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Designing an Algorithm for Swarm Behavior Using theConept of UmweltRyusuke Fujisawa1 Takashi Hashimoto21:The University of Eletro-Communiations2:Japan Advaned Institute of Siene and TehnologyAbstrat: In this study, we propose a methodology for designing a swarm behavior. The diÆulty in designing theswarm behavior is a gap between the objet of evaluation and that of design. The former is the performane of agroup, but the latter is the ation of eah individual. We utilize the onept \Umwelt" in ethology for bridging thegap. The advantage of this onept is that all ations neessary for the swarm behavior an be derived from thepurpose of eah individual. Using this onept, the swarm behavior an be built into the ation algorithm of theindividuals. In order to evaluate the proposed method, we onstrut the swarm algorithm for searh and olletiontask. Using a omputer simulation, we on�rmed that the swarm suessfully ahieved the task with exibilityand parallelism, and also robustness in part. These results support the e�etiveness of the proposed methodology.Keywords: Umwelt, Swarm behavior, Pheromone ommuniation1 Introdution1.1 Features of a SwarmA swarm is a kind of distributed autonomous system.Many agents at distributedly without a entral on-troller. There are three remarkable features of a swarm:exibility, robustness and parallelism.Flexibility is a harateristi that enables adaption tohanging environments. The swarm is onstruted by anumber of individuals. The swarm of soial insets hasexibility with respet to its environment. Soial insetsorrespond with their hanging environment as a resultof interations among individuals [1℄. For example, armyants grasp eah others' bodies and onstrut a struturelike a \ladder" or a \bridge" in ertain situations [2℄.Robustness is a harateristi that the system an keepits funtion even if some of its agents annot work. Sinethe swarm onsists of many agents, the funtion of thesystem does not strongly rely on any individual agent.Thus, the swarm an tolerate the wastage of agents andthe failure of foraging or returning to a nest.The swarm an proess a lot of tasks in parallel. Anumber of individuals at autonomously, as a result thegroup solves multiple tasks at the same time. A typialexample is the foraging of the soial insets. The foragingtask an be divided into searh and olletion tasks. Thesoial insets solve both tasks in parallel. All individualsdo not onentrate on just one objet, but searh andollet a number of objets in parallel. As a result, thesoial insets an searh a vast environment for olletingthe objets.There are diÆulties in utilizing suh useful features ofthe swarm in engineering. The problem is that the entirebehavior of the swarm annot be designed. However, thework performane of the swarm is deided by its entirebehavior, whih appears as a result of the autonomousations of individual agents. The objet of design is theindividual agent, but the objet of evaluation remains theswarm behavior. This gap makes the utilization diÆult[3℄. Basially, a researh fousing on \how the swarmbehavior is built into individual agents" is needed.

1.2 Related WorksThere are some researhes that apply swarm behavior toengineering, suh as SWARM-BOTS [4℄ and ant olonyoptimization (ACO) [5℄.The SWARM-BOTS projet, in whih soiobiologistspartiipate as well as engineers, advanes with both realmahines and omputer simulations. In researh involv-ing real mahines, multiple robots demonstrate perfor-manes higher than individuals by ooperating with eahother [6℄. Cooperatively, they an pass a gap and a stepthat an individual annot pass [7℄. In the omputer simu-lation researh, it has been shown that a swarm respondsto di�erent environments by generating various patternsthrough interations among individuals [8℄. Although theprojet deals with various problems, they are solved in-dividually, and general appliability is not disussed indepth.The ACO is a kind of optimization algorithm in whihan ant soiety's behavior to �nd the shortest paths be-tween a nest and food sites is applied. The point of thealgorithm is to utilize pheromone trails that agents gen-erate. The ACO is applied to some ombinatorial opti-mization problems suh as the traveling salesman problemand network routing. However, the method to design thegroup and to use the pheromone eÆiently for variousproblems remains to be established. To e�etively utilizethe advantages of swarm behavior, a design method forthe swarm behavior needs to be debated.1.3 Basi Idea for the SwarmThe swarm an aquire only loal information about theloal and physial environment, nearby agents and theirown states as sensed by themselves. In omputer simula-tion of agent behavior, a designer designs an environmentof agents and information given to the agents, and deidesbehavioral rules of the agent naturally based only on theinformation designed. However, as for roboti systems,while a designer equips robots with partiular sensors,the environment of the robots is not fully spei�ed. Thus,the information the robots sense is onsiderably di�erentfrom the designer, namely, they live in a di�erent worldfrom us. In spite of this fat, the designer, who has a1



