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Entrainment-enhanced Neural Oscillator for 
Rhythmic Motion Control 
 

We propose a new neural oscillator model to attain rhythmic movements of robotic arms that 

features enhanced entrainment property. It is known that neural oscillator networks could produce 

rhythmic commands efficiently and robustly under the changing task environment. However, when 

a quasi-periodic or non-periodic signal is inputted into the neural oscillator, even the most widely 

used Matsuoka’s neural oscillator (MNO) may not be entrained to the signal. Therefore, most 

existing neural oscillator models are only applicable to a particular situation, and if they are 

coupled to the joints of robotic arms, they may not be capable of achieving human-like rhythmic 

movement. In this paper, we perform simulations of rotating a crank by a two-link planar arm 

whose joints are coupled to the proposed entrainment-enhanced neural oscillator (EENO). 

Specifically, we demonstrate the excellence of EENO and compare it with that of MNO by 

optimizing their parameters based on simulated annealing (SA). In addition, we show an 

impressive capability of self-adaptation of EENO that enables the planar arm to make adaptive 

changes from a circular motion into an elliptical motion. To the authors’ knowledge, this study 

seems to be the first attempt to enable the oscillator-coupled robotic arm to track a desired 

trajectory interacting with the environment. 

 

Keywords Biologically inspired Control, Neural Oscillator, Entrainment, 

Rhythmic Arm Motion, Crank Rotation, Simulated Annealing 

 

1. Introduction 

A network of coupled neural oscillators in the spinal cord known as Central 

Pattern Generators (CPGs) allows vertebrates to move in an efficient way 

adapting to changing terrain conditions. Specifically, most vertebrates locomote 

with an inherent rhythm determined by the natural frequency of their body. 

Particular attention should be paid to the entrainment property of neural 

oscillators, enabling them to lock onto the frequency of an input signal over a 

range of frequencies. This entrainment process plays a key role in vertebrates to 

adapt the nervous system to the natural frequency of the body. In our daily lives, 

continuous rhythmic arm movements such as turning a steering wheel, rotating a 

crank, etc. are self-organized through the interaction between the musculo-skeletal 

system and the nervous system. If the neural oscillators are coupled to the joints 
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of a robotic arm, it may efficiently provide alternate motor commands for the 

movement of the muscles. Then its entrainment property enables the arm to deal 

with environmental perturbations appropriately through afferent feedback of 

sensory signal. Thus, the neural oscillator’s entrainment property plays an 

important role in accomplishing the arm’s rhythmic motions under changing 

environmental and operational conditions.  

Matsuoka proposed a neural oscillator model for generating rhythmic patterned 

outputs and analyzed the necessary conditions for self-sustained oscillations [1]. 

He also investigated the mutual inhibition network to control the frequency and 

pattern in his oscillator [2], but did not address the effect of entrainment. 

Specifically, the neural oscillator can create complicated and adaptive outputs by 

incorporating sensory input from the environment. Thus, if the neural oscillator is 

coupled to the dynamical system, it can be effectively used as a reactive controller 

under unknown real-world environments. Using Matsuoka’s neural oscillator 

(MNO), Taga et al. considered the sensory signal feedback from the joints of a 

biped robot [3], [4], showing that the MNO made the robot robust to the 

perturbation through entrainment. This approach was applied later to different 

locomotion systems [5], [6], [7]. Besides the examples of locomotion, various 

efforts have been made to strengthen the capability of robots from biological 

inspired neural controllers. Williamson created a humanoid arm motion based on 

postural primitives [8], where the spring-like joint actuators allowed the arm to 

safely deal with unexpected collisions sustaining cyclic motions. He also 

proposed the neuro-mechanical system that was coupled with the neural oscillator 

for controlling rhythmic arm motions [9].  

