thent =3 s =% ¢
for some s € T(F).

Proof. We prove the lemma by induction on ¢. Base step. Trivial. Induction step.
Assume that ¢,, € @Q7,...,q., € Q7, f(li,...,l,) — r € R and ¢; € Q are satisfy the
conditions of construction and A, is obtained by adding the rule f(gs,,...,qs,) — ¢1 to
A;_;. We use induction on the number m of application of the rule f(qs,,...,qs,) — @1
in the reduction ¢ —7%. ¢. If m = 0 then ¢t —7%.  ¢. Thus it follows from induction
hypothesis on 7 that ¢ =7 s —7% ¢ for some s € T(F). Let m > 0. Suppose that

t=t[f(t, . ta)lp =, U (G @) =4 ta]p =0, ¢

For every 1 < j < n, we obtain u; € 7(F) with t; —% u; —% _ ¢, by applying
induction hypothesis to t; —% _ ¢,. According to Lemma 5.2.3 (ii), f(s1,...,8n) <
f(ug,...,u,) and uq,...,u, are normal forms. Because f(l1, --,l,)a < f(s1,...,8,) by
the condition (1), we have the following reduction sequence:

flt, .o ytn) =7 flug, .. yu) = f(lay ... lh)o =z To.

Let 6 be a substitution which is satisfied in the condition (2) of construction. Then
we have ro —7% . r0 and hence ro —%  ¢. Applying induction hypothesis on m to
tlrol, =4, tlalp —4. ¢, we obtain s € 7(F) such that t[ro], —7 s —% _ ¢. Thus we
have t —7 s —% ¢ since t —z t[ro],. O
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Lemma 5.2.5 L(Ay) C{t € T(F)]|tis weakly innermost normalizing }.
Proof. From Lemmas 5.2.3 and 5.2.4. O

Lemma 5.2.6 Let ¢t € T(F) be a normal form. Then there exists exactly one ¢ in Q
such that ¢ —7% ¢. Furthermore, g is the state ¢, in Q' such that s < t and u < s for any
qu € QF with u < t.

Proof. By Lemma 5.2.4, ¢ =% qifft =% ¢ Thus, from Lemma 5.2.3 the lemma
follows. a

Lemma 5.2.7 L(Ax) D {t € 7(F)| tis weakly innermost normalizing }.

Proof. Assume that ¢ —% s for some normal form s. We show that ¢t € L(A) by
induction on the length m of this reduction. Let m = 0. Then ¢ is a normal form and
hence t € L(A) from Lemma 5.2.6. Let m > 0. We assume that

t=t[f(ly,...,ln)0], =7 t[ro], =7 s

with f(ly,...,l,) — r € R. By induction hypothesis, t[ro], is accepted by Ay, i.e.,
tlrol, —%, q for some ¢ € Qf. Because zo is a normal form for every z € r, Lemma 5.2.6

yields 6 : V — @ such that

t[rcr]p H:‘4;6 t[r@]p _>f4k t[QI]p _>f4k q

where ¢; € Q. For any 1 < 7 < n, by Lemma 5.2.6 we have exactly one ¢,, € @
with [jo —% ¢,; because [;0 is a normal form. Note that if [; = z and = € r then
z0 = qs;. Forany 1 <j <n, q,_ € Q/ since ljq € Sg and [; does not contain redexes.
According to Lemma 5.2.6 f(l1,...,l,)a < f(s1,...,8,). Therefore q,, € Q¥,...,q,, €
Q7, f(ly,...,l,) — r € R and ¢; € Q satisfy the conditions (1) and (2) of construction.
By the construction of Ay, Ay has the rule f(gs,,...,¢s,) — ¢1. Thus, since

t=tf(l,... 7ln)0]p H*Ak tf(@srs - QSn)]p Ay t[(h]p _>j4k qc ny
t is accepted by Ay. a
Thus we obtain the following result.

Lemma 5.2.8 Let R be a left-linear growing TRS. The set of ground terms being weakly
innermost normalizing is recognized by a tree automaton. a

Theorem 5.2.9 Termination is decidable for almost orthogonal growing TRSs.

Proof. Let R be an almost orthogonal growing TRS. According to Lemmas 5.2.2 and
5.2.1, R is strongly normalizing iff every ground term is weakly innermost normalizing.
From Lemmas 2.4.5, 2.4.6 and 5.2.8, it is decidable whether every ground term is weakly
innermost normalizing. O
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Chapter 6

Normalizability of the E-Strategy

In this chapter, we study the E-strategy which is adopted by the OBJ algebraic speci-
fication languages such that OBJ2 [9], OBJ3 [11] and CafeOBJ [24]. In Section 6.1, we
define the E-strategy and discuss how to give local strategies to function symbols so that
every normal form with respect to the E-strategy is a normal form. In Section 6.2, we
introduce two properties. One is the carefulness of local strategies and the other is the
index-transitivity of orthogonal TRSs. We show that if R is an index-transitive orthogo-
nal TRS in which careful local strategies are given to function symbols then the E-strategy
is normalizing for R. In general, these properties are undecidable. Section 6.3 gives a
decidable sufficient condition for carefulness. In Section 6.4, we consider a necessary and
sufficient condition for index-transitivity which is useful to prove index-transitivity of
orthogonal TRSs.

6.1 The Evaluation Strategy

The evaluation strategy (E-strategy) chooses a redex according to local strategies which
are given to function symbols. A local strategy is a list of natural numbers telling the
order to try reductions. If a function symbol f has arity n then the local strategy of f
consists natural numbers ranging from 0 to n. A positive integer ¢ in the local strategy of
f means that the E-strategy reduces ¢th argument of f. Zero means rewriting at the top.
We now give the definition of the E-strategy. Our definition demonstrates the process of
search for a redex.