global view, may often design the behavioral rules fromthe designer's viewpoint. When we design roboti agents,we should take view-from-within seriously and we thinkthe design methodology based on this onsideration is de-manded.Designing the behavior of the autonomous agentsshould be grounded on the subjetive information of theagents. The onept of \Umwelt" is of help to design anagent's behavior based on their subjetive world. Theonept was propounded by Uexk�ull [9℄ so as to under-stand an organism's behavior. An organism is though tohave a phylo-spei� world, whih is alled Umwelt. Theorganism detets only needful information for its ations,and ats in the physial world. The Umwelt is onsti-tuted by needful information and ations. But, Uexk�ullreferred only to an individual organism's behavior. Toutilize this onept for the design of the swarm behavior,we need to onsider interations among the Umwelts ofmultiple agents.The purpose of this study is to propose and evaluatea design method for algorithms related to the swarm be-havior. The following three objetives will be foused on:� Propose a design method for the swarm behavior al-gorithm using the onept of the Umwelt.� Apply the design method to onstrut an algorithmfor an objet transportation task by the swarm. Thisis a typial task that is expeted to be e�etivelysolved by the swarm.� Evaluate the swarm behavior in the task by devel-oping a multi-agent system (MAS) and its simulatorby implementing the algorithm designed.2 TaskTasks that make the most of the swarm's merits are\searh" and \olletion". Sine the swarm is omposedof many agents, it an searh a vast spae and olletmany objets in parallel. Furthermore, when the swarmprogressively resolves the olleting task, the environmentinevitably hanges. Thanks to its exibility, the swarman deal with the hanging environment without modify-ing the individuals' behavioral algorithms.The searh and olletion task harges the swarm withhallenging issues when the task inludes problems thatexeed the ability of eah individual. Examples are trans-porting an objet too heavy for one agent to move, ross-ing a dith larger than one agent's size, and limbing ahigh level. To resolve suh issues, the ability more than\mere a set of individuals" is neessary. Namely, theagents in a swarm must ooperate with eah other.The swarm has a lot of merit, albeit we annot use theswarm for all-round tasks. Highly aurate positioning isa weak point for the swarm. The agents in the swarmhave only loal information and usually are not able toknow their aurate position in an environment.In this study, we address the task of searh and olle-tion to test the e�etiveness of the swarm behavior algo-rithm. The olleted objet is a large mass objet thatannot be transported by an individual. To resolve thishallenging task, agents have to losely ooperate witheah other. The onrete problems are physial onne-tion and attration.

For mutual onnetion between the agents, we use self-assembly (SA) [2℄[10℄, whih is found in soial insets andis utilized to overome related issues [4℄. Soial insetssuh as ants, bees and termites show very advaned be-haviors in the swarms, although individually they haveonly very simple intelligene. Espeially, the SA as ol-letive soial inset behavior is observed in ants and bees.The SA onstruts a physial struture by gathering to-gether with a group of individuals. The following fun-tions are ahieved by the SA:� Defense� Pulling strutures� Thermoregulation� Colony survival under inlement onditions� Ease of passage when rossing an obstaleIn this study, we use the \pulling struture" to transportlarge mass objets. When an agent �nds an objet tooheavy to move, if the agents an onnet together andpull the objet in one diretion, they exert enough foreto move the objet.A suÆient number of agents must gather around thelarge mass objet to realize the pulling struture. If theagent that �nds the objet an attrat other agents, thegathering is ahievable. A pheromone trail an attratother agents. Pheromones are induers that are seretedby a body of an organism and indue spei� ations inother agents [11℄. The ants generate pheromone trailsbetween preys and a nest. The ants that pereive thepheromone are attrated in the diretion of higher on-entration [12℄. Using a pheromone trail in swarm behav-ior has the following advantages:� The agents need not memorize the preise positionof objets.� The agents an transmit information to lose agentsindiretly.� When the agents ommuniate with eah other, theyhave no interferene due to eletromagneti waveproblems.� The swarm an ontinue and aelerate work byommuniations between individuals (this is alleda group e�et).3 Design Method for Swarm Be-havior3.1 UmweltUexk�ull [9℄ explains the behavior of an organism usingthe onept of Umwelt. The Umwelt is the world of anorganism that is omposed of a pereptual world and ane�etor world (see Fig. 1). These worlds interat witheah other. Everything pereived by the organism formsthe pereptual world. All ations of the organism om-pose the e�etor world. Eah of these worlds onsists ofpereptual and e�etor ues, respetively. These signs arede�ned as follows.Pereptual ueA signi�ant sign for the organism itselfE�etor ue2



