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Decentralized Formation Control for Small-Scale
Robot Teams with Anonymity

Geunho Lee and Nak Young Chong

School of Information Science,
Japan Advanced Institute of Science and Technology,

1-1 Asahidai, Nomi, Ishikawa 923-1292, JAPAN

Abstract

This paper presents decentralized formation controls for a team of anonymous mobile
robots performing a task through cooperation. Robot teams are requiredto generate and
maintain various geometric patterns adapting to environmental changes in many coopera-
tive robotics applications. In particular, all robots must continue to strive toward achiev-
ing the team’s mission even if some members fail to perform their role. Toward thisend,
formation control approaches are proposed under the conditions that robot teams are ini-
tially not allowed to have individual identification numbers (IDs), a predetermined leader,
and agreement on coordinate systems. Therefore, all members are required first to reach
agreement on their coordinate system and obtain unique IDs for role allocations in a self-
organizing way. Then, employing IDs within a common coordinate system, two formation
control approaches can be realized: leader-referenced and neighbor-referenced formations.
Both approaches are verified using an in-house simulator and physical mobile robots. We
detail and evaluate each formation control approach, whose common features include self-
organization, robustness, and flexibility.

Key words: Decentralized coordination, Self-organizing robot teams, leader-referenced
formation control, neighbor-referenced formation control, Agreement on common
coordinates and ID allocations

PACS:: MECH-D-06-00192

1 Introduction

Recently, the coordination of multiple robots has been gaining increasing attention,
since robots which can perform cooperative tasks as a team offer many advan-
tages over a single high performance robot in efficiency, lowper robot cost, fault-
tolerance, generality, and so on. Therefore, robot teams are expected to be deployed
in a wide variety of applications including surveillance-and-security [15], object
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transportation [20], object manipulation [21][22], search-and-rescue [23][24], in-
telligent transportation systems (ITS) [25][26], and exploration [27][28]. To enable
a team of multiple robots to successfully perform the assigned tasks, it is often re-
quired to generate and/or maintain geometric patterns adapting to environmental
changes. Thus, this paper presents the formation control architecture and algorithm
needed to coordinate multiple robot movements within a team. Specifically, forma-
tion control includes such functions as pattern generation, flocking1 , and pattern
switching. In practice, real-world applications require all robots to continue to strive
toward achieving the team’s mission even if some members fail to function prop-
erly. In addition, every robot needs to move from one position to another position
as quickly as possible according to the task [32]. Our goal isto develop a soft-
ware framework for supporting general purpose applications of cooperative robots
running the same algorithm.

Formation control of robot teams can be divided into centralized or decentralized
approaches. The centralized approach relies on a specific robot to supervise the
movement of the robots through a communication channel. Egerstedt and Hu [1]
employed a virtual reference on the desired trajectory controlled from a remote host
with which individual robots maintain their predefined positions. Belta and Kumar
[2] generated smooth interpolating motion for individual robots, so that the total ki-
netic energy is minimized while certain constraints are satisfied. In general, a heavy
computation burden is imposed on the supervising robot, which also requires tight
communication with other robots. In contrast, the decentralized formation control
is the coordination achieved through individual robot’s decisions.

Most research in decentralized control mainly focuses on 1)how to achieve a spe-
cific formation pattern [3]-[6], 2) how to keep the formationpattern while flocking
[8]-[15], or 3) how to switch between formation patterns in order to adapt to an
environment [16][17]. For the first problem, Suzuki and Yamashita [3] studied the
problem of generating regular polygonal shapes based on a non-oblivious algo-
rithm with an unlimited amount of memory. To achieve the shapes, robots were
required to utilize their past experience or memory. This algorithm was modified to
an oblivious (or memoryless) algorithm and applied to circle formation by Defago
and Konagaya [4]. Ikemotoet al. [5] proposed a biologically-inspired algorithm
which enabled a robot team to form various geometric patterns. This study re-
quired robots to be initially lined up before generating a pattern. Fujibayashiet
al. [6] proposed a probabilistic formation rule that controlled the number of con-
nections between robots. However, it is generally difficultto choose the probability
parameters according to the pattern and the number of robots. For the problem
of flocking, two methods were implemented, the leader-follower method and the
leaderless method. In the leader-follower method, a robot is selected as the moving
reference point. Gervasi and Prencipe [8] proposed a computational solution based
on CORDA [7] with weak assumptions such as asynchrony, anonymity, no mem-

1 The terminology is based on [8] implying that a team of robots follows a leader robot while maintaining formation. This
problem is called “flocking” throughout this paper.
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ory and a simple behavior cycle. In their study, all followers generate a geometric
pattern symmetrically with respect to the pre-selected leader. Balch and Arkin [9]
studied a new paradigm of reactive behaviors for four formation patterns, where
the robots were assigned roles such as leader or follower with unique IDs. Carpin
and Parker [10] similarly introduced a cooperative leader following approach that
could handle a heterogeneous team with different types of sensors using broadcast
communication. As an extension of this approach, Parkeret al. [11] introduced a
tightly-coupled navigation assistance approach by a leader with rich sensing ca-
pability as the central figure of a robot team. Such strategies [10][11] make the
leader more costly and the team becomes less robust to the failure of the leader.
Additional leader-follower approaches are introduced in [13]-[15]. An alternative
approach uses no leader. Balch and Hybinette [12] proposed a physics-based flock-
ing approach without a leader, inspired by crystal generation processes. Each robot
had several local attachment sites that are attracted to other robots. Finally, for the
problem of pattern switching, a graph theoretic approach was proposed by De-
sai [16] for switching to another geometric pattern. The approach used a control
graph, which is a set of assigned targets, to define behaviorsof multiple robots.
Kurabayashiet al. [17] presented an adaptive transition technique to enablea team
of robots to change formation by varying the phase gaps amongartificial nonlin-
ear oscillators. General functionality of team organization, team maintenance, and
team adaptation was addressed in [18], where Fredslund and Mataric used robots
equipped with color helmets indicating their ID. When robotsgenerate a formation,
robot IDs and corresponding target points were predetermined in a particular class
of formation. The leader may change according to the type of formation, and the
followers must find a new neighbor in order to switch to other patterns. Lemayet
al. [19] proposed a similar approach that assigned the position of the robots based
on their IDs.

In contrast to most previous works, our approach begins withthe following as-
sumptions: 1) the team members do not have an external mark orID; 2) the leader
is not a priori selected; 3) the team members are located at arbitrary distinct posi-
tions with no coordinate system agreement. Based on these assumptions, this paper
presents a self-organizing team formation. Specifically, our proposed approach to
formation control is divided into two strategies, the leader-referenced approach and
the neighbor-referenced approach. Two potential contributions are: 1) the team is
enabled to generate a variety of formations adapting to the given conditions and 2)
the same or similar formations can be recovered in spite of a lack of some partici-
pating members. These features improved flexibility and robustness.

The remainder of this paper is organized as follows. Section2 presents a self-
organizing team formation definition and strategy for a small-scale team of mul-
tiple robots. In Sections 3 and 4, the leader-referenced andneighbor-referenced ap-
proaches are proposed and then verified by simulations. Section 5 compares the two
proposed approaches and introduces the hybrid control approach. Section 6 gives
the experimental results with four physical robots based onthe leader-referenced
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Fig. 1. Agreement on common coordinates and ID allocations

approach. Finally, the conclusion of this paper is explained in Section 7.

