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Designing an Algorithm for Swarm Behavior Using theCon
ept of UmweltRyusuke Fujisawa1 Takashi Hashimoto21:The University of Ele
tro-Communi
ations2:Japan Advan
ed Institute of S
ien
e and Te
hnologyAbstra
t: In this study, we propose a methodology for designing a swarm behavior. The diÆ
ulty in designing theswarm behavior is a gap between the obje
t of evaluation and that of design. The former is the performan
e of agroup, but the latter is the a
tion of ea
h individual. We utilize the 
on
ept \Umwelt" in ethology for bridging thegap. The advantage of this 
on
ept is that all a
tions ne
essary for the swarm behavior 
an be derived from thepurpose of ea
h individual. Using this 
on
ept, the swarm behavior 
an be built into the a
tion algorithm of theindividuals. In order to evaluate the proposed method, we 
onstru
t the swarm algorithm for sear
h and 
olle
tiontask. Using a 
omputer simulation, we 
on�rmed that the swarm su

essfully a
hieved the task with 
exibilityand parallelism, and also robustness in part. These results support the e�e
tiveness of the proposed methodology.Keywords: Umwelt, Swarm behavior, Pheromone 
ommuni
ation1 Introdu
tion1.1 Features of a SwarmA swarm is a kind of distributed autonomous system.Many agents a
t distributedly without a 
entral 
on-troller. There are three remarkable features of a swarm:
exibility, robustness and parallelism.Flexibility is a 
hara
teristi
 that enables adaption to
hanging environments. The swarm is 
onstru
ted by anumber of individuals. The swarm of so
ial inse
ts has
exibility with respe
t to its environment. So
ial inse
ts
orrespond with their 
hanging environment as a resultof intera
tions among individuals [1℄. For example, armyants grasp ea
h others' bodies and 
onstru
t a stru
turelike a \ladder" or a \bridge" in 
ertain situations [2℄.Robustness is a 
hara
teristi
 that the system 
an keepits fun
tion even if some of its agents 
annot work. Sin
ethe swarm 
onsists of many agents, the fun
tion of thesystem does not strongly rely on any individual agent.Thus, the swarm 
an tolerate the wastage of agents andthe failure of foraging or returning to a nest.The swarm 
an pro
ess a lot of tasks in parallel. Anumber of individuals a
t autonomously, as a result thegroup solves multiple tasks at the same time. A typi
alexample is the foraging of the so
ial inse
ts. The foragingtask 
an be divided into sear
h and 
olle
tion tasks. Theso
ial inse
ts solve both tasks in parallel. All individualsdo not 
on
entrate on just one obje
t, but sear
h and
olle
t a number of obje
ts in parallel. As a result, theso
ial inse
ts 
an sear
h a vast environment for 
olle
tingthe obje
ts.There are diÆ
ulties in utilizing su
h useful features ofthe swarm in engineering. The problem is that the entirebehavior of the swarm 
annot be designed. However, thework performan
e of the swarm is de
ided by its entirebehavior, whi
h appears as a result of the autonomousa
tions of individual agents. The obje
t of design is theindividual agent, but the obje
t of evaluation remains theswarm behavior. This gap makes the utilization diÆ
ult[3℄. Basi
ally, a resear
h fo
using on \how the swarmbehavior is built into individual agents" is needed.

1.2 Related WorksThere are some resear
hes that apply swarm behavior toengineering, su
h as SWARM-BOTS [4℄ and ant 
olonyoptimization (ACO) [5℄.The SWARM-BOTS proje
t, in whi
h so
iobiologistsparti
ipate as well as engineers, advan
es with both realma
hines and 
omputer simulations. In resear
h involv-ing real ma
hines, multiple robots demonstrate perfor-man
es higher than individuals by 
ooperating with ea
hother [6℄. Cooperatively, they 
an pass a gap and a stepthat an individual 
annot pass [7℄. In the 
omputer simu-lation resear
h, it has been shown that a swarm respondsto di�erent environments by generating various patternsthrough intera
tions among individuals [8℄. Although theproje
t deals with various problems, they are solved in-dividually, and general appli
ability is not dis
ussed indepth.The ACO is a kind of optimization algorithm in whi
han ant so
iety's behavior to �nd the shortest paths be-tween a nest and food sites is applied. The point of thealgorithm is to utilize pheromone trails that agents gen-erate. The ACO is applied to some 
ombinatorial opti-mization problems su
h as the traveling salesman problemand network routing. However, the method to design thegroup and to use the pheromone eÆ
iently for variousproblems remains to be established. To e�e
tively utilizethe advantages of swarm behavior, a design method forthe swarm behavior needs to be debated.1.3 Basi
 Idea for the SwarmThe swarm 
an a
quire only lo
al information about thelo
al and physi
al environment, nearby agents and theirown states as sensed by themselves. In 
omputer simula-tion of agent behavior, a designer designs an environmentof agents and information given to the agents, and de
idesbehavioral rules of the agent naturally based only on theinformation designed. However, as for roboti
 systems,while a designer equips robots with parti
ular sensors,the environment of the robots is not fully spe
i�ed. Thus,the information the robots sense is 
onsiderably di�erentfrom the designer, namely, they live in a di�erent worldfrom us. In spite of this fa
t, the designer, who has a1