A signi�ant sign that the organism produes for oth-ers to pereive ���������	�
�����������	�
������������	������������	��������Fig. 1: UmweltUexk�ull onretely explains the Umwelt using the ex-ample of the postnuptial ations of a female tik. The tiksrambles to the top branh of a suitable shrub using itsepidermo-photoreeptor. Then, it reeives the \butyriaid" stimulation that is sereted from a mammal's u-taneous glands, and \falls" from the top branh. Then,pereiving to have fallen on \something warm" beauseof a sharp temperature sensation, it \moves to a plaewithout hair". When it pereives \skin" by tatile per-eption, it begins to \suk warm blood". In this example,the pereptual and e�etor ues are set out below.Pereptual ueP1 Butyri aid of an animalP2 WarmthP3 SkinE�etor ueE1 FallE2 Move to the plae without body hairE3 Suk blood (The ation of the tik ontinues afterabove ations.)The symbols Pi (i = 1; 2; 3) and Ei (i = 1; 2; 3) mean apereptual ue and an e�etor ue, respetively.The remarkable point here is that the pereptual uesand the e�etor ues in the distintions of the tik arejust three, and they are atenated. The tik is seure inthe ertainty of the ation by few signs. All pereptualand e�etor ues an be identi�ed by traing from the�nal e�etor ue (the purpose of the organism). We usethis feature to design the algorithm.This feature resembles a deterministi �nite automaton(DFA) losely. The DFA is onstruted by event, statetransition, and ation. The tik's DFA is shown in Fig.2. Eah state is de�ned as:StateS1 Waiting animalsS2 Searhing skinS3 Blood-sukingThe symbol Pi (i = 1; 2; 3) is the pereptual ue. Thesymbol Si (i = 1; 2; 3) is the state of the tik, and Ei(i = 1; 2; 3) is the e�etor ue in the tik's state. The tikdetets the pereptual ue (Pi), and hanges its internalstate (Si), and ats (Ei).
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1P 2P 3PFig. 2: State transition of tik3.2 Design MethodFrom a DFA of a tik (see Fig. 2), the inner proessingof the agent is set out below:1. The agent obtains the pereptual ue from the ex-ternal world.2. The pereptual ue hanges the agent's internal-state(state).3. Until obtaining a new pereptual ue, the e�etorue �xed in a state is exeuted.The DFA for the swarm behavior algorithm is onstrutedaording to the following proedures:1. Identify all pereptual and e�etor ues by bak-traking from the �nal e�etor ue that forms thepurpose of eah individual.2. Deide internal states of the individuals from the ef-fetor ues (ations).3. Deide the pereptual ues (stimuli) of the individu-als for eah state.Moreover, the following two are thought to be indis-pensable features for the swarm behavior algorithm.� Other agents exist in an agent's Umwelt� Ation depends on the other agentsAs a result of these features, a very important idea for theswarm behavior algorithms is that \other agents' e�etorues beome one's own pereptual ues" (see Fig. 3).The algorithm for the swarm behavior has to be designedbased on this idea.������������� !"#$�"%������� !"#$�"%&''���$�#$�"%&''���$�#$�"% ������������� !"#$�"%������� !"#$�"%&''���$�#$�"%&''���$�#$�"%Fig. 3: Interation of the Umwelt between di�erent agents3.3 Umwelt Inluding Self-assembly andPheromone TrailUsing the above method, we identify all pereptual ande�etor ues for an agent who transports the objets inooperation with other agents, using SA and pheromonetrail. Hereafter, the objet of the transportation is alledthe prey, and the goal of the transportation the nest.Pereptual ue3