2 Self-organizing Robot Teams

2.1 Coordinate agreement and ID allocation

Robots are modeled as planar points and are assumed to be located at arbitrary,
distinct positions withouta priori coordinate system agreement, as illustrated in
Fig. 1-(a). In addition, robots are anonymous and are able todetect the positions of
other robots. Letr i andpi denote any robot and its position. Thenr i can measure the
positionp j of the other robotr j with respect to the coordinate system ofr i (denoted
by (Li[x j ],Li[y j ])). A configurationmeans a set of positions which a team ofn
robotsr1, · · · , rn occupies in the 2-dimensional plane. Namely, the configuration
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Ci = {Li[pk] | 1 ≤ k ≤ n} is the representation of all of the robots’ distributions
with respect to the local coordinate system ofr i. Furthermore, we call the set of
target positions aformation pattern, and denote̥ = { fk| 0 ≤ k ≤ n−1} where
fi indicates a target point to be occupied byr i. The distance betweenpi and p j is
denoted asdist(pi , p j). Given two arbitrary vectors~n and~m, let ang(~n,~m) be an
angle between~n and~m. The center point forCi is obtained by dividing the sum
of all points by the numbern, as shown Fig. 1-(b). The center point is called the
common origin po of Ci and denoted by

po = (Li[xc],Li[yc]) = (
∑Li[x j ]

n
,
∑Li[y j ]

n
). (1)

In Ci, each robot defines as theleader robot, r l positioned farthest away frompo

(see Fig. 1-(c)). The positionpl of r l indicates the leader coordinates with respect
to each robot. Next, acommon directionis defined by connecting frompo to pl as
illustrated in Fig. 1-(d). We denote thecommon directionas~u and define the angle
between the local coordinate~x-axis ofr i and~u by

ang(~xi ,~u) = cos−1(
Li[xl ]−Li[xc]

dist(pl , po)
). (2)

Moreover,~udefines the horizontal axis of a common coordinate system. Itis straight-
forward to decide the vertical axis~v by rotating the horizontal axis 90 degrees
counterclockwise. Therefore, every robot can specify their position in thecommon
coordinate systemwith~u and~v given by

ui = dist(pi , po)×cos(ang(~xi ,~di)−ang(~xi ,~u))

vi = dist(pi , po)×sin(ang(~xi ,~di)−ang(~xi ,~u))
(3)

where~di is a vector passing throughpi from po as presented in Fig. 1-(e). Using
(3), r i can be assigned new common coordinates(ui ,vi) with respect to (~u,~v), and
acquire the other robots’ coordinatesp j = (u j ,v j) by

u j = ui +dist(pi, p j)×cos(ang(~xi , ~d j)−ang(~xi ,~u))

v j = vi +dist(pi, p j)×sin(ang(~xi , ~d j)−ang(~xi ,~u))
(4)

where~d j is a vector passing throughp j from pi.

Finally, given (~u,~v), IDs are assigned to all the robots, starting fromr l numbered
0, by sorting their~u-coordinates in an increasing order (see Fig. 1-(f)). Specifically,
they are assigned an odd ID if they have a negative-coordinate of~v-axis, or an
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ALGORITHM-1 Agreement and ID allo-
cations (code executed byr i)
INPUT: {p1, · · ·, pn}

1 po := common origin

2 pl := max
p∈Ci

[dist(p, po)]

3 ~u := common direction

4 ang(~xi ,~u) := angle between~xi and~u

5 ~v := vertical axis of~u

6 (ui ,vi) := r i ’s common coordinates

7 (u j ,v j ) := other robots’ common coordinates

8 IF {pi = pl} THEN

9 ID i := 0 (leader)

10 ELSE {pi 6= pl }

11 IF {vi ≥ 0} THEN

12 ID i := 2 × (ranking by increasing order of~u)

13 ELSE {vi < 0}

14 ID i := 2× (ranking by increasing order of~u) - 1

15 END IF

16 END IF

OUTPUT: ID i

(a) (b)

Fig. 2. Simulation results of ID allocations with 10 robots from an arbitrary distribution

even ID if they have a positive coordinate of~v-axis, by turns, until the numbering
is completed in either half plane. Remaining members in the other half plane are
assigned their IDs consecutively, beginning with the number after the last number
assigned. Fig. 2 displays the result of ID allocation with ten robots.

If two or more robots are located at the same distance frompo, the robot team
cannot decider l uniquely. In this case, the leader selection is repeated after all po-
sitions of the leader candidatesr l ,c are slightly perturbed off the circle having a ra-
dius equal to the distance frompo. Here the following condition ofdist(pl ,c, po) <
dist(p′l ,c, po) holds, wherepl ,c indicates the current positions ofr l ,c andp′l ,c means
the new perturbed position ofr l ,c. The other robots remain stationary until a sin-
gle leader is selected. In Fig. 3, the team has four leader candidates (represented
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(a) initial distribution (b) four leader candidates

(c) one leader selection (d) ID allocations

Fig. 3. Simulation results of leader selection from four leader candidates in the 6 robot
teams

by black triangles), and can select one leader by giving a slight perturbation. The
black crosses indicatepo of each robot. The team reached agreement on (~u,~v) after
the perturbation.

2.2 Problem Statement

Based on the coordinate agreement and ID allocations, theformation control prob-
lem is defined for small-scale mobile robot teams as follows:

Let ri , · · · · · · · · · , rn be anonymous robots at distinct positions, and rl be the leader of the
robot team. Also let(~u,~v) be the common coordinates, and IDi be the allocated robot ID.
The robots are able to find a solution forFormation Control Problem if the self-organizing
robot team can have the following three functions, pattern generation, flocking, and pattern
switching, in order to perform a cooperative task.

We decompose the formation control problem into three functions, as illustrated in
Fig. 4. Function 1 enables a robot team to generate geometricshapes in a distributed
control manner. Function 2 maintains the generated shape while robots are moving.
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Fig. 4. Illustrating the concept of decentralized formation control

Function 3 enables the team to adapt its current shape.

• Function 1. (PATTERN GENERATION) Given a common coordinate system and
ID allocations, robots at distinct positions form any geometric formation pattern.

• Function 2. (FLOCKING) Given a formation pattern, the robot team maintains
the pattern while navigating toward a goal.

• Function 3. (PATTERN SWITCHING) Given a formation pattern, the robot team
adapts the pattern according to the task and/or environmental changes.

As mentioned above, no global coordinate system is given. Therefore, each robot is
first required to reach agreement on the coordinate system. Then, robots obtain their
IDs for task allocation to achieve the team mission. This is done in a self-organizing
way.

3 Leader-referenced Formation Control

This section is concerned with the integration possibilityof each function for for-
mation control on the basis of the leader-referenced approach [33]. By simulations,
we verify the features of the proposed approach, including self-organization, flexi-
bility, and robustness.

