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Abstract: In this study, we propose a methodology for designing a swarm behavior. The difficulty in designing the
swarm behavior is a gap between the object of evaluation and that of design. The former is the performance of a
group, but the latter is the action of each individual. We utilize the concept “Umuwelt” in ethology for bridging the
gap. The advantage of this concept is that all actions necessary for the swarm behavior can be derived from the
purpose of each individual. Using this concept, the swarm behavior can be built into the action algorithm of the
individuals. In order to evaluate the proposed method, we construct the swarm algorithm for search and collection
task. Using a computer simulation, we confirmed that the swarm successfully achieved the task with flexibility
and parallelism, and also robustness in part. These results support the effectiveness of the proposed methodology.
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1 Introduction

1.1 Features of a Swarm

A swarm is a kind of distributed autonomous system.
Many agents act distributedly without a central con-
troller. There are three remarkable features of a swarm:
flexibility, robustness and parallelism.

Flexibility is a characteristic that enables adaption to
changing environments. The swarm is constructed by a
number of individuals. The swarm of social insects has
flexibility with respect to its environment. Social insects
correspond with their changing environment as a result
of interactions among individuals [1]. For example, army
ants grasp each others’ bodies and construct a structure
like a “ladder” or a “bridge” in certain situations [2].

Robustness is a characteristic that the system can keep
its function even if some of its agents cannot work. Since
the swarm consists of many agents, the function of the
system does not strongly rely on any individual agent.
Thus, the swarm can tolerate the wastage of agents and
the failure of foraging or returning to a nest.

The swarm can process a lot of tasks in parallel. A
number of individuals act autonomously, as a result the
group solves multiple tasks at the same time. A typical
example is the foraging of the social insects. The foraging
task can be divided into search and collection tasks. The
social insects solve both tasks in parallel. All individuals
do not concentrate on just one object, but search and
collect a number of objects in parallel. As a result, the
social insects can search a vast environment for collecting
the objects.

There are difficulties in utilizing such useful features of
the swarm in engineering. The problem is that the entire
behavior of the swarm cannot be designed. However, the
work performance of the swarm is decided by its entire
behavior, which appears as a result of the autonomous
actions of individual agents. The object of design is the
individual agent, but the object of evaluation remains the
swarm behavior. This gap makes the utilization difficult
[3]. Basically, a research focusing on “how the swarm
behavior is built into individual agents” is needed.

1.2 Related Works

There are some researches that apply swarm behavior to
engineering, such as SWARM-BOTS [4] and ant colony
optimization (ACO) [5].

The SWARM-BOTS project, in which sociobiologists
participate as well as engineers, advances with both real
machines and computer simulations. In research involv-
ing real machines, multiple robots demonstrate perfor-
mances higher than individuals by cooperating with each
other [6]. Cooperatively, they can pass a gap and a step
that an individual cannot pass [7]. In the computer simu-
lation research, it has been shown that a swarm responds
to different environments by generating various patterns
through interactions among individuals [8]. Although the
project deals with various problems, they are solved in-
dividually, and general applicability is not discussed in
depth.

The ACO is a kind of optimization algorithm in which
an ant society’s behavior to find the shortest paths be-
tween a nest and food sites is applied. The point of the
algorithm is to utilize pheromone trails that agents gen-
erate. The ACO is applied to some combinatorial opti-
mization problems such as the traveling salesman problem
and network routing. However, the method to design the
group and to use the pheromone efficiently for various
problems remains to be established. To effectively utilize
the advantages of swarm behavior, a design method for
the swarm behavior needs to be debated.

1.3 Basic Idea for the Swarm

The swarm can acquire only local information about the
local and physical environment, nearby agents and their
own states as sensed by themselves. In computer simula-
tion of agent behavior, a designer designs an environment
of agents and information given to the agents, and decides
behavioral rules of the agent naturally based only on the
information designed. However, as for robotic systems,
while a designer equips robots with particular sensors,
the environment of the robots is not fully specified. Thus,
the information the robots sense is considerably different
from the designer, namely, they live in a different world
from us. In spite of this fact, the designer, who has a



global view, may often design the behavioral rules from
the designer’s viewpoint. When we design robotic agents,
we should take view-from-within seriously and we think
the design methodology based on this consideration is de-
manded.

