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Abstract

Term rewriting systems have been widely studied as a model for computation. In a

term rewriting system, they may exist an in�nite reduction sequence starting with a term

having normal forms. In order to get a normal form for a given term, we require a normal-
izing strategy guaranteeing to �nd a normal form of terms whenever their normal forms

exist. Huet and L�evy (1979) showed that a call-by-need strategy is normalizing for every

orthogonal (i.e., left-linear and non-overlapping) term rewriting systems. Unfortunately,
in general a call-by-need strategy is undecidable. They formalized strong sequentiality

guaranteeing a decidable normalizing call-by-need strategy for orthogonal term rewriting

system. The work of Huet and L�evy has been extended to several kinds of systems.
In this thesis we �rst extend the class of left-linear term rewriting systems having a

decidable call-by-need strategy. We present the class of NVNF-sequential systems. This
class properly includes the class of NV-sequential systems which was introduced by Oyam-

aguchi (1993). We prove that every orthogonal NVNF-sequential system has a decidable
normalizing call-by-need strategy. Then we give growing approximations of term rewriting
systems without the assumption of the right-linearity whereas Jacuemard (1993) assumed

the right-linearity . We show that our approximations extend the class of orthogonal term

rewriting systems having a decidable normalizing call-by-need strategy.
Secondly, we investigate the normalizability of a call-by-need strategy for left-linear

overlapping term rewriting systems. We �rst introduced the notion of stable balanced
joinability. It is shown that a call-by-need strategy is normalizing for every stable balanced

joinable strongly sequential system. This is a generalization of Toyama's result (1992).

We next introduce the notion of NV-stable balanced joinability and prove that every NV-
stable balanced joinable NV-sequential system has a decidable normalizing call-by-need

strategy.

Finally, we apply the results on call-by-need strategy to the E-strategy adopted by

the OBJ algebraic speci�cation languages. The E-strategy chooses a redex according to

local strategies which are given to each function symbol. We consider how to give local

strategies to make the E-strategy normalizing. For this purpose, we introduced the notion

index-transitivity and carefulness. We show that for every index-transitive orthogonal
term rewriting system, if careful local strategies are given to each function symbol then

the E-strategy is normalizing.
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Chapter 1

Introduction

A term rewriting system consists of a set of directed equations, called rewrite rules. If

a term t contains an instance of the left-hand side of a rewrite rules l ! r, so-called

redex then t can be rewritten to the term obtained from t by replacing this instance with
the corresponding instance of the right-hand side r. A term which cannot be further

rewritten is the result of the computation, and called a normal form. Term rewriting
systems play an important role in various �elds of computer science such as abstract data

type speci�cations, implementations of functional programming languages, programming

veri�cation and automated deduction. The fundamental properties of term rewriting
systems are strongly normalizing property (or termination) and Church-Rosser property

(or con
uence). A term rewriting system is said to be strongly normalizing if there exists

no in�nite reduction sequence. In a strongly normalizing term rewriting system, every

computation eventually ends in a normal form. We call a term rewriting system Church-
Rosser if any two terms that are reduced from some term can reach same term by the
reduction. If a term rewriting systems is Church-Rosser then every term can have at most

one normal form. In a term rewriting system being Church-Rosser, there may exist in�nite

reduction sequences starting with a term having the normal form. In order to compute
the normal form of a given term, we require some strategies telling us which redex to
contract. A reduction strategy is said to be normalizing if we can always �nd the normal

form of a term having a normal form by it. It is well-known that the leftmost-outermost
reduction is a normalizing strategy in the �-calculus and the combinatory logic. However,
it has been shown that the leftmost-outermost strategy is not normalizing for arbitrary

term rewriting systems.

O'Donnell [25] was the �rst to consider reduction strategies for orthogonal term rewrit-

ing systems. He showed that the parallel-outermost reduction strategy is normalizing for

orthogonal term rewriting systems. Huet and L�evy investigated one-step reduction strate-

gies for orthogonal term rewriting systems in [13]. Huet and L�evy proved that every term

not in normal forms contains a needed redex and repeated rewriting of needed redexes

leads to the normal form if it exists. A needed redex is a redex which must be contract
in order to reach a normal form. However, it is undecidable whether a redex in a term
is needed. Huet and L�evy formulated the notion of strong sequentiality for orthogonal

term rewriting systems. They showed that for every strongly sequential orthogonal term
rewriting systemR, index reduction is a normalizing strategy, that is, by rewriting a redex
called an index at each step, every reduction starting with a term having a normal form

eventually terminates at the normal form. Here, the index is de�ned as a needed redex
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concerning an approximation ofR which is obtained by analyzing the left-hand sides alone

of the rewrite rules of term rewriting systems. Oyamaguchi [28] introduced the notion of

NV-sequentiality which is a proper extension of strong sequentiality. NV-sequentiality is

not only based on the analysis of the left-hand sides of the rewrite rules of term rewrit-
ing systems but also on the non-variable parts of the right-hand sides. Extensions of
NV-sequentiality were proposed by Nagaya et al. [21], Comon [3] and Jacquemard [14].

The notion of strong sequentiality was extended to left-linear term rewriting systems by
Toyama [30]. He showed that index reduction is a normalizing strategy for every root

balanced joinable strongly sequential system. Kennaway [16] proved that every almost

orthogonal term rewriting system has a decidable one-step normalizing strategy. However,

the strategy of Kennaway is complicated. Antony and Middeldorp [1] proposed a simpler

and intuitive one-step reduction strategy for every term rewriting systems. They proved
that their strategy is normalizing for weakly orthogonal term rewriting systems.

The rest of this chapter gives an overview of this thesis.

Chapter 2 gives the basic de�nitions of term rewriting systems. We �rst present ab-

stract reduction systems which are set equipped with a binary relation. Term rewriting

systems are special abstract reduction systems. The notions of sequentiality and indices
are explained in Section 2.3. In Section 2.4, we introduce tree automata which are gener-

alization of sequential automata.

In Chapter 3, we introduce an extension of NV-sequentiality, which is called NVNF-
sequentiality [21]. We �rst show that the class of NVNF-sequential systems properly
includes the class of NV-sequential systems. We next show the decidability of indices with

respect to NVNF-sequentiality for left-linear term rewriting systems. Every orthogonal

NVNF-sequential system has a decidable normalizing call-by-need strategy. It was shown
by Comom [3] that NVNF-sequentiality of left-linear term rewriting systems is decidable.

In Chapter 4, we show that index reduction is normalizing for the class of stable bal-

anced joinable strongly sequential systems [22]. A stable balanced joinable system is a

left-linear term rewriting system in which every critical pair is joinable with balanced
stable reduction. In stable reduction, transitive index being stable under substitutions
is contracted. This class includes all root balanced joinable strongly sequential systems.

In stable balanced joinable strongly sequential systems, index reduction has the balanced

weakly Church-Rosser property. Thus we can show the normalizability of index reduction

by using Toyama's theorem [30] concerning reduction strategies. We next show that every

NV-stable balanced joinable NV-sequential system has a normalizing strategy by intro-

ducing the notions of transitivity and stability for indices with respect to NV-sequentiality.

In Chapter 4, we do not consider more general sequential systems (NVNF-, shallow [3]
or growing [14] sequential systems). The reason is that index reduction is not balanced

weakly Church-Rosser even if the system is orthogonal.

In Chapter 5, we extend Jacquemard's result in [14] to left-linear growing term rewrit-
ing systems [23]. Jacquemard showed that the set of normalizable ground terms is recog-
nized by a tree automaton if the term rewriting system is linear and growing. We �rst

show that the set of reachable terms to some recognizable set by the reduction is recog-

nized by a tree automaton if a term rewriting system is left-linear and growing. We can
remove the right-linear condition by constructing a deterministic automaton. This result

gives us better approximations of term rewriting systems which are left-linear growing
systems obtained by renaming variables in the right-side hands of rewrite rules. These

approximations yield the class of left-linear term rewriting systems for which there exists
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a decidable call-by-need strategy. Moreover, this recognizability result implies the decid-

ability of reachability for left-linear growing systems. It is also shown that reachability

and joinability for some subclass of right-linear systems are decidable. We next prove

that termination for almost orthogonal growing term rewriting systems is decidable. Our
proof use Gramlich's theorem that a weakly innermost normalizing rewriting system R
is terminating if every critical pair of R is trivial and overlay. We show that the set of

all ground term being reachable a normal form by innermost reduction is recognized by a
tree automaton for left-linear growing systems. By basic property of tree automata, the

decidability result is obtained.

In Chapter 6, we study the evaluation strategy (E-strategy) [9, 11, 20, 24]. The E-

strategy is a reduction strategy adopted by the OBJ algebraic speci�cation languages such

that OBJ2 [9], OBJ3 [11] and CafeOBJ [24]. The outermost strategy has a better termi-
nation behavior than the innermost strategy although the outermost strategy can not be

implemented as e�ciently as the innermost strategy. The E-strategy is a compromise

between the outermost and the innermost strategies. Each function symbol is given a list

of natural numbers which is called local strategy. By local strategies, it is determined

which redex is contracted. The result of the reduction by the E-strategy is not always
a normal form. We �rst consider a restriction for local strategies to avoid this problem.

Next we present the class of term rewriting systems for which the E-strategy is normal-

izing. Because our normalizability proof relies on Huet and L�evy's theorem, this class is
undecidable. In Sections 6.3 and 6.4, we give a su�cient condition for normalizability of
the E-strategy and we explain how to give local strategies to function symbols for term

rewriting systems satisfying this condition.
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Chapter 2

Preliminaries

In this chapter, we present the basic concept of term rewriting which is used in this thesis.

Following Klop [17], we �rst introduce abstract reduction systems. More details on term

rewriting can be found in [2, 7, 17]. In Section 2.3, we explain the landmark theorem of
Huet and L�evy [13] and give the notions of index and sequentiality. In Section 2.4, tree

automata are introduced. Several decidability results in this thesis are obtained by using
tree automata techniques.

2.1 Abstract Reduction Systems

In this section, we de�ne abstract reduction systems which are set equipped with a binary
relation. Most properties of term rewriting systems are described on this abstract level.

We can avoid repeating similar de�nitions and properties by de�ning them.

De�nition 2.1.1 An abstract reduction system (ARS) is a structure A = hD;!i con-
sisting of a set D and a binary relation ! on D, called a reduction relation. We write

a! b if (a; b) 2!

De�nition 2.1.2 Let A = hD;!i be an ARS.

1. The identity of elements of D is denoted by �.

2. The transitive-re
exive closure of ! is denoted by!�. The transitive closure of !

is denoted by !+ and !� denotes the re
exive closure of !.

3. The set of natural numbers is denoted by N . Let k 2 N . Then !k denotes the

k-steps reduction.

4. The symmetric closure of! is denoted by$. The transitive-re
exive closure of $

is denoted by =.

5. We write a b if b! a.

6. An element a 2 D is a normal form if there exists no b 2 D such that a ! b. The

set of normal forms is denoted by NFA. An element a has a normal form if a!� b

for some normal form b.

De�nition 2.1.3 Let A = hD;!i be an ARS.
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1. A (or !) is strongly normalizing or terminating if there are no in�nite reduction

sequences x0 ! x1 ! x2 ! � � �.

2. A (or ! ) is Church-Rosser or con
uent if 8a1; a2; a3 2 D, a1 !
� a2 and a1 !

� a3
imply a2 !

� b and a3 !
� b for some b 2 D.

3. A (or! ) has the normal form property if 8a 2 D, 8b 2 NFA, a = b implies a!� b.

De�nition 2.1.4 Let A = hD;!i be an ARS.

1. A relation !s on D is a reduction strategy for A (or !) if !s�!
+ and every

normal form with respect to !s is also a normal form with respect to !. If !s is

a subrelation of ! then it is called a one-step reduction strategy. Otherwise, !s is
called a many-step reduction strategy.

2. A reduction strategy !s for A is normalizing if for each a having a normal form

with respect to !, there are no in�nite sequences a � a0 !s a1 !s a2 !s � � �.

2.2 Term Rewriting Systems

De�nition 2.2.1 A signature F is a �nite set of function symbols denoted by f; g; h; . . ..
Every f 2 F is associated with a natural number denoting its arity. Function symbols
of arity 0 are called constant. Fn denotes the set of all n-ary function symbols. Hence

F =
S
n�0Fn.

De�nition 2.2.2 Let F be a signature and let V be an enumerable set of variables
denoted by x; y; z; . . . where F \ V = �. The set T (F ;V) of all terms built from F and
V is the smallest set such that

� V � T (F ;V);

� if f 2 Fn and t1; . . . ; tn 2 T (F ;V) then f(t1; . . . ; tn) 2 T (F ;V).

The set T (F ;V) is sometimes denoted by T . Terms not containing variables are called

ground terms. The set of all ground terms built from F is denoted by T (F). A term t is
linear if every variable in t occurs only once.

De�nition 2.2.3 Let 2 be an extra constant. A context C[; . . . ; ] is a term in T (F [

f2g;V). If C[; . . . ; ] is a context with n occurrences of 2 and t1; . . . ; tn 2 T (F ;V) then

C[t1; . . . ; tn] is the result of replacing from left to right the occurrences of 2 by t1; . . . ; tn. A
context containing precisely one occurrence of 2 is denoted by C[ ]. If t has an occurrence
of some (function or variable) symbol e then we write e 2 t. The variable occurrence z of

C[z] is fresh if z 62 C[ ].

De�nition 2.2.4 Let t 2 T (F ;V).

1. The height �(t) of t is de�ned by

�(t) =

(
1 + maxf�(t1); . . . ; �(tn)g if t � f(t1; . . . ; tn) and n > 0;
1 otherwise:
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2. Let N+ be the set of positive integers. A position (or occurrence) is a element of

N �
+, i.e., a �nite sequence of positive integers. The empty position is denoted by

" and the concatenation of positions p and q is denoted by p:q. The set Pos(t) of

positions in t is de�ned as follows:

Pos(t) =

(
f"g if t 2 V ;

f"g [ f i:p j 1 � i � n ; p 2 Pos(ti) g if t � f(t1; . . . ; tn):

Positions are partially ordered by the pre�x ordering �, i.e., p � q if there exists r

such that p:r = q. In this case we de�ne q=p as r. If p 6� q and q 6� p then we say

that p and q are disjoint, and write p ? q. The depth j p j of a position p is de�ned

by

j p j =

(
0 if p = ";

1 + j q j if p = i:q:

3. If p 2 Pos(t) then the subterm tjp of t at a position p is de�ned by

tjp �

(
t if p = ";

tijq if t � f (t1; . . . ; tn) and p = i:q:

If s is a subterm of t then we write s � t. A subterm s of t is proper if s 6� t. We

write s � t to indicate that s is a proper subterm of t.

4. If p 2 Pos(t) then the symbol t(p) at p of t is de�ned as follows:

t(p) =

(
tjp if tjp 2 V;
f if tjp � f(t1; . . . ; tn):

The set of variable positions in t is denoted by PosV(t), i.e., PosV(t) = f p 2

Pos(t) j t(p) 2 V g. We de�ne PosF(t) as Pos(t)nPosV(t). Hence PosF(t) = f p 2
Pos(t) j t(p) 2 F g.

5. If p 2 Pos(t) and s 2 T (F ;V) then the term t[s]p obtained from t by replacing the
subterm tjp with s is de�ned as follows:

t[s]p �

(
s if p = ";

f(t1; . . . ; ti[s]q; . . . ; tn) if t � f(t1; . . . ; tn) and p = i:q:

If p1; . . . ; pn 2 Pos(t) are pairwise disjoint then we write t[s1; . . . ; sn]p1;...;pn instead

of t[s1]p1 � � � [sn]pn .

Example 2.2.5 Let F = f f; g; a; b g. Consider the linear term t � f(g(x); f (g(a); y)).
We have �(t) = 4, Pos(t) = f "; 1; 2; 1:1; 2:1; 2:2; 2:1:1 g and PosV(t) = f 1:1; 2:2 g.

Then tj2:1 � g(a), t(1) = g and t[g(b)]2 � f (g(x); g(b)).

De�nition 2.2.6 A substitution � is a mapping from V to T (F ;V). Every substitu-

tion � is extended to a homomorphism from T (F ;V) to T (F ;V), i.e., �(f(t1; . . . ; tn)) �

f(�(t1); . . . ; �(tn)) for each n-ary function symbol f and terms t1; . . . ; tn. A variable re-

naming is a bijective substitution. A term s is an instance of a term t if there exists a

substitution � such that s � �(t). We write t� instead of �(t).

6



De�nition 2.2.7 A term rewriting system (TRS) is a pair (F ;R) consisting of a signature

F and a �nite set R of rewrite rules. A rewrite rule is a pair hl; ri of terms in T (F ;V)

such that:

(1) l 62 V,

(2) any variable in r also occurs in l.

We write l ! r for hl; ri. An instance of the left-hand side of a rewrite rule is a redex.

The rewrite rules of a term rewriting system (F ;R) de�ne a reduction relation !R on

T (F ;V) as follows: t!R s i� there exist a rewrite rule l ! r 2 R, a position p 2 Pos(t)
and a substitution � such that tjp � l� and s � t[r�]p. We call r� the contractum of l�.

We may write t
p

!R s or t
�
!R s to specify the redex position p or the redex occurrence

� � l� of t in this reduction. When no confusion can arise, we omit the subscript R.

Example 2.2.8 Let F = f add; mult; s; 0 g and

R =

8>>><
>>>:

add(x; 0)! x

add(x; s(y))! s(add(x; y))
mult(x; 0)! 0

mult(x; s(y))! add(mult(x; y); x):

We have the following reduction sequence (at each step the underlined redex is contracted):

mult(add(s(0); 0); s(s(0))) !R add(mult(add(s(0); 0); s(0)); add(s(0); 0))

!R add(mult(s(0); s(0)); add(s(0); 0))

!R add(add(mult(s(0); 0); s(0)); add(s(0); 0))

!R add(add(0; s(0)); add(s(0); 0))

!R add(s(add(0; 0)); add(s(0); 0))

!R add(s(0)); add(s(0); 0))

!R add(s(0); s(0))

!R s(add(s(0); 0))

!R s(s(0)):

All notions de�ned in the previous section for abstract reduction systems carry over

to term rewriting systems by associating the ARS hT (F ;V);!Ri with the TRS (F ;R).

We sometimes write R instead of (F ;R) if the signature is clear from the context.

De�nition 2.2.9 Let R be a TRS.

1. R is ground (linear) if for every l ! r 2 R, l and r are ground (linear).

2. R is left-linear (right-linear) if for every l ! r 2 R, l (r) is linear.

Example 2.2.10 Consider the TRS R of Example 2.2.8. R is left-linear. But R is not

right-linear (linear) because the right-hand side of the fourth rewrite rule is non-linear.
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De�nition 2.2.11 Let l ! r and l0 ! r0 be two rewrite rules of a TRS R. We assume

that they are renamed to have no common variables. Suppose that p is a position in

PosF(l) such that ljp and l0 are uni�able with a most general uni�er �. Then we say that

l ! r and l0 ! r0 are overlapping and the pair hl[r0]p�; r
0�i is called a critical pair of R.

If l ! r and l0 ! r0 are same rule, then we do not consider the case p = ". A critical pair
hl[r0]p�; r

0�i with p = " is an overlay. A critical pair ht; si is trivial if t � s.

Example 2.2.12 Let

R =

8><
>:

f(g(x); y)! f(x; x)
f(x; a)! g(x)

g(b)! b:

Then R has three critical pairs hf(x; x); g(g(x))i, hg(g(x)); f(x; x)i and hf(b; y); f(b; b)i.

The critical pairs hf(x; x); g(g(x))i and hg(g(x)); f(x; x) are overlays.

De�nition 2.2.13 Let R be a TRS.

1. R is non-overlapping if R has no critical pair.

2. R is orthogonal if R is left-linear and non-overlapping.

3. R is almost orthogonal ifR is left-linear and all critical pairs ofR are trivial overlays.

Theorem 2.2.14 ([29]) Every orthogonal TRS is Church-Rosser. 2

2.3 Sequential TRSs

2.3.1 Sequentiality

Huet and L�evy [13] investigated normalizing one-step reduction strategies for orthogonal
TRSs. They proved that every orthogonal TRS has a normalizing call-by-need strategy.