P1 Prey ontat (0/1)P2 Prey movement (0/1)P3 Pheromone (0/1)P4 Nest arrival (0/1)P5 Contat agent state (1-9)P6 Passive SA (0/1)1P7 Elapse (0/1)E�etor ueE1 Walk randomlyE2 Go to the nestE3 Grasp the preyE4 Make SA atively2E5 Serete the pheromoneE6 Trae the pheromoneIn itemizing the pereption ues, the number of paren-thetial referenes is the input. In Pi (i = 1; 2; 3; 4; 6; 7),0 means non-detetion, and 1 means detetion. In P5, thereferene indiates the state of the ontated agents.All agents detet only one global information, that is,the position of the nest. We think that it is reasonableassumption, sine, from the viewpoint of biologial plau-sibility, the ants (S. invita) an detet the diretion ofthe nest aording to the diretion of the sun [12℄, and,from the viewpoint of engineering feasibility, deteting thenest diretion an be easily implemented using a light andlight sensors [13℄.To pereive the passage of time, that is, the pereptionsign P7, the agent has the following three timers:� Individual transportation timer (IT timer)� Chemoattration timer (CA timer)� Self-Assembly timer (SA timer)The IT timer ounts the time elapsed sine the beginningof an individual transportation. When this time reahes aertain amount without moving the prey, the agent givesup the individual transportation. The CA timer measuresthe time in the attrated state. This is used to avoidmeaningless attration to \old" pheromone trails. Thepheromone trails remain in the �eld after aomplishmentof the transportation. The SA timer ounts the time whilean agent forms a SA. The agent eases SA, if the timeromes to ertain amount. When eah timer reahes aertain value, P7 beomes 1.3.4 State Transition RuleThe swarm behavior algorithm for the transportation oflarge mass objets using SA and pheromone trail is es-tablished by above 7 pereptual and 6 e�etor ues. Wedesign the DFA using proposed algorithm. The algorithmby whih the pereptual and the e�etor ues are appro-priately tied is shown in Fig. 4 in a form of state transi-tion rule.The state transition rule is onstruted using DFA.Generally, DFA is used for the design of the swarm behav-ior, but a design method with DFA for a swarm has notyet been established. Thus, we onstrut state transitionrules using the above detailed method. The agent ob-tains the pereptual ues from the environment, the otheragents and its own internal timer, and hanges its state1Held by another agent2Hold another agent with own arm.

State E�tor ue Pereptualue NextstateS1 E1 P1(1) S2P3(1) S4P5(6 _ 7) S6S2 E2 ^ E3 P2(0) ^ P7(1) S3P4(1) S1S3 E2 ^ E5 P4(1) S4S4 E6 P1(1) S5P1(0) ^ P7(1) S1P5(6 _ 7) S6S5 E2 ^ E3 P2(0) ^ P7(1) S6P4(1) S1S6 E2 ^ (E3 _ E4) P1(1) ^ P2(1) S9P5(8 _ 9) S8P6(1) S7P7(1) S3S7 E2 ^ (E3 _ E4) P1(1) ^ P2(1) S9P5(8 _ 9) S8P6(0) S6S8 E2 ^ E4 P5(1) S1S9 E2 ^ E3 P4(1) S1Table 1: State transition rule of eah stateaording to the algorithm. The role of eah state andthe e�etor and pereptual ues belonging to the stateare set out below. Pi and Ej indiate the pereptual ue(pereption) and the e�etor ue (ation), respetively.The expression Ei ^Ej means that both e�etor ues areexeuted at one, and Ei_Ej either one of the two. Whena value of Pi is x, the internal state hange to Sk. Theagent hanges its own state aording to the state transi-tion rule (see Fig. 4). Ei, Pi(x), and the state transitionat eah Si are shown in Table 1. The funtion of the eahstate is as follows:StateS1 Searhing (initial state)- Walking randomlyThe agent hanges its state to S2, S4 or S6, when itpereives P1(1), P3(1) or P5(6 _ 7), respetively.S2 Individual transportation- Carrying a prey alone3The agent hanges its state to S3 or S1, when itpereives P2(0) ^ P7(1) or P4(1), respetively.S3 Pheromone seretion- Laying down pheromone trail between the nest anda preyThe agent hanges its state to S4 when it pereivesP4(1).S4 Pheromone attrated- Attrated by and traing the pheromoneThe agent hanges its state to S5, S1 or S6, when itpereives P1(1), P1(0) ^ P7(1) or P5(6 _ 7), respe-tively.S5 Non-SA transportation- Carrying a prey alone after attrated4The agent hanges its state to S6 or S1, when it3S2 is the state in whih the agent is not attrated and transportsa prey alone.4S5 is the state in whih the agent transports without SA afterattrated.4
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Fig. 4: State transition rule for the swarm behaviorpereives P2(0) ^ P7(1) or P4(1), respetively.S6 SA standby [End-SA℄- Waiting for SA and linking to another agent atrearmost SA hainThe agent hanges its state to S9, S8, S7 or S3, whenit pereives P1(1) ^ P2(1), P5(8 _ 9), P6(1) or P7(1),respetively.S7 SA standby- Waiting for SA and linking another agentThe agent hanges its state to S9, S8 or S6, when itpereives P1(1) ^ P2(1), P5(8 _ 9), or P6(0), respe-tively.S8 SA transportation- Transporting by SA hainThe agent hanges its state to S1 when it pereivesP5(1).S9 SA transportation [Root-SA℄5- Transporting at the root of SA hainThe agent hanges its state to S1 when it pereivesP4(1).4 Simulation of Swarm BehaviorIn order to test the algorithm for swarm behavior, weonduted a simulation. In this setion, we explain thedetails of the simulator and the task.5Root-SA means that an agent forms a SA hain and grasps aprey diretly.