Designing the behavior of the autonomous agents
should be grounded on the subjective information of the
agents. The concept of “Umwelt” is of help to design an
agent’s behavior based on their subjective world. The
concept was propounded by Uexkiill [9] so as to under-
stand an organism’s behavior. An organism is though to
have a phylo-specific world, which is called Umwelt. The
organism detects only needful information for its actions,
and acts in the physical world. The Umwelt is consti-
tuted by needful information and actions. But, Uexkiill
referred only to an individual organism’s behavior. To
utilize this concept for the design of the swarm behavior,
we need to consider interactions among the Umuwelts of
multiple agents.

The purpose of this study is to propose and evaluate
a design method for algorithms related to the swarm be-
havior. The following three objectives will be focused on:

e Propose a design method for the swarm behavior al-
gorithm using the concept of the Umwelt.

e Apply the design method to construct an algorithm
for an object transportation task by the swarm. This
is a typical task that is expected to be effectively
solved by the swarm.

e Evaluate the swarm behavior in the task by devel-
oping a multi-agent system (MAS) and its simulator
by implementing the algorithm designed.

2 Task

Tasks that make the most of the swarm’s merits are
“search” and “collection”. Since the swarm is composed
of many agents, it can search a vast space and collect
many objects in parallel. Furthermore, when the swarm
progressively resolves the collecting task, the environment
inevitably changes. Thanks to its flexibility, the swarm
can deal with the changing environment without modify-
ing the individuals’ behavioral algorithms.

The search and collection task charges the swarm with
challenging issues when the task includes problems that
exceed the ability of each individual. Examples are trans-
porting an object too heavy for one agent to move, cross-
ing a ditch larger than one agent’s size, and climbing a
high level. To resolve such issues, the ability more than
“mere a set of individuals” is necessary. Namely, the
agents in a swarm must cooperate with each other.

The swarm has a lot of merit, albeit we cannot use the
swarm for all-round tasks. Highly accurate positioning is
a weak point for the swarm. The agents in the swarm
have only local information and usually are not able to
know their accurate position in an environment.

In this study, we address the task of search and collec-
tion to test the effectiveness of the swarm behavior algo-
rithm. The collected object is a large mass object that
cannot be transported by an individual. To resolve this
challenging task, agents have to closely cooperate with
each other. The concrete problems are physical connec-
tion and attraction.

For mutual connection between the agents, we use self-
assembly (SA) [2][10], which is found in social insects and
is utilized to overcome related issues [4]. Social insects
such as ants, bees and termites show very advanced be-
haviors in the swarms, although individually they have
only very simple intelligence. Especially, the SA as col-
lective social insect behavior is observed in ants and bees.
The SA constructs a physical structure by gathering to-
gether with a group of individuals. The following func-
tions are achieved by the SA:

e Defense

e Pulling structures

e Thermoregulation

e Colony survival under inclement conditions
e Fase of passage when crossing an obstacle

In this study, we use the “pulling structure” to transport
large mass objects. When an agent finds an object too
heavy to move, if the agents can connect together and
pull the object in one direction, they exert enough force
to move the object.

A sufficient number of agents must gather around the
large mass object to realize the pulling structure. If the
agent that finds the object can attract other agents, the
gathering is achievable. A pheromone trail can attract
other agents. Pheromones are inducers that are secreted
by a body of an organism and induce specific actions in
other agents [11]. The ants generate pheromone trails
between preys and a nest. The ants that perceive the
pheromone are attracted in the direction of higher con-
centration [12]. Using a pheromone trail in swarm behav-
ior has the following advantages:

e The agents need not memorize the precise position
of objects.

e The agents can transmit information to close agents
indirectly.

e When the agents communicate with each other, they
have no interference due to electromagnetic wave
problems.

e The swarm can continue and accelerate work by
communications between individuals (this is called
a group effect).