We �rst explain this theorem.

Let A : t0 ! t1 ! � � � ! tn be a reduction sequence. We denote the �rst i steps of

A by A[i] and denote the rest of A by A[i; n]. We may write A : t0 !
� tn instead of

A : t0 ! t1 ! � � � ! tn.

De�nition 2.3.1 Let A : t! s be a reduction step contracting the redex at p 2 Pos(t)

by the rewrite rule l ! r 2 R. Let q 2 Pos(t). The set qnA of descendants of q in s by
A is de�ned as follows:

qnA =

8><
>:
f q g if q < p or q ? p;

f p:p3:p2 j rjp3� ljp1 g if q = p:p1:p2 with p1 2 PosV(l)

� otherwise:

If Q � Pos(t) then QnA denotes the set
S
q2Q qnA. The notion of descendant extends to

reduction sequences as follows. Let A : t0 ! t1 ! � � � ! tn. The set qnA is de�ned by

qnA = f q g if n = 0 and qnA = (qnA[1])nA[1; n] if n > 0.
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Example 2.3.2 Let

R =

(
f(g(x); y)! f(x; f(x; a))

h(x)! g(x)

and A : t � f(h(a); a) ! f(g(a); a) ! f(a; f(a; a)) � t0. Then position 1:1 has two

descendants 1 and 2:1 in t0. All positions in t except 1:1 have no descendants in t0.

De�nition 2.3.3 Let R be a TRS.

1. A redex position p in a term t is needed if in every reduction sequence from t to a

normal form a redex at some descendant of p is contracted. In this case we also say

that the redex at position p is needed.

2. The needed reduction !N is de�ned on T as follows: t !N s i� t
p

! s and p is

needed in t.

Note that if a term t does not have a normal form then all redexes in t are needed.

Example 2.3.4 Consider the TRS R of Example 2.3.2 and the term t � f(h(a); h(a)).

The redex h(a) in t at position 1 is needed. However, the redex h(a) in t at position 2

is not needed because we have f(h(a); h(a)) ! f (g(a); h(a)) ! f(a; f(a; a)), which is a
needed reduction sequence.

Theorem 2.3.5 ([13]) Let R be an orthogonal TRS. The needed reduction !N is a

normalizing reduction strategy for R. 2

The theorem proved in [13] is actually stronger: if a term t has a normal form then

there exists no in�nite reduction sequence starting with t in which in�nitely many needed

redexes are contracted. Middeldorp [19] generalized this theorem to computations to
root-stable term.

De�nition 2.3.6 Let R be a TRS.

1. A term t is root-stable if there exists no redex s such that t!� s.

2. A redex position p (or a redex tjp) in a term t is root-needed if in every reduction

sequence from t to a root-stable term a redex at some descendant of p is contracted.

Theorem 2.3.7 ([19]) Let R be an orthogonal TRS.

(1) Every non-root-stable term has a root-needed redex.

(2) If a term t is reducible to some root-stable term then every in�nite reduction se-

quence starting with t in which in�nitely many root-needed redexes are contracted

contains a root-stable term. 2

The above theorems give us a normalizing reduction strategy. However, needed redexes
are de�ned as redexes which contracted in all reduction to the normal form. Hence, in
order to decide which are needed redexes, we have search all reduction to the normal form

i.e., we require look-ahead. Huet and L�evy introduced the class of sequential TRSs in

which call-by-need computations are possible without look-ahead.
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De�nition 2.3.8 Let (F ;R) be a TRS. We add a new constant 
 to F . Elements of

T (F [ f
g;V) are called 
-terms. The set T (F [ f
g;V) is abbreviated to T
. An


-normal form is an 
-term without redexes, containing at least one occurrence of 
.

Only terms containing neither redexes nor 
's are called normal forms. The set of all
normal forms is denoted by NFR. t
 denotes the 
-term obtained from t by replacing all
variables in t with 
. The set Red is de�ned by Red = f l
 j l ! r 2 R g.

De�nition 2.3.9

1. The pre�x ordering � on T
 is de�ned as follows:

� 
 � t for all t 2 T
,

� f (s1; . . . ; sn) � f(t1; . . . ; tn) if si � ti for any 1 � i � n,

� x � x for all x 2 V .

We write t < s if t � s and t 6� s.

2. Two 
-terms t and s are compatible, written by t " s, if there exists an 
-term r

such that t � r and s � r; otherwise, t and s are incompatible which is indicated by
t# s. The least upper bound of two 
-terms t and s is denoted by tt s if t " s. Let
S � T
. We write t " S if there exists some s 2 S such that t " s; otherwise, t#S.

Example 2.3.10 Let R be the TRS of Example 2.3.2. Then Red = f f(g(
);
); h(
) g.

We have f(
; f(
;
)) � f(g(
); f(
; a)) and f(
; f(g(a);
)) " f(h(
); f(
; x)). We
obtain f(
; f(g(a);
)) t f(h(
); f(
; x)) � f(h(
); f(g(a); x)).

De�nition 2.3.11 Let P be a predicate on T
. An 
-position p of an 
-term t is an
index with respect to P if for every 
-term s with t � s, P (s) = true implies sjp 6� 
.
The set of indices of t with respect to P is denoted by IP (t).

Let t 2 T and p 2 Pos(t). Then we can see that p 2 IP (t[
]p) i� P (t[
]p) = false.

De�nition 2.3.12 LetR be a TRS. We de�ne the predicate nf on T
 as follows: nf(t) =

true i� t!�
R s for some normal form s.

Note that if R is a left-linear TRS then nf is a monotonic predicate, i.e., nf(t) = true

implies nf(s) = true whenever t � s. The following lemma can be easily proven.

Lemma 2.3.13 Let R be an orthogonal TRS. Let t 2 T . A redex position p of t is

needed i� p 2 Inf (t[
]p). 2

De�nition 2.3.14 A left-linear TRS is sequential if every 
-normal form has an index

w.r.t. nf

Example 2.3.15 Let R be Berry's TRS, i.e.,

R =

8><
>:

f(a; b; x)! c

f(b; x; a)! c

f(x; a; b)! c:

Consider the 
-normal form t � f(
;
;
). Position 1 is not an index of t w.r.t. nf

because we have the 
-term s � f(
; a; b) with t � s and nf(s) = true. Similaly, neither
position 2 nor 3 is an index of t w.r.t. nf . Thus R is not sequential.

Unfortunately, in general neither indices w.r.t. nf nor sequentiality is decidable.
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2.3.2 Strong Sequentiality

Huet and L�evy [13] formalized strong sequentiality which is a su�cient condition for

sequentiality. Strong sequentiality is a property based on the left-hand sides of the rewrite

rules of TRSs alone. They introduced the arbitrary reduction in order to forget the right-

hand sides of the rewrite rules.

De�nition 2.3.16 Let R be a TRS.

1. The arbitrary reduction!? on T
 is de�ned as follows: t!? s i� s � t[s0]p for some
redex position p in t and s0 2 T
.

2. The predicate nf? on T
 is de�ned as follows: nf?(t) = true i� t !�
? s for some

normal form s.

De�nition 2.3.17 A left-linear TRS is strongly sequential if every 
-normal form has

an index w.r.t. nf?.

Indices of a term t w.r.t. nf? are indices of t w.r.t. nf because !R�!?. Thus every

strongly sequential TRS is sequential.
Huet and L�evy [13] gave a procedure to compute the indices with respect to nf?.

De�nition 2.3.18 The 
-reduction !
 is de�ned on T
 as follows: t!
 s i� s � t[
]p
for some p 2 Pos(t) such that tjp " Red and tjp 6� 
. The set of normal forms with
respect to 
-reduction is denoted by NF
.

Example 2.3.19 Let

R =

(
f(x; f(y; a))! x

f(a; b)! a

and t � f(f(
; b); f(a;
)). Then Red = f f(
; f (
; a)); f(a; b) g and we have the follow-
ing �ve 
-reduction sequences from t to the normal form of t w.r.t. 
-reduction:

t!
 
;

t!
 f(
; f(a;
))!
 
;

t!
 f(
; f(a;
))!
 f(
;
)!
 
;

t!
 f(f(
; b);
)!
 
;

t!
 f(f(
; b);
)!
 f(
;
)!
 
:

The following lemma holds for 
-reduction.

Lemma 2.3.20 ([18]) 
-reduction is Church-Rosser and strongly normalizing. 2

De�nition 2.3.21 Let t be an 
-term. The normal form of t with respect to 
-reduction

is denoted by !(t).

Note that !(t) is well-de�ned according to the previous lemma. We write e 2 !(t) if

the normal form of t with respect to 
-reduction has an occurrence of some symbol e.

Theorem 2.3.22 ([13]) Let t be an 
-term and let p be an 
-position in t. Then p is

an index of t w.r.t. nf? i� z 2 !(t[z]p) where z is fresh. 2

11



Example 2.3.23 Consider the TRS R of Example 2.3.19. Using Theorem 2.3.22, we

obtain Inf?(f(
;
)) = f 2 g because !(f(z;
)) � 
 and !(f(
; z)) � f (
; z).

The decidability of strong sequentiality for orthogonal TRSs was �rst shown by Huet
and L�evy [13] and then simpli�ed proofs were presented by Klop and Middeldorp [18].

Jouannaud and Sad� [15] proved the decidability of strong sequentiality assuming left-

linearity instead of orthogonality. Also this result was proven by Comon [3].

Theorem 2.3.24 Strong sequentiality of left-linear TRSs is decidable. 2

We can obtain the following decidable reduction strategy for strongly sequential TRSs.

De�nition 2.3.25 The index reduction !I is de�ned on T as follows: t !I s i� t
p

! s

for some p with p 2 Inf?(t[
]p).

Huet and L�evy [13] showed that index reduction is a normalizing strategy for every
orthogonal strongly sequential TRSs. Toyama [30] generalized this result to the class of

root balanced joinable strongly sequential TRSs. The root reduction t!r s is de�ned by

t
p

! s and p = ".

De�nition 2.3.26 A TRS R is root balanced joinable if for any critical pair hp; qi of R,

there exist a term t and k � 0 such that p!k

r
t and q !k

r
t.

Theorem 2.3.27 ([30]) Let R be a left-linear TRS. If R is root balanced joinable and

strongly sequential then R has the normal form property and index reduction is a nor-

malizing strategy for R. 2

Huet and L�evy gave a syntactic characterization, which is called left-normal [25], for
orthogonal strongly sequential TRSs in [13]. Toyama [30] removed the non-overlapping

condition.

De�nition 2.3.28 A TRSR is left-normal if in every rewrite rule l ! r 2 R the function
symbols in l precede the variable in l.

Example 2.3.29 The TRS of Example 2.3.2 is left-normal. The TRS of Example 2.3.19

is not left-normal since the variables x and y precede the constant a in the left-hand side
f(x; f(y; a)).

Theorem 2.3.30 ([30]) Let R be a left-linear left-normal TRS. Then R is strongly

sequential. Furthermore, if p is the leftmost-outermost redex position of a term t then p

is an index of t[
]p w.r.t. nf?. 2

2.3.3 NV-sequentiality

Oyamaguchi [28] introduced a more general su�cient condition for sequentiality, which

is called NV-sequentiality. NV-sequentiality is not only based on the analysis of the left-

hand sides of the rewrite rules of TRSs but also on the non-variable parts of the right-hand
sides.

De�nition 2.3.31 Let R be a TRS.

12



Left-linear TRSs

Sequential TRSs

NV-sequential TRSs

Strongly sequential TRSs

Figure 2.1.

1. The reduction relation !nv on T
 is de�ned as follows: t !nv s i� there exist a

rewrite rule l ! r 2 R, a position p 2 Pos(t) and a substitution � such that tjp � l�

and s � t[s0]p for some s
0 � r
.

2. The predicate term on T
 is de�ned as follows: term(t) = true i� t!�
nv

s for some

s 2 T .

Example 2.3.32 Let

R =

8><
>:

f(g(a); x)! x

f(a; x)! g(f(x; x))

g(x)! g(x)

and t � f(f(a; a);
). We have term(t) = true because t !nv f(g(f(a; a));
) !nv

f(g(a);
)!nv a. Note that nf (t) = false.

De�nition 2.3.33 A left-linear TRS is NV-sequential if every 
-normal form has an

index w.r.t. term.

Oyamaguchi [28] showed that every NV-sequential TRS is sequential and the class of
NV-sequential TRSs properly includes the class of strongly sequential TRSs.

Theorem 2.3.34 ([28]) Let R be a left-linear TRS. Let t 2 T
 and p 2 Pos(t) with
tjp � 
. It is decidable whether p is an index of t w.r.t. term in polynomial time. 2

Oyamaguchi [28] also showed that NV-sequentiality of orthogonal TRSs is decidable.

This result was generalized to left-linear TRSs by Comon [3].

Theorem 2.3.35 NV-sequentiality is a decidable property of left-linear TRSs. 2
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2.4 Tree Automata

Tree automata are generalization of sequential automata. Tree automata are useful for

the decision problems in term rewriting [3, 5, 6, 8, 14]. Following Comon et al. [4], we
adopt the de�nition of tree automata which is based on rewrite rules. More information

on tree automata can be found in [4, 10].

De�nition 2.4.1 A tree automaton is a tuple A = (F ; Q;Qf ;�) where F is a signature,

Q is a �nite set of states, Qf � Q is a set of �nal states and � is a set of ground rewrite

rules of the form f(q1; . . . ; qn)! q or q ! q0 where f 2 F , q1; . . . ; qn; q; q
0 2 Q. The latter

rules are called �-rules.

We use !A for the reduction relation !� on T (F [Q).

De�nition 2.4.2

1. A term t 2 T (F) is accepted by A if t!�
A q for some q 2 Qf .

2. The tree language L(A) recognized by A is the set of all terms accepted by A.

3. A set L � T (F) is recognizable if there exists a tree automaton A such that L =
L(A).

De�nition 2.4.3

1. A tree automaton A is deterministic if there are neither �-rules nor di�erent rules

with the same left-hand side.

2. A tree automaton A is complete if there is at least one rule f(q1; . . . ; qn) ! q in �
for all f 2 F and q1; . . . ; qn 2 Q.

The following properties of tree automata are well-known [4, 10].

Lemma 2.4.4 Let L be a recognizable set. Then there exists a complete and determin-

istic tree automaton recognizing L. 2

Lemma 2.4.5 The class of recognizable tree languages is closed under union, intersection

and complementation. 2

Lemma 2.4.6 The emptiness problem for tree automata is decidable. 2

14



Chapter 3

NVNF-Sequentiality of Left-Linear

TRSs

In this Chapter, we introduce an extension of NV-sequentiality [28]. This sequentiality

is called NVNF-sequentiality. Like NV-sequentiality, NVNF-sequentiality is based on the

analysis of left-hand sides and the non-variable parts of the right-hand side of rewrite
rules. However, the reachability to a normal form is considered in NVNF-sequentiality.

We �rst show that the class of NVNF-sequential TRSs properly includes the class of
NV-sequential TRSs. Next we prove the decidability of indices with respect to NVNF-

sequentiality. This implies that every orthogonal NVNF-sequential TRS has a decidable
normalizing call-by-need strategy.

3.1 NVNF-Sequentiality

In this section we explain the notion of NVNF-sequentiality. NVNF-sequentiality is
de�ned by using the reduction !nv like NV-sequentiality. But indices w.r.t. NVNF-
sequentiality are determined by the reachability to normal forms. The following predicate

was given in [28].

De�nition 3.1.1 Let R be a TRS. The predicate nvnf on T
 is de�ned as follows:
nvnf(t) = true i� t!�

nv
s for some normal form s.

Note that for every 
-term t, nvnf(t) = true implies term(t) = true.

Example 3.1.2 Let F1 = f f; a; b; c g and

R1 =

8>>><
>>>:

f(a; b; x)! a

f(b; x; a)! b

f(x; a; b)! c

c! c:

Consider the 
-term t � f(
;
;
). Position 1 is an index of t w.r.t. nvnf . But the
position 1 is not an index of t w.r.t. term because we have term(f(
; a; b)) = true.

De�nition 3.1.3 A left-linear TRS is NVNF-sequential if every 
-normal form has an
index with respect to nvnf .
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The decidability of NVNF-sequentiality was proven by Comon [3].

Theorem 3.1.4 NVNF-sequentiality of left-linear TRSs is decidable. 2

In the remainder of this section we discuss the relationship between sequentiality,

NVNF-sequentiality and NV-sequentiality.

Lemma 3.1.5

(i) Every NV-sequential TRS is NVNF-sequential.

(ii) Every NVNF-sequential TRS is sequential.

Proof.

(i) Suppose that R is NV-sequential. Let t be an 
-normal form. Then t has an index
p w.r.t. term. We will show that p is an index w.r.t. nvnf . Let s be an 
-term such

that t � s and nvnf(s) = ture. Since term(s) = ture and p is an index of t w.r.t.

term, we obtain sjp 6� 
. Thus p is an index of t w.r.t. nvnf .

(ii) Similar to (i). 2

We now prove that NVNF-sequentiality is a proper extension of NV-sequentiality.

Lemma 3.1.6 The TRS (F1;R1) of Example 3.1.2 is NVNF-sequential but not NV-

sequential.

Proof. Because the 
-normal form f(
;
;
) has no indices w.r.t. term, R1 is not NV-
sequential. In order to show that R1 is NVNF-sequential, we �rst prove the claim: for
every 
-term t, if p 2 Invnf(t[
]p) and q 2 Invnf(tjp) then p:q 2 Invnf(t).

Proof of the claim. Because !nv =!R1
, nvnf(t) = true i� nf(t) = true for every


-term t. Thus it su�ces to show that if p 2 Inf (t[
]p) and q 2 Inf (tjp) then p:q 2 Inf(t).
This follows from Theorem 6.4.10 in Chapter 6 because every variable in the left-hand
side of the rewrite rule occurs at depth one.

We now prove that every 
-normal form t has an index w.r.t. nvnf . The proof is by

induction on the size of t. The case t � 
 is trivial. Let t � f(t1; t2; t3). We have the
following four cases.

Case 1. t1 is an 
-normal form. Then by induction hypothesis, t1 has an index w.r.t.

nvnf . Since 1 2 Invnf(f(
; t2; t3)), it follows from the claim that t has an index w.r.t.

nvnf .

Case 2. t1 � a. If t2 contains 
's then t2 has an index w.r.t. nvnf by induction
hypothesis. Since we have 2 2 Invnf(f(a;
; t3)), it follows from the claim that t has an

index w.r.t. nvnf . Otherwise, t3 is an 
-normal form. From induction hypothesis, t3 has
an index w.r.t. nvnf . We can obtain 3 2 Invnf(f(a; t2;
)) because t2 is a normal form

and t2 6� b. Therefore from the claim, t has an index w.r.t. nvnf .
Case 3. t1 � b. Similar to Case 2.

Case 4. Otherwise, t2 or t3 is an 
-normal form. Thus from induction hypothesis,

t2 or t3 has an index w.r.t. nvnf . Because we can obtain 2 2 Invnv(f(t1;
; t3)) and
3 2 Invnv(f(t1; t2;
)), it follows from the claim that t has an index w.r.t. nvnf . 2
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Figure 3.1.

Remark. The claim in the proof of Lemma 3.1.6 does not hold for arbitrary left-linear
TRSs. Let R = f f(g(x); a) ! a g. Consider the 
-normal form f(g(
);
). We have

1 2 Invnf(f(
;
)) and 1 2 Invnf(g(
)). However, 1:1 62 Invnf(f(g(
);
)).

From Lemmas 3.1.5 and 3.1.6, we obtain the following theorem.

Theorem 3.1.7 The class of NVNF-sequential TRSs properly includes the class of NV-

sequential TRSs. 2

3.2 Decidability of Indices with respect to NVNF-

Sequentiality

In this section we show that for a given 
-term t, it is decidable whether an 
-position is

an index of t w.r.t. nvnf . Throughout this section we assume that we are dealing with
left-linear TRSs.

We �rst give a characterization of indices w.r.t. nvnf . For this purpose, we introduce

the 
V -reduction [28].

De�nition 3.2.1 The 
V -reduction is de�ned on T
 as follows: t !
V s i� there exist

l ! r 2 R and p 2 Pos(t) such that tjp " l
, tjp 6� 
 and s � t[r
]p.