The set of all lists consisting of natural numbers is denoted by £. The empty list is
denoted by nil. L, denotes the set of all lists consisting natural numbers ranging from
0 to n. Hence £ = U,,~¢ L. Let F be a signature. Then the signature F, is defined
by Fe={fi|lf¢€ F, and | € L, for some n }. The set V. of variables is defined by
Ve={ 2w |z €V} Theset T(F.,V,) is abbreviated to 7.

Definition 6.1.1 Let F be a signature. An E-strategy mapping ¢ of F is a mapping
from F UV to £ such that o(f) € L, if f € F, and p(z) = nil if z € V. The E-strategy
mapping ¢ of F is extended to a mapping from 7 to 7, as follows:

():{fﬁml if t =z,
PIZ faple(ty), oy o(tn)) it = fltr,... t).
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The mapping e form 7; to 7 which erase all lists is defined as follows:

(= if t =z,
e(t) = { fle(tr),...,e(tn)) if t = filty,... tn).

Example 6.1.2 Let F = {f, g,h,a} where Fy = {f, g}, F1 = {h} and Fy = {a}. Let
¢ be a mapping from F UV to £ which is defined by ¢(f) = (1,0,2,0), ¢(g) = (2,1),
o(h) = (1,1), ¢(a) = (0) and ¢(x) = nil for any © € V. Then ¢ is an E-strategy
mapping of F. We have ¢(f(h(z),a)) = f1,02,0)(h@,1)(Tna), aoy) and o(g(z, 9(y, 2))) =
9(2,1)(337”'1, 9(2,1)(ym'l, Zm'l))-

Definition 6.1.3 Let (F,R) be a TRS. Let ¢ be an E-strategy mapping of F. The
reduction relation =, on 7; X N} is defined as follows: (t,p) =, (s, q) iff p € Pos(t) and
one of the following conditions is satisfied.

(i) t(p) = enu for some e € FUV, t = s and p = q.1,

(ii) t(p) = fo,.), p=qand t|, =1'0, e(l') =, s = t{p(r)d], for some 6 : V; — T and
[l —=reR,

(ili) t = t[f0,.)(t1, - ta)lp, e(t|p) is not a redex, s = t[f( )(t1,...,ts)], and p = ¢,
(iv) t =t[fu, )t .. ta)lp with s # 0, s = t[f()(t1,...,tn)]p, and ¢ = p.i.

Note that if (¢,p) =, (s,q) then ¢ € Pos(s) and e(t) —= e(s
If we have the = ,-reduction sequence (p(t),c) = <t1 p1> =, (t2,02) =
E-strateqy reductlon from ¢ is defined as t —= e(tl) —= e(ts) %E

). Let t be a term in 7.

o +++ then the

Example 6.1.4 Let F = {add,s,0} and

| add(z,0) — =
R= { add(z, 5(y)) — s(add(z,)).

Let ¢ be an E-strategy mapping of F which is defined by ¢(add) = (2,0), ¢(s) =
(1) and ¢(0) = nil. Then (addni(s1)(0)),0nit); 1) = (addni(snia(0(0)), Onit), 1.1) and
(add(0)(snit(0ni1), 5(00))); €) = (S1)(add(2,0)(Snit(Onit), 0(0y)), €). The E-strategy reduces
the term add(add(s(0),0), add(s(0),0)) as follows (at each step the underlined redex is
contracted):

add(add(s(0),0), add(s(0),0))

add(add(s(0),0), 5(0))
s(add(add(s(0),0),0))
s(add(s(0),0))

s(s(0)).

However, even if = ,-reduction from (p(t),¢) terminates at (s, p), e(s) is not always a
normal form as shown by the following example.

Ll
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Example 6.1.5 Let 7 = { f, g, a, b, ¢} and

fla) = ¢
R =1 gbz)—0b

b — a.

We define the E-strategy mapping ¢ of F by ¢(f) = (0,1), ¢(g) = (1,0), ¢(a) = ¢(c) =
nil and ¢(b) = (0). Consider the term ¢t = g(a,b). The = ,-reduction from (¢(¢),e
terminates at (gnir(@nir, b(o)), €):

(9(1,0)(@nat, b(0)): €) =4 (9(0)(@nit, b0))> 1) =4 (9(0)(@nit, b(0)), €) = (Gnit(@nit; (o)), €)-

But g(a,b) is not a normal form. The E-strategy must reduce all arguments of g in order
to get the normal form g(a,a) of t. Next consider the term s = f(b). We have the
following = -reduction sequence:

(fon)(b©)); €) = (f1)(bo)); €) = (fait(b(0)), 1) =4 (frit(anit), 1) =4 {frit(ana), €)-

Although (fni(ani), €) is a normal form w.r.t. =, f(a) is not a normal form. After the
reducing arguments of the function symbol f, it is necessary to try to match with the
left-hand sides of rewrite rules at the position occurring f.

To avoid this problem, we will give a restriction on E-strategy mappings.

Definition 6.1.6 Let (F,R) be a TRS. The set D of defined function symbols is defined
as follows:

D={l)|l—reR}

Definition 6.1.7 Let (F,R) be a TRS. Let ¢ be an E-strategy mapping of F. We say
that ¢ is an E-strategy mapping of (F,R) if it satisfies following condition: for every
ferF

(i) o(f) contains 1,...,nif f € F, withn > 1,
(ii) the last element of ¢(f) is 0 if f € D.