In the above-mentioned researches, even though natural adaptive motions were 

accomplished by the coupling between the arm joints and neural oscillators, the 

correctness of the desired motion was not guaranteed. For instance, robot arms are 

required to trace a trajectory for certain type of tasks, thus we need to focus on the 

end-effector tracking accuracy. For this, a new neural oscillator model with 

enhanced entrainment property (EENO) was recently proposed by Yang and 

Chong [10], [11], [12]. In order to make the neural oscillator easily adaptable for a 

wide variety of the input signals like quasi-periodic or non-periodic inputs, they 

added a new control term to the MNO. 
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This paper compares and contrasts the entrainment property of a two-link 

planar arm implemented by the EENO and the MNO for achieving the crank 

rotation task. In Section II, we briefly describe the mathematical form of the 

EENO. In Section III, we address how to determine the optimal parameters of the 

EENO for a desired task. More details of the entrainment performances of both 

models under changing task conditions are discussed in Section IV and conclusions 

are drawn in Section V. 

 

2. Entrainment-enhanced Neural Oscillator 

Rhythmic motor patterns of vertebrates are obtained from the CPG and 

modified by sensory signals that detect environmental disturbances. Similarly, 

artificial neural oscillators are entrained with external stimuli at a sustained 

frequency. This section begins with a description of the mathematical model of 

the MNO and explains how it can be modified to fit the needs of enhanced 

entrainment, leading to the EENO as shown in Fig. 1. 

 

 

Fig. 1 Schematic diagram of the EENO 

 

The MNO is modeled by the following set of differential equations. 
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where xei and xfi indicate the inner state of the i-th neuron for i=1~n, which 

represents the firing rate. Here, the subscripts ‘e’ and ‘f’ denote the extensor and 

flexor neurons, respectively. ve(f)i represents the degree of adaptation and b is the 

adaptation constant or self-inhibition effect of the i-th neuron. The output of each 

neuron ye(f)i is taken as the positive part of xi and the output of the oscillator is the 

difference in the output between the extensor and flexor neurons. wij is a 

connecting weight from the j-th neuron to the i-th neuron: wij are 0 for i≠j and 1 

for i=j. wijyi represents the total input from the neurons arranged to excite one 

neuron and to inhibit the other, respectively. Those inputs are scaled by the gain 

ki. Tr and Ta are the time constants of the inner state and the adaptation effect, 

respectively, and si is an external input with a constant rate. we(f)i is a weight of the 

extensor neuron or the flexor neuron and gi indicates a sensory input. 

Since entrainment can be considered as the tracking of sensory feedback signals, 

it is very similar to conventional feedback controllers. Specifically, the MNO has 

the form of a proportional-derivative controller, if we rearrange Eq. (1) as the 

following 2-nd order differential equations. 

ieaffffaeeraera sbygkgkTywywTxxTTxTT +−−−−−=+++ ++ ][][)( &&&&&  

(2) 

ifaeeeeaffrafra sbygkgkTywywTxxTTxTT +−−−−−=+++ −− ][][)( &&&&&  

(3) 

Now, subtracting Eq. (3) from Eq. (2) gives 
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(4) 
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where Y=xe-xf . It was assumed that the inhibitory connecting weights we and wf 

are identical: i.e., w ≡ we = wf. The stable oscillatory output of the neural oscillator 

is obtained by inhibitory connection between the extensor and flexor neurons. 

Thus, if xe>0 and xf<0, or if xe<0 and xf>0, Eq. (4) can be rewritten as 

 

,)()( ininaarara kGGkTYbwYwTYYTTYTT −−−+=+++ &&&&&  

(5) 

where Gin=[g]+-[g]-. In Eq. (5), the output of the neural oscillator is entrained to 

the sensory feedback, Gin. Now, one can notice that this equation is similar to the 

proportional-integral-derivative (PID) controller given by 
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(6) 

where τ1 and τ2 are the time constants, respectively. R is the reference input and K 

is the proportional gain. TI is the integral gain or reset time and TD is the 

derivative time. A is the system constant in terms of plant parameters.  

By comparing Eqs. (5) and (6), one can come to understand why we add the 

integral terms, Ie and If, to the MNO as shown in Fig. 1. With the integral terms, 

we finally have the EENO given by 
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where hi is the gain of Ie(,f)i. 
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3. Two-link Planar Arm coupled with Oscillators 

This section addresses how to couple the neural oscillator with a two-link 

planar arm rotating a crank. Fig. 2 illustrates a schematic model of two-link planar 

arm whose joints are coupled to the neural oscillator. The desired torque 

command generated by the neural oscillator at the i-th joint is given by 

 

,)( iiiviii bk θθθτ &−−=  

(8) 

where ki is the position gain, bi is the velocity gain, θi is the actual angle, and θvi is 

the desired angle of the i-th joint, respectively. Specifically, θvi is the output of the 

neural oscillator that produces rhythmic commands of the i-th joint of the arm. 