Example 3.2.2 Let

R =

(
f(x; f(a; y))! g(y)
f(g(x); b)! f(x; a):

We have the 
V -reduction t � f(
; f(g(a);
)) !
V f(
; g(
)). We have also the 
V -

reduction sequence t!
V f(
; f(
; a))!
V g(
).
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The following lemma expresses a relationship between 
V -reduction !
V and !nv.

Lemma 3.2.3

(i) If t!�
nv

s and t0 � t then t0 !�

V

s0 for some s0 � s.

(ii) If t!�

V

s then t0 !�
nv

s for some t0 � t.

Proof.

(i) We will prove the claim that if t!nv s and t0 � t then t0 !�


V
s0 for some s0 � s.

Let t!nv s. Then there exist l ! r 2 R, p 2 Pos(t) and a substitution � such that

tjp � l� and s � t[s1]p for some s1 � r
. We �rst consider the case p 62 Pos(t0).

Clearly t0 � s. Thus the claim holds. Next we consider the case p 2 Pos(t0).

If t0jp � 
 then t0 � s and therefore the claim holds. Otherwise, we can obtain

t0 !
V t0[r
]p because t
0jp " l
. We have t0[r
]p � t[s1]p � s. Hence the claim holds.

Using the claim, we can prove (i) by induction on the length of t!�
nv

s.

(ii) This is proven by induction on the length of t !�

V

s. The case of zero length
is trivial. Assume that t !
V s1 !

�

V

s where tjp " l
 ; tjp 6� 
 and s1 � t [r
]p
for l ! r 2 R and p 2 Pos(t). From induction hypothesis, there exists an 
-term

s2 such that s2 !
�
nv

s and s2 � s1. Let t0 � s2[tjpt l
]p. Because s2jp � r
, we
have t0 !nv s2 and thus t0 !�

nv
s. Since s2 � t[r
]p and tjpt l
 � tjp, we obtain

t0 � s2[tjpt l
]p � t[tjp]p � t. 2

We use tx to denote the term obtained from t 2 T
 by replacing all 
's with x.

Lemma 3.2.4 Let t be an 
-term and let p be an 
-position in t. Let z be a variable
such that z 62 t. Then p is not an index of t w.r.t. nvnf i� t[z]p !

�

V

s for some s

containing neither redexes nor z's.

Proof.

()) Suppose that p is not an index of t w.r.t. nvnf . Then there exists an 
-term t0

such that t0 � t, t0jp � 
 and nvnf(t0) = true. Because t does not contain z's, we
can assume w.l.o.g. that t0 !�

nv
s for some normal from s with z 62 s. From the left-

linearity of R, we obtain t0[z]p !
�
nv

s. According to Lemma 3.2.3 (i), t0[z]p !
�

V

s0

for some s0 � s. Becase s contains neither redexes nor z's, neither does s0.

(() We assume that t[z]p !
�

V

s for s containing neither redexes nor z's. Then from

by Lemma 3.2.3 (ii), t0 !�
nv

s for some t0 � t[z]p. Let t
00 � t0

x
[
]p and s0 � sx. We

can easily show t00 !�
nv

s0. Because s does not cotain redexes, s0 is a normal form

and hence nvnf(t00) = true. Clearly t00 � t and t00jp � 
. Therefore p is not an

index of t w.r.t. nvnf . 2

We next show that if there exists an 
-term s containing neither redexes nor z's such

that t[z]p !
�

V

s then we have an upper bound of the least hight of such 
-terms.

De�nition 3.2.5 Let R be a TRS. The set RHR is de�ned by RHR = f r
 j l ! r 2 Rg.
RH�

R is the smallest set such that RHR � RH�
R and if t 2 RH�

R, p 2 Pos(t) and r 2 RHR

then t[r]p 2 RH
�
R.
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It is clear that if r 2 RHR and r !�

V

t then t 2 RH�
R.

Lemma 3.2.6 If t!+


V
s then there exist p1; . . . ; pn 2 Pos(t) which are pairwise disjoint

and satisfy the following conditions.

1. s � t[sjp1 ; . . . ; sjpn ]p1;...;pn ,

2. for each 1 � i � n, there exists ri 2 RHR such that tjpi !
+


V
ri !

�

V

sjpi.

Proof. We assume the following 
V -reduction sequence:

t � t0
q0
!
V t1

q1
!
V � � �

qn
!
V tn+1 � s

where n � 0. Let qi1 ; . . . ; qik be the minimal positions in fq0; q1; . . . ; qng w.r.t. �. Then

qi1 ; . . . ; qik 2 Pos(t) and they are pairwise disjoint. By the minimality of qi1 ; . . . ; qik , they
satisfy the conditions in the lemma. 2

De�nition 3.2.7 Let R be a TRS. The maximum hight of the left-hand sides and the

right-hand sides of rewrite rules in R is denoted by �R.

Lemma 3.2.8 Let r 2 RHR. Let r !�

V

s and �(s) > �R � n for some n � 0. Then
there exist p0; p1; . . . ; pn 2 Pos(s) such that:

1. p0 < p1 < � � � < pn,

2. for each 0 � i � n, there exists ri 2 RHR such that r !+


V
s[ri]pi and ri !

�

V

sjpi.

Proof. We prove the lemma by induction on n. Base step. The case n = 0 is trivial
because we can take " as p0. Induction step. We use induction on the lengthm of r !�


V
s.

Assume that

r � t0
q0
!
V t1

q1
!
V � � � � �

qm�1
!
V tm � s:

Let S be the set of minimal positions in fq0; q1; . . . ; qm�1g w.r.t. �. Because �(s) > �R,

S is not empty and for any q 2 S, q 2 Pos(r) and q 2 Pos(s).
Case 1. S = f"g. Then we have tj 2 RHR for some j � 1. Applying induction

hypothesis on m to tj !
�

V

s, we obtain p0; p1; � � � ; pn 2 Pos(s) such that: 1. p0 < p1 <

� � � < pn, 2. for each 0 � i � n, there exists ri 2 RHR such that tj !
+


V
s[ri]pi and

ri !
�

V

sjpi. Clearly r !+


V
s[ri]pi for each 0 � i � n. Thus the lemma holds.

Case 2. S 6= f"g. Let S = fq01; . . . ; q
0
m0g with m0 > 0. Then from the minimality

of q01; . . . ; q
0
m0 , s � r[sjq01 ; . . . ; sjq0m0

]q01;...;q0m0
and for each 1 � i � m0 there exist r0

i
2

RHR such that rjq0
i
!+


V
r0
i
!�


V
sjq0

i
. Because �(s) > �R � n, we have j such that

�(sjq0
j
) > �R � (n � 1). Applying induction hypothesis on n to r0

j
!�


V
sjq0

j
, we obtain

p0; � � � ; pn�1 2 Pos(sjq0
j
) such that: 1. p0 < � � � < pn�1, 2. for each 0 � i � n � 1, there

exists ri 2 RHR such that r0
j
!�


V
sjq0

j
[ri]pi and ri !

�

V

sjq0
j
:pi
. Let p00 = " and p0

i
= q0

j
:pi�1

for each 1 � i � n. Then p00 < p01 < � � � < p0
n
2 Pos(s) and we have r !�


V
s[r]p0 and

r !�

V

sjp0 . Because r !�

V

s[r0
j
]q0
j
, we obtain r !�


V
s[sjq0

j
[ri�1]pi�1 ]q0j � s[ri�1]p0

i
and

ri�1 !
�

V

sjp0
i
for each 1 � i � n. Therefore the lemma holds. 2

De�nition 3.2.9 Let R be a TRS. Let t be an 
-term. The pre�x 
-term prefR(t) of t

is de�ned by prefR(t) � t[
; . . . ;
]p1;...;pn where fp1; . . . ; png = f p 2 Pos(t) j j p j = �Rg.
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Lemma 3.2.10 Let t and s be 
-terms without redexes. Let p 2 Pos(t). If prefR(tjp) �

prefR(s) then t[s]p does not contain redexes.

Proof. From the left-linearity of R. 2

De�nition 3.2.11 Let R be a TRS. The constant �R is de�ned as follows:

�R = �R � ( jf prefR(t) j t 2 RH�
R gj � jRj+ 1)

where jAj denotes the number of elements in a set A.

Lemma 3.2.12 Let t be an 
-term and let p be an 
-position in t. Let z be a variable

with z 62 t. Then p 62 Invnf(t) i� there exists an 
-term s containing neither redexes nor
z's such that t[z]p !

�

V

s and �(s) � �(t) + �R.

Proof.

()) Assume that p 62 Invnf(t). Using Lemma 3.2.4, we can obtain the minimal 
-

term s containing neither redexes nor z's such that t[z]p !
�

V

s. Suppose �(s) >

�(t) + �R. Since s does not contain z's, t[z]p !
+


V
s. From Lemma 3.2.6, there

exist p1; . . . ; pn 2 Pos(s) such that: 1. s � t[z]p[sjp1 ; . . . ; sjpn ]p1;...;pn , 2. for each
1 � i � n, there exists ri 2 RHR such that t[z]pjpi !

+


V
ri !

�

V

sjpi. By the
assumption that �(s) > �(t) + kR, �(sjpj ) > �R for some j. From Lemma 3.2.8 and

the de�nition of �R, we can obtain r 2 RHR and q1; q2 2 Pos(sjpj ) with q1 < q2 such
that prefR(sjpj :q1) � prefR(sjpj :q2) and for i = 1; 2, rj !

�

V

sjpj [r]qi and r !
�

V

sjpj :qi .
Let s0 � s[sjpj :q2 ]pj :q1 , see Figure 3.2. Then z 62 s0 and it follows from Lemma 3.2.10

that s0 does not contain redexes. Because rj !
�

V

sjpj [r]q1 and r !�

V

sjpj :q2 , we

have t[z]p !
�

V

s[rj]pj !
�

V

s[sjpj [r]q1 ]pj � s[r]pj :q1 !
�

V

s[sjpj :q2 ]pj :q1 � s0. However,
this contradicts the minimality of s.

(() From Lemma 3.2.4. 2

By Lemma 3.2.12, in order to determine whether an 
-position p in an 
-term t is an

index w.r.t. nvnf , we need to check the reachability from t[z]p to a �nite number of 
-
terms by 
V -reduction. It was shown by Oyamaguchi [28] that 
-reduction is simulated

by the usual reduction of some TRS.

De�nition 3.2.13 Let R be a TRS. The TRS R
 is de�ned as follows:

R
 = f l ! r
 j l ! r 2 Rg [ f
! t j t � l
; l ! r 2 Rg:

From the assumption that R is left-linear, R
 is left-linear and right-ground (i.e., all

the right-hand side of its rewrite rules is ground).

Lemma 3.2.14 ([28]) Let R be a left-linear TRS.

(i) If t!�

V

s then t!�
R


s.

(ii) If t!�
R


s and t0 � t then t0 !�

V

s0 for some s0 � s. 2

We can replace !�

V

with !�
R


in Lemma 3.2.12.
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s s0

Figure 3.2.

Lemma 3.2.15 Let t be an 
-term and let p be an 
-position in t. Let z be a variable
with z 62 t. Then p 62 Invnf(t) i� there exists an 
-term s containing neither redexes nor

z's such that t[z]p !
�
R


s and �(s) � �(t) + �R.

Proof. From Lemmas 3.2.12 and 3.2.14. 2

It has been shown that the reachability problem is decidable for left-linear and right-

ground TRSs [5, 26]. Thus we obtain the following theorem.

Theorem 3.2.16 Let R be a left-linear TRS. Let t 2 T
 and p 2 Pos(t) with tjp � 
.
It is decidable whether p is an index of t w.r.t nvnf . 2
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Chapter 4

Index Reduction of Overlapping

TRSs

In this chapter, we investigate normalizing strategies for left-linear overlapping TRSs.

Huet and L�evy [13] showed that every orthogonal strongly sequential TRS has a decidable

normalizing strategy which is called index reduction. Toyama [30] extended this result
to root balanced joinable strongly sequential TRSs. In Section 4.1, we prove that index

reduction is normalizing for stable balanced joinable strongly sequential TRSs. This
class properly includes the class of root balanced joinable strongly sequential TRSs. In

Section 4.2, we discuss reduction strategies for NV-sequential TRSs which were introduced
by Oyamaguchi [28]. We introduce the notion of NV-stable balanced joinability and prove

that every NV-stable balanced joinable NV-sequential TRS has a decidable normalizing
strategy.

In this chapter we are dealing with left-linear TRSs only.

4.1 A Normalizing Strategy for Stable Balanced

Joinable TRSs

4.1.1 Stable Balanced Joinability

In this subsection, we de�ne stable balanced joinable TRSs. For that purpose, we need

the notions of transitivity, which was introduced by Toyama et al. [31], and stability for

indices w.r.t nf?. In the following we will refer to an index w.r.t. nf? as an index for
short. We write C[
I ] if the displayed occurrence of 
 in C[
] is an index. Thus by
Theorem 2.3.22, C[
I ] i� z 2 !(C[z]) where z is fresh. Let C[
I ] and let � be a redex.

Then � is also called an index of C[�] and we write C[�I ].

De�nition 4.1.1 The displayed index in C[
I ] is transitive if C
0[C[
I ]] for any C 0[
I ].

The transitive index is denoted by C[
T ].

Example 4.1.2 Let Red = f f(g(
)) g. The 
-occurrence in g(
) is an index. However,

this index in g(
) is not transitive because the 
-occurrence in f(g(
)) is not an index.

We recall properties of indices and transitive indices [13, 15, 18, 31].

Lemma 4.1.3
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(i) If C[
I ] and C[z] � C 0[z] where z is fresh, then C 0[
I ].

(ii) If C[C 0[
I ]] then C 0[
I ]. 2

Lemma 4.1.4 If C[
T ] and C[z] � C 0[z] where z is fresh, then C 0[
T ].

Proof. Let C 00[
I ]. Since C[
T ], we have C
00[C[
I ]]. Clearly C 00[C[z]] � C 00[C 0[z]]. By

Lemma 4.1.3 (i), it is obtained that C 00[C 0[
I ]]. Thus C
0[
T ]. 2

De�nition 4.1.5

� The displayed transitive index in C[
T ] is stable, which is denoted by C[
S], if

C�[
T ] for any substitution �.

� The stable reduction !S is de�ned as C[l�]!S C[r�] where C[
S] and l ! r 2 R.

Lemma 4.1.6 If t!S s and C[
I ] then C[t�]!I C[s�] for any �.

Proof. Let t � C 0[l�0] !S C 0[r�0] � s. From C 0[
S], it follows that C
0�[
T ] for any

�. By the de�nition of transitivity, we have C[C 0�[
I ]]. Thus C[t�] � C[C 0�[l�0�]] !I

C[C 0�[r�0�]] � C[s�]. 2

De�nition 4.1.7 A critical pair hp; qi is stable balanced joinable if p !k

S
t and q !k

S
t

for some t and k � 0. A TRS R is stable balanced joinable if every critical pair is stable
balanced joinable.

Note that every root balanced joinable TRS is stable balanced joinable because !r�

!S.

4.1.2 Normalizability of Index Reduction

In this subsection, we show that index reduction is normalizing for every stable balanced

joinable strongly sequential TRS. Our proof uses the theorem of Toyama [30] concerning
reduction strategies. We �rst explain this theorem.

De�nition 4.1.8 Let A = hD;!i be an ARS. We write a !! b if there exists a connec-

tion a !m1 �  n1 � !m2 �  n2 � � � !mp �  np b with
P
mi >

P
ni. We write a  ! b if

b !!a.

De�nition 4.1.9 Let A = hD;!i be an ARS. A reduction relation ! on D is balanced

weakly Church-Rosser if 8a1; a2; a3 2 D, a1 ! a2 and a1 ! a3 imply a2 !
k b and a3 !

k b

for some b 2 D and k � 0.

Theorem 4.1.10 ([30]) Let A = hD;!i be an ARS. Let !s be a reduction strategy

for ! such that:

(i) !s is balanced weakly Church-Rosser,

(ii) If a! b then a =s b or a !!s� $ �  !s b.

Then ! has the normal form property and !s is a normalizing strategy. 2
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Let � and �0 be two redex occurrences of t 2 T . Let � � C[s1; . . . ; sn] and

C[
; . . . ;
] 2 Red. We say that � and �0 (or �0 and � ) are overlapping if �0 � � and

�0 6� si for any 1 � i � n.

Lemma 4.1.11 Let R be stable balanced joinable. Let t
�
!I t

0 and t
�0

! t00, where �0 � �

and � and �0 are overlapping. Then t0 !k

I
s and t00 !k

I
s for some s and k � 0.

Proof. Let t � C[�] � C[C 0[�0]]. Then t0 � C[q�] and t00 � C[p�] for some critical

pair hp; qi and �. Since R is stable balanced joinable, we have p !k

S
s0 and q !k

S
s0

for some s0. Thus, from Lemma 4.1.6 and C[
I ], we obtain t0 � C[q�] !k

I
C[s0�] and

t00 � C[p�]!k

I
C[s0�]. 2

Lemma 4.1.12 ([30]) Let C[�I ;�
0]. Then C[�I ; t] for any t. 2

Lemma 4.1.13 Let R be stable balanced joinable. If t !I t
0 and t !I t

00 then t0 !k

I
s

and t00 !k

I
s for some s and k � 0.

Proof. Let t
�
!I t

0 and t
�0

!I t
00. If � and �0 are disjoint then from Lemma 4.1.12 the

lemma follows. If � and �0 are not disjoint, then by Theorem 2.3.22, � and �0 must be
overlapping. Thus the lemma holds by Lemma 4.1.11. 2

The parallel reduction t jj�! s is de�ned as t � C[�1; . . . ;�n]
�1! � � �

�n! s (n � 0). We

write t jj�!0 s if t
�1����n

jj�! s and n > 0.

Lemma 4.1.14 Let R be strongly sequential and stable balanced joinable and t jj�! s.

Then t =I s or t !!I � jj�! �  !I s.

Proof. Let t
�1����n

jj�! s. We prove the lemma by induction on n. The case n = 0 is trivial.

Let t
�1����n

jj�! s (n > 0). There are two cases.

(1) Some �i, say �1, is an index. Let t
�1!I t

0
�2����n

jj�! s. Applying induction hypothesis

to t0
�2����n

jj�! s, we obtain the lemma.

(2) No �i is an index. Since R is strongly sequential, t has an index. Let � be an

index of t and t
�
!I t

00. Furthermore, consider the following two cases.

(2-1) � and �i are non-overlapping for any i. Using the left-linearity of R and
Lemma 4.1.12, we can easily show that t00 jj�! s0 and s !I s

0 for some s0. Thus we
have t !!I � jj�! �  !I s.

(2-2) � and some �i, say �1, are overlapping. Let t
�1! t0

�2����n

jj�! s. By The-
orem 2.3.22, we have �1 � �. From Lemma 4.1.11, it follows that t00 !k

I
s0 and

t0 !k

I
s0 for some s0 and k � 0. Thus we have t !!I t

0. Applying induction hypothsis

to t0
�2����n

jj�! s, we obtain the lemma. 2

Theorem 4.1.15 Let R be strongly sequential and stable balanced joinable. Then R

has the normal form property, and index reduction !I is a normalizing strategy for R.
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Proof. It is obvious that !I is a reduction strategy for jj�!0. Take !I as !s and jj�!0

as ! in Theorem 4.1.10. From Lemmas 4.1.13 and 4.1.14, the conditions (i) and (ii) in

Theorem 4.1.10 are satis�ed. Thus, from !� jj�!0 �!�, the theorem follows. 2

De�nition 4.1.16 The Quasi-index reduction (or hyper-index reduction) is de�ned as

!� � !I .

In Theorem 4.1.15 index reduction can be relaxed into quasi-index reduction.

Theorem 4.1.17 Let R be strongly sequential and stable balanced joinable. Then quasi-

index reduction !� � !I is a normalizing strategy for R.