global view, may often design the behavioral rules fromthe designer's viewpoint. When we design roboti
 agents,we should take view-from-within seriously and we thinkthe design methodology based on this 
onsideration is de-manded.Designing the behavior of the autonomous agentsshould be grounded on the subje
tive information of theagents. The 
on
ept of \Umwelt" is of help to design anagent's behavior based on their subje
tive world. The
on
ept was propounded by Uexk�ull [9℄ so as to under-stand an organism's behavior. An organism is though tohave a phylo-spe
i�
 world, whi
h is 
alled Umwelt. Theorganism dete
ts only needful information for its a
tions,and a
ts in the physi
al world. The Umwelt is 
onsti-tuted by needful information and a
tions. But, Uexk�ullreferred only to an individual organism's behavior. Toutilize this 
on
ept for the design of the swarm behavior,we need to 
onsider intera
tions among the Umwelts ofmultiple agents.The purpose of this study is to propose and evaluatea design method for algorithms related to the swarm be-havior. The following three obje
tives will be fo
used on:� Propose a design method for the swarm behavior al-gorithm using the 
on
ept of the Umwelt.� Apply the design method to 
onstru
t an algorithmfor an obje
t transportation task by the swarm. Thisis a typi
al task that is expe
ted to be e�e
tivelysolved by the swarm.� Evaluate the swarm behavior in the task by devel-oping a multi-agent system (MAS) and its simulatorby implementing the algorithm designed.2 TaskTasks that make the most of the swarm's merits are\sear
h" and \
olle
tion". Sin
e the swarm is 
omposedof many agents, it 
an sear
h a vast spa
e and 
olle
tmany obje
ts in parallel. Furthermore, when the swarmprogressively resolves the 
olle
ting task, the environmentinevitably 
hanges. Thanks to its 
exibility, the swarm
an deal with the 
hanging environment without modify-ing the individuals' behavioral algorithms.The sear
h and 
olle
tion task 
harges the swarm with
hallenging issues when the task in
ludes problems thatex
eed the ability of ea
h individual. Examples are trans-porting an obje
t too heavy for one agent to move, 
ross-ing a dit
h larger than one agent's size, and 
limbing ahigh level. To resolve su
h issues, the ability more than\mere a set of individuals" is ne
essary. Namely, theagents in a swarm must 
ooperate with ea
h other.The swarm has a lot of merit, albeit we 
annot use theswarm for all-round tasks. Highly a

urate positioning isa weak point for the swarm. The agents in the swarmhave only lo
al information and usually are not able toknow their a

urate position in an environment.In this study, we address the task of sear
h and 
olle
-tion to test the e�e
tiveness of the swarm behavior algo-rithm. The 
olle
ted obje
t is a large mass obje
t that
annot be transported by an individual. To resolve this
hallenging task, agents have to 
losely 
ooperate withea
h other. The 
on
rete problems are physi
al 
onne
-tion and attra
tion.

For mutual 
onne
tion between the agents, we use self-assembly (SA) [2℄[10℄, whi
h is found in so
ial inse
ts andis utilized to over
ome related issues [4℄. So
ial inse
tssu
h as ants, bees and termites show very advan
ed be-haviors in the swarms, although individually they haveonly very simple intelligen
e. Espe
ially, the SA as 
ol-le
tive so
ial inse
t behavior is observed in ants and bees.The SA 
onstru
ts a physi
al stru
ture by gathering to-gether with a group of individuals. The following fun
-tions are a
hieved by the SA:� Defense� Pulling stru
tures� Thermoregulation� Colony survival under in
lement 
onditions� Ease of passage when 
rossing an obsta
leIn this study, we use the \pulling stru
ture" to transportlarge mass obje
ts. When an agent �nds an obje
t tooheavy to move, if the agents 
an 
onne
t together andpull the obje
t in one dire
tion, they exert enough for
eto move the obje
t.A suÆ
ient number of agents must gather around thelarge mass obje
t to realize the pulling stru
ture. If theagent that �nds the obje
t 
an attra
t other agents, thegathering is a
hievable. A pheromone trail 
an attra
tother agents. Pheromones are indu
ers that are se
retedby a body of an organism and indu
e spe
i�
 a
tions inother agents [11℄. The ants generate pheromone trailsbetween preys and a nest. The ants that per
eive thepheromone are attra
ted in the dire
tion of higher 
on-
entration [12℄. Using a pheromone trail in swarm behav-ior has the following advantages:� The agents need not memorize the pre
ise positionof obje
ts.� The agents 
an transmit information to 
lose agentsindire
tly.� When the agents 
ommuni
ate with ea
h other, theyhave no interferen
e due to ele
tromagneti
 waveproblems.� The swarm 
an 
ontinue and a