8



Table 1
Three pattern parameters for uni-line type

pattern θ (angle) L (length) T (translation)

wedge (−1)×α∗ (−1)×do ul

horizontal line αc = 90◦ do ul

vertical line αc = 0◦ do×mark ul

0◦ < α∗ < 90◦, do = du×⌊ ID i+1
2 ⌋

circle α dc ul −L

arc α
m

dc
m ul −L

fan-shape (180◦− α
m) dc

m ul −L

α = 360◦
n ×⌊ ID i+1

2 ⌋, dc = 360◦×du
2π×n

k-polygon α km×dc ul −L

km =
cos( 360◦

2×k )

cos

(

180◦
k − 360◦

n ×(⌊
IDi+1

2 ⌋− n
k×⌊

⌊(IDi+1)/2⌋
n/k ⌋)

) , dc = 360◦×du
2π×n

3.1 Two types of formation patterns

We divide the formation patterns into theuni-line typeand themulti-line type. If the
pattern is single-lined, it is considered to be the uni-linetype, otherwise the multi-
line type. For the uni-line type, robots are positioned symmetrically with respect to
the~u. This type includes circle, polygons, wedge, vertical line, horizontal line, arc,
and fan-shape.

All patterns are set to keep a uniform intervaldu between robots. For the wedge,
vertical line, and horizontal line in the uni-line and multi-line types, the interval
means the same distance between robots. However, the interval indicates uniform
circumference in the circle-type patterns that include circle, arc, fan-shape, and
regular polygons. For instance, in the polygon-type patterns, the same arc length
is maintained between robots along the circumscribed circle. Moreover, thespan
represents the size of the pattern, such that this argument is to multiplydin by the
number ofn−1 robots.

Table 1 shows the parameters of the uni-line family. In Table1, the parameterT
represents the value of translation on the negative~u-axis direction frompl . The
parameterL is length frompl to a target pointfi of ̥ for r i. The depicted notation,
⌊ ⌋, means a solution after division rounds off a remainder. Themvariable in the arc
and the fan-shape patterns represents multiplicity such that the virtually increased
number of robots generates a circle pattern. In implementation, we substituted the
number 3 form.
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ALGORITHM-2 Uni-line Pattern Generation (code ex-

ecuted byr i )

INPUT: {ID i , pl , ̥}

1 IF {ID i is even} THEN mark:= 1

2 ELSE {ID i is odd} mark:= -1

3 END IF

4 ut,i := cosθ ×L+T

5 vt,i := sinθ ×L×mark

OUTPUT: fi = (ut,i ,vt,i)

(a) initial distribution (b) ID allocations

(c) moving to each target point (d) diamond pattern generation

Fig. 5. Simulation results of diamond pattern generation by leader-referenced formation
control

On the one hand, the multi-line type in this paper requires virtual links between
lines. This means that the type cannot show consecutive ID distributions. Although
an arrow or cross pattern may be generated, the multi-line type is limited to onlyn
columns orn rows.

3.2 Pattern generation

Based on the above defined types, we explain two pattern generation algorithms.
A robot r i at distinct positions computes itsfi with respect topl . First, the uni-line

10



ALGORITHM-3 Multi-line Pattern Generation (code

executed byr i )

INPUT: {ID i , pl , ̥}

1 IF {̥ is column type} THEN

2 IF {n%k = 0} THEN

3 NoLine:= ⌊n/k⌋

4 ELSE {n%k 6= 0}

5 NoLine:= ⌊n/k⌋ + 1

6 END IF

7 ELSE {̥ is row type}

8 NoLine:= k

9 END IF

10 IF {NoLine % 2 is even} THEN

11 L := ⌊((ID i%NoLine)+1)/2⌋×du

12 ELSE {NoLine % 2 is odd}

13 IF {⌊ID i/NoLine⌋ is even} THEN

14 L := ⌊((ID i%NoLine)+1)/2⌋×du

15 ELSE {⌊ID i/NoLine⌋ is odd}

16 IF {ID i is even} THEN

17 L := ⌊((ID i%NoLine)+2)/2⌋×du

18 ELSE {ID i is odd}

19 L := ⌊(ID i%NoLine)/2⌋×du

20 END IF

21 END IF

22 END IF

23 IF {ID i is even} THEN mark:= 1

24 ELSE {ID i is odd} mark:= -1

25 END IF

26 ut,i := ul −⌊ID i/NoLine⌋×du

27 vt,i := L×mark

OUTPUT: fi = (ut,i ,vt,i)

type pattern generation is provided in ALGORITHM-2. By themark variable, if r i

has evenID i, then it is located in the left half plane of~u-axis. Otherwise robots with
odd ID i are located on the other side. Subsequently,r i computes the three parame-
ters,θ (angle),L (length), andT (translation) (see Table 1), and then obtainsfi =
(ut,i,vt,i) determined according to computing parameters of the targetpattern. Im-
portantly, a team of robots can generate various geometrical uni-line type patterns
by changing these three parameters of each pattern.

Secondly, ALGORITHM-3 explains how to generate multi-line types. Here, accord-
ing to whether the consecutive ID distribution is parallel to ~u-axis or~v-axis, we
call the generated pattern row type or column type, respectively. Specifically, the
number of linesNoLinecan be defined as the number of the parallel lines with re-
spect to~u-axis. To generate a multi-line type,r i first checks whether its̥ is column
type or row type. Then,r i computesNoLineas presented in ALGORITHM-3 where
the notation % represents a remainder of a division operation. Next,L described in

11



(a) initial distribution

Two
row

(b) 11.15 (sec)

Three column

(c) 5.97 (sec)

Wedge

(d) 9.28 (sec)

Triangle

(e) 9.58 (sec)

Diamond

(f) 6.2 (sec)

Hexagon

(g) 6.09 (sec)

Circle

(h) 6.44 (sec)

Arc

(i) 9.35 (sec)

Fig. 6. Simulation results of eight patterns with 12 robots (multi-line type patterns:(b)-(c);
uni-line type patterns: (d)-(i))

(a) pentagon generation with 5 team members (b) pentagon generation with 10 team members

(c) pentagon generation with 15 team members

Fig. 7. Pentagon pattern generation with different numbers of team members

Table 1 is obtained usingNoLineand ID i . Finally, r i obtains itsfi = (ut,i,vt,i) in
̥. Practically, under ALGORITHM-3, the team of robots can generateNoLinelines
only if the number of team members is more thanNoLine.

Fig. 5 displays how to generate the diamond pattern using twelve robots. Fig. 6
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Fig. 8. Illustration of flocking approach

shows that the robot team generated eight different formation patterns from the
same initial distribution of Fig. 5. In simulation results shown in Fig. 5 and Fig.
6-(b), the robot teams can generate different diamond patterns by changingθ pa-
rameter. Fig. 7 presents the same pattern generated by 5, 10,and 15 robots, respec-
tively. Regardless of the number of robots and initial states, the robots could build
their team in a self-organizing way and generate their̥ through cooperation. In
the two generation strategies,r l becomes the reference point for each robot, since
r l remains stationary. More specially, the generated patterns in uni-line types are
symmetrically arranged with respect to the~u-axis. The robots with evenID i are
located in the left half plane of the~u-axis, and the remaining robots with oddID i

on the other side. Robots positioned closer tor l are assigned higher IDs (fromID1

to ID4).