The oscillator entrains the feedback signal from the joints so that the arm can 

exhibit adaptive motions interacting with the environment. The important thing to 

implement this method is how to incorporate the feedback signal’s amplitude as 

well as its phase, because existing oscillators usually fail to follow the feedback 

signal amplitude envelope. 

 

 

Fig. 2 Schematic model for crank rotation task of two-link planar arm whose joints are coupled to 

the neural oscillator. The origins of the crank and two-link planar arm are fixed. 
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Now we describe the kinematics of the above-mentioned system. If the origin of 

the crank center is (x0, y0), then the end-effector position of the two-link arm 

denoted by (x,y) can be represented in Cartesian coordinates as  
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Eq. (9) can be rearranged as 

 

),)()((),()( 2φφφφθθθθθ &&&&&&&& vurJJ −=+  

(10) 

where J is the Jacobian matrix of [x, y]T. φ and θi are the crank angle and the i-th 

joint angle, respectively. li is the i-th link length. c1, c12, s1 and s12 denote cosθ1, 

cos(θ1+ θ2), sinθ1, and sin(θ1+ θ2), respectively. r is the radius of the crank. u is 

the tangential unit vector and v is the normal unit vector at the outline of the 

crank. These vector directions are shown in Fig. 2, respectively. 

The description of dynamics of the same system is given below. The crank has 

the moment of inertia, I, and the viscous friction at the base joint, C. Regarding 

the arm dynamics, M is the inertia matrix, V is the Coriolis/centripetal vector, and 

G is the gravity vector. Now, the dynamic equilibrium equations of the crank and 

two-link arm are given in the following forms, generating a constraint and an 

appropriate external force.  

 

FruCI T)(φφφ =+ &&&  

(11) 

FJGVM T)()(),()( θτθθθθθ −′=++ &&&  

(12) 
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where iii cθττ &−=′  for i=1~2 and c denotes the joint viscosity matrix [13]. F is 

the contact force interacting between the crank and the end-effctor. By solving 

Eqs. (11) and (12) simultaneously using Eq. (10), F is given in the following 

form. 

))}()((),())(()()({})()()()()({ 111121 φφφφθθθθτθθφφθθθ uCIvrJVMJuuIrJMJF TT −−−−− +++−′+= &&&&&  

(13) 

Now the robotic arm whose joints are coupled to the neural oscillator is 

mathematically represented by Eqs. (8), (12) and (13).  

 

4. Optimization of Oscillator Parameters 

The neural oscillator is a non-linear system, thus it is generally difficult to 

analyze the dynamic response of robotic arm when the oscillator is connected to 

it. Therefore a graphical approach known as the describing function analysis has 

been proposed earlier [14]. The main idea is to plot the system response in the 

complex plane and find the intersection points between the Nyquist plots of the 

robotic arm and neural oscillators. The intersection points indicate limit cycle 

solution. However, even if rhythmic arm motions can be generated by this 

method, it may not be possible to obtain the desired motion required by the task. 

This is because many parameters of oscillator need to be tuned appropriately, and 

different responses occur according to the method for managing the connection 

between oscillators. In this work, we propose and analyze an approach to 

determining the optimal parameters of the oscillator based on simulated annealing 

[15] that enables the arm to trace the given circular path. A flowchart of the 

algorithm is given in Fig. 3. Simulated annealing is able to avoid local minima or 

maxima, but when searching for optimal parameters, it is not known whether the 

desired task is performed correctly with the selected parameters or not. We 

therefore added the task completion judgment and cost function comparison steps 

as represented by the bold lines in Fig. 3. 
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Fig. 3 Flowchart of the proposed SA for oscillator parameter optimization 

 