3 Design Method for Swarm Be-
havior

3.1 Umuwelt

Uexkiill [9] explains the behavior of an organism using
the concept of Umwelt. The Umwelt is the world of an
organism that is composed of a perceptual world and an
effector world (see Fig. 1). These worlds interact with
each other. Everything perceived by the organism forms
the perceptual world. All actions of the organism com-
pose the effector world. Each of these worlds consists of
perceptual and effector cues, respectively. These signs are
defined as follows.

Perceptual cue
A significant sign for the organism itself

Effector cue



A significant sign that the organism produces for oth-
ers to perceive

Perceptual world

Effector world

Fig. 1: Umwelt

Uexkiill concretely explains the Umuwelt using the ex-
ample of the postnuptial actions of a female tick. The tick
scrambles to the top branch of a suitable shrub using its
epidermo-photoreceptor. Then, it receives the “butyric
acid” stimulation that is secreted from a mammal’s cu-
taneous glands, and “falls” from the top branch. Then,
perceiving to have fallen on “something warm” because
of a sharp temperature sensation, it “moves to a place
without hair”. When it perceives “skin” by tactile per-
ception, it begins to “suck warm blood”. In this example,
the perceptual and effector cues are set out below.

Perceptual cue

P, Butyric acid of an animal
P, Warmth

Effector cue

E1 Fall

E5 Move to the place without body hair

E3 Suck blood (The action of the tick continues after
above actions.)

The symbols P; (i = 1,2,3) and E; (i = 1,2,3) mean a
perceptual cue and an effector cue, respectively.

The remarkable point here is that the perceptual cues
and the effector cues in the distinctions of the tick are
just three, and they are catenated. The tick is secure in
the certainty of the action by few signs. All perceptual
and effector cues can be identified by tracing from the
final effector cue (the purpose of the organism). We use
this feature to design the algorithm.

This feature resembles a deterministic finite automaton
(DFA) closely. The DFA is constructed by event, state
transition, and action. The tick’s DFA is shown in Fig.
2. Each state is defined as:

State

S1 Waiting animals
Sa Searching skin
Ss Blood-sucking

The symbol P; (i = 1,2,3) is the perceptual cue. The
symbol S; (i = 1,2,3) is the state of the tick, and E;
(1 = 1,2, 3) is the effector cue in the tick’s state. The tick
detects the perceptual cue (P;), and changes its internal
state (S;), and acts (F;).

Rs) %(s) B(s)
=y B B

Fig. 2: State transition of tick

3.2 Design Method

From a DFA of a tick (see Fig. 2), the inner processing
of the agent is set out below:

1. The agent obtains the perceptual cue from the ex-
ternal world.

2. The perceptual cue changes the agent’s internal-state
(state).

3. Until obtaining a new perceptual cue, the effector
cue fixed in a state is executed.

The DFA for the swarm behavior algorithm is constructed
according to the following procedures:

1. Identify all perceptual and effector cues by back-
tracking from the final effector cue that forms the
purpose of each individual.

2. Decide internal states of the individuals from the ef-
fector cues (actions).

3. Decide the perceptual cues (stimuli) of the individu-
als for each state.

Moreover, the following two are thought to be indis-
pensable features for the swarm behavior algorithm.

o Other agents exist in an agent’s Umwelt
e Action depends on the other agents

As a result of these features, a very important idea for the
swarm behavior algorithms is that “other agents’ effector
cues become one’s own perceptual cues” (see Fig. 3).
The algorithm for the swarm behavior has to be designed
based on this idea.

N

Umwelt

Umwelt

A Y

Effector worldj

Perceptual world

Effector world

Fig. 3: Interaction of the Umwelt between different agents

3.3 Umwelt Including Self-assembly and

Pheromone Trail

Using the above method, we identify all perceptual and
effector cues for an agent who transports the objects in
cooperation with other agents, using SA and pheromone
trail. Hereafter, the object of the transportation is called
the prey, and the goal of the transportation the nest.