Example 6.1.8 Let (F,R) be the TRS of Example 6.1.5. Then D = {f, g, b}. Let
¢ be the E-strategy mapping of F such that ¢(f) = (0,1,0), ¢(g9) = (1,0,2,0), ¢(a) =
¢(c) = nil and ¢(b) = (0). Then ¢ is the E-strategy mapping of (F,R)

In the rest of this section, we assume that ¢ is an E-strategy mapping of a TRS
(F,R). Under this assumption, we will show that if the = ,-reduction sequence from
(p(t),e) ends in (s, p) then e(s) is a normal form. We denote the concatenation of lists {

and I’ by ;1.

Lemma 6.1.9 Let t € 7. Let (p(t),e) =7, (s,p) and q € Pos(s). If s(q) = ¢ for some

e € F UV then there exists a list I’ such that ¢(e) = ;1.
Proof. Trivial. O

We write s(s, ¢) for the list I in Lemma 6.1.9.
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Lemma 6.1.10 Let t € 7. If (p(t), &) =7 (s,p) and p = p;.i.p, then the last element of
s(s,p1) is 1.

Proof. We prove the lemma by induction on the length n of (¢(t),¢) =7 (s, p). The case
of n = 0 is trivial. We assume that (p(t),e) =% (s',9) =, (s,p). Then (s',q) =, (s,p)
satisfies one of the conditions of Definition 6.1.3.

Case 1. The condition (i), (ii) or (iii) is satisfied. Then ¢ = p;.i.p,.5 for some j or p = q.
From induction hypothesis, the last element of s(s, p;) is ¢. Since s(s,p;) = s(s, p1), the
lemma holds.

Case 2. The condition (iv) is satisfied. If po = ¢ then the lemma is trivial. If py = p).j
for some p;, and j then ¢ = p;.i.p5. Thus it follows from induction hypothesis the the last

element of s(s',p1) is 4. Since s(s,p1) = s(s’, p1), the lemma holds. 0

Lemma 6.1.11 Let t € 7. Let (¢(t),¢) = (s,p) and g € Pos(s).

(1) If ¢ < p then e(s|,;) is a normal form for every ¢ € s(s, ¢) which is neither zero nor
the last element of s(s, q)

(2) Otherwise,

(2-1) e(s|,4) is a normal form for every ¢ € s(s,q) with ¢ # 0,

(2-2) If the last element of s(s, q) is zero then e(s|,) is not a redex.

Proof. We prove the lemma by induction on the length of (¢(t),e) =7 (s,p). If the
length is zero then s(s,q) = nil for every ¢ € Pos(s). Thus the lemma holds trivially.
Suppose (p(t),e) =% (s',p') = (s,p). (s',7') = (s,p) satisfies one of the conditions of
Definition 6.1.3.

Case 1. The condition (i) is satisfied. Let p’ = p.j and s'(p') = e,y where e € FUV.
If ¢ # p then it follows from induction hypothesis that (1) and (2) hold. Suppose ¢ = p.
By Lemma 6.1.10, the last element of s(s’,q) is j. Since s(s,q) = s(s',q), (2-2) holds.
Let i € s(s,q) with ¢ # 0. If i # j then ¢ € s(s',q) and 7 is not the last element of
s(s’,¢). From induction hypothesis, it is obtained that e(s'|,;) is a normal form. Since
e(slgi) = e(s'|q4), e(s]qi) is a normal form. If ¢ = j then ¢.i = p'. Since §'(p') = ena,
s(s',p') = ¢(e). From induction hypothesis and the assumption that ¢ is an E-strategy
mapping of (F,R), e(s'|,7) is a normal form. Since s = ¢, e(s|,) is a normal form.

Case 2. The condition (ii) is satisfied. If ¢ < p thens(s,q) = s(s',¢q). Let ¢ € s(s,q) bea
natural number which is neither zero nor the last element of s(s, ¢). Using Lemma 6.1.10,
we obtain that ¢.¢ L p. Thus s|,; = §|,;. Since e(s'|,;) is normal form by induction
hypothesis, e(s|,;) is a normal form. If ¢ L p then from induction hypothesis the lemma
follows. Finally we consider the case of ¢ > p. We assume that [ — » € R is applied in
this reduction. If ¢ € Posg(r) then s(s,q) = nil and thus the lemma holds. Otherwise,
there exists ¢ € Pos(s') such that p’ < ¢’ and §'|; = s|,. By using induction hypothesis,
we obtain the lemma.

Case 3. The condition (iii) is satisfied. Then the last element of s(s,p) is zero and
e(s'|p) is not a redex. Since e(s) = e(s’), we can obtain the lemma by using induction
hypothesis.

Case 4. The condition (iv) is satisfied. Using induction hypothesis, we can show the
lemma. O
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Theorem 6.1.12 Let ¢ be an E-strategy mapping of a TRS (F,R) and let t € 7. If
(p(t),€) =7 (s,p) and (s,p) is a normal form w.r.t. =, then e(s) is a normal form of .

Proof. Clearly t —* e(s). By the definition of =, we have p = ¢ and s(¢) = e, for
some e € FUV. Since ¢ is an E-strategy mapping of (F, R), it follows from Lemma 6.1.11
that e(s) is a normal form. O

Example 6.1.13 Let (F,R) be the TRS of Example 6.1.5 and let ¢ be the E-strategy
mapping defined in Example 6.1.8. Then from Theorem 6.1.12, every normal form w.r.t.
E-strategy is also a normal form of (F,R). We have the following = ,-reduction sequence

from (¢(g(a,b)),e):

<9(1,0,2,0)(aml, b(o)), £) i:;

(fo10(b@) &) =4

6.2 Normalizability

In this section, we investigate the normalizability of the E-strategy. Relying on the theo-
rem of Huet and Lévy [13] (Theorem 2.3.5), henceforth we will be dealing with orthegonal
TRSs only.