Proof. Similar to Theorem 7.2 in [30]. 2

4.1.3 Decidability of Stable Transitive Indices

Stable balanced joinability is an undecidable property for left-linear TRSs. Because the

halting problem for Turing machines is reducible to this problem by the construction

of a left-linear TRS which can simulate the computations of a Turing machine. (For a
construction, see [17].) In this subsection, we show that for a given C[
] we can determine
whether the displayed occurrence of 
 in C[
] is a stable transitive index. Then we have

the semi-decidablity of stable balanced joinability for left-linear TRSs as follows. Let R
be a left-linear TRS. Let hp; qi be a critical pair of R. We �rst generate all 1-step stable
reductions from p and q. In next step we generate all 2-step stable reductions from p and
q, then all 3-step stable reductions, . . . . If there exist t 2 T and k 2 N such that p!k

S
t

and q !k

S
t then we can �nd such t and k. Thus, stable balanced joinability of hp; qi is

semi-decidable. Since a number of critical pairs of R is �nite, stable balanced joinability
of R is semi-decidable.

Lemma 4.1.18 Let C[t;
I ]. Then C[x;
I ] where x is a fresh variable.

Proof. Suppose that the displayed occurrence of 
 in C[x;
] is not an index. Thus

z 62 !(C[x; z]) where z is fresh. Let � be a substitution such that x� � t and y� � y for
any y 6� x. Then C[t; z] � C[x; z]�. Because 
-reduction is closed under substitutions,
C[t; z] � C[x; z]� !�


 !(C[x; z])�. Since !(C[t; z]) � !(C[x; z])� and z 62 !(C[x; z])�, we

obtain z 62 !(C[t; z]). However, this is contradictory to C[t;
I ]. 2

De�nition 4.1.19 The set Red� is de�ned as follows:

Red� = f t
 j l � C[t]; C[
I ]; l ! r 2 Rg.

Note that the above de�nition of Red� is di�erent from the original one by Toyama

et al. [31]. In fact, our Red� is a subset of theirs, and these two sets are equal if R is
orthogonal.

Example 4.1.20 Let

R1 =

8><
>:

f(a; x)! a

f(b; g(x))! g(b)

b! b:

Then Red� = f f(a;
); f(b; g(
)); a; b g.
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Lemma 4.1.21 Let C[
I ] and C[t] " Red. Then t " Red�.

Proof. Since C[t] " Red, there exists a left-hand side l of R such that C[t] " l
. Because

C[
I ], we have l � C 0[s] for some s and C 0[ ] such that t " s
 and C[z] " C 0

[z] where z is

fresh. Now we show that s
 2 Red�. Without loss of generality, we may state that C[z] �
C 00[s1; . . . ; sn; z;
; . . . ;
] and C 0[z] � C 00[x1; . . . ; xn; z; t1; . . . ; tm] where C 00[; . . . ; ] does

not contain variables and 
 < ti
 for i = 1; . . . ;m. Repeated application of Lemma 4.1.18
yields C 00[x1; . . . ; xn;
I ;
; . . . ;
]. Since C 00[x1; . . . ; xn; z;
; . . . ;
] � C 0[z], it follows

from Lemma 4.1.3 (i) that C 0[
I ]. Thus s
 2 Red�. 2

Lemma 4.1.22 Let C[
] 2 T
. Then C[
T ] i� z 2 !(C[z]) and !(C[z])#Red� where z

is fresh.

Proof.
()) Since we have C[
I ], z 2 !(C[z]). Let C 0[z] � !(C[z]). Suppose C 0[z] " s for

some s 2 Red�. Then there exists C 00[ ] such that C 00[
I ] and C 00

[s] 2 Red. Since

C 00[C 0[z]] " Red, !(C 00[C[z]]) � !(C 00[C 0[z]]) � 
. But this contradicts C[
T ].

Hence !(C[z])#Red�.

(() We obtain C[
I ] because z 2 !(C[z]). We will prove C 0[C[
I ]] for any C 0[
I ].

Let !(C[z]) � C1[z] and !(C 0[z]) � C 0
1[z]. It su�ces to show that C 0

1[C1[z]] 2 NF
.
Suppose C 0

1[C1[z]] 62 NF
. Since C1[z] 2 NF
 and C 0
1[z] 2 NF
, there exists

C 00[C1[z]] � C 0
1[C1[z]] such that C

00[C1[z]] " Red. From C 0
1[
I ] and Lemma 4.1.3 (ii),

C 00[
I ]. By using Lemma 4.1.21 we obtain C1[z] " Red�. But this contradicts

!(C[z])#Red�. 2

Lemma 4.1.23 Let C[
] 2 T
. Then C[
S] i� C
[
T ].

Proof.
()) Let � be a substitution such that x� is a redex for any x 2 C[ ]. Note that

C�[
T ] and !(C�[z]) � !(C
[z]). We will show that C 0[C
[
I ]] for any C
0[
I ]. Be-

cause C 0[C�[
I ]], we have z 2 !(C 0[C�[z]]) � !(C 0[!(C�[z])]) � !(C 0[!(C
[z])]) �
!(C 0[C
[z]]). Thus C

0[C
[
I ]].

(() Clearly C
[z] � C�[z] for any �. From Lemma 4.1.4 and C
[
T ], it follows that
C�[
T ] for any �. Therefore we obtain C[
S]. 2

Lemma 4.1.24 Let C[
] 2 T
. Then C[
S] i� z 2 !(C
[z]) and !(C
[z])#Red� where

z is fresh.

Proof. It is trivial from Lemmas 4.1.22 and 4.1.23. 2

Therefore, by the previous lemma, we can decide whether C[
S] for a given C[
].

Example 4.1.25 Let

R2 =

8><
>:

f(g(x); y)! h(g(x))

g(a)! g(b)

c! g(c):

R2 has only one critical pair hf(g(b); y); h(g(a))i. Red
� = f f(g(
); 
); g(
); g(a); a; c g.

Because !(h(z)) � h(z) # Red�, it follows from Lemma 4.1.24 that h(
S). Since
f(g(b); y) !S h(g(b))  S h(g(a)), R2 is stable balanced joinable. Note that R2 is

not root balanced joinable. R2 is strongly sequential from Theorem 2.3.30 since R2 is

left-normal. Thus, from Theorem 4.1.15, index reduction is a normalizing strategy for

R2.
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4.2 A Normalizing Strategy for NV-Stable Bal-

anced Joinable TRSs

4.2.1 NV-Stable Balanced Joinability and a Normalizing

Strategy

In this subsection, similar to Subsection 4.1.1, we de�ne NV-stable balanced joinability for

left-linear TRSs. We prove that NV-index reduction is normalizing for NV-stable balanced

joinable NV-sequential TRSs. In the following indices w.r.t. term are called NV-indices.

If the displayed occurrence of 
 in C[
] is an NV-index then we write C[
IV
]; otherwise

C[
NIV
]. If C[
IV

] then a redex occurrence � in C[�] is also called an NV-index. If �
is an NV-index of C[�] then we write C[�IV

]; otherwise C[�NIV
]. The following lemma

is used later.

Lemma 4.2.1 ([28])

(i) If C[
IV
] and C[z] � C 0[z] where z is fresh, then C 0[
IV

].

(ii) If C[C 0[
IV
]] then C 0[
IV

]. 2

De�nition 4.2.2 The displayed NV-index in C[
IV
] is transitive if C 0[C[
IV

]] for any


-term C 0[
IV
]. If the displayed occurrence of 
 in C[
] is a transitive NV-index then

we write C[
TV
]; otherwise C[
NTV

].

The following example shows that a transitive index is not always a transitive NV-

index.

Example 4.2.3 Consider R1 of Example 4.1.20. We can show g(
T ) by using Lemma

4.1.22. However, we have g(
NTV
) because f(b; g(
NIV

)) for f(b;
IV
).

De�nition 4.2.4

� The displayed transitive NV-index in C[
TV
] is stable if C�[
TV

] for any �. If the

displayed occurrence of 
 in C[
] is a stable transitive NV-index then we write

C[
SV
]; otherwise C[
NSV

].

� The NV-stable reduction !SV
is de�ned as C[l�] !SV

C[r�] where C[
SV
] and

l! r 2 R.

Lemma 4.2.5 If t!SV
s and C[
IV

] then C[t�]!IV
C[s�] for any �.

Proof. Similar to Lemma 4.1.6. 2

De�nition 4.2.6 A critical pair hp; qi is NV-stable balanced joinable if p !k

SV
t and

q !k

SV
t for some t and k � 0. A TRS R is NV-stable balanced joinable if every critical

pair is NV-stable balanced joinable.
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Note that the class of NV-stable balanced joinable TRSs includes all root balanced

joinable TRSs. However, this class does not include all stable balanced joinable TRSs.

Consider R1 of Example 4.1.20 which is stable balanced joinable. R1 has only one critical

pair hf (b; g(x)); g(b)i. Because g(
NTV
), g(b) cannot be reduced by !SV

. Thus, R1 is
not NV-stable balanced joinable. Figure 4.1 shows the relationship between these classes.
Areas (1), (2) and (3) denote the class of root balanced joinable, stable balanced joinable

and stable balanced joinable TRSs, respectively. Note that stable balanced joinable TRS
R2 of Example 4.1.25 is also NV-stable balanced joinable. In Example 4.2.25, we will give

NV-stable balanced joinable TRS R3 which is not stable balanced joinable.

NV-sequential TRSs

Strongly sequential TRSs

(1)

(2)

� R3

(3)

R1

� R2�

Figure 4.1.

We now de�ne NV-index reduction as follows.

De�nition 4.2.7 The NV-index reduction !IV
is de�ned on T as follows: t !IV

s i�

t
�
! s for some NV-index �.

We can easily show that if R is NV-sequential then NV-index reduction is a reduction

strategy for R. We can prove the following theorems by an argument similar to that in

Subsection 4.1.2.

Theorem 4.2.8 Let R be NV-stable balanced joinable NV-sequential TRS. Then R has
the normal form property, and NV-index reduction !IV

is a normalizing strategy for R.

2

De�nition 4.2.9 The Quasi-NV-index reduction (or hyper-NV-index reduction) is de-

�ned as !� � !IV
.
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Theorem 4.2.10 Let R be NV-sequential and NV-stable balanced joinable. Then quasi-

NV-index reduction !� � !IV
is a normalizing strategy for R. 2

Since !I �!IV
, we obtain the following corollary. The calculating on index is much

easier than NV-index.

Corollary 4.2.11 Let R be strongly sequential and NV-stable balanced joinable. Then

index reduction !I is a normalizing strategy for R. 2

4.2.2 Decidability of Stable Transitive NV-Indices

NV-stable balanced joinability is also an undecidable property of left-liner TRSs. In this

subsection, we show that for a given C[
] it is decidable whether C[
SV
]. By a similar

method to stable balanced joinability, we have the semi-decidability of NV-stable balanced

joinability for left-linear TRSs. The next two lemmas express properties of NV-indices.

Lemma 4.2.12 ([28]) Let C[z] 2 T
 where z is a fresh variable. C[
NIV
] i� there exist

C 0[z] � C[z] and t such that C 0[z]!�

V

t, t " Red and z 2 t. 2

Lemma 4.2.13 Let C[t;
IV
]. Then C[x;
IV

] where x is fresh.

Proof. Similar to Lemma 4.1.18. 2

De�nition 4.2.14 The set Red�
V
is de�ned as follows:

Red�
V
= f t
 j l � C[t]; C[
IV

]; l ! r 2 Rg.

Lemma 4.2.15 Let C[
IV
] and C[t] " Red. Then t " Red�

V
.

Proof. Similar to Lemma 4.1.21. 2

Lemma 4.2.16 Let C[
IV
]. Then C[
NTV

] i� there exists t such that C[z] !�

V

t and

t " Red�
V
where z is fresh.

Proof.

()) Let C 0[C[
NIV
]] for C 0[
IV

]. Then by Lemma 4.2.12 and C[
IV
], there exist

C 00[C[z]] � C 0[C[z]] and s such that C 00[C[z]] !�

V

s, s " Red and z 2 s. We have
s � C 00

1 [C1[z]] for some C 00
1 [ ] and C1[ ] such that C 00[z] !�


V
C 00
1 [z] and C[z] !�


V

C1[z]. By Lemma 4.2.1 (ii) and C 0[
IV
], C 00[
IV

] and therefore C 00
1 [
IV

]. From
Lemma 4.2.15, it is follows that C1[z] " Red

�
V
.

(() Let s be an 
-term such that t " s and s 2 Red�
V
. Then by the de�nition of

Red�
V
there exists C 0[
IV

] such that C 0

[s] 2 Red. It is clear that C 0[C[z]]!�


V
C 0[t]

and C 0[t] " Red. Since C[
IV
], z 2 t and therefore z 2 C 0[t]. From Lemma 4.2.12,

it follows that C 0[C[
NIV
]]. Thus C[
NTV

]. 2

We use tree automata techniques in our proof.

De�nition 4.2.17 ([5]) A ground tree transducer G over a signature F is a pair (A1;A2)

where A1 = (F ; Q1; QI ;�1) and A2 = (F ; Q2; QI ;�2) are tree automata.

29



The relation !G associated with G is de�ned on T (F) by t !G t0 i� there exists

s 2 T (F [QI) such that t!�
A1

s
�
 A2

t0. A relation associated a ground tree transducer

is called a GTT-relation.

Lemma 4.2.18 Let C[
IV
]. Then C[
NSV

] i� C�[
NTV
] for some � such that y� 2

T (F ; fxg) for any y 2 C[ ].

Proof.

()) If C[
NSV
] then C�[
NTV

] for some �. From Lemma 4.2.16, there exists t such

that C�[z] !�

V

t and t " Red�
V
where z is fresh. Let �0 be a substitution such

that z�0 � z and y�0 � x for any y 2 C�[ ]. Because 
V -reduction is closed under

substitutions, C�[z]�0 !�

V

t�0. Since 
-terms in Red�
V
do not contain variables,

t�0 " Red�
V
. Let �00 be a substitution such that y�00 � y��0 for any y. Then y�00 2

T (F ; fxg) for any y 2 C[ ]. From C�00[z] � C�[z]�0 and Lemma 4.2.16, C�00[
NTV
].

(() Trivial. 2

By the previous lemma, stability of transitive NV-indices in t 2 T
 only depends on
instances of t in T (F [ f
g; fxg). In the 
V -reduction, every variable can be considered

as constant. Thus we �x F 0 = F [ f
; x; zg and after this we restrict the 
V -reduction
to T (F 0)� T (F 0). Let TT = f t 2 T (F 0) j t!�


V
s; s " Red�

V
g. We will show that TT is

recognizable.

Lemma 4.2.19 ([6]) Let L be a recognizable set and let !G be a GTT-relation. Then

the set f t j t!G s; s 2 L g is recognizable.

Let TR = f s 2 T (F 0) j s " Red�
V
g. According to the previous lemma, it su�ces to

show that TR is recognizable and !�

V

is a GTT-relation. tx denotes the term obtained
from t by replacing all variables and 
's in t with x.

Lemma 4.2.20 TR is a recognizable set.

Proof. Let A = (F 0; Q;Qf ;�), where Q = f qt j t � sx; s 2 Red�
V
g [ f qx; q
 g,

Qf = f qt j t � sx; s 2 Red�
V
g [ f q
 g and � consists of the following rules:

(i) f(qt1 ; . . . ; qtn)! qt where f 2 F , f(t1; . . . ; tn) " t
 and t 6� 
,

(ii) 
! q
, x! qx, z ! qx.

We show that L(A) = TR.

(� ) We �rst prove the following claim: if s 2 T (F 0) and s !�
A qt then s " t
. The

proof is by induction on the size of s. Base step: Trivial. Induction step: Let
s � f(s1; . . . ; sn). Then there exists a rule f(qt1 ; . . . ; qtn) ! qt in � such that

si !
�
A qti for any i. Note that f(t1; . . . ; tn) " t
. By induction hypothesis, we have

si " ti
 for any i. If t
 � 
 then trivially s " t
. Otherwise, t
 � f(t01; . . . ; t
0
n
) and

ti " t
0
i
for any i. We now show that si " t

0
i
for any i. If ti � 
 then si � 
 by

construction of A. Therefore si " t
0
i
. If ti 6� 
 then we obtain ti
 � t0

i
from ti " t

0
i

because 
 62 ti and t0
i
does not contain variables. Hence si " t

0
i
. Thus the claim

follows. Assume s 2 T (F 0) and s !�
A qt with qt 2 Qf . If t � 
 then s � 
 and

therefore s 2 TR. Otherwise, from the claim, it follows that s " t
, i.e., s " Red
�
V
.

Thus s 2 TR.

30



(� ) It is clear that 
 2 TR is accepted by A. If s 2 TR and s 6� 
 then s " t
 for

some qt 2 Qf with t 6� 
. Hence we prove that for any s 6� 
, if s " t
 and qt 2 Q

with t 6� 
 then s !�
A qt. The proof is by induction on the size of s. Base step:

Trivial. Induction step: Let s � f(s1; . . . ; sn). Case 1. t � x. Let t0
i
� 
 if si � 
;

otherwise, let t0
i
� x. From induction hypothesis, it follows that si !

�
A qt0

i
for any i.

Since f(qt01 ; . . . ; qt0n) ! qx 2 �, s � f(s1; . . . ; sn) !
�
A qx. Case 2. t � f(t1; . . . ; tn).

Note that si " ti
, qti 2 Q and ti 6� 
 for any i. Let t0
i
� 
 if si � 
; otherwise,

let t0
i
� ti. From induction hypothesis and the rule 
 ! q
, we have si !

�
A qt0

i

for any i. Because f(t01; . . . ; t
0
n
) " t
, there exists f(qt01 ; . . . ; qt0n) ! qt in �. Thus

s � f (s1; . . . ; sn)!
�
A qt. 2

Lemma 4.2.21 !�

V

is a GTT-relation.

Proof. We de�ne tree automata A1 and A2 as follows. A1 = (F 0; Q1; QI ;�1), where

Q1 = f qt j t � sx; s 2 Red g [ f qx; q
 g, QI = f qt j t � sx; s 2 Red g and �1 consists of
the following rules:

(i) f(qt1 ; . . . ; qtn)! qt where f 2 F , f(t1; . . . ; tn) " t
 and t 6� 
,

(ii) 
! q
, x! qx, z ! qx.

A2 = (F 0; Q2; QI ;�2) where Q2 = QI [ f q
0
t
j t � r
; l ! r 2 Rg and �2 consists of the

following rules:

(i)0 f(q0
t1
; . . . ; q0

tn
)! q0

t
where f(t1; . . . ; tn) � t,

(ii)0 q0
s
! qt where t � lx and s � r
 for some l ! r 2 R.

We can prove the following claims by a argument similar to that in Lemma 4.2.20.

(1) Let s 2 T (F 0) and qt 2 QI . Then s!�
A1

qt i� s " t
 and s 6� 
.

(2) Let s 2 T (F 0) and qt 2 QI . Then s !�
A2

qt i� s � r
 and t � lx for some

l! r 2 R.

Let G = (A1;A2). Then it follows from the above claims that!
V�!G �!
�

V
. Because

the transitive-re
exive closure of a GTT-relation is a GTT-relation [5], !�

V

is a GTT
relation. 2

Lemma 4.2.22 TT is a recognizable set.

Proof. From Lemmas 4.2.19, 4.2.20 and 4.2.21. 2

By Lemmas 4.2.22 and 2.4.4, there exists a complete and deterministic automaton AT

such that L(AT ) = TT . The number of states in AT is denoted by jQT j.

Lemma 4.2.23 Let C[
IV
]. Then C[
NSV

] i� C�[
NTV
] for some � such that �(y�) �

jQT j and y� 2 T (F ; fxg) for any y 2 C[ ].

Proof.
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()) From Lemmas 4.2.16 and 4.2.18, C�0[z] is accepted by AT for some �0 such that

y�0 2 T (F ; fxg) for any y 2 C[ ]. Because AT is complete and deterministic, for

any y 2 C[ ] there is exactly one state q of AT such that y�0 !�
AT

q. Since there

exists s 2 T (F ; fxg) such that �(s) � jQT j and s !�
AT

q by pumping lemma [10],
we de�ne �00 by y�00 � s. Then it is obvious that C�00[z] is accepted by AT . Thus,
from Lemma 4.2.16, C�00[
NTV

].

(() Trivial. 2

Theorem 4.2.24 It is decidable whether C[
SV
] for a given C[
].