3.3 Flocking

Flocking in the leader-reference approach means thatr l navigates a path toward
achieving a goal while the follower robots keep pace withr l . As shown in Fig. 8,
followers uniformly maintain the distancedist(pi , pl ) to r l from r i and the angle
ang(~xi ,~ci) between the local~xi- axis ofr i and~ci which indicates the distance vector
connecting topl from pi. All followers maintaindist(pi , pl ) andang(~xi ,~ci) with r l ,
which remain unchanged during flocking. Moreover, the followers are not allowed
to move untilr l starts moving. We performed a simulation with the arc pattern in
Fig. 9 where the leader conducted the followers to the goal point, at a distance of
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(a) (b) (c) (d) (e)

Fig. 9. Simulation results of flocking with arc pattern - task completion: 37.84 (sec)
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(a) initial pentagon pattern (b) switching process (c) final wedge pattern

Fig. 10. Illustration of pattern switching approach

100 units and at the 30 degree angle from the start point.

3.4 Pattern switching

For pattern switching,r l remains stationary and all follower robots move to new
positions. The difference from pattern generation is that the leader and existing
robot IDs remain unchanged, as illustrated in Fig. 10. Specifically, the currentpl is
set top′o of the new common coordinate system(~u′,~v′). The new common direction
~u′ is equal to the~u. Next, r i updates its coordinates(u′i ,v

′
i) with respect to(~u′,~v′),

computes the new target coordinates(u′t,i,v
′
t,i) according to the new assigned pattern

̥
′, and moves to(u′t,i,v

′
t,i) in ̥

′. The top row of Fig. 11 shows pattern switching
from the circle to two column, and the bottom row of Fig. 11 shows results of
changing from the two row to the triangle. From simulation results, r l remains
stationary to help the followers generate̥

′ as a reference point.
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Fig. 11. Simulation results of pattern switching between uni-line type and multi-line type
(top row: from circle pattern to two columns pattern, 18.25 (sec); bottom row: from two
rows pattern to triangle pattern, 23.71 (sec))

Fig. 12. Simulation results of robustness against loss in team population (Case I: failure of
team leader)

3.5 Robustness

Robot teams are often required to perform an assigned task continuously, regardless
of accidental loss of a team member. Ifr i becomes incapable of participating in the
task, it broadcasts itsID i . Other members recognize the loss of the member and
regenerate the same or similar formation pattern as closelyas possible.

We consider how to recover team formation after the loss ofr l or a follower. To
begin, if a followerr i fails to function, the team of robots can achieve the same or
similar pattern by resetting the common coordinates, so that pl turns into a newp′o,
and then reissuing newID i . Next, if r l fails, the team is not able to immediately
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Fig. 13. Simulation results of robustness against loss in team population (Case II: failure of
a follower)

organize the same or similar pattern due to the loss of thepo. Therefore the rest of
the team members must re-organize the robot teams from the current distribution,
excluding the failedr l . They repeat computation ofp′o, selection of a newr ′l , setting
~u′ according top′l , acquisition ofp′i (=(u′i ,v

′
i)) with respect to new agreed(~u′,~v′),

and reissuing newID′
i . Note that, after the process of the new ID allocations,du

may vary in both the number of participating robots andspan. In order to maintain
the spanof a regenerated pattern in spite of the variation ofdu due to the loss of
a team member, the robot team can self-adjust a uniform interval according to the
number of participating robots andspan.

Fig. 12 presents the simulation snapshots for the results ofthe same pattern gen-
eration with the samespanafter r l failure. While flocking in the wedge pattern,
r l stops, and immediately the remaining robots select a new leader r ′l and reform
another wedge pattern. The rest of the members gradually converge into the target
pattern in Fig. 12-(e) whiler ′l navigates toward the goal. More specially, by using
a predeterminedspanand the number of actively participatingn robots, the team
is able to preserve the size of a formation pattern even though the team lacks some
members. Fig. 13 shows the snapshots of pattern recovery when a follower fails.
Using these simulations, the robustness is verified againstthe accidental failure of
a robot team member.

3.6 Formation control based on leader-reference

Robot team formation needs to have flexibility because robotsare expected to be
deployed in an unknown task and environments. Thus,̥ should be capable of
switching from one pattern to another. Fig. 14 indicates howthe robot team flocks
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(a) initial distribution (b) 9.26 (sec)

(c) 19.52 (sec) (d) 33.93 (sec)

Fig. 14. Simulation results of leader-referenced formation control (example: adapting to an
environment)

(a) 12 team members (b) 4.38 (sec) (c) 17.78 (sec) (d) 32.57 (sec)

(e) 45.66 (sec) (f) 67.97 (sec) (g) 78.80 (sec) (h) 94.14 (sec)

Fig. 15. Simulation results of continuous task switching

adapting to an environment. In this simulation, the team navigates toward a station-
ary goal (the cross) at a distance of 75 units at the 15 degree angle, after forming
the circle pattern. On the way to the goal, the team encounters an obstacle, forcing
them to switch into the two column pattern, reducing the width of the team pattern
(from Fig. 14-(b) to -(c)). Then the team re-flocks in the circle pattern after passing
through the passageway (from Fig. 14-(c) to -(d)). Therefore, it is possible to enable
a team of robots to form different patterns, flock, and changepatterns adapting to
the situations.

Next, the robots first generate a circle pattern (shown in Fig. 15-(b)) from the ini-
tial distribution shown in Fig. 15-(a), and then change into6 different geometric
patterns consecutively. (See Fig. 15.)r l remains stationary to help the followers
generate a pattern by sending messages for target patterns in the following order:
hexagon, arc, two columns, diamond, circle, and wedge. Using 12 robots, the robot
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(a) comparison of distance moved

(b)comparison of generation time

Fig. 16. Two comparison data graphs for pattern generation in leader-reference approach

team could generate and switch to six different patterns.

3.7 Analysis

This part compares the team, labeledA-team, formed by the proposed self-organizing
ID allocation, and another team, labeledF-team, composed of robots with initial
fixed IDs. When the teams of 12 robots generated eight patterns, we examined the
total distance moved and the time to complete pattern generation. The simulations
were performed on 5 testbeds with each different robot distribution. In these simu-
lations, we set and performed the same motions.

Fig. 16 illustrates the simulation results for each testbed, where the total distance
moved (summing distance moved by all team members) and totaltime required by
all robots till the completion of pattern generation are presented by solid bars, and
those of any testbed-2 chosen arbitrarily are presented by lines. Gray bars indicate
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Fig. 17. Illustrating neighbor determination according to pattern types

the results of A-team, and striped bars indicate results of F-team. The solid red line
indicates data performed at testbed-2 by the A-team, and theblue dashed line is for
the F-team. A-team exhibits less distance moved for all patterns. As we expected,
leader selection and ID allocation determined by initial robot distribution is more
efficient for A-team, since each robot can appropriately assign its task (or position)
according to a task conditions or an environment. A-team also requires less pattern
generation time for all patterns. We can see that leader-referenced formation control
based on the self-organizing strategy provides improved efficiency for team pattern
generation. The raw data are given in Tables 2 and 3.

4 Neighbor-referenced Formation Control

In this section, the neighbor-referenced approach is introduced to control forma-
tions [34]. We verify the features of the proposed approach,including self-organization,
flexibility, and robustness by simulations.

4.1 Neighbor determination according to pattern types

In contrast to the leader-referenced approach, robots mustbe able to find their posi-
tion with respect to their neighbors. Thus, each robot needsto be able to determine
its own neighbor according to target pattern types. We describe how to determine
the neighbor of each robot in this part.