Let ¢ an E-strategy mapping of a TRS (F,R). We say that the reduction = is
normalizing for (F,R) if for every ¢ € 7 having a normal form there exists no infinite
sequence (p(t),€) =, (s1,01) = (S2,P2) = - - -. According to the theorem of Huet and
Lévy, the reduction =, is normalizing for an orthogonal TRS if only needed redexes are
contracted by = . In general, for a given orthogonal TRS we can not define an E-strategy
mapping ¢ to contract a needed redex for any term not being a norma form. Consider
the following orthogonal TRS:

fla,z,a) — a
R=1{ F(bbz)—b

c — C.

In a term f(ry,72,73) where r1, ro and 73 are redexes, we first contract r; since r; is needed.
A redex that must be contracted in the next step depends on the contractum of r;. If the
contractum of r; is a then ro may be not needed because r3 may reduce to a. Similarly,
r3 may be not needed if the contractum of r; is b. Thus we can not give the evaluation
order for the function symbol f. Because of this problem, we will formulate a property of
E-strategy mappings.

We also say that a position p of an (2-term ¢ is an index with respect to nf if p €
Lf(t[€,). The set I} ((t) is defined by I ((t) = { p € Pos(t) | p € Lis(t[2,) }-
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Definition 6.2.1 Let (F,R) be a TRS. An E-strategy mapping ¢ of (F,R) is careful
if it satisfies the following condition: for every [ € Red such that () = f and ¢(f) =
(n1,...,ng), there exists ¢ such that

(ii) for any 1 < j < i, n; is zero or an index w.r.t. nf of [,
(iii) for any i < j < k, n; is zero or an {2-position of (.

Example 6.2.2 Let

fla,z,a) — a

R=< f(byz,y) —b

c—c.
Let ¢ be an E-strategy mapping of R such that ¢(f) = (1,0,3,0,2,0) and ¢(c) = (0).
Then Red = { f(a,Q,a), f(b,Q,Q), c}. Because I ;(f(a,Q,a)) = {¢, 1, 3}, i = 4 satis-
fies the conditions of carefulness for f(a,(2,a). Similarly, we can see that i =2 and ¢ =1
satisfy the conditions of carefulness for f(b,§2,) and ¢, respectively. Thus ¢ is careful.

However, carefulness is not sufficient for normalizability of =,. Consider the following

orthogonal TRS:
_J flg(z)) —a
R = { b— g(b).

Let o(f) = (1,0), ¢(g) = (1), ¢(b) = (0) and ¢(a) = nil. Then ¢ is a careful E-strategy
mapping of R. Although the term ¢t = f(g(b)) has the normal form a, there exists the
infinite sequence

(fao(aa)(bo))e) =5 (fo)(gnalbo)), 1.1)
=, (flo(gni(g)(be)))), 1.1)
=¢ { fio)(gnit(gnir(b())), 1.1.1)
=¢  { fo)(gnir(gni(91)(b0))))), 1.1.1)
=

In the E-strategy, if the redex at a position p was contracted then the search for a redex
start at p in the next step. But in general, needed redexes cannot be found locally. For
example, the redex b in g(b) is needed but it is not a needed redex in f(g(b)). Thus we
need the following transitivity property for indices.

Definition 6.2.3 A TRS R is indez-transitive if for every term ¢t in 7, p € I} ,(t) and
q € L(t|,) imply p.q € I} 4(t).

In the following we prove that if R is an index-transitive TRS having a careful E-
strategy mapping ¢ then = is normalizing for R. Indices w.r.t. nf have the following

property.
Lemma 6.2.4 ([18]) Let t € 7g. If p € I ((t) and q¢ < p then q € I (2). O

Lemma 6.2.5 Let f(ly,...,l,) =7 € Rwithn > 0. Let 1 <i < n. Ifl; €V then
i€ [:zf(f(lh R ln)ﬂ)
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Proof. From the orthogonality of R. O

The non-root reduction t —.,, s is defined as t & s and p # . We can easily see that
if a term ¢ in 7 is not root-stable then there exists a redex s such that ¢t —}  s.

Lemma 6.2.6 Let ¢t be a term in 7 such that t —7 10 for some ! — r € R. Ifi € I ((lq)
and || =1 then i € I} ;(t).

Proof. We assume that 7 ¢ I ,(t). Clearly 1 € Pos(t). Thus t[Q2]; —* s for some normal
form s. Since t[Q]; —* [0]Q];, by the Church-Rosser property of R we obtain (0[], —* s.
Because 10[Q]; > 19[Q);, i & I;,Lf(lg). O

Lemma 6.2.7 Let R be an index-transitve TRS having a careful E-strategy mapping ¢.
If (p(t),e) = (s,p) then p € I}, ;(e(s)).

Proof. We prove the lemma by induction on the length of this reduction. The case
of zero length is trival. We assume that (¢(t),e) =7 (s',q) =, (s,p). From induction
hypothesis, g € I, ;(e(s')). The last step (s',q) =, (s,p) satisfies one of the conditions of
Definition 6.1.3.