Proof. It is decidable whether C[
IV
] [28, 3]. If C[
NIV

] then C[
NSV
]. Otherwise, by

Lemma 4.2.23, it is su�ces to check whether C�[
TV
] for any � such that �(y�) � jQT j

and y� 2 T (F ; fxg) for any y 2 C[ ], which is also decidable. 2

Example 4.2.25 Let

R3 =

8>>><
>>>:

f(a; h(x); y)! g(h(y); h(x))

g(a; x)! a

h(a)! h(b)
b! b:

The critical pair is only hf (a; h(b); y); g(h(y); h(a))i. R3 is NV-stable balanced joinable
because we can show that f(a; h(b); y) !SV

g(h(y); h(b))  SV
g(h(y); h(a)). Note that

R3 is not stable balanced joinable. R3 is strongly sequential by Theorem 2.3.30 since R3

is a left-normal TRS. Thus, from Corollary 4.2.11, index reduction !I is a normalizing

strategy for R3.

4.3 Remarks

It is not easy to generalize our results to more general sequential TRSs (NVNF- , shal-

low [3] or growing [14] sequential TRSs). Because the reduction contracting index w.r.t.

NVNF-, shallow or growing sequentiality does not have the balanced weakly Church-

Rosser property. For example, consider the following TRS:

R =

8><
>:

f(x)! b

b! g(b)

h(a)! a:

We can show thatR is NVNF-sequential. Since redexes f(b) and b in f(b) are indices w.r.t.

NVNF-sequentiality, we have two reductions f(b)! b and f(b)! f(g(b)). However b and
f(g(b)) are not balanced joinable. Thus the reduction contracting index w.r.t. NVNF-

sequentiality is not balanced weakly Church-Rosser. Two indices of a term w.r.t. NVNF-

(shallow or growing) sequentiality not being disjoint are not necessarily overlapping.
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Chapter 5

Growing Term Rewriting Systems

In this chapter we investigate properties of growing TRSs. A TRS is called growing if

for every its rewrite rule variables occurring both the left-hand side and the right-hand

side occur at depth zero or one in the left-hand side. Jacquemard [14] showed that the
set of ground terms having a normal form is recognized by a tree automaton if a TRS is

linear growing. In Section 5.1, we generalize Jacquemard's result to left-linear growing
TRSs. This implies the decidability of reachability and joinability for subclasses of TRSs.

Moreover, this gives us decidable better approximations of TRSs. These approximations

extend the class of left-linear term rewriting systems having a decidable call-by-need
strategy. In Section 5.2, we prove that termination is decidable for almost orthogonal
growing TRSs.

5.1 Left-Linear Growing TRSs

In this section, we regard pairs of terms as rewrite rules without restrictions. Hence the

left-hand side of a rewrite rule may be a variable and the right-hand side of a rewrite rule
can have variables not occurring in the left-hand side. This is convenient for approxima-
tions of TRSs. Moreover, we consider rewriting on ground terms only. This entails no
loss of generality and would simplify matters.

The de�nition of growing was given by Jacquemard in [14]. Unlike Jacquemard, we
do not assume linearity for growing TRSs.

De�nition 5.1.1 A rewrite rule l ! r is growing if all variables in V(l) \ V(r) occur at

depth 0 or 1 in l. A TRS R is growing if every rewrite rule in R is growing.

Example 5.1.2 Let

R =

(
f(f (x; y); z)! f(z; g(z))

g(x)! f(g(y); z):

Then R is growing. But the following R0 is not growing.

R0 =

(
f(f(x; y); z)! f(x; g(z))
g(x)! f(g(y); z):
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5.1.1 Recognizability

In this subsection, we show that if R is a left-linear growing TRS then the set (!�
R)[L] =

f t 2 T (F) j 9 s 2 L t!�
R s g is recognizable for every recognizable tree language L.

Let R be a left-linear growing TRS and let L be a tree language recognized by AL =

(F ; QL; Q
f

L
;�L). We now construct a tree automaton recognizing (!�

R)[L] from R and
AL. Let L = f l 2 T (F ;V) j l 62 V ; f(. . . ; l; . . .) ! r 2 R g. Since the set of all
ground instances of a linear term is recognizable, we assume that for each l 2 L, Al =

(F ; Ql; Q
f

l
;�l) is an automaton such that L(Al) = f l� j � : V ! T (F) g. Without

loss of generality, we assume that Qa \ Qb = � for any a; b 2 fLg [ L with a 6� b. A
tree automaton A[ = (F ; Q[; Q

f

[;�[) is de�ned by Q[ =
S
l2LQl [ QL, Q

f

[ = Qf

L
and

�[ =
S
l2L�l [�L.

Then we construct tree automata A0;A1; . . . ;Ak as follows. Let A0 = (F ; Q0; Q
f

0 ;�0)

where Q0 = 2Q[, Qf

0 = f A 2 Q0 j 9 q 2 A; q 2 Q
f

[ g and �0 contains the following rules:

f (A1; . . . ; An)! A

if A = f q 2 Q[ j 9 q12 A1; . . . ;9 qn2 An; f(q1; . . . ; qn) !
�
A[

q g.

Ai+1 = (F ; Qi+1; Q
f

i+1;�i+1) (or Ak = (F ; Qk; Q
f

k
;�k)) is obtained from Ai as follows:

� If there exist f (A1; . . . ; An) ! A 2 �i, l ! r 2 R and A0 2 Qi satisfying the
following Condition 1 or 2:

{ Condition 1:

1: l � f(l1; . . . ; ln),

2: for each 1 � j � n, lj 62 V implies q 2 Q
f

lj
for some q 2 Aj,

3: there exists � : V ! Qi such that:

(a) r� !�
Ai

A0,

(b) for each x 2 r, if x � lj for some j then x� = Aj,

otherwise t!�
Ai

x� for some t 2 T (F),

4: A � A [A0,

{ Condition 2:

10: l 2 V ,

20: there exists � : V ! Qi such that:

(a0) r� !�
Ai

A0,

(b0) for each x 2 r, if x � l then x� = A,

otherwise t!�
Ai

x� for some t 2 T (F),

30: A � A [A0,

then Qi+1 = Qi, Q
f

i+1 = Q
f

i
and

�i+1 = (�inff (A1; . . . ; An)! Ag) [ ff (A1; . . . ; An)! A [ A0g.

� Otherwise, Ak = Ai.

From 4 of Condition 1 and 30 of Condition 2, it is clear that the process of con-

struction terminates. Note that A0;A1; . . . ;Ak are deterministic and complete.
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Example 5.1.3 Let F = f f; g; a; b g and

R =

8><
>:

f(g(x); y)! y

g(x)! f(x; x)

a! g(a):

Let L = f a g and AL = (F ; f qa g; f qa g; f a ! qa g). Then L = f g(x) g and we assume

that the automaton Ag(x) = (F ; Qg(x); Q
f

g(x);�g(x)) is de�ned by Qg(x) = f qx; qg(x) g,

Qf

g(x) = f qg(x) g and �g(x) = f a ! qx; b ! qx; f(qx; qx) ! qx; g(qx) ! qx; g(qx) !

qg(x) g. We have the automaton A0 = (F ; Q0; Q
f

0 ;�0) where Q0 = 2fqa;qx;qg(x)g, Qf

0 =

f fqag; fqa; qxg; fqa; qg(x)g; fqa; qx; qg(x)g g and �0 is the following set of rules:

�0 =

8>>>>>>>><
>>>>>>>>:

a! fqa; qxg

b! fqxg

f(A1; A2)! fqxg if qx 2 A1 and qx 2 A2

f(A1; A2)! � if qx 62 A1 or qx 62 A2

g(A)! fqx; qg(x)g if qx 2 A

g(A)! � if qx 62 A:

We can see that f(fqg(x)g; fqg(x)g)! � 2 �0, f(g(x); y)! y 2 R and fqg(x)g 2 Q0 satisfy

Condition 1. Thus we �rst replace the right-hand side of the rule f(fqg(x)g; fqg(x)g) !

� 2 �0 with fqg(x)g. Then the right-hand side of the rule g(fqg(x)g) ! � 2 �1 can be
replaced with fqg(x)g because we have f(fqg(x)g; fqg(x)g) !A1 fqg(x)g. Consequently, �k

includes the following new rules:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

a! fqa; qx; qg(x)g

f(A1; A2)! A2 if A1 2 f fqg(x)g; fqa; qg(x)g g and
A2 6= �

f(A1; A2)! A2 if A1 2 f fqx; qg(x)g; fqa; qx; qg(x)g g and
A2 62 f�; fqxg g

g(fqg(x)g)! fqg(x)g
g(fqa; qg(x)g)! fqa; qg(x)g

g(fqa; qx; qg(x)g)! fqa; qx; qg(x)g:

Consider two terms f (g(b); g(a)) 2 (!�
R)[L] and f(g(a); g(b)) 62 (!�

R)[L]. We have

f(g(b); g(a)) !�
Ak

f(g(fqxg); g(fqa; qx; qg(x)g))

!�
Ak

f(fqx; qg(x)g; fqa; qx; qg(x)g)

!Ak
fqa; qx; qg(x)g 2 Qf

k
:

Hence f(g(b); g(a)) is accepted by Ak. The term f(g(a); g(b)) is not accepted by Ak

because

f(g(a); g(b)) !�
Ak

f(g(fqa; qx; qg(x)g); g(fqxg))

!�
Ak

f(fqa; qx; qg(x)g; fqx; qg(x)g)

!Ak
fqx; qg(x)g 62 Qf

k
:
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Remark. Jacquemard's construction in [14] does not necessarily generate a tree automa-

ton A such that L(A) = (!�
R)[L] for a non-right-linear TRS R. Consider the left-linear

non-right-linear growing TRS: F = f a; b; f; g g and

R =

(
g(x)! f(x; x)

a! b:

Let L = f f(a; b) g and AL = (F ; QL; Q
f

L
;�L) where QL = f qa; qb; qf g, Q

f

L
= f qf g

and �L = f a ! qa; b ! qb; f(qa; qb) ! qf g. We add only the rule a ! qb to �L

at Jacquemard's construction process and hence we obtain the tree automaton A =
(F ; QL; Q

f

L
;�L [ f a ! qb g). Note that the rule g(qa) ! qf is not added to �L because

we do not have f(qa; qa) !
�
A qf . Although we have g(a) !�

R f(a; b) 2 L, g(a) is not

accepted by A. In order to accept g(a), the automaton needs the information that a can

be reduced to both of qa and qb.

In the following we prove that L(Ak) = (!�
R)[L]. We may omit the subscript i of Qi

and Qf

i
.

Lemma 5.1.4 Let t 2 T (F ;V), � : V ! Q and � : V ! T (F) such that x� !�
R � !

�
A[

q

for any x 2 t and q 2 x�. For any 0 � i � k, if t� !�
Ai

A 2 Q then t� !�
R � !

�
A[

q for

any q 2 A.

Proof. We prove the lemma by induction on i.

Base step. We use induction on the structure of t. The case of t � x is trivial. Let

t � f(t1; . . . ; tn). We assume that t� � f(t1; . . . ; tn)� !
�
A0

f(A1; . . . ; An) !A0 A. Let
q 2 A. Then there exist q1 2 A1; . . . ; qn 2 An such that f(q1; . . . ; qn)!

�
A[

q. By induction
hypothesis, for each 1 � j � n there exists sj such that tj� !

�
R sj !

�
A[

qj . Thus we have

t� � f(t1�; . . . ; tn�)!
�
R f(s1; . . . ; sn)!

�
A[

f(q1; . . . ; qn)!
�
A[

q.

Induction step. We use induction on the number m of application of the rule that
�i�1 does not have in the reduction t� !�

Ai
A. If m = 0 then t� !�

Ai�1
A. Thus it follows

from induction hypothesis on i that t� !�
R � !

�
A[

q for any q 2 A. Let m > 0. Suppose

that

t� � t�[f(t1; . . . ; tn)�]p !
�
Ai�1

t�[f(A1; . . . ; An)]p !Ai
t�[A0]p !

�
Ai

A

with f(A1; . . . ; An) ! A0 62 �i�1. Let ~t � t[z]p where z 62 t. We de�ne ~� : V ! Q and

~� : V ! T (F) as follows: if x � z then x~� = A0 and x~� � f(t1; . . . ; tn)�, otherwise
x~� = x� and x~� = x�. Clearly ~t~� � t�[A0]p and ~t~� � t�. We will show the following

claim:

x~�!�
R � !

�
A[

q for any x 2 ~t and q 2 x~�:

Then by applying induction hypothesis on m to ~t~� � t�[A0]p !
�
Ai

A, we can obtain
~t~� � t� !�

R � !
�
A[

q for any q 2 A. Thus the lemma holds.
Proof of the claim. Let x 2 ~t. If x 6� z then it follows from the assumption of the

lemma that x~� !�
R � !

�
A[

q for any q 2 x~�. We consider the case x � z. Assume

that f(A1; . . . ; An) ! A0
1 2 �i�1; l ! r 2 R and A0

2 2 Qi�1 satisfy Condition 1 or 2

and A0 = A0
1 [ A0

2. Since f(t1; . . . ; tn)� !
�
Ai�1

f(A1; . . . ; An) !Ai�1
A0

1, it follows from
induction hypothesis on i that

f(t1; . . . ; tn)� !
�
R � !

�
A[

q for any q 2 A0
1: (5:1)
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We consider the following two cases.

Case 1. Condition 1 is satis�ed. Let l � f (l1; . . . ; ln). By applying induction

hypothesis on i to tj� !
�
Ai�1

Aj, we obtain tj� !
�
R � !

�
A[

q for any q 2 Aj . For each

1 � j � n, let sj be a term such that if lj 2 V then sj � tj�, otherwise tj� !
�
R sj !

�
A[

q 2 Q
f

lj
. From disjointness of the sets of states, sj !

�
A[

q 2 Q
f

lj
implies sj !

�
Alj

q 2 Q
f

lj
.

Hence f(s1; . . . ; sn) is an instance of f(l1; . . . ; ln). Let �
0 : V ! Q be a substitution de�ned

by 3 of Condition 1. Let �0 : V ! T (F) be a substitution such that for any y 2 r if

y � lj then y�0 � sj , otherwise y�
0 !�

Ai�1
y�0. Then we have the following reduction:

f(t1; . . . ; tn)� !
�
R f(s1; . . . ; sn)!R r�0

and by using induction hypothesis on i, we can show that y�0 !�
R � !

�
A[

q for any y 2 r

and q 2 y�0. Applying induction hypothesis on i to r�0 !�
Ai�1

A0
2, it is obtained that

r�0 !�
R � !

�
A[

q for any q 2 A0
2. Thus we have

f(t1; . . . ; tn)� !
�
R � !

�
A[

q for any q 2 A0
2: (5:2)

Because z~� = A0 = A0
1 [ A

0
2 and z~� � f (t1; . . . ; tn)�, it follows from (5.1) and (5.2) that

z~� !�
R � !

�
A[

q for any q 2 z~�. Therefore the claim holds.
Case 2. Condition 2 is satis�ed. Let �0 : V ! Q be a substitution de�ned by 20 of

Condition 2. Let �0 : V ! T (F) be a substitution such that for any y 2 r if y � l

then y�0 � f (t1; . . . ; tn)�, otherwise y�
0 !�

Ai�1
y�0. Using (5.1) and induction hypothesis

on i, we can show that y�0 !�
R � !

�
A[

q for any y 2 r and q 2 y�0. Applying induction
hypothesis on i to r�0 !�

Ai�1
A0

2, it is obtained that r�0 !�
R � !

�
A[

q for any q 2 A0
2. Since

f(t1; . . . ; tn)� !R r�0,

f(t1; . . . ; tn)� !
�
R � !

�
A[

q for any q 2 A0
2: (5:3)

Therefore, it follows from (5.1) and (5.3) that z~� !�
R � !

�
A[

q for any q 2 z~�. Hence the
claim holds. 2

Lemma 5.1.5 L(Ak) � (!�
R)[L].

Proof. Let t 2 L(Ak) i.e., t !
�
Ak

A for some A 2 Qf . By the de�nition of Qf , A has a

�nal state q of AL. From Lemma 5.1.4, there exists s 2 T (F) such that t !�
R s !�

A[
q.

By disjointness of the sets of states, we have s!�
AL

q 2 Q
f

L
. Thus t 2 (!�

R)[L]. 2

Lemma 5.1.6 Let t 2 T (F ;V). Let �; �0 : V ! Q with x� � x�0 for any x 2 t. If

t� !�
Ai

A 2 Q then t�0 !�
Ak

A0 for some A0 2 Q with A � A0.

Proof. We prove the lemma by induction on i.

Base step. We use the induction on the structure of t. The case of t � x is trivial. Let
t � f(t1; . . . ; tn). Then we suppose that f(t1; . . . ; tn)� !

�
A0

f (A1; . . . ; An) !A0 A 2 Q.

By induction hypothesis, for each 1 � j � n there exists A0
j
2 Q such that tj�

0 !�
Ak

A0
j

and Aj � A0
j
. By the de�nition of A0, �0 has a rule f(A0

1; . . . ; A
0
n
) ! A0 with A � A0.

Then by the construction of Ak, �k has a rule f(A0
1; . . . ; A

0
n
) ! A00 with A0 � A00. Thus

we obtain f(t1; . . . ; tn)�
0 !�

Ak
f(A0

1; . . . ; A
0
n
)!Ak

A00 and A � A00.

Induction step. We use the induction on the structure of t. The case of t � x is
trivial. Let t � f(t1; . . . ; tn). Suppose that f(t1; . . . ; tn)� !

�
Ai

f(A1; . . . ; An)!Ai
A 2 Q.
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By induction hypothesis on the structure of t, for each 1 � j � n there exists A0
j
2 Q

such that tj�
0 !�

Ak
A0
j
and Aj � A0

j
. Since Ak is deterministic and complete, there exists

exactly one A0 2 Q such that f(A0
1; . . . ; A

0
n
) ! A0 2 �k. We will show that A � A0. If

f(A1; . . . ; An) ! A 2 �i�1 then from induction hypothesis on i it follows that A � A0.
Otherwise, we assume that f(A1; . . . ; An) ! B1 2 �i�1, l ! r 2 R and B2 2 Q satisfy
Condition 1 or 2 and A = B1 [ B2. From induction hypothesis on i, we get B1 � A0.

We consider the following two cases.
Case 1. Condition 1 is satis�ed. Let l � f(l1; . . . ; ln) and let �1 : V ! Q be a

substitution de�ned by 3 of Condition 1. Then let �2 be a substitution from V to Q

such that for every x 2 r if x � lj then x�2 = A0
j
, otherwise t!�

Ak
x�2 for some t 2 T (F)

with t!�
Ai�1

x�1. Using induction hypothesis on i, we can show that x�1 � x�2 for every

x 2 r. Applying induction hypothesis on i to r�1 !
�
Ai�1

B2, we obtain r�2 !
�
Ak

B0
2 for

some B0
2 2 Q with B2 � B0

2. Therefore f(A
0
1; . . . ; A

0
n
)! A0 2 �k, l ! r 2 R and B0

2 2 Q

satisfy 1; 2 and 3 of Condition 1. By the construction of Ak, they must not satisfy 4 of

Condition 1. Thus we have A0 = A0 [ B0
2. Hence A = B1 [ B2 � A0 [ B0

2 = A0.

Case 2. Condition 2 is satis�ed. Let �1 : V ! Q be a substitution de�ned by 20

of Condition 2. Then let �2 : V ! Q be a substitution such that for every x 2 r if
x � l then x�2 = A0, otherwise t !�

Ak
x�2 for some t 2 T (F) with t !�

Ai�1
x�1. Using

induction hypothesis on i, we can show that y�1 � y�2 for every y 2 r. Applying induction

hypothesis on i to r�1 !
�
Ai�1

B2, we obtain r�2 !
�
Ak

B0
2 for some B

0
2 2 Q with B2 � B 0

2.
Thus f(A0

1; . . . ; A
0
n
)! A0 2 �k, l ! r 2 R and B0

2 2 Q satisfy 10 and 20 of Condition 2.
By the construction of Ak they must not satisfy 30 of Condition 2, i.e., A0 = A0 [ B0

2.