By robot’s ID i and̥, r i must be able to determine its neighbor and generate a
predetermined pattern as detailed in ALGORITHM-4. The main key to the neighbor-
referenced approach is how to find a neighbor according to̥. Patterns are largely
divided into the two kinds, uni-line type and multi-line type, mentioned in Section
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ALGORITHM-4 Neighbor Determina-
tion (code executed byr i)
INPUT: {ID i ,̥}

1 IF {̥ : uni− line pattern}THEN

2 IF {ID i > 2} THEN

3 Nid := ID i −2

4 ELSE {ID i ≤ 2}

5 Nid := 0

6 ELSE {̥ : multi− line pattern}

7 NoLine:= k

8 LiOrder := ID i%NoLine

9 IF {LiOrder = 0} THEN

10 Nid := ID i −NoLine

11 ELSE {LiOrder 6= 0}

12 Nid := ID i − (LiOrder+1)/2

13 END IF

14 END IF

OUTPUT: Nid

3. Therefore, we present two neighbor determination methods classified from̥ ,
and define the determined neighbor ID asNid. For the uni-line patterns illustrated
in Fig. 17-(a), the robots are symmetrically located in their target positions with
respect to their~u. For those patterns,r i with ID i indicates the robot withID i−2 as
its neighbor. Especially, if theID i is 1 or 2, their neighbor isr l and definedN0.

Next, for multi-line type patterns, the determination of the neighbor is more com-
plex. To begin with,r i divides itsID i by NoLine(see ALGORITHM-3). The remain-
der from the division indicates the order of multiple lines (denoted byLiOrder).
For example, if the remainder is zero, the robot is located inthezero-th line that in-
cludesr l , as illustrated in Fig. 17-(b). Then,r i finds its neighbor in the same line. In
thezero-th line, the neighbor can be found by subtractingNoLinefrom ID i . Unless
LiOrder is zero, the neighbor can be found by the following rule. First, r i computes
the quotient from the division of numerator,LiOrder plus one, by denominator, 2.
Secondly, the quotient is subtracted fromID i . Now Nid for the case ofLiOrder 6= 0
can be rewritten as the equation:Nid = ID i − (LiOrder+ 1)/2. For instance, we
display that the team of twelve robots forms four lines in Fig. 17-(b). Here, the
robots positioned in thethird line find the neighbor located in thefirst line.

4.2 Pattern Generation

In order to generate a desired̥ from arbitrary distributions based on neighbor-
reference, the followerr i is required to be positioned accurately to meet the dis-
tance and angle constraints with respect to itsNid. In detail,r i should determine a
different local angle relative toNid according to̥ . Therefore, the angle compu-
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Fig. 18. Illustration of local angle computation in the triangle pattern based onone-Vertex

(a) initial distribution (b) neighbor determination by ID

(c) neighbor tracking (d) diamond pattern generation

Fig. 19. Simulation results of diamond pattern generation by neighbor-referenced formation
control

tation rule, termedn-Vertex, is applied to maintain the local angles. Letn-Vertex
meanID i which is positioned on the vertex of̥. For instance, the hexagon pattern
has eachtwo- Verticesin the even and the oddID’s, respectively except for the ver-
tex occupied byr l . The triangle and diamond patterns areone-Vertexeach other.
For the wedge and one row patterns, non-Vertexexists, which means that all robots
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(a) (b) (c) (d) (e) (f)

Fig. 20. Simulation results of flocking with arc pattern - task completion: 44.02 (sec)

must maintain the same local angle with their neighbors. Forthe triangle pattern
as shown in Fig. 18, there existsone-Vertexeach among even and the oddID’s,
respectively. The robots having higherID i (e.g. fromID1 to ID6) thanone-Vertex
maintain the same local angle of 30 degrees with respect to~u, while the remaining
robot having lowerID i thanone-Vertexkeeps at an angle of zero degrees with re-
spect to~v. With the computation of the local angles,r i follows their neighbor with
du and local angle until the neighbor stops completely at the target position. After
arriving at fi , robots reach agreement on the heading direction along~u by adjusting
their orientation.

We performed simulations of pattern generation from the same conditions as in Fig.
5. Fig. 19 displays how to generate a diamond pattern using 12robots. Note that
robots are aware ofNid according to theirID i and̥, but do not know how to go
where, since robots follow their neighbors using the virtual linkage constraint (du

and local angle). The followers kept pace with their neighbors while maintaining
the pattern. Moreover, from the same conditions as the simulation results in Fig.
6, the team could generate eight patterns, and the elapsed times for completion of
each pattern were as follows: two row 27.42 sec., three column 38.44 sec., wedge
25.86 sec., triangle 28.5 sec., diamond 28.77 sec., hexagon33.47 sec., circle 32.21
sec., and arc: 31.63 sec. (all counted times start from 0 sec.).

4.3 Flocking and Pattern Switching

Flocking in neighbor-reference approach means thatr l navigates a path toward
achieving a goal while the follower robotr i maintains its neighborrN id with Nid

after ̥ is obtained. Each robot uniformly maintains the distancedist(pi , pN id) to
rN id from r i, and keeps the angle constraintang(~xi ,~cN id) between the local~xi-axis
of r i and~cN id which indicates the distance vector connecting topN id from pi. Dur-
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Fig. 21. Simulation results of pattern switching between uni-line type and multi-line type
(top row: from circle pattern to two column pattern, 63.39 (sec); bottom row:from two row
pattern to triangle pattern, 63.95 (sec))

ing flocking,r l andID i remain unchanged. Note that, compared with the flocking
approach in the leader-reference approach, the flocking in the neighbor-reference
approach is based onrN id as a reference point. Fig. 20 presents the snapshots of the
simulation results of flocking in an arc pattern from the sameinitial conditions as in
Fig. 9. The leader conducted the followers to the target point located a distance of
100 units away at the 30 degree angle. The followers kept pacewith their neighbors
while maintaining the pattern.

Next, while switching patterns,r l and ID i remain unchanged. The new common
direction~u′ is the same as the current~u. However, the followers had to establish
a new geometric relation with their neighbors according to̥

′. We tested pattern
switching between uni-line patterns and multi-line patterns. The top row of Fig. 21
shows switching from the uni-line circle to the two column pattern, and the bottom
row of Fig. 21 shows the change from the two row pattern to the uni-line triangle,
respectively. From simulation results,r l remains stationary to help the followers
generate̥ ′.

4.4 Robustness

The robustness is verified against the accidental failure ofteam members, as shown
in Fig. 22, where the simulation results of replacement pattern generation (with
an equalspan) after a follower fails to move are presented . While flocking in
the wedge pattern, a robot stops, and immediately the remaining robots attempt to
regenerate another wedge pattern by just re-issuing a newID′

i. Fig. 22-(c) shows
that the replacement pattern has reissuedID i. By both a predeterminedspanand the
number of participatingn robots, the team was able to preserve the size of̥ and
re-flocks toward the goal. Note thatdu should vary with the number of remaining
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Fig. 22. Simulation results of robustness against loss in team population (failure of a fol-
lower)

(a) initial distribution (b) 18.49 (sec)

(c) 41.02 (sec) (d) 62.11 (sec)

Fig. 23. Simulation results of neighbor-referenced formation control (example: adapting to
an environment)

robots, if we want to keepspanof the pattern unchanged.