Case 1. The condition (i) is satisfied. Let ¢ = p.i. From Lemma 6.2.4, p € I, ((e(s")).
Since s = s, p € I, ;(e(s))-

Case 2. The condition (ii) or (iii) is satisfied. Because p = ¢ and e(s)[Q], = e(s')[Q],,
p e Iy(e(s))

Case 3. The condition (iv) is satisfied. Then e(s) = e(s'). Let s' = s'[f;_y(t1,...,tn)]q
and p = q.i. If e(f,.)(t1,..,tn)) is root-stable then i € I ((e(f,.)(t1,---,ta))). Since
q € I;(e(s')) and R is index-transitive, p € I} ;(e(s')). Thus p € I} ;(e(s)). Otherwise,
we assume that e(f; )(t1,...,tn)) =5, f(l1,...,1,)0 for some f(ly,...,l,) = 7 € R. Let
o(f) = (n1,...,nk). By the carefulness of ¢, there exists ¢’ satisfying (i), (ii) and (iii)
in Definiton 6.2.1 for f(l4,...,0,)a. We will show the claim that ¢ = n; for some j with

j < i'. Suppse the contrary. Then we have the reduction sequence

<90(t)7 5) :>:; <5l[f(0,niz+1 ..... nk)(sla cee Sn)]qa Q>

:>80 <Sl27 Q2>

= (S tm) = (5,q).

such that f(e(s1),...e(s,))is not a redex and forany 1 < j <m-—1, ¢; > gandif¢g; =¢
then (s%,q;) =, (85,1,9541) does not satisfy (ii) of Definition 6.1.3. If [; ¢ V where 1 <
J < nthen from Lemma 6.2.5, j is an index w.r.t. nf of f(l1,...,0,;)q. By the carefulness of
@, j € s(s],q). According to Lemma 6.1.11 e(s;) is a normal form. Thus f(e(s1),...e(s,))
is an instance of f(ly,...,l,) because f(e(sy),...,e(s,)) —%, 10. This is a contradiction
and hence we are done. By the claim and (ii) in Definition 6.2.1, i € I} :(f(l1,...,ln)a)-
From Lemma 6.2.6 it follows that ¢ is an index w.r.t. nf of f(e(t1),...e(t,)). Because
q € I,,;(e(s")) and R is index-transitive, p € I, ;(e(s')). Therefore p € I} ;(e(s)). O
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The length of a list [ is denoted by |1 |. We define ||t || for t € 7, as follows:

“tH_ 0 ifteVe,
Ll e ]l 8= Al )

If t € 7 has a normal form then d(¢) denotes the maximum length of needed reduction
sequences from ¢ to the normal form.

Theorem 6.2.8 Let R be an index-transitive orthogonal TRS having a careful E-strategy
mapping . Then =, is normalizing for R.

Proof. We define ||(s,p)|| as (d(e(s)),]| s||,|p|) if e(s) has a normal form. Let ¢ be
a term in 7 which has a normal form. Now we show that if (¢(t),e) = (so,P0) =
(s1,01) = -+ then |[(sn,Dn)|| >itex ||(Snt1,Pnt1)]| for any n > 0, where >, is the
lexicographic order on '3, The step (s,,Pn) =4 (Sn+1, Pnt1) satisfies one of the conditions
of Definition 6.1.3. If (i) is satisfied then b(e(s,)) = b(e(sn+1)), |[sall = ||Sn+1]l and
|pn| > [pn+a|. If (ii) is satisfied then b(e(s,)) > b(e(sn+1)) by Lemma 6.2.7. If (iii)
or (iv) is satisfied then b(e(s,)) = b(e(sn11)) and |[s,|| > ||$ny1]|. Therefore we obtain
1{Sns )|l >tex |{Snt1,Pnt1)||. Since >, is well-founded, i.e., there exists no infinite
SEeqUENce g >z 01 >lew @2 >ieq - - - Of elements of A3, the reduction =, is normalizing.

O

6.3 A Sufficient Condition for Carefulness

In general, it is undecidable whether there exists a careful E-strategy mapping ¢ for a
given TRS R. Because it is undecidable whether an position in a term is an index w.r.t.
nf. In this section, we introduce a sufficient condition for existence of a careful E-strategy
mapping. We explain how to define a careful E-strategy mapping if a TRS satisfies this
condition.

Lemma 6.2.5 expresses a sufficient condition for indices w.r.t. nf of an {-term [ in
Red, i.e., non-(2-positions of [ are indices w.r.t. nf. This formalizes the following property
of E-strategy mappings.

Definition 6.3.1 Let (F,R) be a TRS. An E-strategy mapping ¢ of (F,R) is semi-
careful if it satisfies the following condition: for every | € Red such that I(¢) = f and
o(f) = (n1,...,ng), there exists ¢ such that

(i) n; =0,
(ii) for any 1 < j < 4, n; is zero or non-{-position of [,
(iii) for any ¢ < j < k, n; is zero or an {2-position of [.
Lemma 6.3.2 Let ¢ be a semi-careful E-strategy mapping of (F,R). Then ¢ is careful.

Proof. By using Lemma 6.2.5. a

In the following we present the class of TRSs having a semi-careful E-strategy mapping.
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Definition 6.3.3
1. If t is an Q-term then the set N(t) is defined as follows:

|t << if t =
N(t):{muig’l_hn} if t = f(t1,... 1) and n >0,

o} otherwise.