elerate work by
ommuni
ations between individuals (this is 
alleda group e�e
t).3 Design Method for Swarm Be-havior3.1 UmweltUexk�ull [9℄ explains the behavior of an organism usingthe 
on
ept of Umwelt. The Umwelt is the world of anorganism that is 
omposed of a per
eptual world and ane�e
tor world (see Fig. 1). These worlds intera
t withea
h other. Everything per
eived by the organism formsthe per
eptual world. All a
tions of the organism 
om-pose the e�e
tor world. Ea
h of these worlds 
onsists ofper
eptual and e�e
tor 
ues, respe
tively. These signs arede�ned as follows.Per
eptual 
ueA signi�
ant sign for the organism itselfE�e
tor 
ue2



A signi�
ant sign that the organism produ
es for oth-ers to per
eive ���������	�
��
���������	�
��
����������	������������	��������Fig. 1: UmweltUexk�ull 
on
retely explains the Umwelt using the ex-ample of the postnuptial a
tions of a female ti
k. The ti
ks
rambles to the top bran
h of a suitable shrub using itsepidermo-photore
eptor. Then, it re
eives the \butyri
a
id" stimulation that is se
reted from a mammal's 
u-taneous glands, and \falls" from the top bran
h. Then,per
eiving to have fallen on \something warm" be
auseof a sharp temperature sensation, it \moves to a pla
ewithout hair". When it per
eives \skin" by ta
tile per-
eption, it begins to \su
k warm blood". In this example,the per
eptual and e�e
tor 
ues are set out below.Per
eptual 
ueP1 Butyri
 a
id of an animalP2 WarmthP3 SkinE�e
tor 
ueE1 FallE2 Move to the pla
e without body hairE3 Su
k blood (The a
tion of the ti
k 
ontinues afterabove a
tions.)The symbols Pi (i = 1; 2; 3) and Ei (i = 1; 2; 3) mean aper
eptual 
ue and an e�e
tor 
ue, respe
tively.The remarkable point here is that the per
eptual 
uesand the e�e
tor 
ues in the distin
tions of the ti
k arejust three, and they are 
atenated. The ti
k is se
ure inthe 
ertainty of the a
tion by few signs. All per
eptualand e�e
tor 
ues 
an be identi�ed by tra
ing from the�nal e�e
tor 
ue (the purpose of the organism). We usethis feature to design the algorithm.This feature resembles a deterministi
 �nite automaton(DFA) 
losely. The DFA is 
onstru
ted by event, statetransition, and a
tion. The ti
k's DFA is shown in Fig.2. Ea
h state is de�ned as:StateS1 Waiting animalsS2 Sear
hing skinS3 Blood-su
kingThe symbol Pi (i = 1; 2; 3) is the per
eptual 
ue. Thesymbol Si (i = 1; 2; 3) is the state of the ti
k, and Ei(i = 1; 2; 3) is the e�e
tor 
ue in the ti
k's state. The ti
kdete
ts the per
eptual 
ue (Pi), and 
hanges its internalstate (Si), and a
ts (Ei).

1S

1E
2S

2E
3S

3E

1P 2P 3PFig. 2: State transition of ti
k3.2 Design MethodFrom a DFA of a ti
k (see Fig. 2), the inner pro
essingof the agent is set out below:1. The agent obtains the per
eptual 
ue from the ex-ternal world.2. The per
eptual 
ue 
hanges the agent's internal-state(state).3. Until obtaining a new per
eptual 
ue, the e�e
tor
ue �xed in a state is exe
uted.The DFA for the swarm behavior algorithm is 
onstru
teda

ording to the following pro
edures:1. Identify all per
eptual and e�e
tor 
ues by ba
k-tra
king from the �nal e�e
tor 
ue that forms thepurpose of ea
h individual.2. De
ide internal states of the individuals from the ef-fe
tor 
ues (a
tions).3. De
ide the per
eptual 
ues (stimuli) of the individu-als for ea
h state.Moreover, the following two are thought to be indis-pensable features for the swarm behavior algorithm.� Other agents exist in an agent's Umwelt� A
tion depends on the other agentsAs a result of these features, a very important idea for theswarm behavior algorithms is that \other agents' e�e
tor
ues be
ome one's own per
eptual 
ues" (see Fig. 3).The algorithm for the swarm behavior has to be designedbased on this idea.������������� !"#$�"%������� !"#$�"%&''���$�#$�"%&''���$�#$�"% ������������� !"#$�"%������� !"#$�"%&''���$�#$�"%&''���$�#$�"%Fig. 3: Intera
tion of the Umwelt between di�erent agents3.3 Umwelt In
luding Self-assembly andPheromone TrailUsing the above method, we identify all per
eptual ande�e
tor 
ues for an agent who transports the obje
ts in
ooperation with other agents, using SA and pheromonetrail. Hereafter, the obje
t of the transportation is 
alledthe prey, and the goal of the transportation the nest.Per
eptual 
ue3