4.1 AgentBasi Struture and FuntionThe agent's body is a ylindrial shape and has upperand lower parts. The upper part is equipped with an armto hold a prey (for E3) or an agent (for E4). The agentan detet the diretion to the nest (for P4). The agenthas ontat sensors around its body (for P1; P6) and hasa ontat ommuniation funtion (for P5). Addition-ally, the agent an detet whether it is moving or not(for P2), and how muh time passes (for P7). The lowerpart has wheels to move (for E1; E2; E6), ethanol sensorsto detet pheromone (for P3), and an ethanol dripper toleave a pheromone trail (for E5). In E1 (random walk),the agent normally goes straight, and the probability ofhange in its diretion is 20%. The new diretion is ran-domly seleted between ��=4 to �=4 from the diretionof movement. These two parts an rotate separately6.The advantage of this mehanism is that the diretion oftravel is not limited by the diretion of the prey held.The agent's diameter is 200[mm℄. The maximum speedand fore are 100[mm/s℄ and 15[N℄. The maximum ationtime is 3600[s℄. We suppose realisti dimensions and pa-rameters for the agent in order to be able to implementphysial agents straightforwardly.CommuniationAn agent diretly and indiretly ommuniates withthe other agents. The diret ommuniation is ahievedby sending the urrent state of oneself to another agent,when the agent ontats with the other agents. Thepheromone trails serve for indiret ommuniation.6The same mehanism is adopted in SWARM-BOTS[4℄5



In an atual roboti system, ethanol (C2H5OH) is usedas a substitution for pheromone. The agent lets downthe ethanol tank loated at the enter of the bottom ofthe body, when the agent is in the pheromone seretionstate (S3). The ethanol is pereived as the pereptual ueof the pheromone by the other agents (S1). The ethanolsensors are used to trae the pheromone trails. The tra-ing mehanism imitates that of the ants. The ants detetpheromone trails using two right-and-left antennas [14℄.When the right antenna detets pheromone, the ant ad-vanes to the right, and vie versa as shown in Fig. 5.To imitate this ation, two ethanol sensors are installedon the bottom of the body at �=4 from the diretion ofmovement.������� �¡�¢£¤��¥¦£§¢¤¢̈� ¡©�£ª�«���¤Fig. 5: Behavior on the pheromone trail
4.2 EnvironmentThe agents move around a square �eld of 10000 �10000[mm℄ in size. The oeÆient of frition betweenthe �eld and a prey is 0.5. The �eld is disretized with20[mm℄ � 20[mm℄ grids to alulate the evaporation andthe di�usion of pheromone. The size of the �eld is 10000� 10000[mm℄. There are 25000 omputational grids onthe �eld.Pheromone on the �eldThe pheromone drip on the surfae of the �eld evapo-rates into the atmosphere and then di�uses. The evapo-ration is alulated aording to the following equation:Fp(x; y; t) = vapFp(x; y; t� 1) +�Fp(x; y; t) ; (1)where Fp(x; y; t) is an amount of pheromone at time t andat grid (x; y), x and y are the X-Y oordinates in the �eld,and vap is the evaporation oeÆient (0.99). The seondterm, �Fp(x; y; t), is the amount of the pheromone drip:�Fp(x; y; t) = 8><>:Qp if an S3 agent is on thegrid (x; y),0 otherwise, (2)Where Qp is atual amount of pheromone drip.Pheromone in the atmosphereThe di�usion of the pheromone is alulated by