2. If f € F then the set Ny is defined by
Ny={ N()|l € Red and l(e)=f }.

Example 6.3.4 Let F ={ f,g,a,b,c} and

f(z,a,b) — x
r- ) f@by) =y
9(z) = a
c— g(c).
Then Ny = {{2,3},{2}}, N, = N. = {¢} and N, = N, = ¢.
Definition 6.3.5 A TRS (F,R)is N-total if for all f € D, S; C Sy or S; 2 S> whenever
Sl, Sy € Nf.

We define the E-strategy mapping ¢, for an N-total TRS (F,R) as follows. Let
f € F,. If f€Dand n =0 then we define ¢,(f) as nil. If f € D and n > 0 then we
define ¢,(f) as (1,...,n). If f € D and n = 0 then we define ¢,(f) as (0). We finally
assume that f € D and n > 0. Let Ny = {S1,...,Sn}. Then there exists the sequence
Sy C S, C--- CS,, of elements of Ny. Let [q,...,[, 1 be the following lists:

l]_ = Sﬁ;
L =(ng,...,ng) if 1 <j<m, S;;\S;,_, ={ny,...,nt} and
n; < nipq forany 1 <@ < k—1,
lm+s1 = (n1,...,ng) i {1,...,n}\S;, ={n1,...,n} and
n; < njpq forany 1 <@ <k — 1.
We define @,(f) by ¢i(f) = 115(0); 12+ + 5 b (0); Linya; (0)
Example 6.3.6 Consider the TRS (F,R) of Example 6.3.4. Then (F,R) is N-total.
We have (;Ot(f) = (27073: 07 170)7 (;Ot(g) = (07 170)7 (pt(C) = (0) and @t(a) = (pt(b) = nil.

From the definition of ¢, we can easily prove the following lemmas.

Lemma 6.3.7 Let (F,R) be an N-total TRS. Then ¢, is a semi-careful E-strategy map-
ping of (F,R). O

Theorem 6.3.8 Let (F,R) be an N-total index-transitive orthogonal TRS. Then =,
is normalizing for (F, R).

Proof. From theorem 6.2.8 and Lemmas 6.3.2 and 6.3.7. O

It is not difficult to see that if a TRS (F, R) has a semi-careful E-strategy mapping
then R is N-total. Thus we have the following theorem.

Theorem 6.3.9 Let (F,R) be a TRS. Then (F,R) is N-total iff (F,R) has a semi-
careful E-strategy mapping. O
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6.4 A Necessary and Sufficient Condition for
Index-Transitivity

In this section we give a necessary and sufficient condition for index-transitivity, which is
useful to prove index-transitivity of orthogonal TRSs. For this purpose, we need several
lemmas that express properties of indices w.r.t. nf.

Lemma 6.4.1 Let ¢t € 7 and p € Pos(t). Let A:t =" sand g € p\A. If ¢ € [ ;(s) then
p € L(1)

Proof. We prove the lemma by induction on the length n of A. The case n = 0 is
trivial. Let A :¢ % ¢ —* 5. Suppose that p’ € p\A[1] and ¢ € p'\ A[1,n]. From induction
hypothesis it follows that p' € I ((t'). If p < p; then p = p' and ¢[Q], = ¢'[2],. Thus
p € L¢(t). If p £ p; then there exists s’ € 7Tq such that t[Q2], s and s < ¢[Q,.
Since p' € I ((t'), nf(t'[?],) = false. From the monotonicity of nf it follows that
nf(s') = false. By the Church-Rosser property of R we obtain nf(t[?],) = false.
Therefore p € I, ¢(t). O

Definition 6.4.2 Let p be a redex position of ¢, i.e., t = t[l0], for some | — r € R. The
set C(t,p) is defined by

C(t,p) ={pq| qgePosg(l) }.

Lemma 6.4.3 Let ¢y be a term in 7 which has a normal form and let p € I, ((to). Let

Aitg By, 5.0 st t, be a reduction sequence such that for every 0 < <mn —1

Clti,g:) N { p' € Pos(t:) | p € p\A[i] } = ¢.
Then ¢, has a descendant of p by A, i.e., p\A # ¢.

Proof. We assume that ¢, does not have a descendant of p. For each 0 < ¢ < n, let s,
be a Q-term obtained from ¢; by replacing all subterms at descendants of p by A[i] with
Q. From the assumption for A and the left-linearity of R we can obtain the reduction

sequence sy —= §; —= -+ —= s,. Since g = t[Q], and s, = t,, we have t,[Q], —* t,.
By the Church-Rosser property of R, ¢, has a normal form and hence nf(t[Q2],) = true.
However, this contradicts the assumption that p € I ¢(to). O

Lemma 6.4.4 Let t € 7. Let p be a redex position in t and let ¢ € C(¢,p). If p € I} 4(¢)
then g € I, 4(1).

Proof. If p € I ,(t) then p is needed. We now suppose that ¢ ¢ I, ,(t). Then there

exists a reduction sequence A : t[Q}], = ¢ oy, B Pty e NFg. From the
orthogonality of R, p; & p\A[i] for any 0 <7 < n — 1. For each 0 < i < n, let {; be a
term obtained from t; by replacing all Q2’s with ¢|,. Then we get the reduction sequence

A=t 2% ... 25§, =t, such that p; ¢ p\A'[7] for any 0 < i < n — 1. However
this contradicts the fact that a redex position p is needed. O

Lemma 6.4.5 Let ¢ be a term in 7 which has normal form and let p € I} ,(t). Let
A:t % sand p € C(t,q). Then there exists p' in p\A such that p’ € I, (s).
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. . q 90 q1 qn—1
Proof. There exists a reduction sequence A’ : ¢t — s = 89 —A 81 =N "+ — A Sp €

NFg. Let S; = C(si,q;) N { ¢ € Pos(s;) | ¢ € p\A'[i +1] } foreach 0 < ¢ <n—1. We
consider the following two cases.