P1 Prey 
onta
t (0/1)P2 Prey movement (0/1)P3 Pheromone (0/1)P4 Nest arrival (0/1)P5 Conta
t agent state (1-9)P6 Passive SA (0/1)1P7 Elapse (0/1)E�e
tor 
ueE1 Walk randomlyE2 Go to the nestE3 Grasp the preyE4 Make SA a
tively2E5 Se
rete the pheromoneE6 Tra
e the pheromoneIn itemizing the per
eption 
ues, the number of paren-theti
al referen
es is the input. In Pi (i = 1; 2; 3; 4; 6; 7),0 means non-dete
tion, and 1 means dete
tion. In P5, thereferen
e indi
ates the state of the 
onta
ted agents.All agents dete
t only one global information, that is,the position of the nest. We think that it is reasonableassumption, sin
e, from the viewpoint of biologi
al plau-sibility, the ants (S. invi
ta) 
an dete
t the dire
tion ofthe nest a

ording to the dire
tion of the sun [12℄, and,from the viewpoint of engineering feasibility, dete
ting thenest dire
tion 
an be easily implemented using a light andlight sensors [13℄.To per
eive the passage of time, that is, the per
eptionsign P7, the agent has the following three timers:� Individual transportation timer (IT timer)� Chemoattra
tion timer (CA timer)� Self-Assembly timer (SA timer)The IT timer 
ounts the time elapsed sin
e the beginningof an individual transportation. When this time rea
hes a
ertain amount without moving the prey, the agent givesup the individual transportation. The CA timer measuresthe time in the attra
ted state. This is used to avoidmeaningless attra
tion to \old" pheromone trails. Thepheromone trails remain in the �eld after a

omplishmentof the transportation. The SA timer 
ounts the time whilean agent forms a SA. The agent 
eases SA, if the timer
omes to 
ertain amount. When ea
h timer rea
hes a
ertain value, P7 be
omes 1.3.4 State Transition RuleThe swarm behavior algorithm for the transportation oflarge mass obje
ts using SA and pheromone trail is es-tablished by above 7 per
eptual and 6 e�e
tor 
ues. Wedesign the DFA using proposed algorithm. The algorithmby whi
h the per
eptual and the e�e
tor 
ues are appro-priately tied is shown in Fig. 4 in a form of state transi-tion rule.The state transition rule is 
onstru
ted using DFA.Generally, DFA is used for the design of the swarm behav-ior, but a design method with DFA for a swarm has notyet been established. Thus, we 
onstru
t state transitionrules using the above detailed method. The agent ob-tains the per
eptual 
ues from the environment, the otheragents and its own internal timer, and 
hanges its state1Held by another agent2Hold another agent with own arm.

State E�
tor 
ue Per
eptual
ue NextstateS1 E1 P1(1) S2P3(1) S4P5(6 _ 7) S6S2 E2 ^ E3 P2(0) ^ P7(1) S3P4(1) S1S3 E2 ^ E5 P4(1) S4S4 E6 P1(1) S5P1(0) ^ P7(1) S1P5(6 _ 7) S6S5 E2 ^ E3 P2(0) ^ P7(1) S6P4(1) S1S6 E2 ^ (E3 _ E4) P1(1) ^ P2(1) S9P5(8 _ 9) S8P6(1) S7P7(1) S3S7 E2 ^ (E3 _ E4) P1(1) ^ P2(1) S9P5(8 _ 9) S8P6(0) S6S8 E2 ^ E4 P5(1) S1S9 E2 ^ E3 P4(1) S1Table 1: State transition rule of ea
h statea

ording to the algorithm. The role of ea
h state andthe e�e
tor and per
eptual 
ues belonging to the stateare set out below. Pi and Ej indi
ate the per
eptual 
ue(per
eption) and the e�e
tor 
ue (a
tion), respe
tively.The expression Ei ^Ej means that both e�e
tor 
ues areexe
uted at on
e, and Ei_Ej either one of the two. Whena value of Pi is x, the internal state 
hange to Sk. Theagent 
hanges its own state a