4.5 Formation control based on the neighbor-reference

Fig. 23 shows how the team adapts patterns in a variety of circumstances using
the neighbor-referenced approach. In this simulation, therobot team navigates to-
ward a target located 75 units away, at the 15 degree angle. Onthe way to the goal,
the robot team encounters an obstacle that forces the team toswitch into another
pattern, which reduces the width of the team pattern, to passthrough the passage-
way (from Fig. 23-(b) to -(c)).r l decided an appropriate̥′ and remained as the
stationary post for formation switching. Then, the team could arrive at the goal
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(a) 12 team members (b) 29.3 (sec) (c) 63.2 (sec)

(d) 106 (sec) (e) 149.9 (sec) (f) 216.62 (sec)

(g) 250.13 (sec) (h) 281 (sec)

Fig. 24. Simulation results of continuous task switching

with the circle pattern after passing through the passageway with the two row pat-
tern (from Fig. 23-(c) to -(d)). Therefore, employing the proposed technique, it is
possible for a team of robots to generate different geometric shapes, navigate by
forming a team, and change formations by adapting to circumstances. Moreover,
from an initial distribution in Fig. 24-(a), the twelve robots generate a circle pattern
and change patterns into six different shapes consecutively. Note that, in Fig. 24,
the team generates the circle pattern twice, which demonstrates the reliability of
pattern switching from any given situation.

4.6 Analysis

This part compares the team, labeledA-team, formed by the proposed self-organizing
approach, and another team, labeledF-team, composed of robots with initial fixed
ID. We repeated the same simulation performed in Subsection3.7 under the same
conditions.

Fig. 25 illustrates the simulation results for each testbed, where the total distance
moved and time are presented by bars, and those of testbed-2 are presented by lines.
Gray bars indicate the result of A-team and striped bars indicate that of F-team. As
a result, the proposed A-team exhibits less distance moved and less generation time
than the F-team for all patterns. The solid red line indicates data from testbed-2 by
the A-team and the blue dashed line is by the F-team. Both A-team and F-team
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(a) comparison by distance moved

(b)comparison by generation time

Fig. 25. Two comparison data graphs for pattern generation in neighbor-reference approach

show the trend of a regular generation time except for the hexagon pattern. The
hexagon pattern hastwo-Vertices. Since the team generates this pattern from six
local angle relationships, the generation time is relatively long. Even though the
data are different, the fluctuations of two lines and two barshave similarities. The
raw data for the two graphs are given in Table 4 and Table 5.

5 Comparison Between Leader-reference and Neighbor-reference

In this section, we present and discuss a comparison betweenleader-referenced
formation control and neighbor-referenced formation control. Based on the com-
parison data, a hybrid approach is introduced.
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(a) comparison of distance moved and generation time

(b)comparison between high IDs and low IDs

Fig. 26. Comparison between the leader-reference approach and neighbor-reference ap-
proach according to pattern generation

5.1 General comparison between two approaches

We discuss the difference in robots’ behavior between the two approaches. Fig. 26-
(a) shows the total distance moved and pattern generation time for eight patterns.
This graph is the rearrangement of the A-team data shown in Figs. 16 and 25. We
denote the total distance moved by bars, and the total generation time by lines.
White empty bars indicate the results of the leader-reference approach and slashed
bars indicate the results of the neighbor-reference approach. The red line indicates
the time required by the leader-reference approach and the blue dashed line indi-
cates the variation of the elapsed time by the neighbor-reference approach. For each
pattern, the distance moved and the generation time with theneighbor-reference ap-
proach were much longer than with the leader-reference approach. In the process
of pattern generation in the neighbor-reference approach,r i finds itsNid, and then
keeps trackingrN id until rN id stops completely. Unlike the neighbor-reference ap-
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proach, that in the leader-reference approach enables robot teams to compute and
move toward(ut,i,vt,i) with respect topl in order to form an assigned̥. Therefore,
leader-referenced formation control seems to be more efficient than the neighbor-
referenced approach. The leader-referenced approach requires all follower robots
to acquirepl .

Secondly, we investigate the distance moved by the robots with high ID i and low
ID i for the leader-reference and neighbor-reference approaches, according to each
pattern, as shown in Fig. 26-(b). Here, the highID i indicates IDs 1 to 4 and the low
ID i indicates IDs 8 to 11 among 12 robots. From the result, the lowID is move a
longer distance than the highID is in the leader-reference approach based on our
proposed self-organizing strategy, but move a shorter distance in the neighbor-
reference approach. The reason is that the movement of each robot does not de-
pend on other robots in the leader-reference approach. In contrast, the movement
of robots coordinated by the neighbor-reference approach is affected by theirrN id .
Consequently, the leader-referenced approach is superior in terms of the distance
moved for pattern generation.

Thirdly, we compare these two approaches regarding flocking. In Fig. 9, r l nav-
igated a path and the follower robots kept pace with it. In Fig. 20, r i could also
keep pace with itsrN id . Although the behavior ofr i is similar, there exists a slight
difference between the two approaches. For turning toward the target, the leader-
reference robots tried to rotate their heading simultaneously. The neighbor-referenced
robots rotated their heading in relation to their neighborssequentially. (See Fig. 20-
(a)∼(f).) Even though it is difficult to conclude which is better,we can expect that
the neighbor-referenced team may not exactly maintain̥ until it travels a long
distance.

Finally, Fig. 13 and Fig. 22 presented the simulation snapshots of the same pattern
generation with an equal task range after the failure of one robot. Only a failure
robot stopped in the leader-referenced approach in Fig. 13,but, Fig. 22 showed that
the robots with lower oddID i related to the failed robot all stopped. As a result,
the neighbor-referenced approach has a greater influence onthe behavior of each
robot.

5.2 Comparison of positioning error

We investigated the cases of robot positioning error in pattern generation. The po-
sitioning error is considered to be an observation error in observing other robots,
and/or a computing error for(ut,i,vt,i). We assume that the error does not last all
through the task, but may happen at one time.

For the evaluations, we set the positioning error for the robots ofID3, ID6, andID9.
Figs. 27 and 28 show the simulation results for generating the hexagon and wedge,
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(a) no robot error (leader) (e) no robot error (neighbor)

(b) 1 robot error (leader) (f) 1 robot error (neighbor)

(c) 2 robot error (leader) (g) 2 robot error (neighbor)

(d) 3 robot error (leader) (h) 3 robot error (neighbor)

Fig. 27. Positioning error test for hexagon pattern generation by the leader-referenced for-
mation control approach and by the neighbor-referenced formation control approach

respectively. Figs. 27-(a)∼(d) and Figs. 28-(a)∼(d) demonstrated the leader-referenced
generation. Increasing the number of robots having errors,the patterns become dis-
torted gradually. Similarly, in Figs. 27-(e)∼(h) and Figs. 28-(e)∼(h) generated by
the neighbor-referenced approach, the pattern deviates from the designed one ac-
cording to the number of robots having errors. Comparing these two approaches, a
critical problem exists in the leader-referenced approach. For instance, the robots
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(a) no error (leader)

6ID

3ID

9ID
6ID

3ID

9ID

(e) no error (neighbor)

(b) 1 robot error (leader) (f) 1 robot error (neighbor)

(c) 2 robot error (leader) (g) 2 robot error (neighbor)

(d) 3 robot error (leader) (h) 3 robot error (neighbor)

Fig. 28. Positioning error test for wedge pattern generation by the leader-referenced forma-
tion control approach and by the neighbor-referenced formation control approach

ID3 and ID5 do not keepdu as shown in Fig. 28-(b). In Fig. 28-(c) and (d), the
robot with ID9 occupied the position for the robotID11 that moved back and forth
around the position. On the contrary, the neighbor-referenced approach could keep
a uniform interval between robots in spite of deformed shapes, and could provide
higher pattern maintenance stability.