Perceptual cue



Py Prey contact (0/1)

P, Prey movement (0/1)

P; Pheromone (0/1)

P, Nest arrival (0/1)

P5 Contact agent state (1-9)
Ps Passive SA (0/1)!

P; Elapse (0/1)

Effector cue

E, Walk randomly

E5 Go to the nest

E3 Grasp the prey

E; Make SA actively?

E5 Secrete the pheromone
FEs Trace the pheromone

In itemizing the perception cues, the number of paren-
thetical references is the input. In P; (: = 1,2,3,4,6,7),
0 means non-detection, and 1 means detection. In P5, the
reference indicates the state of the contacted agents.

All agents detect only one global information, that is,
the position of the nest. We think that it is reasonable
assumption, since, from the viewpoint of biological plau-
sibility, the ants (S. invicta) can detect the direction of
the nest according to the direction of the sun [12], and,
from the viewpoint of engineering feasibility, detecting the
nest direction can be easily implemented using a light and
light sensors [13].

To perceive the passage of time, that is, the perception
sign Pr, the agent has the following three timers:

e Individual transportation timer (IT timer)
e Chemoattraction timer (CA timer)
o Self-Assembly timer (SA timer)

The IT timer counts the time elapsed since the beginning
of an individual transportation. When this time reaches a
certain amount without moving the prey, the agent gives
up the individual transportation. The CA timer measures
the time in the attracted state. This is used to avoid
meaningless attraction to “old” pheromone trails. The
pheromone trails remain in the field after accomplishment
of the transportation. The SA timer counts the time while
an agent forms a SA. The agent ceases SA, if the timer
comes to certain amount. When each timer reaches a
certain value, P; becomes 1.

3.4 State Transition Rule

The swarm behavior algorithm for the transportation of
large mass objects using SA and pheromone trail is es-
tablished by above 7 perceptual and 6 effector cues. We
design the DFA using proposed algorithm. The algorithm
by which the perceptual and the effector cues are appro-
priately tied is shown in Fig. 4 in a form of state transi-
tion rule.

The state transition rule is constructed using DFA.
Generally, DFA is used for the design of the swarm behav-
ior, but a design method with DFA for a swarm has not
yet been established. Thus, we construct state transition
rules using the above detailed method. The agent ob-
tains the perceptual cues from the environment, the other
agents and its own internal timer, and changes its state

1Held by another agent
2Hold another agent with own arm.

State Effctor cue Perceptual  Next
cue state
Pl(l) SQ
Sl El Pg(l) 54
Ps(6V7T) Se
‘ Py(0) AP (1) Ss
52 Ez A E3 P4(1) Sl
S3 E, N Es Pi(1) 3,
Pl(l) 55
S4 o PO)AP(1) S
Ps(6V7T) Se
P0)AP; (1) S
SS E2 A E3 P4(1) Sl
POARD 5
Ps(8Vv9 Sg
E. E;VE
Se > A (E3 V Ey) Py(1) s,
P7(1) SB
Py (1) A Py (1) S
St Ey A (EsV Ey) Ps(8V09) S
Ps(0) Sg
Ss Ey N Ey P5(1) S
Sg EQ A E3 P4(1) Sl

Table 1: State transition rule of each state

according to the algorithm. The role of each state and
the effector and perceptual cues belonging to the state
are set out below. P; and F; indicate the perceptual cue
(perception) and the effector cue (action), respectively.
The expression E; A E; means that both effector cues are
executed at once, and E;V Ej either one of the two. When
a value of P; is z, the internal state change to Si. The
agent changes its own state according to the state transi-
tion rule (see Fig. 4). E;, P;(z), and the state transition
at each S; are shown in Table 1. The function of the each
state is as follows:

State

Sy Searching (initial state)
- Walking randomly
The agent changes its state to Sz, Sy or Sg, when it
perceives Py (1), P5(1) or P5s(6 V 7), respectively.