Ap(x; y; t) = Ap(x; y; t� 1)+diffAp(x+ 1; y; t� 1)+Ap(x� 1; y; t� 1)+Ap(x; y + 1; t� 1)+Ap(x; y � 1; t� 1)�5Ap(x; y; t� 1)g+(1� vap)Fp(x; y; t) ; (3)where Ap(x; y; t) is the amount of pheromone in the atmo-sphere and above grid (x; y) at time t and dif is the di�u-sion oeÆient (0.01). Ap(x+1; y; t�1), Ap(x�1; y; t�1),Ap(x; y+1; t�1) and Ap(x; y�1; t�1) mean inow of thepheromone from the adjaent 4 grids. �5Ap(x; y; t � 1)means di�usion to the adjaent 4 grids and disappearingto the atmosphere.4.3 TaskThe task to be solved by the swarm is \searh and olle-tion of the preys". The agents transport preys that havethe same size and mass and are sattered in the �eld,to a nest positioned at the enter of the �eld (see Fig.6). In this �gure, the heker board lattie is the �eld.The small irle at the enter of the �eld is the nest, andthe larger irle is the transportation goal. The ylinderssurrounding the goal irle are the preys.The agents begin searh from the nest. If they �nd aprey, then they try to drag it to the nest. When all preyshave been transported to the nest, the task is ompleted.
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Fig. 6: Field on�guration5 Simulation ResultsWe undertook omputational simulations of the swarmbehavior algorithms drawn in Fig. 4 using the MAS sim-ulator detailed in the previous setion. In this setion,we analyzed the simulation results paying attention tothe following three points:1. does the swarm solve the task or not?2. does the parallel proessing work e�etively?3. does the task alloation work e�etively?6



1) and 2) are proper behavior of the swarm, but 3) isadaptive behavior.In the initial state, the preys are loated on a irlearound the nest with a radius of 4000[mm℄ as shown inFig. 6. The agents start to move from the enter of thenest.5.1 Task SolutionTypial parameter settings showing the task solution areTable 2.Table 2: Parameter settings for task solutionThe number of agents 30The number of preys 8The mass of a prey 15[kg℄Atual simulations look like Fig. 7. The short lines ex-panded from the agents designate the diretions of move-ment. The number at the left bottom orner of �eld iselapsed time from the beginning of the simulation.

Agent

Transported
Prey

Carrying

Fig. 7: Task solution

Pheromone in the AtmosphereFig. 8: Pheromone in the atmosphere

The agents generate pheromone trails (see Fig. 8), at-trat other agents, and repeat SA (see Fig. 7). The agentslay down the pheromone trails between the preys and thenest. The pheromone trails form straight lines sine theagents know the diretion of the nest.5.2 Parallel ProessingIn Fig. 7, the swarm simultaneously arried two preys (in-diated by two irles), that is, the swarm demonstratedparallel proessing. To estimate how the swarm solvesthe task in parallel, we observed the time it took to solvethe task for di�erent numbers of preys. The parametersettings are shown in Table 3.Table 3: Parameter settings for parallel proessingThe number of agents 40The number of preys 1,2,4,6,8The mass of a prey 20[kg℄The task solution time is shown in Fig. 9. The ver-tial axis is the task solution time, and the horizontalaxis is the number of preys. In this �gure, a linear lineis plotted for omparison, whih is an extrapolation of aline between 0 and the result for 1 prey. This line indi-ates estimated time to solve the task serially. The atualtask solution time, shown by the dashed line, is alwayslower than the linear line. This means that the presentalgorithm for the swarm behavior an e�etively performparallel proessing. And it means that the task an beparallelized.
Parallel Processing

0

600

1200

1800

2400

0 2 4 6 8

Number of preys

Ta
sk

 so
lut

ion
 tim

e[s
]