The details of the algorithm are presented below. An initial state of the system 

is chosen at the cost function and the temperature. The state (or parameters) of the 

neural oscillator X is replaced by a random nearby state given by 

 

,1 NXX ii ⋅+= − ν  

(14) 
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where ν is the step size for X called learning rate and N denotes a distributed 

random number between [-1, 1] such as Gaussian noise. If the cost function 

decreases, the new state Xi is accepted and stored. Otherwise, another state is 

drawn with the transition probability, Probi(E), given by 

 

,)exp()
)(

1( γ>Δ
−=

c
E

TZ
(E)Probi

 

                            (15) 

 

where ∆E is the change in the cost function, and γ is a random value uniformly 

distributed between 0 and 1. The temperature cooling schedule is ci=k·ci-1 (k is the 

Boltzmann constant or effective annealing gain) and Z(T) is a temperature-

dependant normalization factor. If ∆E ≥0 and Probi(E) is less than γ or equal zero, 

Xi is rejected. The cost function includes the kinetic energy of the crank rotation, 

the energy consumed by the viscous friction of each joint, and the torque applied 

by the oscillator. 

Fig. 4 (a) indicates a cooling state in terms of cooling schedule. Cooling or 

annealing gain K was set to 0.95. It can be observed in Fig. 4 (b) that the 

optimization process was well performed to obtain the lowest cost function. Figs. 

4 (c) to (f) illustrate the procedure to determine such parameters as inhibitory 

connecting weight, rising and adaptation time constant, sensory gain, and tonic 

input gain of the EENO. We can set the converged values of these figures as the 

parameters of the EENO as shown in Table I. If the parameters are selected 

inappropriately, the given task could fail as illustrated in Fig. 5 (a). In Fig. 5 (a), 

the straight lines indicate the failed end-effector motions of the two-link arm. As 

expected, when optimal parameters are selected, a stable motion could be achieved 

as shown in Fig. 5 (b). It is observed from Fig. 5 (c) that there is a transient region 

not saturated to a stable value from 0 sec to around 4 sec., which is followed by 

the stable periodic motion in the next time period. As shown in Eq. (8), a PD 

controller is applied via torques to each joint of the two-link arm. The k and b gain 

of the joint 1 are 321 and 15, respectively. For the joint 2, the k gain is set to 300 

and the b gain is set to 10.  
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Fig. 4 (a) Temperature transition for cooling schedule (b) A transition of total cost function level 

(c) A weight transition of inhibitory connection (d) A rising time constant transition (e) A 

transition of sensory gain, (f) A transition of tonic input 
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Table I. Comparison between initial and optimal parameters of the EENO 

 

 

 

Fig. 5 (a) The end-effector trajectory drawn by the two-link arm coupled with the EENO when 

various stable parameters are selected (b) The end-effector trajectory of the two-link arm coupled 

with the optimally tuned EENO (c) The output of joint angle. The red dash line is the first joint 

angle and the second joint angle is drawn by the blue thin line 
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Time constant (Tr)              0.25 
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Tonic input (s)                60.0 

Optimized parameters  

Inhibitory weight (w)         2.5205 

Time constant (Tr)           0.7651 

              (Ta)           1.5302 

Sensory gain (k)             3.8318 

Tonic input (s)             62.3519 
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5. Comparison of Entrainment Property between 
EENO and MNO 

In this section, we compare the entrainment property between the EENO and 

the MNO that produces rhythmic joint commands of the two-link arm for the 

crank rotation task. Specifically, the circular path of the crank changes to an 

elliptical path instantly as shown in Case I through Case III. We assume that the x-

axis and y-axis of Fig. 5 (b) are the diameter of the major axis and minor axis in 

an elliptical path, respectively. The oscillator parameters are tuned for the circular 

path as seen in Table II and remain unchanged for all cases. It is important to 

investigate whether the end-effector of the two-link arm traces the changed 

elliptical paths correctly or not.  