S Individual transportation
- Carrying a prey alone?
The agent changes its state to S3 or Si, when it
perceives P»(0) A P;(1) or Py(1), respectively.

S3 Pheromone secretion
- Laying down pheromone trail between the nest and
a prey
The agent changes its state to S4 when it perceives
Py(1).

S4 Pheromone attracted
- Attracted by and tracing the pheromone
The agent changes its state to S5, S1 or Sg, when it
perceives Py (1), P1(0) A P;(1) or Ps(6V 7), respec-
tively.

S5 Non-SA transportation
- Carrying a prey alone after attracted*
The agent changes its state to Sg or S1, when it

385 is the state in which the agent is not attracted and transports
a prey alone.

4S5 is the state in which the agent transports without SA after
attracted.
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Fig. 4: State transition rule for the swarm behavior

perceives P»(0) A P;(1) or Py(1), respectively.

SA standby [End-SA]

- Waiting for SA and linking to another agent at
rearmost SA chain

The agent changes its state to Sy, Sg, S7 or S3, when
it perceives Py (1) A P2(1), P5(8 Vv 9), Ps(1) or P7(1),
respectively.

S7 SA standby

- Waiting for SA and linking another agent

The agent changes its state to Sy, Sg or Sg, when it
perceives Py (1) A P>(1), P5(8 vV 9), or Ps(0), respec-
tively.

SA transportation

- Transporting by SA chain

The agent changes its state to S; when it perceives
P5(1).

SA transportation [Root-SAJ®

- Transporting at the root of SA chain

The agent changes its state to S; when it perceives
Py (1).

Se

Ss

So

4 Simulation of Swarm Behavior

In order to test the algorithm for swarm behavior, we
conducted a simulation. In this section, we explain the
details of the simulator and the task.

5Root-SA means that an agent forms a SA chain and grasps a
prey directly.

4.1

Basic Structure and Function

The agent’s body is a cylindrical shape and has upper
and lower parts. The upper part is equipped with an arm
to hold a prey (for Es) or an agent (for E4). The agent
can detect the direction to the nest (for Py). The agent
has contact sensors around its body (for Py, Ps) and has
a contact communication function (for Ps). Addition-
ally, the agent can detect whether it is moving or not
(for Py), and how much time passes (for P;). The lower
part has wheels to move (for E;, Es, Eg), ethanol sensors
to detect pheromone (for P;), and an ethanol dripper to
leave a pheromone trail (for Es). In E; (random walk),
the agent normally goes straight, and the probability of
change in its direction is 20%. The new direction is ran-
domly selected between —m/4 to w/4 from the direction
of movement. These two parts can rotate separately®.
The advantage of this mechanism is that the direction of
travel is not limited by the direction of the prey held.
The agent’s diameter is 200[mm]. The maximum speed
and force are 100[mm/s] and 15[N]. The maximum action
time is 3600[s]. We suppose realistic dimensions and pa-
rameters for the agent in order to be able to implement
physical agents straightforwardly.

Agent

Communication

An agent directly and indirectly communicates with
the other agents. The direct communication is achieved
by sending the current state of oneself to another agent,
when the agent contacts with the other agents. The
pheromone trails serve for indirect communication.

6The same mechanism is adopted in SWARM-BOTS[4]



In an actual robotic system, ethanol (CoH5;OH) is used
as a substitution for pheromone. The agent lets down
the ethanol tank located at the center of the bottom of
the body, when the agent is in the pheromone secretion
state (S3). The ethanol is perceived as the perceptual cue
of the pheromone by the other agents (S;). The ethanol
sensors are used to trace the pheromone trails. The trac-
ing mechanism imitates that of the ants. The ants detect
pheromone trails using two right-and-left antennas [14].
When the right antenna detects pheromone, the ant ad-
vances to the right, and vice versa as shown in Fig. 5.
To imitate this action, two ethanol sensors are installed
on the bottom of the body at 7/4 from the direction of
movement.