ording to the state transi-tion rule (see Fig. 4). Ei, Pi(x), and the state transitionat ea
h Si are shown in Table 1. The fun
tion of the ea
hstate is as follows:StateS1 Sear
hing (initial state)- Walking randomlyThe agent 
hanges its state to S2, S4 or S6, when itper
eives P1(1), P3(1) or P5(6 _ 7), respe
tively.S2 Individual transportation- Carrying a prey alone3The agent 
hanges its state to S3 or S1, when itper
eives P2(0) ^ P7(1) or P4(1), respe
tively.S3 Pheromone se
retion- Laying down pheromone trail between the nest anda preyThe agent 
hanges its state to S4 when it per
eivesP4(1).S4 Pheromone attra
ted- Attra
ted by and tra
ing the pheromoneThe agent 
hanges its state to S5, S1 or S6, when itper
eives P1(1), P1(0) ^ P7(1) or P5(6 _ 7), respe
-tively.S5 Non-SA transportation- Carrying a prey alone after attra
ted4The agent 
hanges its state to S6 or S1, when it3S2 is the state in whi
h the agent is not attra
ted and transportsa prey alone.4S5 is the state in whi
h the agent transports without SA afterattra
ted.4
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Fig. 4: State transition rule for the swarm behaviorper
eives P2(0) ^ P7(1) or P4(1), respe
tively.S6 SA standby [End-SA℄- Waiting for SA and linking to another agent atrearmost SA 
hainThe agent 
hanges its state to S9, S8, S7 or S3, whenit per
eives P1(1) ^ P2(1), P5(8 _ 9), P6(1) or P7(1),respe
tively.S7 SA standby- Waiting for SA and linking another agentThe agent 
hanges its state to S9, S8 or S6, when itper
eives P1(1) ^ P2(1), P5(8 _ 9), or P6(0), respe
-tively.S8 SA transportation- Transporting by SA 
hainThe agent 
hanges its state to S1 when it per
eivesP5(1).S9 SA transportation [Root-SA℄5- Transporting at the root of SA 
hainThe agent 
hanges its state to S1 when it per
eivesP4(1).4 Simulation of Swarm BehaviorIn order to test the algorithm for swarm behavior, we
ondu
ted a simulation. In this se
tion, we explain thedetails of the simulator and the task.5Root-SA means that an agent forms a SA 
hain and grasps aprey dire
tly.

4.1 AgentBasi
 Stru
ture and Fun
tionThe agent's body is a 
ylindri
al shape and has upperand lower parts. The upper part is equipped with an armto hold a prey (for E3) or an agent (for E4). The agent
an dete
t the dire
tion to the nest (for P4). The agenthas 
onta
t sensors around its body (for P1; P6) and hasa 
onta
t 
ommuni
ation fun
tion (for P5). Addition-ally, the agent 
an dete
t whether it is moving or not(for P2), and how mu
h time passes (for P7). The lowerpart has wheels to move (for E1; E2; E6), ethanol sensorsto dete
t pheromone (for P3), and an ethanol dripper toleave a pheromone trail (for E5). In E1 (random walk),the agent normally goes straight, and the probability of
hange in its dire
tion is 20%. The new dire
tion is ran-domly sele
ted between ��=4 to �=4 from the dire
tionof movement. These two parts 
an rotate separately6.The advantage of this me
hanism is that the dire
tion oftravel is not limited by the dire
tion of the prey held.The agent's diameter is 200[mm℄. The maximum speedand for
e are 100[mm/s℄ and 15[N℄. The maximum a
tiontime is 3600[s℄. We suppose realisti
 dimensions and pa-rameters for the agent in order to be able to implementphysi
al agents straightforwardly.Communi
ationAn agent dire
tly and indire
tly 
ommuni
ates withthe other agents. The dire
t 
ommuni
ation is a
hievedby sending the 
urrent state of oneself to another agent,when the agent 
onta
ts with the other agents. Thepheromone trails serve for indire
t 
ommuni
ation.6The same me
hanism is adopted in SWARM-BOTS[4℄5



In an a
tual roboti
 system, ethanol (C2H5OH) is usedas a substitution for pheromone. The agent lets downthe ethanol tank lo
ated at the 
enter of the bottom ofthe body, when the agent is in the pheromone se
retionstate (S3). The ethanol is per
eived as the per
eptual 
ueof the pheromone by the other agents (S1). The ethanolsensors are used to tra
e the pheromone trails. The tra
-ing me
hanism imitates that of the ants. The ants dete
tpheromone trails using two right-and-left antennas [14℄.When the right antenna dete
ts pheromone, the ant ad-van
es to the right, and vi
e versa as shown in Fig. 5.To imitate this a
tion, two ethanol sensors are installedon the bottom of the body at �=4 from the dire
tion ofmovement.������� �¡�¢£¤��¥¦£§¢¤¢̈� ¡©�£ª�«���¤Fig. 5: Behavior on the pheromone trail
4.2 EnvironmentThe agents move around a square �eld of 10000 �10000[mm℄ in size. The 
oeÆ
ient of fri
tion betweenthe �eld and a prey is 0.5. The �eld is dis
retized with20[mm℄ � 20[mm℄ grids to 
al
ulate the evaporation andthe di�usion of pheromone. The size of the �eld is 10000� 10000[mm℄. There are 25000 
omputational grids onthe �eld.Pheromone on the �eldThe pheromone drip on the surfa
e of the �eld evapo-rates into the atmosphere and then di�uses. The evapo-ration is 
al
ulated a