Case 1. S; = ¢ for every 0 < ¢ < mn — 1. According to Lemma 6.4.3, s, has a
descendant p; of p by A’. Let py € p\A with p; € p\A'[1,n + 1]. Since s, is a normal
form, p; € I),¢(sn). By Lemma 6.4.1 py € I, +(s).

Case 2. S; # ¢ for some i. Let p; € S; and let p, € p\ A with p; € p;\A'[1,7 + 1]. By
Lemma 6.4.4 p; € Iq'lf(si). Thus it follows from Lemma 6.4.1 that p; € ]Lf(s). O

Lemma 6.4.6 Let [ — r€ Rand 0 : V — 7. Let p € Posx(l) with p # €. Then 0],
has a normal form iff 0 has a normal form for every z € |,

Proof. From the orthogonality of R. a

Lemma 6.4.7 Let ¢ be a term in 7 which has a normal form. If p;.p; € I, (t) then
D2 € Ivllf(t|P1)'

Proof. We assume that py & I ;(t|,,). Then ¢|,,[Q],, —* s for some normal form s.
We can obtain that t|,, —* s because s does not contain ’s. Since ¢t —* ¢[s],, and
t[Qp, p, —* t[s]p,, from the Church-Rosser property of R, t[Q],, », has a normal form,

i.e., nf(t[Q]p, p,) = true. Hence p1.py & 1, 4(1). a
Lemma 6.4.8 ([18]) Let t € 7q. If p € I ,(t) and t < s then p € I} 4(s). O
The following lemma gives a sufficient condition for index-transitivity.

Lemma 6.4.9 Let R be an orthogonal TRS such that for any ! € Red if I|, = Q and
|p| > 2 then p € [, ;(I). Let t be a term in 7 which has a normal form. If p; € I ()
and py € I, ¢(t|,, ) then

(1) t|,, has a normal form,
(2) pr-p2 € 14(1).

Proof. We prove the lemma by induction on d(¢). The case d(¢) = 0 is trivial because ¢
is a normal form. Let A:¢t 2, s.

Case 1. p1, pr1.p2 & C(t,ps3). We can easily show (1) and (2) by using induction
hypothesis and Lemmas 6.4.1 and 6.4.5.

Case 2. p1 & C(t,ps) and p1.p2 € C(t,ps). From Lemma 6.4.4 it follows that p;.ps €

»f(t). Using induction hypothesis and Lemma 6.4.5, we can easily show (1).

Case 3. p1 € C(t,p3) and p1.ps € C(t,p3). If p; = p3 then we can show (1) and (2)
by using induction hypothesis and Lemmas 6.4.1 and 6.4.5. We next consider the case
of p1 > ps. Let p; = ps.qu where ¢; # €. Suppose that ¢t = ¢[l6],, and s = t[rf],, for
Il — r € R. By Lemma 6.2.4, p3 € I,;(t) and therefore p3 € I ¢(s). It follows form
induction hypothesis that 76 has a normal form. Hence [6 has a normal form. We first
show the claim that if p € Posy(l) and |p| > 2 then there exists ¢ in ps;.p\ A such that
q € 1, ¢(s).

Poof of the claim. Let p be a position in Posy(l) such that |p| > 2. Then p € I (lq)
by the assumption of the lemma. By using Lemma 6.4.8 we obtain that p € I ,(16). Let
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A':10 = r6. According to Lemma 6.4.5 there exists p’ in p\ A’ such that p' € I, (r0). Tt
is clear that ps.p’ € p3.p\A. Since p3 € I,((s) and p' € I ¢(s]p,), we get p3.p’ € I ¢(s) by
induction hypothesis.

We next prove that ¢|,, = (0], has a normal form. According to Lemma 6.4.6 it is
sufficient to show that z0 has a normal form for any z € l|,,. Let z € l|;,. Then z =1,
for some p with [p| > 2. By the claim, there exists ¢ in p3.p\A such that ¢ € I ¢(s).
From induction hypothesis, s|, has a normal form. Since 26 = s|,, 0 has a normal
form. Finally we prove that p,.py € I} +(t). We have p, = go.g3 for some go € Posy(l|q,)
with [go| > 1. Since go.q3 € I¢(t|,,) and t|,, has a normal form, it is obtained that
q3 € I,,4(t]p,.4,) by Lemma 6.4.7. Because g1.q> € Posy(l) and |q1.¢2| > 2, according to
the claim there exists ¢ in p3.q1.q2\ A such that g € I} ;(s). Because t|y, g, = tlps.0.00 = 5o
we get gz € I, ¢(s]g). Thus by using induction hypothesis, it is obtained that g.gz € I, ¢(s).
Since g.g3 is a descendant of p;.py by A, Lemma 6.4.1 yields p;.p2 € I, 4(2).

Case 4. py € C(t,p3) and py.p2 € C(t,ps3). From Lemma 6.4.4 it follows that p;.ps €
I,,(t). Similar to Case 3, we can show that t|, has a normal form. O

We show that the condition in Lemma 6.4.9 is also necessary for index-transitivity.

Theorem 6.4.10 Let R be an orthogonal TRS. The following are equivalent:
(1) R is index-transitive,
(2) for any t € Tg if p € I, ;(t) and q € I} £(t],) then p.q € I 4(?),
(3) for any [ € Red if I|, = Q and |p| > 2 then p € I, ().

Proof.