. Drive wheel
Pheromone trail

Physical agent

Fig. 5: Behavior on the pheromone trail

4.2 Environment

The agents move around a square field of 10000 x
10000[mm)] in size. The coefficient of friction between
the field and a prey is 0.5. The field is discretized with
20[mm] x 20[mm)] grids to calculate the evaporation and
the diffusion of pheromone. The size of the field is 10000
x 10000[mm]. There are 25000 computational grids on
the field.

Pheromone on the field

The pheromone drip on the surface of the field evapo-
rates into the atmosphere and then diffuses. The evapo-
ration is calculated according to the following equation:

Fp(m7y7t) :’Yvapr(x:yat_1)+AFP($ay:t) 9 (1)
where F,(x,y,t) is an amount of pheromone at time ¢ and
at grid (z,y), = and y are the X-Y coordinates in the field,
and 7yqp is the evaporation coefficient (0.99). The second
term, AF,(z,y,t), is the amount of the pheromone drip:

Q, if an S3 agent is on the
grid (z,y),
0 otherwise,

AFP($7y7t) =

Where @), is actual amount of pheromone drip.

Pheromone in the atmosphere
The diffusion of the pheromone is calculated by

Ap(z,y,t) = Ap(z,y,t—1)

+yair{Ap(z + 1,y,t = 1)

+A,(x —1,y,t—1)
+A,(z,y+1,t-1)

+A,(z,y —1,t - 1)

—5A,(z,y,t —1)}

=) Bylept) ()

where A, (z,y,t) is the amount of pheromone in the atmo-
sphere and above grid (z, y) at time ¢ and vg4;¢ is the diffu-
sion coefficient (0.01). A,(z+1,y,t—1), A,(x—1,y,t—1),
Ap(z,y+1,t—1) and A,(x,y—1,t—1) mean inflow of the
pheromone from the adjacent 4 grids. —5A4,(z,y,t — 1)
means diffusion to the adjacent 4 grids and disappearing
to the atmosphere.

4.3 Task

The task to be solved by the swarm is “search and collec-
tion of the preys”. The agents transport preys that have
the same size and mass and are scattered in the field,
to a nest positioned at the center of the field (see Fig.
6). In this figure, the checker board lattice is the field.
The small circle at the center of the field is the nest, and
the larger circle is the transportation goal. The cylinders
surrounding the goal circle are the preys.

The agents begin search from the nest. If they find a
prey, then they try to drag it to the nest. When all preys
have been transported to the nest, the task is completed.

<

Field
| Nest
T - Prey
Goal of pack

Fig. 6: Field configuration

5 Simulation Results

We undertook computational simulations of the swarm
behavior algorithms drawn in Fig. 4 using the MAS sim-
ulator detailed in the previous section. In this section,
we analyzed the simulation results paying attention to
the following three points:

1. does the swarm solve the task or not?
2. does the parallel processing work effectively?
3. does the task allocation work effectively?



1) and 2) are proper behavior of the swarm, but 3) is
adaptive behavior.

In the initial state, the preys are located on a circle
around the nest with a radius of 4000[mm] as shown in
Fig. 6. The agents start to move from the center of the
nest.

5.1 Task Solution

Typical parameter settings showing the task solution are
Table 2.

Table 2: Parameter settings for task solution

The number of agents 30
The number of preys 8
The mass of a prey 15[kg]

Actual simulations look like Fig. 7. The short lines ex-
panded from the agents designate the directions of move-
ment. The number at the left bottom corner of field is
elapsed time from the beginning of the simulation.

< ARGOSA3

Carrying

Transported
Prey

Fig. 7: Task solution

Pheromone in the Atmosphere

—" =

Fig. 8: Pheromone in the atmosphere

The agents generate pheromone trails (see Fig. 8), at-
tract other agents, and repeat SA (see Fig. 7). The agents
lay down the pheromone trails between the preys and the
nest. The pheromone trails form straight lines since the
agents know the direction of the nest.