ording to the following equation:Fp(x; y; t) = 
vapFp(x; y; t� 1) +�Fp(x; y; t) ; (1)where Fp(x; y; t) is an amount of pheromone at time t andat grid (x; y), x and y are the X-Y 
oordinates in the �eld,and 
vap is the evaporation 
oeÆ
ient (0.99). The se
ondterm, �Fp(x; y; t), is the amount of the pheromone drip:�Fp(x; y; t) = 8><>:Qp if an S3 agent is on thegrid (x; y),0 otherwise, (2)Where Qp is a
tual amount of pheromone drip.Pheromone in the atmosphereThe di�usion of the pheromone is 
al
ulated by

Ap(x; y; t) = Ap(x; y; t� 1)+
diffAp(x+ 1; y; t� 1)+Ap(x� 1; y; t� 1)+Ap(x; y + 1; t� 1)+Ap(x; y � 1; t� 1)�5Ap(x; y; t� 1)g+(1� 
vap)Fp(x; y; t) ; (3)where Ap(x; y; t) is the amount of pheromone in the atmo-sphere and above grid (x; y) at time t and 
dif is the di�u-sion 
oeÆ
ient (0.01). Ap(x+1; y; t�1), Ap(x�1; y; t�1),Ap(x; y+1; t�1) and Ap(x; y�1; t�1) mean in
ow of thepheromone from the adja
ent 4 grids. �5Ap(x; y; t � 1)means di�usion to the adja
ent 4 grids and disappearingto the atmosphere.4.3 TaskThe task to be solved by the swarm is \sear
h and 
olle
-tion of the preys". The agents transport preys that havethe same size and mass and are s
attered in the �eld,to a nest positioned at the 
enter of the �eld (see Fig.6). In this �gure, the 
he
ker board latti
e is the �eld.The small 
ir
le at the 
enter of the �eld is the nest, andthe larger 
ir
le is the transportation goal. The 
ylinderssurrounding the goal 
ir
le are the preys.The agents begin sear
h from the nest. If they �nd aprey, then they try to drag it to the nest. When all preyshave been transported to the nest, the task is 
ompleted.
Field

Prey
Goal of pack

Nest
Field

Prey
Goal of pack

Nest

Fig. 6: Field 
on�guration5 Simulation ResultsWe undertook 
omputational simulations of the swarmbehavior algorithms drawn in Fig. 4 using the MAS sim-ulator detailed in the previous se
tion. In this se
tion,we analyzed the simulation results paying attention tothe following three points:1. does the swarm solve the task or not?2. does the parallel pro
essing work e�e
tively?3. does the task allo
ation work e�e
tively?6



1) and 2) are proper behavior of the swarm, but 3) isadaptive behavior.In the initial state, the preys are lo
ated on a 
ir
learound the nest with a radius of 4000[mm℄ as shown inFig. 6. The agents start to move from the 
enter of thenest.5.1 Task SolutionTypi
al parameter settings showing the task solution areTable 2.Table 2: Parameter settings for task solutionThe number of agents 30The number of preys 8The mass of a prey 15[kg℄A
tual simulations look like Fig. 7. The short lines ex-panded from the agents designate the dire
tions of move-ment. The number at the left bottom 
orner of �eld iselapsed time from the beginning of the simulation.