Task solution time
Liner

Fig. 9: Time to solve the tasks5.3 Task Alloation5.3.1 Task SolvedFigure 10 shows a transition of the ratio of the states inthe ourse of time in an experiment of a solvable task. Thevertial axis is the state-ratio, and the horizontal axis istime. The lines in the same region indiate the di�ereneof the agent's state. The parameters in this experimentare summarized in Table 4. Under the present settings,one agent has the transporting apaity of 1.5[kg℄ at most.CoeÆient of frition between the �eld and the prey is 0.5.Thus, the prey of 15[kg℄ an be arried by 5 agents.Phase 17
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Fig. 10: The transition of the ratio of states in the proess of task solvingTable 4: Parameter setting of a solvable taskThe number of agents 5The number of preys 1The mass of a prey 15[kg℄At �rst, all agents searhed in parallel for a prey (S1 :Searhing).Phase 2At 481[s℄ an agent found a prey, that is, reeived thepereptual ue P1(1) and tried to transport the prey byhanging its state into S2 (Individual transportation)7.But the prey ould not be moved by one agent, thus, thestate beame S3 (pheromone seretion), and 20% of thearea in Fig. 10, that is one agent out of �ve, beame\S3; 4: Pheromone seretion or attrated". The agentshuttled between the prey and the nest for laying down apheromone trail to attrat other agents, and then turnedto the S6 (SA standby [End-SA℄). At 608[s℄, an agentfound the pheromone trail, that is, reeived a pereptualue P3(1).Phase 3At 639[s℄, two agents onstruted SA (S6: SA-standby[End-SA℄ and S7: SA-standby). But two agents are notenough to move the prey, the seond agent hanged thepheromone seretion state and began to strengthen thetrail (repeated twie). At 786[s℄, a third agent, andat 1667[s℄ a fourth agent were attrated through the7The agent's state hanges from S1 to S2. But it doesn't appearin the graph beause S2 is only �ve seonds.

pheromone trail. The four agents make a SA train.Phase 4At 1680[s℄, the �fth agent ontated the prey and hangedits state (S1 to S2). Finally, the prey was transported by�ve agents ooperatively, four agents forming SA and oneagent non-SA. This is indiated by \S8; 9: SA transporta-tion or SA transportation [Root-SA℄" and \S2: Individualtransportation" in the right side of Fig. 10.Phase 5After �nishing the transportation, four agents were at-trated by the meaningless pheromone trail. At 1955[s℄,the pheromone trial evaporated ompletely, and all agentshanged their states (S4 to S1).5.3.2 Task UnsolvedIf a task is not solvable, the transition of the state ratiodi�ers ompletely as depited in Fig. 11. The vertialaxis is the state-ratio, and the horizontal axis is time.Table 5 indiates the parameter settings for this unsolv-able task experiment. The mass of a prey is now 20[kg℄despite there being just the same number of agents as inthe previous experiment. Therefore, this prey annot bearried even though all �ve agents form SA.Table 5: Parameter setting for an unsolvable taskThe number of agents 5The number of preys 1The mass of a prey 20[kg℄8
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Fig. 11: Transition of the ratio of states in the proess of task unsolvingUntil phase 3 (1680[s℄), the behavior of the swarm wasthe same as in Fig. 10. Namely, the swarm searhed for aprey, attrated agents and formed SA. But sine the preyould not be moved by the SA of 5 agents, the last agent ofthe SA train tried to reinfore the pheromone trail forever.Thus, the graph shows an osillation between pheromoneseretion or attrated (S3 or S4) and SA standby [End-SA℄ or SA standby (S6 and S7) after 1680[s℄.6 DisussionThe swarm has three remarkable features: exibility, ro-bustness and parallelism. In this study, we showed thatthe proposed swarm algorithm ahieves two of the three,exibility and parallelism.In this paper, the task is not solved only by an indi-vidual agent. Agents need to ooperate with eah other,that is, make a self-assembly struture. The results shownin setion 5.1 desribes the overall behavior, espeiallyabout the pheromone trails and the self-assembly, whihare the ritial parts of our algorithm. This result vali-dates that the agents onstrut the pheromone trails andthe self-assembly strutures appropriately. The result ofparallelism shown in setion 5.2 makes us on�rm thatparallel proessing works well.When the task is solvable, the task solving is aeler-ated by a lager number of agents (see Fig. 9). This obser-vation suggests that the present swarm algorithm showsparallelism. However, the salability of the parallelismfor the large number of agents and preys is not lear. A-tually, in Fig. 9, the slope of the task solution time (lowerline) is nearly the same as the linear extrapolation (upperline), when there are many preys. In order to larify thesalability, more thorough experiments with a large sys-tem ought to be onduted. If we an predit the number