Hence A = B1 [ B2 � A0 [ B0
2 = A0. 2

Lemma 5.1.7 Let t 2 T (F) and t!�
Ak

A 2 Q. If t!�
A[

q 2 Q[ then q 2 A.

Proof. Since A0 is complete, there exists A
0 2 Q such that t !�

A0
A0. By induction of

the structure of t, we can show that A0 = f q 2 Q[ j t !
�
A[

q g. Thus, if t !�
A[

q 2 Q[

then q 2 A0. Because Ak is deterministic, we get A
0 � A by Lemma 5.1.6. Hence q 2 A.

2

Lemma 5.1.8 L(Ak) � (!�
R)[L].

Proof. Assume that t !�
R s for some s 2 L. We show that t 2 L(Ak) by induction on

the length m of this reduction. If m = 0 then t 2 L. Thus t !�
A[

q for some q 2 Qf

L
.

Since Ak is complete, there exists A 2 Q such that t!�
Ak

A. According to Lemma 5.1.7,

q 2 A and therefore A 2 Qf . Hence t 2 L(Ak). Let m > 0. Then we assume that

t � t[l�]p !R t[r�]p !
�
R s 2 L

with l ! r 2 R. By induction hypothesis, t[r�]p is accepted by Ak. Since Ak is deter-
ministic, there exists � : V ! Q such that

t[r�]p !
�
Ak

t[r�]p !
�
Ak

t[A]p !
�
Ak

B 2 Qf

where A 2 Q. By completeness of Ak, we assume that

t � t[f(t1; . . . ; tn)]p !
�
Ak

t[f(A1; . . . ; An)]p !Ak
t[A0]p !

�
Ak

B0 2 Q

where f(A1; . . . ; An)! A0 2 �k and n � 0. We consider the following two cases.
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Case 1. l � f (l1; . . . ; ln). If lj 62 V then tj is accepted by Alj
and thus Aj has

q 2 Q
f

lj
by Lemma 5.1.7. Because Ak is deterministic, for any x 2 r, x � lj implies

x� � Aj. Therefore f (A1; . . . ; An) ! A0 2 �k, l ! r 2 R and A 2 Q ful�ll 1, 2 and 3 of
Condition 1. By the construction of Ak, they must not satisfy 4 of Condition 1. Thus

A � A0. Since Lemma 5.1.6 yields B � B 0, we obtain B 0 2 Qf . Therefore t 2 L(Ak).
Case 2 . l � x for some x 2 V. Because Ak is deterministic, if x 2 r then x� �

A0. Therefore f(A1; . . . ; An) ! A0 2 �k, l ! r 2 R and A 2 Q ful�ll 10 and 20 of

Condition 2. By the construction of Ak, they must not satisfy 30 of Condition 2

and thus A � A0. According to Lemma 5.1.6, B � B0 and therefore B0 2 Qf . Hence

t 2 L(Ak). 2

Lemma 5.1.9 L(Ak) = (!�
R)[L].

Proof. From Lemmas 5.1.5 and 5.1.8. 2

Thus we obtain the following theorem.

Theorem 5.1.10 Let R be a left-linear growing TRS and let L be a recognizable tree

language. Then the set (!�
R)[L] is recognized by a tree automaton. 2

5.1.2 Reachability and Joinability

The reachability problem for R is the problem of deciding whether t!�
R s for given two

terms t and s. It is well-known that this problem is undecidable for general TRSs. Oyam-
aguchi [27] has shown that this problem is decidable for right-ground TRSs. Decidability

for linear growing TRSs was shown by Jacquemard [14]. Since a singleton set of a term

is recognizable, we can extend these results by using Theorem 5.1.10.

Theorem 5.1.11 The reachability problem for left-linear growing TRSs is decidable. 2

For a TRS R, we de�ne R�1 by R�1 = f r ! l j l ! r 2 R g. Clearly t !�
R s i�

s!�
R�1 t. By Theorem 5.1.11, we obtain the following theorem.

Theorem 5.1.12 Let R be a TRS such that R�1 is left-linear and growing . The reach-
ability problem for R is decidable. 2

IfR is right-ground TRS thenR�1 is left-linear and growing. Thus, the above theorem

is a generalization of Oyamaguchi's result.

The joinability problem for R is the problem of deciding for given �nite number of

terms t1; . . . ; tn, whether there exists a term s such that ti !
� s for any 1 � i � n.

Oyamaguchi [27] has shown that this problem is decidable for right-ground TRSs. This

result is extended as follows.

Theorem 5.1.13 Let R be a TRS such that R�1 is left-linear and growing. The join-

ability problem for R is decidable.

Proof. Let t1; . . . ; tn be terms. Then t1; . . . ; tn are joinable i�

(!�
R�1)[ft1g] \ � � � \ (!

�
R�1)[ftng] 6= �:

By Theorem 5.1.10, (!�
R�1)[ftig] is recognizable for any 1 � i � n. Thus from Lem-

mas 2.4.5 and 2.4.6 the theorem follows. 2
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5.1.3 Decidable Approximations

Durand and Middeldorp [8] studied approximations of TRSs to call-by-need computations.

They presented the framework for decidable call-by-need computations without notions

of index and sequentiality.

De�nition 5.1.14 A TRS R0 is an approximation of a TRS R if!�
R� !

�
R0 . An approx-

imation mapping � is a mapping from TRSs to TRSs such that � (R) is an approximation
of R for every R.

Jacquemard introduced right-linear growing approximations in [14]. A right-linear

growing approximation of R = f li ! ri j 1 � i � n g is a right-linear growing TRS

f li ! r0
i
j 1 � i � n g where for any 1 � i � n, r0

i
is obtained from ri by replacing variables

which do not satisfy the right-linearity or growing condition with fresh variables. We say

that an approximation mapping � is right-linear growing if �(R) is a right-linear growing

approximation of R for every R. We now give better approximations than Jacquemard's
ones based on the result of Subsection 5.1.1.

De�nition 5.1.15 Let R = f li ! ri j 1 � i � n g. The growing approximation of R is

de�ned as a growing TRS f li ! ri�i j 1 � i � n g where �i is a variable renaming such
that for every variable x, if x occurs at depth more than 1 in li then x�i 62 V(li), otherwise
x�i � x. An approximation mapping � is growing if �(R) is a growing approximation of
R for every R.

If R is a growing TRS then the growing approximation of R is R itself. If R is a

left-linear TRS then the growing approximation of R is also left-linear.

Example 5.1.16 Let

R1 =

(
f(g(x); y)! f(x; f(y; x))

g(x)! f(x; x):

Then the growing approximation of R1 is

R0
1 =

(
f(g(x); y)! f(z; f(y; z))

g(x)! f(x; x):

The following de�nition gives su�cient conditions for neededness.

De�nition 5.1.17 Let R be a TRS. Let � be an approximation mapping. The redex at

a position p in t 2 T (F) is � -needed if there exists no s 2 NFR such that t[
]p !
�
�(R) s.

Lemma 5.1.18 Let R be an orthogonal TRS whose rewrite rules satisfy the restrictions
in De�nition 2.2.7. Let � be an approximation mapping. If a redex in a term is � -needed

then it is needed.

Proof. By using Lemma 2.3.13. 2

In order to obtain a decidable call-by-need strategy, every term that is not a normal
form has a decidable needed redex. Thus the following classes of TRSs are formulated.
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De�nition 5.1.19 Let � be an approximation mapping. The class C� of TRSs is de�ned

as follows: R 2 C� i� every term that is not a normal form has a � -needed redex.

Lemma 5.1.20 Let � be a growing approximation mapping. Let R be an orthogonal

growing TRS whose rewrite rules satisfy the restrictions in De�nition 2.2.7. Then R 2 C� .

Proof. Since R is a growing TRS, �(R) = R. Using Lemma 2.3.13, we can show that

a redex is needed i� it is � -needed. Thus it follows Lemma 2.3.5 that R 2 C� . 2

Theorem 5.1.21 Let � be a growing approximation mapping and let � 0 be a right-linear

growing approximation mapping. Then C� 0 � C� even if these classes are restricted to
orthogonal TRSs.

Proof. Because !�
�(R)�!

�
� 0(R), �

0-needed redexes are � -needed. Thus C� 0 � C� . Let

R0
2 =

8>>>>>>>>>>><
>>>>>>>>>>>:

f(a; b; x)! a

f(b; x; a)! b

f(x; a; b)! g(a)
h(a; b)! a

h(b; a)! a

h(a; c)! b

h(c; a)! b;

and let R2 = R
0
2 [ f g(x) ! h(x; x) g. By Lemma 5.1.20, R2 2 C� . We will show that

R2 62 C� 0. Let r � f(a; a; b). A right-linear growing approximation � 0(R2) of R2 is one
of R3 = R

0
2 [ f g(x) ! h(x; y) g; R4 = R

0
2 [ f g(x) ! h(y; x) g and R5 = R

0
2 [ f g(x) !

h(y; z) g. In any case, we can show that f(r; r; r) does not have � 0-needed redexes. Thus

R2 62 C� 0. 2

Durand and Middeldorp gave a su�cient condition for the decidability of � -neededness

and membership of C� .

Theorem 5.1.22 ([8]) Let R be a TRS. Let � be an approximation mapping. If the set

f t 2 T (F [ f
g) j 9s2 NFR t!�
�(R) s g is recognizable then

(1) it is decidable whether a redex in a term is � -needed,

(2) it is decidable whether R 2 C� . 2

If R is left-linear then the set NFR is recognizable. Hence we have the following

decidability result from Theorems 5.1.10 and 5.1.22.

Theorem 5.1.23 LetR be a left-linear TRS. Let � be a growing approximation mapping.

(1) It is decidable whether a redex in a term is � -needed.

(2) It is decidable whether R 2 C� . 2

Corollary 5.1.24 Let R be an orthogonal growing TRS whose rewrite rules satisfy the

restrictions in De�nition 2.2.7. It is decidable whether a redex in a term is needed. 2
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5.2 Termination of Almost Orthogonal Growing

TRSs

In this section, we show that termination of almost orthogonal growing TRSs is decidable.

We assume that every rewrite rule l ! r satisfy the restrictions that l is not a variable

and any variable in r also occurs in l. If a TRS R contains a rewrite rule which does not

satisfy either of these restrictions then R is not strongly normalizing. We �rst explain

the theorem of Gramlich [12], which is used in our proof.
We say that a term t is strongly normalizing if there exists no in�nite reduction se-

quence starting with t. A reduction t
p

!R s is innermost if every proper subterm of tjp is

a normal form. The innermost reduction is denoted by!I . A term t is weakly innermost
normalizing if t!�

I s for some normal form s. A TRS is weakly innermost normalizing if

every term is weakly innermost normalizing.

Theorem 5.2.1 ([12]) Let R be a TRS such that all critical pairs of R are trivial over-

lays.

(a) R is strongly normalizing i� R is weakly innermost normalizing.

(b) For any term t, t is strongly normalizing i� t is weakly innermost normalizing. 2

According to Theorem 5.2.1, if we can prove the decidability of weakly innermost
normalizability then termination is decidable. The following lemma shows that it is

su�cient to consider rewriting on ground terms only.

Lemma 5.2.2 Let R be a TRS. R is strongly normalizing i� every ground term is

strongly normalizing. 2

We will show that for every left-linear growing TRS, the set of ground terms being
weakly innermost normalizing is recognizable. From here on we assume that R is left-

linear growing TRS.
We must construct a tree automaton which recognizes the set of ground terms being

weakly innermost normalizing. We start with the deterministic and complete tree au-

tomaton ANF by Comon [3] which accepts ground normal forms. The set SR is de�ned as

follows: SR = f t 2 T
 j t � l
; l ! r 2 R g. S�R is the smallest set such that SR � S
�
R

and if t; s 2 S�R and t " s then t t s 2 S�R. ANF = (F ; QNF ; Q
f

NF
;�NF ) is de�ned

by QNF = f qt j t 2 S
�
R and t does not contain redexes g [ f q
; qred g where red 62 F ,

Q
f

NF
= QNFnf qred g and �NF consists of the following rules:

� f(qt1 ; . . . ; qtn)! qt

if f(t1; . . . ; tn) is not a redex and

t is a maximal 
-term w.r.t. � such that t � f (t1; . . . ; tn) and qt 2 Q
f

NF
,

� f(qt1 ; . . . ; qtn)! qred if f(t1; . . . ; tn) is a redex,

� f(q1; . . . ; qn)! qred if qred 2 f q1; . . . ; qn g.

The following lemma shows that ANF recognizes the set of ground normal forms.
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Lemma 5.2.3 ([3]) Let t 2 T (F).

(i) ANF is deterministic and complete.

(ii) If t !�
ANF

qs where qs 6= qred then t is a normal form, s � t and u � s for any

qu 2 Q
f

NF
with u � t.

(iii) If t!�
ANF

qred then t is not a normal form. 2

We construct tree automata A0;A1; . . . ;Ak as follows. Let A0 = (F ; Q0; Q
f

0 ;�0) =

ANF . Ai+1 = (F ; Qi+1; Q
f

i+1;�i+1) (or Ak = (F ; Qk; Q
f

k
;�k)) is obtained from Ai as

follows:

� If there exist qt1 2 Qf

i
; . . . ; qtn 2 Qf

i
, f (l1; . . . ; ln)! r 2 R and q 2 Qi such that

(1) f(l1; . . . ; ln)
 � f (t1; . . . ; tn)

(2) there exists � : V ! Qi such that r� !�
Ai

q and x � lj implies x� = qtj for

every x 2 r and 1 � j � n,

(3) f(qt1 ; . . . ; qtn)! q 62 �i,

then Qi+1 = Qi, Q
f

i+1 = Q
f

i
and �i+1 = �i [ ff (qt1 ; . . . ; qtn)! qg.

� Otherwise, Ak = Ai.

The process of construction terminates by the condition (3). Note that A1; . . . ;Ak are

non-deterministic. In the following we prove that

L(Ak) = f t 2 T (F) j t is weakly innermost normalizing g:

We may omit the subscript i of Qi and Q
f

i
.

Lemma 5.2.4 Let t 2 T (F). For any 0 � i � k, if t !�
Ai

q 2 Q then t !�
I s !�

ANF
q

for some s 2 T (F).

Proof. We prove the lemma by induction on i. Base step. Trivial. Induction step.

Assume that qs1 2 Qf ; . . . ; qsn 2 Qf , f(l1; . . . ; ln) ! r 2 R and q1 2 Q are satisfy the
conditions of construction and �i is obtained by adding the rule f(qs1 ; . . . ; qsn) ! q1 to

�i�1. We use induction on the number m of application of the rule f(qs1 ; . . . ; qsn) ! q1
in the reduction t !�

Ai
q. If m = 0 then t !�

Ai�1
q. Thus it follows from induction

hypothesis on i that t!�
I s!

�
ANF

q for some s 2 T (F). Let m > 0. Suppose that

t � t[f(t1; . . . ; tn)]p !
�
Ai�1

t[f(qs1 ; . . . ; qsn)]p !Ai
t[q1]p !

�
Ai

q:

For every 1 � j � n, we obtain uj 2 T (F) with tj !
�
I uj !

�
ANF

qsj by applying

induction hypothesis to tj !
�
Ai�1

qsj . According to Lemma 5.2.3 (ii), f(s1; . . . ; sn) �

f(u1; . . . ; un) and u1; . . . ; un are normal forms. Because f(l1; � � � ; ln)
 � f(s1; . . . ; sn) by

the condition (1), we have the following reduction sequence:

f(t1; . . . ; tn)!
�
I f(u1; . . . ; un) � f(l1; . . . ; ln)� !I r�:

Let � be a substitution which is satis�ed in the condition (2) of construction. Then

we have r� !�
ANF

r� and hence r� !�
Ai�1

q1. Applying induction hypothesis on m to
t[r�]p !

�
Ai�1

t[q1]p !
�
Ai

q, we obtain s 2 T (F) such that t[r�]p !
�
I s !�

ANF
q. Thus we

have t!�
I s!

�
ANF

q since t!I t[r�]p. 2
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Lemma 5.2.5 L(Ak) � f t 2 T (F) j t is weakly innermost normalizing g.

Proof. From Lemmas 5.2.3 and 5.2.4. 2

Lemma 5.2.6 Let t 2 T (F) be a normal form. Then there exists exactly one q in Q

such that t!�
Ak

q. Furthermore, q is the state qs in Qf such that s � t and u � s for any
qu 2 Qf with u � t.

Proof. By Lemma 5.2.4, t !�
Ak

q i� t !�
ANF

q. Thus, from Lemma 5.2.3 the lemma

follows. 2

Lemma 5.2.7 L(Ak) � f t 2 T (F) j t is weakly innermost normalizing g.

Proof. Assume that t !�
I s for some normal form s. We show that t 2 L(Ak) by

induction on the length m of this reduction. Let m = 0. Then t is a normal form and
hence t 2 L(Ak) from Lemma 5.2.6. Let m > 0. We assume that

t � t[f(l1; . . . ; ln)�]p !I t[r�]p !
�
I s

with f(l1; . . . ; ln) ! r 2 R. By induction hypothesis, t[r�]p is accepted by Ak, i.e.,
t[r�]p !

�
Ak

q for some q 2 Qf . Because x� is a normal form for every x 2 r, Lemma 5.2.6
yields � : V ! Q such that

t[r�]p !
�
Ak

t[r�]p !
�
Ak

t[q1]p !
�
Ak

q

where q1 2 Q. For any 1 � j � n, by Lemma 5.2.6 we have exactly one qsj 2 Q

with lj� !
�
Ak

qsj because lj� is a normal form. Note that if lj � x and x 2 r then
x� = qsj . For any 1 � j � n, qlj
 2 Qf since lj
 2 S

�
R and lj
 does not contain redexes.

According to Lemma 5.2.6 f(l1; . . . ; ln)
 � f(s1; . . . ; sn). Therefore qs1 2 Qf ; . . . ; qsn 2

Qf , f(l1; . . . ; ln) ! r 2 R and q1 2 Q satisfy the conditions (1) and (2) of construction.
By the construction of Ak, �k has the rule f(qs1 ; . . . ; qsn)! q1. Thus, since

t � t[f(l1; . . . ; ln)�]p !
�
Ak

t[f(qs1 ; . . . ; qsn)]p !Ak
t[q1]p !

�
Ak

q 2 Qf ;

t is accepted by Ak. 2

Thus we obtain the following result.

Lemma 5.2.8 Let R be a left-linear growing TRS. The set of ground terms being weakly
innermost normalizing is recognized by a tree automaton. 2

Theorem 5.2.9 Termination is decidable for almost orthogonal growing TRSs.

Proof. Let R be an almost orthogonal growing TRS. According to Lemmas 5.2.2 and

5.2.1, R is strongly normalizing i� every ground term is weakly innermost normalizing.

From Lemmas 2.4.5, 2.4.6 and 5.2.8, it is decidable whether every ground term is weakly

innermost normalizing. 2

44



Chapter 6

Normalizability of the E-Strategy

In this chapter, we study the E-strategy which is adopted by the OBJ algebraic speci-

�cation languages such that OBJ2 [9], OBJ3 [11] and CafeOBJ [24]. In Section 6.1, we

de�ne the E-strategy and discuss how to give local strategies to function symbols so that
every normal form with respect to the E-strategy is a normal form. In Section 6.2, we

introduce two properties. One is the carefulness of local strategies and the other is the
index-transitivity of orthogonal TRSs. We show that if R is an index-transitive orthogo-

nal TRS in which careful local strategies are given to function symbols then the E-strategy

is normalizing for R. In general, these properties are undecidable. Section 6.3 gives a
decidable su�cient condition for carefulness. In Section 6.4, we consider a necessary and
su�cient condition for index-transitivity which is useful to prove index-transitivity of

orthogonal TRSs.

6.1 The Evaluation Strategy

The evaluation strategy (E-strategy) chooses a redex according to local strategies which
are given to function symbols. A local strategy is a list of natural numbers telling the
order to try reductions. If a function symbol f has arity n then the local strategy of f
consists natural numbers ranging from 0 to n. A positive integer i in the local strategy of

f means that the E-strategy reduces ith argument of f . Zero means rewriting at the top.
We now give the de�nition of the E-strategy. Our de�nition demonstrates the process of

search for a redex.