Agent

Transported
Prey

Carrying

Fig. 7: Task solution

Pheromone in the AtmosphereFig. 8: Pheromone in the atmosphere

The agents generate pheromone trails (see Fig. 8), at-tra
t other agents, and repeat SA (see Fig. 7). The agentslay down the pheromone trails between the preys and thenest. The pheromone trails form straight lines sin
e theagents know the dire
tion of the nest.5.2 Parallel Pro
essingIn Fig. 7, the swarm simultaneously 
arried two preys (in-di
ated by two 
ir
les), that is, the swarm demonstratedparallel pro
essing. To estimate how the swarm solvesthe task in parallel, we observed the time it took to solvethe task for di�erent numbers of preys. The parametersettings are shown in Table 3.Table 3: Parameter settings for parallel pro
essingThe number of agents 40The number of preys 1,2,4,6,8The mass of a prey 20[kg℄The task solution time is shown in Fig. 9. The ver-ti
al axis is the task solution time, and the horizontalaxis is the number of preys. In this �gure, a linear lineis plotted for 
omparison, whi
h is an extrapolation of aline between 0 and the result for 1 prey. This line indi-
ates estimated time to solve the task serially. The a
tualtask solution time, shown by the dashed line, is alwayslower than the linear line. This means that the presentalgorithm for the swarm behavior 
an e�e
tively performparallel pro
essing. And it means that the task 
an beparallelized.
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Fig. 9: Time to solve the tasks5.3 Task Allo
ation5.3.1 Task SolvedFigure 10 shows a transition of the ratio of the states inthe 
ourse of time in an experiment of a solvable task. Theverti
al axis is the state-ratio, and the horizontal axis istime. The lines in the same region indi
ate the di�eren
eof the agent's state. The parameters in this experimentare summarized in Table 4. Under the present settings,one agent has the transporting 
apa
ity of 1.5[kg℄ at most.CoeÆ
ient of fri
tion between the �eld and the prey is 0.5.Thus, the prey of 15[kg℄ 
an be 
arried by 5 agents.Phase 17
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Fig. 10: The transition of the ratio of states in the pro
ess of task solvingTable 4: Parameter setting of a solvable taskThe number of agents 5The number of preys 1The mass of a prey 15[kg℄At �rst, all agents sear
hed in parallel for a prey (S1 :Sear
hing).Phase 2At 481[s℄ an agent found a prey, that is, re
eived theper
eptual 
ue P1(1) and tried to transport the prey by
hanging its state into S2 (Individual transportation)7.But the prey 
ould not be moved by one agent, thus, thestate be
ame S3 (pheromone se
retion), and 20% of thearea in Fig. 10, that is one agent out of �ve, be
ame\S3; 4: Pheromone se
retion or attra
ted". The agentshuttled between the prey and the nest for laying down apheromone trail to attra
t other agents, and then turnedto the S6 (SA standby [End-SA℄). At 608[s℄, an agentfound the pheromone trail, that is, re
eived a per
eptual
ue P3(1).Phase 3At 639[s℄, two agents 
onstru
ted SA (S6: SA-standby[End-SA℄ and S7: SA-standby). But two agents are notenough to move the prey, the se
ond agent 
hanged thepheromone se
retion state and began to strengthen thetrail (repeated twi
e). At 786[s℄, a third agent, andat 1667[s℄ a fourth agent were attra
ted through the7The agent's state 
hanges from S1 to S2. But it doesn't appearin the graph be
ause S2 is only �ve se
onds.

pheromone trail. The four agents make a SA train.Phase 4At 1680[s℄, the �fth agent 
onta
ted the prey and 
hangedits state (S1 to S2). Finally, the prey was transported by�ve agents 
ooperatively, four agents forming SA and oneagent non-SA. This is indi
ated by \S8; 9: SA transporta-tion or SA transportation [Root-SA℄" and \S2: Individualtransportation" in the right side of Fig. 10.Phase 5After �nishing the transportation, four agents were at-tra
ted by the meaningless pheromone trail. At 1955[s℄,the pheromone trial evaporated 
ompletely, and all agents
hanged their states (S4 to S1).5.3.2 Task UnsolvedIf a task is not solvable, the transition of the state ratiodi�ers 
ompletely as depi
ted in Fig. 11. The verti
alaxis is the state-ratio, and the horizontal axis is time.Table 5 indi
ates the parameter settings for this unsolv-able task experiment. The mass of a prey is now 20[kg℄despite there being just the same number of agents as inthe previous experiment. Therefore, this prey 
annot be
arried even though all �ve agents form SA.Table 5: Parameter setting for an unsolvable taskThe number of agents 5The number of preys 1The mass of a prey 20[kg℄8
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Fig. 11: Transition of the ratio of states in the pro
ess of task unsolvingUntil phase 3 (1680[s℄), the behavior of the swarm wasthe same as in Fig. 10. Namely, the swarm sear
hed for aprey, attra
ted agents and formed SA. But sin
e the prey
ould not be moved by the SA of 5 agents, the last agent ofthe SA train tried to reinfor
e the pheromone trail forever.Thus, the graph shows an os
illation between pheromonese
retion or attra
ted (S3 or S4) and SA standby [End-SA℄ or SA standby (S6 and S7) after 1680[s℄.6 Dis
ussionThe swarm has three remarkable features: 
exibility, ro-bustness and parallelism. In this study, we showed thatthe proposed swarm algorithm a
hieves two of the three,
exibility and parallelism.In this paper, the task is not solved only by an indi-vidual agent. Agents need to 
ooperate with ea
h other,that is, make a self-assembly stru
ture. The results shownin se
tion 5.1 des
ribes the overall behavior, espe
iallyabout the pheromone trails and the self-assembly, whi
hare the 
riti
al parts of our algorithm. This result vali-dates that the agents 
onstru
t the pheromone trails andthe self-assembly stru
tures appropriately. The result ofparallelism shown in se
tion 5.2 makes us 
on�rm thatparallel pro
essing works well.When the task is solvable, the task solving is a