(1)=(2) We assume that p € I, ((t), ¢ € I,;(t|,) and p.q & I, ;(t). Then there exists
s € Tq such that t[Q],, < s, nf(s) = true and s|,, = 2. From the monotonicity of
nf we get s’ € T such that t < s" and nf(s'[Q],,) = true, i.e., p.q & I} ¢(s'). Using
Lemma 6.4.8, we can show that p € I} ,(s') and ¢ € I, ;(s'|,). But this contradicts
the assumption that R is index-transitive.

(2)=(3) Let | € Red and let p be an Q-position with |p| > 2. Then there exists
q € Pos(l) such that ¢ < p and | ¢q| = 1. By the orthogonality of R, q € I, ¢(I) and
p/q € I,;(lly). Thus it follows from the assumption (2) that p € I, (1)

(3)=(1) Let t € T. Let p € I, (t) and q € I}¢(t|,). If t has a normal form then
p-q € I ;(t) by Lemma 6.4.9. Otherwise nf(¢[Q],,) = false by the monotonicity of
nf. Thus p.q € I} 4(1). O

Example 6.4.11 Consider the TRS R of Example 6.3.4. Every variable in the left-hand
side of a rewrite rule occurs at depth one in the left-hand side. From Theorem 6.4.10, R
is index-transitive. Thus =, is normalizing for R.
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Chapter 7

Conclusion

In this thesis we investigated normalizing strategies for term rewriting systems.

In Chapter 3 we presented the class of NVNF-sequential systems. NVNF-sequentiality
is defined by using the same approximate reduction as NV-sequentiality [28]. However,
it gives consideration to the reachability only to normal forms without Q’s whereas NV-
sequentiality gives consideration to the reachability to terms without Q’s. We showed
that the class of NVNF-sequential systems properly includes NV-sequential systems.
We proved the decidability of indices with respect to NVNF-sequentiality for left-linear
term rewriting systems. This result implies that we can compute at least one of the
needed redexes in a term no being a normal form if a term rewriting system is orthog-
onal NVNF-sequential. Thus, by the theorem of Huet and Lévy [13] every orthogonal
NVNF-sequential system has a decidable normalizing call-by-need strategy. Our main
purpose was to give a simplified proof of the the decidability of indices with respect to
NVNF-sequentiality. The complexity of the decision algorithm for indices w.r.t. NVNF-
sequentiality remains open although indices w.r.t. NV-sequentiality are decidable in poly-
nomial time.

In Chapter 4, we investigated the normalizability of Huet and Lévy’s strategy [13]
(index reduction) and Oyamaguchi’s strategy [28] (NV-index reduction) for left-linear
overlapping term rewriting systems. We first introduced the notion of stable balanced
joinability. A term rewriting system is called stable balanced joinable if every critical
pair is joinable with balanced stable reduction. Stable balanced joinable property implies
the balanced weakly Church-Rosser property of index reduction. Thus, by Toyama'’s
theorem [30] concerning reduction strategies, index reduction is normalizing for every
stable balanced joinable strongly sequential system. The class of stable balanced joinable
systems includes all root balanced joinable systems which were defined by Toyama in
[30]. We next introduced the notion of NV-stable balanced joinability. It was shown that
NV-index reduction is normalizing for every NV-stable balanced joinable NV-sequential
system. Stable and NV-stable balanced joinability are semi-decidable properties of left-
linear term rewriting systems, however these properties are undecidable. It remains to give
decidable sufficient conditions for stable and NV-stable balanced joinability. In Chapter 4,
we do not deal with more general sequential systems (NVNF-, shallow [3] or growing [14]
sequential systems). Because the index reduction does not have the balanced weakly
Church-Rosser property for more general sequential systems. However, we conjecture
that our result can be generalized to these sequentiality.

In Chapter 5, we research into decidable properties of growing term rewriting systems.
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We first extended Jacquemard’s result [14] to left-linear growing systems that may contain
non-right-linear rules. It has been shown that the set of reachable terms to some recogniz-
able set is recognized by a tree automaton if a term rewriting system is left-linear growing.
This implies the decidability of reachability for left-linear growing term rewriting systems
. Moreover, this gives us better approximations of term rewriting systems which extend
the class of orthogonal systems having a decidable normalizing call-by-need strategy. By
our recognizability result, we can show that the reachability and the joinability of a term
rewriting system are decidable if its inverse system is left-linear growing. We believe that
this result is useful for the construction of normalizing strategies for non-left-linear term
rewriting systems. We next proved that termination for almost orthogonal growing term
rewriting systems is decidable.

In Chapter 6, we applied the results on call-by-need strategy to the E-strategy which is
adopted by the OBJ algebraic specification languages [9, 11, 24]. The E-strategy chooses
a redex according to local strategies which are given to each function symbol. We consider
how to give local strategies for a given orthogonal term rewriting system to contract a
needed redex only. For this purpose, we introduced the notions of index-transitivity and
carefulness. We showed that for every index-transitive orthogonal term rewriting system,
if careful local strategies are given to each function symbol then the E-strategy contract
needed redexes only, thus E-strategy is normalizing. In general, index-transitivity and the
existence of careful local strategies are undecidable. We first gave a decidable sufficient
condition for the existence of careful local strategies, which is called N-total, and explained
how to give careful local strategies for N-total term rewriting systems. We next gave a
necessary and sufficient condition for index-transitivity, which is useful to prove the index-
transitivity of a term rewriting systems. I think that our conditions are still strong for
the normalizability of the E-strategy. A future work is to weaken our conditions.
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