of agents needed to solve a task within required time, itis very useful for atual engineering problems.The agents regulate their internal states appropriatelyorresponding to the surrounding irumstanes (see Fig.10). This is self-organized behavior. The irumstanesonsist of not only the preys but also the other agents. Asthe agents move and the preys are transported, the ir-umstanes hange from moment to moment. Sine theagents an adapt to suh dynami situations and oor-dinate their roles, the task ould be suessfully solved.But this is not always the ase. When the task is funda-mentally impossible to solve, the agents annot alloatetheir roles and repeat the same ation in vain, over andover again (see Fig. 11).In order to obtain the results desribed here, we donot need to adjust the parameters both by hand and bysome adaptive algorithm suh as geneti algorithm. Allresult are very generi. This fat suggests that the designmethod and the proposed swarm behavior algorithm areavailable and eÆient.We did not show that our algorithm has the remainedfeature, robustness, diretly. But, it is to be expetedfrom the results shown in Fig. 9 that the swarm an solvethe task if several agents stop working, even though thesolving time may be prolonged, when the overall numberof agents is large enough. But, in realisti situations, thebroken agents may be obstales for the normal agents. Inorder to understand the e�et of the broken agents, wewill try to stop some agents while simulating.7 ConlusionThe features of a swarm are well known, as it annot bedesigned by a top-down approah [3℄. In order to designa swarm behavior, it is neessary to build the behavior9



of the swarm into the design of individuals. To develop amethodology, we utilize the onept of Umwelt [9℄, whihwas proposed in ethology for understanding animal be-havior. The Umwelt is an organism's own world, onsist-ing of pereptual and e�etor ues, that are meaningfulinformation and ations for the organisms.For designing the swarm behavior, the Umwelt providesthe following three important ideas:� Bottom-up design: the swarm behavior is designedfrom the agent side.� Bak-traking: Sequenes of pereptual and e�etorues an be baktraked if the individuals behavioris purposeful.� Umwelt interation: Other agents' e�etor ues formone's own pereptual ues.Namely, the swarm an be de�ned as a group of in-dividuals whose Umwelts interat with group members.The design method for swarm behavior algorithm usingUmwelt is as follows:1. Identify all pereptual and e�etor ues by bak-traking from the �nal e�etor ue that forms thepurpose of eah individual.2. Deide internal states of the individuals from the ef-fetor ues (ations).3. Deide the pereptual ues (stimuli) of the individu-als for eah state.We atually designed swarm behavior ahieving thesearh and olletion of large mass objets following thisproedure (see Fig. 4). The swarm uses self-assembly formutual onnetion among agents, and pheromone trailsto attrat other agents. Using a multi-agent system sim-ulator implementing this algorithm, we showed that theagents ooperatively transported objets from the �eldto the goal. In the solving proesses the swarm exhib-ited exibility and parallelism, whih are the importantfeatures of a swarm. We disussed that it was also natu-rally expeted for the swarm algorithm to show the otherindispensable harateristi, robustness.Thus, the e�etiveness of the Umwelt for designingswarm behavior was on�rmed to some extent. We anonlude that the design methodology of the swarm be-havior based on the onept of Umwelt is e�etive. Sinethe adopted task, \searh and olletion of large mass ob-jets" is a kind of general tasks to whih swarm behavior isapplied. More general appliability of the onept Umweltshould be asertained. We will verify the e�etiveness ofUmwelt as a design methodology through designing a-tual algorithms for various tasks that the swarm shouldshow its ability in solving. For �rmly asertaining the ef-fetiveness, we should apply this methodology to varioustasks in not only the simulated agents but also in robotisystems.AknowledgmentThis researh has been supported by Prof. FumitoshiMatsuno and a group of researhers at the University ofEletro-Communiations, Tokyo. The authors have beengiven an important idea by Prof. Tetsuo Sawaragi at Ky-oto University, Kyoto.
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