The EENO model shows better entrained movement than that of the MNO 

model although the path changes in the same way. Comparing Figs. 6 (a) and (b) 

with (c) and (d) of Case I, respectively, it can be verified that the trajectory of the 

crank angle in the EENO model is smoother and not fluctuant than that of the 

crank angle in the MNO model. Figs. 6 (a) and (c) illustrate the crank angle 

rotated clockwise by the two-link arm from π rad (see Fig. 2). The red dot circles 

of Fig. 6 (a) shows unnecessary counter-clockwise rotations of crank generated by 

the MNO model. The results of Case II and Case III are similar to Case I. As the 

path changes, the time required for entrainment increases compared with the 

original circular path (see Fig. 5 (c)). Particularly In Case III, even in the EENO 

model, the entraining time increases to 14.2 sec. Besides, if the ellipticity of the 

path exceeds that of Case III, both models are not moved periodically in the 

clockwise direction, showing that they have a limit on the range of entrainment. 

From these results, it is confirmed that the neural oscillator enables a robotic 

arm to rhythmically move using the motor command of the extensor and flexor 

neurons. In addition, though a desired task changes unexpectedly, the entrainment 

function of the neural oscillator adjusts the control commands in an adaptive way 

so as to maintain rhythmic movements. It is also demonstrated that the 

entrainment of the EENO is superior to that of the MNO.  
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Table II. Comparison between optimal parameters of MNO and EENO 

 

A. Case I: The diameter of the major axis is set to 0.5cm and that of the minor 

axis is set to 1cm  

 
 

Optimized parameters of the MNO 

Inhibitory weight (w)          2.5326 

Time constant (Tr)            0.6191 

            (Ta)            1.2382 

Sensory gain (k)              2.4210 

Tonic input (s)              59.2863 

Optimized parameters of the EENO 

Inhibitory weight (w)         2.5205 

Time constant (Tr)           0.7651 

              (Ta)           1.5302 

Sensory gain (k)             3.8318 

Tonic input (s)             62.3519 

 

Fig. 6 (a) The crank angle rotated by the two-link arm coupled with MNO, (b) The joint 

trajectories actuated by MNO, (c) The crank angle rotated by the two-link arm coupled with 

EENO, (d) The joint trajectories actuated by EENO. In (b) and (d), the red dashed line is the first 

joint angle and the second joint angle is drawn by the blue thin line 

(a)                                        (b) 

(c)                                        (d) 
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B. Case II: The diameter of the major axis is set to 1cm and that of the minor axis 

is set to 0.5cm 

 
 

 

 

Fig. 7 (a) The crank angle rotated by the two-link arm coupled with MNO, (b) The joint 

trajectories actuated by MNO, (c) The crank angle rotated by the two-link arm coupled with 

EENO, (d) The joint trajectories actuated by EENO. In (b) and (d), the red dashed line is the first 

joint angle and the second joint angle is drawn by the blue thin line 

(a)                                        (b) 

(c)                                        (d) 
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C. Case III: The diameter of the major axis is set to 1cm and that of the minor axis 

is set to 0.4cm 

 

6. Conclusions 

This paper presented the enhanced capability of entrainment of two-link planar 

arm coupled with the EENO to achieve a desired rhythmic motion. We 

investigated how the EENO-coupled arm adjusted its joint motions to respond to 

an unexpected task change. Specifically, an optimization approach was proposed 

to determine the parameters of the EENO appropriately based on simulated 

annealing. Numerical examples were provided to verify the validities of the 

EENO and its parameter tuning method. Compared with the most widely used 

MNO, the output of the EENO could adapt more quickly and smoothly to the 

phase and amplitude of the sensory feedback over a reasonable frequency range. It 

 

Fig. 8 (a) The crank angle rotated by the two-link arm coupled with MNO, (b) The joint 

trajectories actuated by MNO, (c) The crank angle rotated by the two-link arm coupled with 

EENO, (d) The joint trajectories actuated by EENO. In (b) and (d), the red dash line is the first 

joint angle and the second joint angle is drawn by the blue thin line 

(a)                                        (b) 

(c)                                        (d) 
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was also clearly observed from the simulations that the EENO-coupled robotic 

arm showed self-adaptation capabilities under changing task conditions. This 

approach will be the first step toward the realization of biologically inspired 

control architecture for human-like movements. Our future work will attempt to 

demonstrate the validity and reliability of the proposed approach through various 

experiments with a real robot arm. 
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