5.3 Hybrid formation control

In the previous two parts, the leader-referenced approach showed superior perfor-
mance in terms of the distance moved and the total time. On thecontrary, the
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(a) initial distribution (b) flocking after generation

(c) switching into one row pattern (d) task completion

Fig. 29. Simulation results of hybrid formation control

neighbor-referenced approach demonstrated stability against robot positioning er-
rors. Basically, the leader-referenced approach requires all follower robots to keep
observing the leader. However, it would be difficult for robots positioned near the
trailing edge to keep their line of sight to the leader in a team in a one row pattern.
The neighbor-referenced approach does not suffer from thisput limitation.

This part presents hybrid formation control to overcome theline of sight problem in
leader-referenced approach. The hybrid approach employs leader-referenced con-
trol that can be changed to the neighbor-reference control according to circum-
stances, and vice versa. Fig. 29 illustrates the simulationresults of the hybrid for-
mation control approach, where the leader referenced six robot team encounters a
narrow path and changes shape into a one row pattern, which should be controlled
by the neighbor referenced approach (from Fig. 29-(b) to -(c)). After the robot
team exists the narrow passageway, the team re-switches theformation pattern to
complete the original mission (from Fig. 23-(c) to -(d)). The proposed formation
control approaches are composed of such activation cycles as sensing, computa-
tion, and motion. The successful completion of these steps depends upon the exact
observation of other robots. The sensing capability of all robots is assumed to be
unlimited and errorless, which is practically infeasible.Our physical robots in the
next section were positioned initially within the boundaries of other robots’ obser-
vation, with clear lines of sight.

6 Application to a Small-scale Team of Mobile Robots

We have developed a real mobile robot team of four Pioneer3-DXs (ActivMedia
Inc.) in order to verify the leader-referenced formation control approach. Practi-
cally, a physical robot is equipped with 16 sonar sensors, and control programs run
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Fig. 30. Illustration of estimating center coordinates from edge trajectories

on a laptop computer over the robot. All robots allow communication with each
other by wireless LAN in order to broadcast their ID, and to send or receive forma-
tion commands.

6.1 Implementation method

The key to the applicability of the proposed approach lies inobtaining reliable
estimates of the center points of the other robots with respect to each other. One
problem is that real robots might have an elliptic shape. According to the robot
heading, the distance between an edge and the center point would vary. Moreover,
the robot might have an unequal interval of sonar sensors. Thus, the blind range
would not be uniform, and the observed edge of the real robot may not be smoothly
connected.

In this paper, image processing techniques are employed to recognize the centers
of each robot using only sonar sensors. To begin, we made a 5000 × 5000 [mm]
2D-grid with 50× 50 [mm] unit cells. In the searching step, first, robots detect
other robots using 16 sonar sensors by rotating 180 degrees at intervals of 10 de-
grees. Robots read data from all sonar sensors three times consecutively at each
interval. These distance data are recorded and updated as aninteger intensity value
in the corresponding cell that represents the relative distance from the observing
robot. Specifically, the Canny algorithm [29] eliminates a low intensity cell within
the grid, which is then run through the Sobel algorithm [30].These methods are
applied to find the edge of a robot using the gradient of discrete information which
appeared within the boundary of a robot. Finally, each robotexecutes the histogram
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equalization processing [30] that generates a histogram with a uniform intensity
distribution to improve edge detection. By the equalization, the grid can overcome
the distortion problem resulting from an unequal interval between sensors.

Next, in the checking step, robots compare the normalized grid with a 500× 500
[mm] checking mask around the estimated center point, while turning 30 degrees.
As illustrated in Fig. 30, robots collect the cells with the maximum intensity value
in the checking mask. Each robot finally puts the adjacent cell together and makes a
virtual half circle on the grid from which they compute the center coordinates of the
other robots. Each robot finds the minimum distance of∆x and∆y to the half circle
with respect to their local coordinate system. Then, the center coordinates are easily
obtained by adding the distance of semi-major axisd of the elliptic robot edge to
∆x and∆y, respectively. Using this estimation, each robot establishes a common
coordinate system within an acceptable error range. Note that, however, this method
requires robots to be initially positioned a minimum distance of 600 [mm] apart,
with a clear line of sight. Practically, the time required for recognizing the positions
of the robots with respect to each other is about 1 minute. Note that the studies
performed from the computational standpoint [3][4][7][8]assumed robots to be
as points, or a circle equipped with unlimited sensors. In contrast, this observing
algorithm can overcome the problem of the elliptic geometryof the robots with
arbitrary heading directions.

Sonar sensors do not provide any information about detection point. From the non-
uniform shape of the robots with only sonar sensors, it was difficult to estimate
the center points of other robots. Because of these difficulties, the followers can-
not estimate exactly the position of the leader in real-time, as it varies with time.
It is therefore difficult to make the robot teams flock in exactpatterns. We de-
fine an acceptable level of flocking accuracy. Thei-th follower must keep its rel-
ative position with respect to the leader using the distancedist(pi , pl ) and the an-
gle ang(~xi ,~ci) (see Fig. 8). In real experiments, the distance was controlled within
0 ≤ dist(pi , pl ) ≤ 100 [mm] and the angle was within 0≤ ang(~xi ,~ci) ≤ 10 [deg],
respectively.

6.2 Experiments

In the first experiment, the robot team generates and adapts formation patterns from
an arbitrary position and heading direction. Robots are aware of their target posi-
tions according to the formation pattern, but do not know whogoes where. As
shown in Fig. 31, the robot team generated six different formation patterns with the
parameters of uniform interval 1000 [mm], velocity 200 [mm/s], and angular ve-
locity 150 [deg/s]. Moreover, formations could be switched continuously from one
pattern to another with the same leader. The leader remains stationary to help the
followers generate a pattern, by sending messages for target patterns consecutively
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Fig. 31. Experimental results for six pattern generations using four Pioneer3-DX robots ((a)
diamond, (b) two rows, (c) fan-shape, (d) arrow, (e) one row, (f)one column)

Fig. 32. Experimental results for robustness against loss in team population (similar pattern
regeneration: (a) fan-shape generation by 4 robots, (b) flocking withthe fan-shape pattern,
(c) loss of a team member, (d) moving toward each target point before completion of re-
generation (e) regenerating a triangle pattern (f) flocking with triangle pattern by 3 robots)

in the following order: arrow, diamond, two rows, fan-shape, arrow, one row, and
one column. The team generates the arrow pattern twice, which demonstrates the
reliability of pattern switching from any given formations.