eler-ated by a lager number of agents (see Fig. 9). This obser-vation suggests that the present swarm algorithm showsparallelism. However, the s
alability of the parallelismfor the large number of agents and preys is not 
lear. A
-tually, in Fig. 9, the slope of the task solution time (lowerline) is nearly the same as the linear extrapolation (upperline), when there are many preys. In order to 
larify thes
alability, more thorough experiments with a large sys-tem ought to be 
ondu
ted. If we 
an predi
t the number

of agents needed to solve a task within required time, itis very useful for a
tual engineering problems.The agents regulate their internal states appropriately
orresponding to the surrounding 
ir
umstan
es (see Fig.10). This is self-organized behavior. The 
ir
umstan
es
onsist of not only the preys but also the other agents. Asthe agents move and the preys are transported, the 
ir-
umstan
es 
hange from moment to moment. Sin
e theagents 
an adapt to su
h dynami
 situations and 
oor-dinate their roles, the task 
ould be su

essfully solved.But this is not always the 
ase. When the task is funda-mentally impossible to solve, the agents 
annot allo
atetheir roles and repeat the same a
tion in vain, over andover again (see Fig. 11).In order to obtain the results des
ribed here, we donot need to adjust the parameters both by hand and bysome adaptive algorithm su
h as geneti
 algorithm. Allresult are very generi
. This fa
t suggests that the designmethod and the proposed swarm behavior algorithm areavailable and eÆ
ient.We did not show that our algorithm has the remainedfeature, robustness, dire
tly. But, it is to be expe
tedfrom the results shown in Fig. 9 that the swarm 
an solvethe task if several agents stop working, even though thesolving time may be prolonged, when the overall numberof agents is large enough. But, in realisti
 situations, thebroken agents may be obsta
les for the normal agents. Inorder to understand the e�e
t of the broken agents, wewill try to stop some agents while simulating.7 Con
lusionThe features of a swarm are well known, as it 
annot bedesigned by a top-down approa
h [3℄. In order to designa swarm behavior, it is ne
essary to build the behavior9



of the swarm into the design of individuals. To develop amethodology, we utilize the 
on
ept of Umwelt [9℄, whi
hwas proposed in ethology for understanding animal be-havior. The Umwelt is an organism's own world, 
onsist-ing of per
eptual and e�e
tor 
ues, that are meaningfulinformation and a
tions for the organisms.For designing the swarm behavior, the Umwelt providesthe following three important ideas:� Bottom-up design: the swarm behavior is designedfrom the agent side.� Ba
k-tra
king: Sequen
es of per
eptual and e�e
tor
ues 
an be ba
ktra
ked if the individuals behavioris purposeful.� Umwelt intera
tion: Other agents' e�e
tor 
ues formone's own per
eptual 
ues.Namely, the swarm 
an be de�ned as a group of in-dividuals whose Umwelts intera
t with group members.The design method for swarm behavior algorithm usingUmwelt is as follows:1. Identify all per
eptual and e�e
tor 
ues by ba
k-tra
king from the �nal e�e
tor 
ue that forms thepurpose of ea
h individual.2. De
ide internal states of the individuals from the ef-fe
tor 
ues (a
tions).3. De
ide the per
eptual 
ues (stimuli) of the individu-als for ea
h state.We a
tually designed swarm behavior a
hieving thesear
h and 
olle
tion of large mass obje
ts following thispro
edure (see Fig. 4). The swarm uses self-assembly formutual 
onne
tion among agents, and pheromone trailsto attra
t other agents. Using a multi-agent system sim-ulator implementing this algorithm, we showed that theagents 
ooperatively transported obje
ts from the �eldto the goal. In the solving pro
esses the swarm exhib-ited 
exibility and parallelism, whi
h are the importantfeatures of a swarm. We dis
ussed that it was also natu-rally expe
ted for the swarm algorithm to show the otherindispensable 
hara
teristi
, robustness.Thus, the e�e
tiveness of the Umwelt for designingswarm behavior was 
on�rmed to some extent. We 
an
on
lude that the design methodology of the swarm be-havior based on the 
on
ept of Umwelt is e�e
tive. Sin
ethe adopted task, \sear
h and 
olle
tion of large mass ob-je
ts" is a kind of general tasks to whi
h swarm behavior isapplied. More general appli
ability of the 
on
ept Umweltshould be as
ertained. We will verify the e�e
tiveness ofUmwelt as a design methodology through designing a
-tual algorithms for various tasks that the swarm shouldshow its ability in solving. For �rmly as
ertaining the ef-fe
tiveness, we should apply this methodology to varioustasks in not only the simulated agents but also in roboti
systems.A
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hers at the University ofEle
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