The set of all lists consisting of natural numbers is denoted by L. The empty list is

denoted by nil. Ln denotes the set of all lists consisting natural numbers ranging from

0 to n. Hence L =
S
n�0 Ln. Let F be a signature. Then the signature FL is de�ned

by FL = f fl j f 2 Fn and l 2 Ln for some n g. The set VL of variables is de�ned by
VL = f xnil j x 2 V g. The set T (FL;VL) is abbreviated to TL.

De�nition 6.1.1 Let F be a signature. An E-strategy mapping ' of F is a mapping

from F [ V to L such that '(f) 2 Ln if f 2 Fn and '(x) = nil if x 2 V . The E-strategy

mapping ' of F is extended to a mapping from T to TL as follows:

'(t) �

(
xnil if t � x;

f'(f)('(t1); . . . ; '(tn)) if t � f(t1; . . . ; tn):
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The mapping e form TL to T which erase all lists is de�ned as follows:

e(t) �

(
x if t � xnil;

f(e(t1); . . . ; e(tn)) if t � fl(t1; . . . ; tn):

Example 6.1.2 Let F = ff; g; h; ag where F2 = ff; gg, F1 = fhg and F0 = fag. Let
' be a mapping from F [ V to L which is de�ned by '(f) = (1; 0; 2; 0), '(g) = (2; 1),

'(h) = (1; 1), '(a) = (0) and '(x) = nil for any x 2 V . Then ' is an E-strategy

mapping of F . We have '(f(h(x); a)) = f(1;0;2;0)(h(1;1)(xnil); a(0)) and '(g(x; g(y; z))) =
g(2;1)(xnil; g(2;1)(ynil; znil)).

De�nition 6.1.3 Let (F ;R) be a TRS. Let ' be an E-strategy mapping of F . The

reduction relation)' on TL�N
�
+ is de�ned as follows: ht; pi )' hs; qi i� p 2 Pos(t) and

one of the following conditions is satis�ed.

(i) t(p) = enil for some e 2 F [ V ; t � s and p = q:i,

(ii) t(p) = f(0;...); p = q and tjp � l0�; e(l0) � l; s � t['(r)�]p for some � : VL ! TL and
l! r 2 R,

(iii) t � t[f(0;...)(t1; . . . ; tn)]p; e(tjp) is not a redex, s � t[f(...)(t1; . . . ; tn)]p and p = q,

(iv) t � t[f(i;...)(t1; . . . ; tn)]p with i 6= 0; s � t[f(...)(t1; . . . ; tn)]p and q = p:i.

Note that if ht; pi )' hs; qi then q 2 Pos(s) and e(t) !� e(s). Let t be a term in T .

If we have the )'-reduction sequence h'(t); "i )' ht1; p1i )' ht2; p2i )' � � � then the
E-strategy reduction from t is de�ned as t!� e(t1)!

� e(t2)!
� � � �.

Example 6.1.4 Let F = f add; s; 0 g and

R =

(
add(x; 0)! x

add(x; s(y))! s(add(x; y)):

Let ' be an E-strategy mapping of F which is de�ned by '(add) = (2; 0), '(s) =

(1) and '(0) = nil. Then haddnil(s(1)(0(0)); 0nil); 1i )' haddnil(snil(0(0)); 0nil); 1:1i and

hadd(0)(snil(0nil); s(0(0))); "i )' hs(1)(add(2;0)(snil(0nil); 0(0))); "i. The E-strategy reduces

the term add(add(s(0); 0); add(s(0); 0)) as follows (at each step the underlined redex is

contracted):

add(add(s(0); 0); add(s(0); 0)) ! add(add(s(0); 0); s(0))

! s(add(add(s(0); 0); 0))

! s(add(s(0); 0))

! s(s(0)):

However, even if )'-reduction from h'(t); "i terminates at hs; pi, e(s) is not always a

normal form as shown by the following example.
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Example 6.1.5 Let F = f f; g; a; b; c g and

R =

8><
>:

f(a)! c

g(b; x)! b

b! a:

We de�ne the E-strategy mapping ' of F by '(f) = (0; 1); '(g) = (1; 0); '(a) = '(c) =

nil and '(b) = (0). Consider the term t � g(a; b). The )'-reduction from h'(t); "i
terminates at hgnil(anil; b(0)); "i:

hg(1;0)(anil; b(0)); "i )' hg(0)(anil; b(0)); 1i )' hg(0)(anil; b(0)); "i )' hgnil(anil; b(0)); "i:

But g(a; b) is not a normal form. The E-strategy must reduce all arguments of g in order

to get the normal form g(a; a) of t. Next consider the term s � f(b). We have the

following )'-reduction sequence:

hf(0;1)(b(0)); "i )' hf(1)(b(0)); "i )' hfnil(b(0)); 1i )' hfnil(anil); 1i )' hfnil(anil); "i:

Although hfnil(anil); "i is a normal form w.r.t. )', f(a) is not a normal form. After the
reducing arguments of the function symbol f , it is necessary to try to match with the
left-hand sides of rewrite rules at the position occurring f .

To avoid this problem, we will give a restriction on E-strategy mappings.

De�nition 6.1.6 Let (F ;R) be a TRS. The set D of de�ned function symbols is de�ned
as follows:

D = f l(") j l ! r 2 R g:

De�nition 6.1.7 Let (F ;R) be a TRS. Let ' be an E-strategy mapping of F . We say

that ' is an E-strategy mapping of (F ;R) if it satis�es following condition: for every
f 2 F

(i) '(f) contains 1; . . . ; n if f 2 Fn with n � 1,

(ii) the last element of '(f) is 0 if f 2 D.

Example 6.1.8 Let (F ;R) be the TRS of Example 6.1.5. Then D = f f; g; b g. Let

' be the E-strategy mapping of F such that '(f) = (0; 1; 0); '(g) = (1; 0; 2; 0); '(a) =
'(c) = nil and '(b) = (0). Then ' is the E-strategy mapping of (F ;R)

In the rest of this section, we assume that ' is an E-strategy mapping of a TRS
(F ;R). Under this assumption, we will show that if the )'-reduction sequence from

h'(t); "i ends in hs; pi then e(s) is a normal form. We denote the concatenation of lists l
and l0 by l; l0.

Lemma 6.1.9 Let t 2 T . Let h'(t); "i )�
'
hs; pi and q 2 Pos(s). If s(q) = el for some

e 2 F [ V then there exists a list l0 such that '(e) = l0; l.

Proof. Trivial. 2

We write s(s; q) for the list l0 in Lemma 6.1.9.
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Lemma 6.1.10 Let t 2 T . If h'(t); "i )�
'
hs; pi and p = p1:i:p2 then the last element of

s(s; p1) is i.

Proof. We prove the lemma by induction on the length n of h'(t); "i )�
'
hs; pi. The case

of n = 0 is trivial. We assume that h'(t); "i )�
'
hs0; qi )' hs; pi. Then hs

0; qi )' hs; pi

satis�es one of the conditions of De�nition 6.1.3.

Case 1. The condition (i), (ii) or (iii) is satis�ed. Then q = p1:i:p2:j for some j or p = q.
From induction hypothesis, the last element of s(s0; p1) is i. Since s(s; p1) = s(s0; p1), the

lemma holds.

Case 2. The condition (iv) is satis�ed. If p2 = " then the lemma is trivial. If p2 = p02:j

for some p02 and j then q = p1:i:p
0
2. Thus it follows from induction hypothesis the the last

element of s(s0; p1) is i. Since s(s; p1) = s(s0; p1), the lemma holds. 2

Lemma 6.1.11 Let t 2 T . Let h'(t); "i )�
'
hs; pi and q 2 Pos(s).

(1) If q < p then e(sjq:i) is a normal form for every i 2 s(s; q) which is neither zero nor

the last element of s(s; q)

(2) Otherwise,

(2-1) e(sjq:i) is a normal form for every i 2 s(s; q) with i 6= 0,

(2-2) If the last element of s(s; q) is zero then e(sjq) is not a redex.

Proof. We prove the lemma by induction on the length of h'(t); "i )�
'
hs; pi. If the

length is zero then s(s; q) = nil for every q 2 Pos(s). Thus the lemma holds trivially.
Suppose h'(t); "i )�

'
hs0; p0i )' hs; pi. hs

0; p0i )' hs; pi satis�es one of the conditions of

De�nition 6.1.3.
Case 1. The condition (i) is satis�ed. Let p0 = p:j and s0(p0) = enil where e 2 F [ V.

If q 6= p then it follows from induction hypothesis that (1) and (2) hold. Suppose q = p.
By Lemma 6.1.10, the last element of s(s0; q) is j. Since s(s; q) = s(s0; q), (2-2) holds.

Let i 2 s(s; q) with i 6= 0. If i 6= j then i 2 s(s0; q) and i is not the last element of

s(s0; q). From induction hypothesis, it is obtained that e(s0jq:i) is a normal form. Since

e(sjq:i) = e(s0jq:i), e(sjq:i) is a normal form. If i = j then q:i = p0. Since s0(p0) = enil,
s(s0; p0) = '(e). From induction hypothesis and the assumption that ' is an E-strategy

mapping of (F ;R), e(s0jp0) is a normal form. Since s � s0, e(sjp0) is a normal form.

Case 2. The condition (ii) is satis�ed. If q < p then s(s; q) = s(s0; q). Let i 2 s(s; q) be a

natural number which is neither zero nor the last element of s(s; q). Using Lemma 6.1.10,
we obtain that q:i ? p. Thus sjq:i � s0jq:i. Since e(s0jq:i) is normal form by induction

hypothesis, e(sjq:i) is a normal form. If q ? p then from induction hypothesis the lemma
follows. Finally we consider the case of q � p. We assume that l ! r 2 R is applied in

this reduction. If q 2 PosF(r) then s(s; q) = nil and thus the lemma holds. Otherwise,
there exists q0 2 Pos(s0) such that p0 < q0 and s0jq0 � sjq. By using induction hypothesis,

we obtain the lemma.

Case 3. The condition (iii) is satis�ed. Then the last element of s(s; p) is zero and
e(s0jp) is not a redex. Since e(s) � e(s0), we can obtain the lemma by using induction

hypothesis.

Case 4. The condition (iv) is satis�ed. Using induction hypothesis, we can show the

lemma. 2
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Theorem 6.1.12 Let ' be an E-strategy mapping of a TRS (F ;R) and let t 2 T . If

h'(t); "i )�
'
hs; pi and hs; pi is a normal form w.r.t. )' then e(s) is a normal form of t.

Proof. Clearly t !� e(s). By the de�nition of )', we have p = " and s(") = enil for

some e 2 F[V. Since ' is an E-strategy mapping of (F ;R), it follows from Lemma 6.1.11

that e(s) is a normal form. 2

Example 6.1.13 Let (F ;R) be the TRS of Example 6.1.5 and let ' be the E-strategy
mapping de�ned in Example 6.1.8. Then from Theorem 6.1.12, every normal form w.r.t.
E-strategy is also a normal form of (F ;R). We have the following)'-reduction sequence

from h'(g(a; b)); "i:

hg(1;0;2;0)(anil; b(0)); "i )
+

'
hg(0)(anil; b(0)); 2i

)' hg(0)(anil; anil); 2i

)+

'
hgnil(anil; anil); "i:

The )'-reduction sequence starting with h'(f(b)); "i is

hf(0;1;0)(b(0)); "i )
+

'
hf(0)(b(0)); 1i

)' hf(0)(anil); 1i

)' hf(0)(anil); "i

)' hcnil; "i:

6.2 Normalizability

In this section, we investigate the normalizability of the E-strategy. Relying on the theo-
rem of Huet and L�evy [13] (Theorem 2.3.5), henceforth we will be dealing with orthegonal

TRSs only.

Let ' an E-strategy mapping of a TRS (F ;R). We say that the reduction )' is
normalizing for (F ;R) if for every t 2 T having a normal form there exists no in�nite
sequence h'(t); "i )' hs1; p1i )' hs2; p2i )' � � �. According to the theorem of Huet and

L�evy, the reduction )' is normalizing for an orthogonal TRS if only needed redexes are
contracted by)'. In general, for a given orthogonal TRS we can not de�ne an E-strategy

mapping ' to contract a needed redex for any term not being a norma form. Consider

the following orthogonal TRS:

R =

8><
>:

f(a; x; a)! a

f(b; b; x)! b

c! c:

In a term f(r1; r2; r3) where r1; r2 and r3 are redexes, we �rst contract r1 since r1 is needed.
A redex that must be contracted in the next step depends on the contractum of r1. If the

contractum of r1 is a then r2 may be not needed because r3 may reduce to a. Similarly,

r3 may be not needed if the contractum of r1 is b. Thus we can not give the evaluation
order for the function symbol f . Because of this problem, we will formulate a property of
E-strategy mappings.

We also say that a position p of an 
-term t is an index with respect to nf if p 2

Inf(t[
]p). The set I
0
nf
(t) is de�ned by I 0

nf
(t) = f p 2 Pos(t) j p 2 Inf (t[
]p) g.
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De�nition 6.2.1 Let (F ;R) be a TRS. An E-strategy mapping ' of (F ;R) is careful

if it satis�es the following condition: for every l 2 Red such that l(") = f and '(f) =

(n1; . . . ; nk), there exists i such that

(i) ni = 0,

(ii) for any 1 � j < i, nj is zero or an index w.r.t. nf of l,

(iii) for any i < j � k, nj is zero or an 
-position of l.

Example 6.2.2 Let

R =

8><
>:

f(a; x; a)! a

f(b; x; y)! b

c! c:

Let ' be an E-strategy mapping of R such that '(f) = (1; 0; 3; 0; 2; 0) and '(c) = (0).

Then Red = f f(a;
; a); f(b;
;
); c g. Because I 0
nf
(f(a;
; a)) = f "; 1; 3 g, i = 4 satis-

�es the conditions of carefulness for f(a;
; a). Similarly, we can see that i = 2 and i = 1

satisfy the conditions of carefulness for f(b;
;
) and c, respectively. Thus ' is careful.

However, carefulness is not su�cient for normalizability of)'. Consider the following

orthogonal TRS:

R =

(
f(g(x))! a

b! g(b):

Let '(f) = (1; 0); '(g) = (1); '(b) = (0) and '(a) = nil. Then ' is a careful E-strategy

mapping of R. Although the term t � f(g(b)) has the normal form a, there exists the
in�nite sequence

h f(1;0)(g(1)(b(0))); "; i )
+

'
h f(0)(gnil(b(0))); 1:1 i

)' h f(0)(gnil(g(1)(b(0)))); 1:1 i

)' h f(0)(gnil(gnil(b(0)))); 1:1:1 i

)' h f(0)(gnil(gnil(g(1)(b(0))))); 1:1:1 i

)' � � � :

In the E-strategy, if the redex at a position p was contracted then the search for a redex
start at p in the next step. But in general, needed redexes cannot be found locally. For

example, the redex b in g(b) is needed but it is not a needed redex in f(g(b)). Thus we

need the following transitivity property for indices.

De�nition 6.2.3 A TRS R is index-transitive if for every term t in T , p 2 I 0
nf
(t) and

q 2 I 0
nf
(tjp) imply p:q 2 I 0

nf
(t).

In the following we prove that if R is an index-transitive TRS having a careful E-

strategy mapping ' then )' is normalizing for R. Indices w.r.t. nf have the following

property.

Lemma 6.2.4 ([18]) Let t 2 T
. If p 2 I 0
nf
(t) and q � p then q 2 I 0

nf
(t). 2

Lemma 6.2.5 Let f(l1; . . . ; ln) ! r 2 R with n > 0. Let 1 � i � n. If li 62 V then
i 2 I 0

nf
(f(l1; . . . ; ln)
).
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Proof. From the orthogonality of R. 2

The non-root reduction t!nr s is de�ned as t
p

! s and p 6= ". We can easily see that

if a term t in T is not root-stable then there exists a redex s such that t!�
nr

s.

Lemma 6.2.6 Let t be a term in T such that t!�
nr

l� for some l ! r 2 R. If i 2 I 0
nf
(l
)

and j i j = 1 then i 2 I 0
nf
(t).

Proof. We assume that i 62 I 0
nf
(t). Clearly i 2 Pos(t). Thus t[
]i !

� s for some normal

form s. Since t[
]i !
� l�[
]i, by the Church-Rosser property of R we obtain l�[
]i !

� s.

Because l�[
]i � l
[
]i, i 62 I 0
nf
(l
). 2

Lemma 6.2.7 Let R be an index-transitve TRS having a careful E-strategy mapping '.

If h'(t); "i )�
'
h s; p i then p 2 I 0

nf
(e(s)).

Proof. We prove the lemma by induction on the length of this reduction. The case

of zero length is trival. We assume that h'(t); "i )�
'
hs0; qi )' hs; pi. From induction

hypothesis, q 2 I 0
nf
(e(s0)). The last step hs0; qi )' hs; pi satis�es one of the conditions of

De�nition 6.1.3.

Case 1. The condition (i) is satis�ed. Let q = p:i. From Lemma 6.2.4, p 2 I 0
nf
(e(s0)).

Since s � s0, p 2 I 0
nf
(e(s)).

Case 2. The condition (ii) or (iii) is satis�ed. Because p = q and e(s)[
]p � e(s0)[
]p,
p 2 I 0

nf
(e(s)).

Case 3. The condition (iv) is satis�ed. Then e(s) � e(s0). Let s0 � s0[f(i;...)(t1; . . . ; tn)]q
and p = q:i. If e(f(i;...)(t1; . . . ; tn)) is root-stable then i 2 I 0

nf
(e(f(i;...)(t1; . . . ; tn))). Since

q 2 I 0
nf
(e(s0)) and R is index-transitive, p 2 I 0

nf
(e(s0)). Thus p 2 I 0

nf
(e(s)). Otherwise,

we assume that e(f(i;...)(t1; . . . ; tn))!
�
nr

f(l1; . . . ; ln)� for some f(l1; . . . ; ln)! r 2 R. Let

'(f) = (n1; . . . ; nk). By the carefulness of ', there exists i0 satisfying (i), (ii) and (iii)

in De�niton 6.2.1 for f(l1; . . . ; ln)
. We will show the claim that i = nj for some j with
j < i0. Suppse the contrary. Then we have the reduction sequence

h'(t); "i )�
'
hs0[f(0;ni0+1;...;nk)(s1; . . . sn)]q; qi

)' hs
0[f(ni0+1;...;nk)(s1; . . . sn)]q; qi = hs

0
1; q1i

)' hs
0
2; q2i

...

)' h s
0
m
; qm i = h s

0; q i:

such that f(e(s1); . . . e(sn)) is not a redex and for any 1 � j � m� 1, qj � q and if qj = q

then h s0
j
; qj i )' h s

0
j+1; qj+1 i does not satisfy (ii) of De�nition 6.1.3. If lj 62 V where 1 �

j � n then from Lemma 6.2.5, j is an index w.r.t. nf of f(l1; . . . ; ln)
. By the carefulness of
', j 2 s(s01; q). According to Lemma 6.1.11 e(sj) is a normal form. Thus f (e(s1); . . . e(sn))

is an instance of f(l1; . . . ; ln) because f (e(s1); . . . ; e(sn)) !
�
nr

l�. This is a contradiction

and hence we are done. By the claim and (ii) in De�nition 6.2.1, i 2 I 0
nf
(f (l1; . . . ; ln)
).

From Lemma 6.2.6 it follows that i is an index w.r.t. nf of f(e(t1); . . . e(tn)). Because
q 2 I 0

nf
(e(s0)) and R is index-transitive, p 2 I 0

nf
(e(s0)). Therefore p 2 I 0

nf
(e(s)). 2
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The length of a list l is denoted by j l j. We de�ne k t k for t 2 TL as follows:

k t k =

(
0 if t 2 VL;

j l j+ kt1k+ � � �+ ktnk if t � fl(t1; . . . ; tn):

If t 2 T has a normal form then d(t) denotes the maximum length of needed reduction

sequences from t to the normal form.

Theorem 6.2.8 LetR be an index-transitive orthogonal TRS having a careful E-strategy

mapping '. Then )' is normalizing for R.