In the second experiment, the robustness is verified againstthe accidental failure
of robot members. While flocking in a fan-shape pattern, one robot stops, and im-
mediately the remaining robots re-form a similar triangle pattern to continue the
mission. The replacement pattern is generated by reissuingIDs before the team
navigates toward the target. Fig. 32 shows the snapshots of this formation recovery.

The third experiment demonstrates how the robot team flocks flexibly adapting to
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Fig. 33. Experimental results of formation control adapting to a corridor environment us-
ing 4 real mobile robots ((a) initial distribution, (b) generation of the two row pattern, (c)
flocking with the two row pattern, (d) switching to the diamond pattern, (e) regeneration of
the diamond pattern, (f) flocking with the diamond pattern)

an environment. After forming a two row pattern, the robot team navigates toward a
stationary target located 8 [m] away. On the way to the target, the team encounters
an obstacle forcing them to switch into a diamond pattern that shifts the center
point of the formation away from the obstacle. Then the team flocks to the target
point while maintaining the diamond pattern. Fig. 33 shows the snapshots of this
experiment. The leader decided an appropriate formation, acted as a stationary post
for formation switching, and guided the team.

In conclusion, we demonstrated that the team based on the proposed observation
method accomplished the assigned mission without high quality sensors and equip-
ment. This allows us to organize a team with simple, economical units which we
can easily deploy even in hazardous environments. As a first step toward real-world
implementation, a self-organizing robot team would be applicable toad hocsensor
network deployment [31].

7 Conclusion

This paper was devoted to developing a formation control framework for small-
scale mobile robot teams that could adjust their formation to adapt to various situa-
tions. We proposed the self-organizing strategy, built on the following assumptions;
anonymity, disagreement on common coordinate systems, no pre-selected leader,
and minimal communication. Given arbitrarily distributedstates of unknown robots,
the proposed framework facilitated a self-organized movement of the team through
five phases, including computation of common origin, leaderselection, setting com-
mon direction, acquiring common coordinates, and issuing IDs. Based on these fea-
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tures, we decomposed the problem of formation control into three functions, pattern
generation, flocking, and pattern switching. Specifically,we proposed two forma-
tion control approaches. The leader-referenced approach used the selected leader
as the reference point for the position of the remaining followers. In contrast, the
neighbor-referenced approach enabled each robot to maintain position with respect
to their neighbor. We also proposed hybrid formation control, in which the advan-
tages of each method could be applied to specific situations.These approaches were
verified by extensive simulations. We demonstrated leader-referenced formation
control using four physical robots equipped only with sonarsensors by applying
image processing techniques.

Our formation control approaches for a self-organizing robot team offered robust-
ness against individual failures and flexibility in adapting to changing environ-
ments. In addition, the movement of individual robots couldconverge toward their
target position. Two fundamental contributions of this work are: 1) a wide variety
of formations can be made in a decentralized way, adapting toan environment only
by observing other robots that are anonymous; 2) the same or similar formations
can be recovered in spite of a lack of some participating members resulting from
individual failures. Implementation on real robots could be accomplished without
high quality sensors and equipment. This allows us to organize a team with simple,
economical units which we can easily deploy even in hazardous environments.
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Table 2
Distance data in each testbed for A-team and F-team based on the leader-reference approach

Patterns
testbed-1 testbed-2 testbed-3 testbed-4 testbed-5
A F A F A F A F A F

3 rows 32.7 93.1 58.4 118.9 65.5 109.6 62.3 110.6 89.9 112.1
2 columns 71.4 124.1 115.1 141.1 118.9 167 117.4 132.3 144.4 152.2

wedge 90.9 157.5 110.4 163.2 113.2 170.5 109.1 154.7 151.3 169.5
triangle 49.3 107.8 41 116.7 37.7 113.5 38.1 111.8 80.9 107.9
diamond 67.5 120.8 33.6 123.5 33.2 127.9 37.2 119.1 64.1 113.6
hexagon 46.8 120.7 50.3 119.6 49.3 124 46.6 124.8 89.6 119.3

arc 101.2 147.6 128.1 178.3 132.1 182.7 127.2 168.2 164.9 185.6
circle 48.9 120.2 55.6 124.5 52.4 139.8 49.8 128.2 93 121.5

Table 3
Time data in each testbed for A-team and F-team based on the leader-reference approach
(sec)

Patterns
testbed-1 testbed-2 testbed-3 testbed-4 testbed-5
A F A F A F A F A F

3 rows 11.9 15.27 5.08 19.81 4.47 13.68 5.45 12.24 11.9 9.66
2 columns 11.61 20.12 7.64 12.82 6.52 27.08 8.85 11.66 7.81 11.61

wedge 12.15 12.11 6.98 9.64 8.3 12.31 9.6 7.39 10.15 8.93
triangle 6.66 17.13 4.17 17.69 3.54 11.86 7.36 11.47 6.66 9.32
diamond 6.31 16.86 3.53 14.94 4.24 15.27 4.6 13.15 6.31 9.68
hexagon 7.3 10.99 5.21 10.79 3.52 12.89 4.56 9.26 7.3 13.17

arc 11.46 14.45 8.36 11.45 8.15 12.44 9.37 7.89 11.46 10.34
circle 7.43 9.54 6.14 11.22 3.49 23.02 4.35 9.35 7.43 9.72

Table 4
Distance data in each testbed for A-team and F-team based on the neighbor-reference ap-
proach

Patterns
testbed-1 testbed-2 testbed-3 testbed-4 testbed-5
A F A F A F A F A F

3 rows 152.9 159 162.7 197.2 141.7 207.3 182.9 197.8 174.1 218.2
2 columns 173.9 208.6 223.9 234.7 239 234.7 217 250.8 224.9 225.5

wedge 102.4 206.1 125.2 225 142.3 227.6 126.6 218.5 179.7 235.2
triangle 101.9 167.4 88.9 187.3 109.4 200 95.9 186.9 147.6 187.4
diamond 82.7 189.3 90.7 189.7 121.3 209.8 94.6 203.2 152 187
hexagon 102.2 204.3 152.4 208.1 121.3 220.7 137.4 211.7 160.8 219.6

arc 150.4 255.4 175.5 271.3 184.9 273.9 164.1 287.2 229.1 278.5
circle 109.9 179.5 125.1 208 144.5 213.4 110.3 209.9 170.5 207.1
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Table 5
Time data in each testbed for A-team and F-team based on the neighbor-reference approach
(sec)

Patterns
testbed-1 testbed-2 testbed-3 testbed-4 testbed-5
A F A F A F A F A F

3 rows 12.29 20.91 13.91 17.38 13.23 14.67 12.79 16.34 13.32 18.15
2 columns 10.83 15.65 14.96 18.01 14.86 12.24 14.93 18.79 16.28 17.48

wedge 9.17 15.78 10.63 12.83 9.34 13.96 10.63 25.09 16.15 24.94
triangle 12.26 18.59 11.47 14.92 12.72 18.15 15.34 17.75 17.66 15.62
diamond 13.8 24.47 10.68 19.78 17.73 20.17 12.24 16.05 14.05 17.02
hexagon 13.8 24.39 14.92 15.24 11.2 14.45 16.75 13.95 25.23 23.18

arc 10.73 21.65 10.52 15.27 12.61 23.78 13.38 17.45 13.96 20.56
circle 11.23 22.64 10.91 18.12 13.79 15.43 8.74 24.08 15.57 34.06
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