Proof. We de�ne khs; pik as (d(e(s)); k s k; j p j) if e(s) has a normal form. Let t be

a term in T which has a normal form. Now we show that if h'(t); "i � hs0; p0i )'

hs1; p1i )' � � � then khsn; pnik >lex khsn+1; pn+1ik for any n � 0, where >lex is the

lexicographic order onN 3. The step hsn; pni )' hsn+1; pn+1i satis�es one of the conditions
of De�nition 6.1.3. If (i) is satis�ed then b(e(sn)) = b(e(sn+1)); ksnk = ksn+1k and

jpnj > jpn+1j. If (ii) is satis�ed then b(e(sn)) > b(e(sn+1)) by Lemma 6.2.7. If (iii)

or (iv) is satis�ed then b(e(sn)) = b(e(sn+1)) and ksnk > ksn+1k. Therefore we obtain
khsn; pnik >lex khsn+1; pn+1ik. Since >lex is well-founded, i.e., there exists no in�nite

sequence a0 >lex a1 >lex a2 >lex � � � of elements of N
3, the reduction )' is normalizing.

2

6.3 A Su�cient Condition for Carefulness

In general, it is undecidable whether there exists a careful E-strategy mapping ' for a

given TRS R. Because it is undecidable whether an position in a term is an index w.r.t.

nf . In this section, we introduce a su�cient condition for existence of a careful E-strategy
mapping. We explain how to de�ne a careful E-strategy mapping if a TRS satis�es this
condition.

Lemma 6.2.5 expresses a su�cient condition for indices w.r.t. nf of an 
-term l in
Red, i.e., non-
-positions of l are indices w.r.t. nf . This formalizes the following property
of E-strategy mappings.

De�nition 6.3.1 Let (F ;R) be a TRS. An E-strategy mapping ' of (F ;R) is semi-

careful if it satis�es the following condition: for every l 2 Red such that l(") = f and

'(f) = (n1; . . . ; nk), there exists i such that

(i) ni = 0,

(ii) for any 1 � j < i, nj is zero or non-
-position of l,

(iii) for any i < j � k, nj is zero or an 
-position of l.

Lemma 6.3.2 Let ' be a semi-careful E-strategy mapping of (F ;R). Then ' is careful.

Proof. By using Lemma 6.2.5. 2

In the following we present the class of TRSs having a semi-careful E-strategy mapping.
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De�nition 6.3.3

1. If t is an 
-term then the set N(t) is de�ned as follows:

N(t) =

(
f i j ti 6� 
; 1 � i � n g if t � f(t1; . . . ; tn) and n > 0;

� otherwise:

2. If f 2 F then the set Nf is de�ned by

Nf = f N(l) j l 2 Red and l(") = f g:

Example 6.3.4 Let F = f f; g; a; b; c g and

R =

8>>><
>>>:

f (x; a; b)! x

f (x; b; y)! y

g(x)! a

c! g(c):

Then Nf = ff2; 3g; f2gg, Ng = Nc = f�g and Na = Nb = �.

De�nition 6.3.5 A TRS (F ;R) is N -total if for all f 2 D, S1 � S2 or S1 � S2 whenever
S1; S2 2 Nf .

We de�ne the E-strategy mapping 't for an N -total TRS (F ;R) as follows. Let
f 2 Fn. If f 62 D and n = 0 then we de�ne 't(f) as nil. If f 62 D and n > 0 then we
de�ne 't(f) as (1; . . . ; n). If f 2 D and n = 0 then we de�ne 't(f) as (0). We �nally

assume that f 2 D and n > 0. Let Nf = fS1; . . . ; Smg. Then there exists the sequence
Si1 � Si2 � � � � � Sim

of elements of Nf . Let l1; . . . ; lm+1 be the following lists:8>>>>>><
>>>>>>:

l1 = Si1 ;

lj = (n1; . . . ; nk) if 1 < j � m; Sij
nSij�1 = fn1; . . . ; nkg and

ni < ni+1 for any 1 � i � k � 1;

lm+1 = (n1; . . . ; nk) if f1; . . . ; ngnSim = fn1; . . . ; nkg and

ni < ni+1 for any 1 � i � k � 1:

We de�ne 't(f) by 't(f) = l1; (0); l2; � � � ; lm; (0); lm+1; (0).

Example 6.3.6 Consider the TRS (F ;R) of Example 6.3.4. Then (F ;R) is N -total.

We have 't(f) = (2; 0; 3; 0; 1; 0), 't(g) = (0; 1; 0), 't(c) = (0) and 't(a) = 't(b) = nil.

From the de�nition of 't we can easily prove the following lemmas.

Lemma 6.3.7 Let (F ;R) be an N -total TRS. Then 't is a semi-careful E-strategy map-

ping of (F ;R). 2

Theorem 6.3.8 Let (F ;R) be an N -total index-transitive orthogonal TRS. Then )'t

is normalizing for (F ;R).

Proof. From theorem 6.2.8 and Lemmas 6.3.2 and 6.3.7. 2

It is not di�cult to see that if a TRS (F ;R) has a semi-careful E-strategy mapping
then R is N -total. Thus we have the following theorem.

Theorem 6.3.9 Let (F ;R) be a TRS. Then (F ;R) is N -total i� (F ;R) has a semi-

careful E-strategy mapping. 2
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6.4 A Necessary and Su�cient Condition for

Index-Transitivity

In this section we give a necessary and su�cient condition for index-transitivity, which is

useful to prove index-transitivity of orthogonal TRSs. For this purpose, we need several

lemmas that express properties of indices w.r.t. nf .

Lemma 6.4.1 Let t 2 T and p 2 Pos(t). Let A : t!� s and q 2 pnA. If q 2 I 0
nf
(s) then

p 2 I 0
nf
(t).

Proof. We prove the lemma by induction on the length n of A. The case n = 0 is

trivial. Let A : t
p1
! t0 !� s. Suppose that p0 2 pnA[1] and q 2 p0nA[1; n]. From induction

hypothesis it follows that p0 2 I 0
nf
(t0). If p � p1 then p = p0 and t[
]p � t0[
]p. Thus

p 2 I 0
nf
(t). If p 6� p1 then there exists s0 2 T
 such that t[
]p

p1
! s0 and s0 � t0[
]p0 .

Since p0 2 I 0
nf
(t0), nf(t0[
]p) = false. From the monotonicity of nf it follows that

nf(s0) = false. By the Church-Rosser property of R we obtain nf(t[
]p) = false.
Therefore p 2 I 0

nf
(t). 2

De�nition 6.4.2 Let p be a redex position of t, i.e., t � t[l�]p for some l ! r 2 R. The
set C(t; p) is de�ned by

C(t; p) = f p:q j q 2 PosF(l) g:

Lemma 6.4.3 Let t0 be a term in T which has a normal form and let p 2 I 0
nf
(t0). Let

A : t0
q0
! t1

q1
! � � �

qn�1
! tn be a reduction sequence such that for every 0 � i � n� 1

C(ti; qi) \ f p
0 2 Pos(ti) j p

0 2 pnA[i] g = �:

Then tn has a descendant of p by A, i.e., pnA 6= �.

Proof. We assume that tn does not have a descendant of p. For each 0 � i < n, let si
be a 
-term obtained from ti by replacing all subterms at descendants of p by A[i] with


. From the assumption for A and the left-linearity of R we can obtain the reduction

sequence s0 !
� s1 !

� � � � !� sn. Since s0 � t0[
]p and sn � tn, we have t0[
]p !
� tn.

By the Church-Rosser property of R, tn has a normal form and hence nf(t0[
]p) = true.
However, this contradicts the assumption that p 2 I 0

nf
(t0). 2

Lemma 6.4.4 Let t 2 T . Let p be a redex position in t and let q 2 C(t; p). If p 2 I 0
nf
(t)

then q 2 I 0
nf
(t).

Proof. If p 2 I 0
nf
(t) then p is needed. We now suppose that q 62 I 0

nf
(t). Then there

exists a reduction sequence A : t[
]q � t0
p0
! t1

p1
! � � �

pn�1
! tn 2 NFR. From the

orthogonality of R, pi 62 pnA[i] for any 0 � i � n � 1. For each 0 � i � n, let ~ti be a

term obtained from ti by replacing all 
's with tjq. Then we get the reduction sequence

A0 : ~t0 � t
p0
! ~t1

p1
! � � �

pn�1
! ~tn � tn such that pi 62 pnA0[i] for any 0 � i � n� 1. However

this contradicts the fact that a redex position p is needed. 2

Lemma 6.4.5 Let t be a term in T which has normal form and let p 2 I 0
nf
(t). Let

A : t
q

! s and p 62 C(t; q). Then there exists p0 in pnA such that p0 2 I 0
nf
(s).
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Proof. There exists a reduction sequence A0 : t
q

! s � s0
q0
!N s1

q1
!N � � �

qn�1
! N sn 2

NFR. Let Si = C(si; qi) \ f q
0 2 Pos(si) j q

02 pnA0[i + 1] g for each 0 � i � n � 1. We

consider the following two cases.
Case 1. Si = � for every 0 � i � n � 1. According to Lemma 6.4.3, sn has a

descendant p1 of p by A0. Let p2 2 pnA with p1 2 p2nA
0[1; n + 1]. Since sn is a normal

form, p1 2 I 0
nf
(sn). By Lemma 6.4.1 p2 2 I 0

nf
(s).

Case 2. Si 6= � for some i. Let p1 2 Si and let p2 2 pnA with p1 2 p2nA
0[1; i+ 1]. By

Lemma 6.4.4 p1 2 I 0
nf
(si). Thus it follows from Lemma 6.4.1 that p1 2 I 0

nf
(s). 2

Lemma 6.4.6 Let l ! r 2 R and � : V ! T . Let p 2 PosF(l) with p 6= ". Then l�jp
has a normal form i� x� has a normal form for every x 2 ljp

Proof. From the orthogonality of R. 2

Lemma 6.4.7 Let t be a term in T which has a normal form. If p1:p2 2 I 0
nf
(t) then

p2 2 I 0
nf
(tjp1).

Proof. We assume that p2 62 I 0
nf
(tjp1). Then tjp1 [
]p2 !

� s for some normal form s.
We can obtain that tjp1 !

� s because s does not contain 
's. Since t !� t[s]p1 and
t[
]p1:p2 !

� t[s]p1 , from the Church-Rosser property of R, t[
]p1:p2 has a normal form,

i.e., nf(t[
]p1:p2) = true. Hence p1:p2 62 I 0
nf
(t). 2

Lemma 6.4.8 ([18]) Let t 2 T
. If p 2 I 0
nf
(t) and t � s then p 2 I 0

nf
(s). 2

The following lemma gives a su�cient condition for index-transitivity.

Lemma 6.4.9 Let R be an orthogonal TRS such that for any l 2 Red if ljp � 
 and
j p j � 2 then p 2 I 0

nf
(l). Let t be a term in T which has a normal form. If p1 2 I 0

nf
(t)

and p2 2 I 0
nf
(tjp1) then

(1) tjp1 has a normal form,

(2) p1:p2 2 I 0
nf
(t).

Proof. We prove the lemma by induction on d(t). The case d(t) = 0 is trivial because t

is a normal form. Let A : t
p3
!N s.

Case 1. p1; p1:p2 62 C(t; p3). We can easily show (1) and (2) by using induction
hypothesis and Lemmas 6.4.1 and 6.4.5.

Case 2. p1 62 C(t; p3) and p1:p2 2 C(t; p3). From Lemma 6.4.4 it follows that p1:p2 2

I 0
nf
(t). Using induction hypothesis and Lemma 6.4.5, we can easily show (1).

Case 3. p1 2 C(t; p3) and p1:p2 62 C(t; p3). If p1 = p3 then we can show (1) and (2)

by using induction hypothesis and Lemmas 6.4.1 and 6.4.5. We next consider the case
of p1 > p3. Let p1 = p3:q1 where q1 6= ". Suppose that t � t[l�]p3 and s � t[r�]p3 for

l ! r 2 R. By Lemma 6.2.4, p3 2 I 0
nf
(t) and therefore p3 2 I 0

nf
(s). It follows form

induction hypothesis that r� has a normal form. Hence l� has a normal form. We �rst
show the claim that if p 2 PosV(l) and j p j � 2 then there exists q in p3:pnA such that
q 2 I 0

nf
(s).

Poof of the claim. Let p be a position in PosV(l) such that j p j � 2. Then p 2 I 0
nf
(l
)

by the assumption of the lemma. By using Lemma 6.4.8 we obtain that p 2 I 0
nf
(l�). Let
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A0 : l�
"

! r�. According to Lemma 6.4.5 there exists p0 in pnA0 such that p0 2 I 0
nf
(r�). It

is clear that p3:p
0 2 p3:pnA. Since p3 2 I 0

nf
(s) and p0 2 I 0

nf
(sjp3), we get p3:p

0 2 I 0
nf
(s) by

induction hypothesis.

We next prove that tjp1 � l�jq1 has a normal form. According to Lemma 6.4.6 it is

su�cient to show that x� has a normal form for any x 2 ljq1 . Let x 2 ljq1 . Then x � ljp
for some p with j p j � 2. By the claim, there exists q in p3:pnA such that q 2 I 0

nf
(s).

From induction hypothesis, sjq has a normal form. Since x� � sjq, x� has a normal

form. Finally we prove that p1:p2 2 I 0
nf
(t). We have p2 = q2:q3 for some q2 2 PosV(ljq1)

with jq2j � 1. Since q2:q3 2 I 0
nf
(tjp1) and tjp1 has a normal form, it is obtained that

q3 2 I 0
nf
(tjp1:q2) by Lemma 6.4.7. Because q1:q2 2 PosV(l) and jq1:q2j � 2, according to

the claim there exists q in p3:q1:q2nA such that q 2 I 0
nf
(s). Because tjp1:q2 � tjp3:q1:q2 � sjq,

we get q3 2 I 0
nf
(sjq). Thus by using induction hypothesis, it is obtained that q:q3 2 I 0

nf
(s).

Since q:q3 is a descendant of p1:p2 by A, Lemma 6.4.1 yields p1:p2 2 I 0
nf
(t).

Case 4. p1 2 C(t; p3) and p1:p2 2 C(t; p3). From Lemma 6.4.4 it follows that p1:p2 2
I 0
nf
(t). Similar to Case 3, we can show that tjp1 has a normal form. 2

We show that the condition in Lemma 6.4.9 is also necessary for index-transitivity.

Theorem 6.4.10 Let R be an orthogonal TRS. The following are equivalent:

(1) R is index-transitive,

(2) for any t 2 T
 if p 2 I 0
nf
(t) and q 2 I 0

nf
(tjp) then p:q 2 I 0

nf
(t),

(3) for any l 2 Red if ljp � 
 and j p j � 2 then p 2 I 0
nf
(l).

Proof.

(1)) (2) We assume that p 2 I 0
nf
(t); q 2 I 0

nf
(tjp) and p:q 62 I 0

nf
(t). Then there exists

s 2 T
 such that t[
]p:q � s, nf(s) = true and sjp:q � 
. From the monotonicity of

nf we get s0 2 T such that t � s0 and nf(s0[
]p:q) = true, i.e., p:q 62 I 0
nf
(s0). Using

Lemma 6.4.8, we can show that p 2 I 0
nf
(s0) and q 2 I 0

nf
(s0jp). But this contradicts

the assumption that R is index-transitive.

(2)) (3) Let l 2 Red and let p be an 
-position with j p j � 2. Then there exists

q 2 Pos(l) such that q < p and j q j = 1. By the orthogonality of R, q 2 I 0
nf
(l) and

p=q 2 I 0
nf
(ljq). Thus it follows from the assumption (2) that p 2 I 0

nf
(l).

(3)) (1) Let t 2 T . Let p 2 I 0
nf
(t) and q 2 I 0

nf
(tjp). If t has a normal form then

p:q 2 I 0
nf
(t) by Lemma 6.4.9. Otherwise nf(t[
]p:q) = false by the monotonicity of

nf . Thus p:q 2 I 0
nf
(t). 2

Example 6.4.11 Consider the TRS R of Example 6.3.4. Every variable in the left-hand

side of a rewrite rule occurs at depth one in the left-hand side. From Theorem 6.4.10, R

is index-transitive. Thus )'t
is normalizing for R.
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Chapter 7

Conclusion

In this thesis we investigated normalizing strategies for term rewriting systems.

In Chapter 3 we presented the class of NVNF-sequential systems. NVNF-sequentiality

is de�ned by using the same approximate reduction as NV-sequentiality [28]. However,
it gives consideration to the reachability only to normal forms without 
's whereas NV-

sequentiality gives consideration to the reachability to terms without 
's. We showed
that the class of NVNF-sequential systems properly includes NV-sequential systems.

We proved the decidability of indices with respect to NVNF-sequentiality for left-linear

term rewriting systems. This result implies that we can compute at least one of the
needed redexes in a term no being a normal form if a term rewriting system is orthog-
onal NVNF-sequential. Thus, by the theorem of Huet and L�evy [13] every orthogonal

NVNF-sequential system has a decidable normalizing call-by-need strategy. Our main

purpose was to give a simpli�ed proof of the the decidability of indices with respect to
NVNF-sequentiality. The complexity of the decision algorithm for indices w.r.t. NVNF-
sequentiality remains open although indices w.r.t. NV-sequentiality are decidable in poly-

nomial time.

In Chapter 4, we investigated the normalizability of Huet and L�evy's strategy [13]
(index reduction) and Oyamaguchi's strategy [28] (NV-index reduction) for left-linear
overlapping term rewriting systems. We �rst introduced the notion of stable balanced

joinability. A term rewriting system is called stable balanced joinable if every critical
pair is joinable with balanced stable reduction. Stable balanced joinable property implies
the balanced weakly Church-Rosser property of index reduction. Thus, by Toyama's

theorem [30] concerning reduction strategies, index reduction is normalizing for every

stable balanced joinable strongly sequential system. The class of stable balanced joinable

systems includes all root balanced joinable systems which were de�ned by Toyama in

[30]. We next introduced the notion of NV-stable balanced joinability. It was shown that

NV-index reduction is normalizing for every NV-stable balanced joinable NV-sequential

system. Stable and NV-stable balanced joinability are semi-decidable properties of left-

linear term rewriting systems, however these properties are undecidable. It remains to give
decidable su�cient conditions for stable and NV-stable balanced joinability. In Chapter 4,
we do not deal with more general sequential systems (NVNF-, shallow [3] or growing [14]

sequential systems). Because the index reduction does not have the balanced weakly
Church-Rosser property for more general sequential systems. However, we conjecture
that our result can be generalized to these sequentiality.

In Chapter 5, we research into decidable properties of growing term rewriting systems.
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We �rst extended Jacquemard's result [14] to left-linear growing systems that may contain

non-right-linear rules. It has been shown that the set of reachable terms to some recogniz-

able set is recognized by a tree automaton if a term rewriting system is left-linear growing.

This implies the decidability of reachability for left-linear growing term rewriting systems
. Moreover, this gives us better approximations of term rewriting systems which extend
the class of orthogonal systems having a decidable normalizing call-by-need strategy. By

our recognizability result, we can show that the reachability and the joinability of a term
rewriting system are decidable if its inverse system is left-linear growing. We believe that

this result is useful for the construction of normalizing strategies for non-left-linear term

rewriting systems. We next proved that termination for almost orthogonal growing term

rewriting systems is decidable.

In Chapter 6, we applied the results on call-by-need strategy to the E-strategy which is
adopted by the OBJ algebraic speci�cation languages [9, 11, 24]. The E-strategy chooses

a redex according to local strategies which are given to each function symbol. We consider

how to give local strategies for a given orthogonal term rewriting system to contract a

needed redex only. For this purpose, we introduced the notions of index-transitivity and

carefulness. We showed that for every index-transitive orthogonal term rewriting system,
if careful local strategies are given to each function symbol then the E-strategy contract

needed redexes only, thus E-strategy is normalizing. In general, index-transitivity and the

existence of careful local strategies are undecidable. We �rst gave a decidable su�cient
condition for the existence of careful local strategies, which is calledN -total, and explained
how to give careful local strategies for N -total term rewriting systems. We next gave a

necessary and su�cient condition for index-transitivity, which is useful to prove the index-

transitivity of a term rewriting systems. I think that our conditions are still strong for
the normalizability of the E-strategy. A future work is to weaken our conditions.
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