5.2 Parallel Processing

In Fig. 7, the swarm simultaneously carried two preys (in-
dicated by two circles), that is, the swarm demonstrated
parallel processing. To estimate how the swarm solves
the task in parallel, we observed the time it took to solve
the task for different numbers of preys. The parameter
settings are shown in Table 3.

Table 3: Parameter settings for parallel processing

The number of agents 40
The number of preys 1,2,4,6,8
The mass of a prey 20(kg]

The task solution time is shown in Fig. 9. The ver-
tical axis is the task solution time, and the horizontal
axis is the number of preys. In this figure, a linear line
is plotted for comparison, which is an extrapolation of a
line between 0 and the result for 1 prey. This line indi-
cates estimated time to solve the task serially. The actual
task solution time, shown by the dashed line, is always
lower than the linear line. This means that the present
algorithm for the swarm behavior can effectively perform
parallel processing. And it means that the task can be
parallelized.

Parallel Processing

- 2400
'g —«&— Task solution time /.
= 1800 1™ @ Liner
K]
£ 1200 -
S -
< 600 -
7] - M
K ————"*

0 L

0 2 4 6 8
Number of preys

Fig. 9: Time to solve the tasks

5.3 Task Allocation

5.3.1 Task Solved

Figure 10 shows a transition of the ratio of the states in
the course of time in an experiment of a solvable task. The
vertical axis is the state-ratio, and the horizontal axis is
time. The lines in the same region indicate the difference
of the agent’s state. The parameters in this experiment
are summarized in Table 4. Under the present settings,
one agent has the transporting capacity of 1.5[kg] at most.
Coeflicient of friction between the field and the prey is 0.5.
Thus, the prey of 15[kg] can be carried by 5 agents.
Phase 1



Agent=5, Prey=1, Prey_mass=15

Phase 2

Phase 1 Phase 3

Phase 4 Phase 5

100%

90%

80%
70%
60%

S, ,:Pheromone secretion
or attracted

50%

State ratio

40% |
30% S, :Searching
20%

10% |

S, ,:SA standby [End-SA]

or SA standb

S; o:SA transpagrtation
or SA transportation [Root-SA]

S; ,:Pheromone sgcretion
or attracted

S, :Searching
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Fig. 10: The transition of the ratio of states in the process of task solving

Table 4: Parameter setting of a solvable task

The number of agents 5
The number of preys 1
The mass of a prey 15[kg]

At first, all agents searched in parallel for a prey (S; :
Searching).

Phase 2

At 481[s] an agent found a prey, that is, received the
perceptual cue P;(1) and tried to transport the prey by
changing its state into Sy (Individual transportation)?.
But the prey could not be moved by one agent, thus, the
state became S3 (pheromone secretion), and 20% of the
area in Fig. 10, that is one agent out of five, became
“S3,4: Pheromone secretion or attracted”. The agent
shuttled between the prey and the nest for laying down a
pheromone trail to attract other agents, and then turned
to the Sg (SA standby [End-SA]). At 608[s], an agent
found the pheromone trail, that is, received a perceptual
cue P5(1).

Phase 3

At 639[s], two agents constructed SA (Sg: SA-standby
[End-SA] and S7: SA-standby). But two agents are not
enough to move the prey, the second agent changed the
pheromone secretion state and began to strengthen the
trail (repeated twice). At 786[s], a third agent, and
at 1667[s] a fourth agent were attracted through the

"The agent’s state changes from S; to Ss. But it doesn’t appear
in the graph because S2 is only five seconds.

pheromone trail. The four agents make a SA train.

Phase 4

At 1680[s], the fifth agent contacted the prey and changed
its state (S; to Sy). Finally, the prey was transported by
five agents cooperatively, four agents forming SA and one
agent non-SA. This is indicated by “Sg,9: SA transporta-
tion or SA transportation [Root-SA]” and “Sy: Individual
transportation” in the right side of Fig. 10.

Phase 5

After finishing the transportation, four agents were at-
tracted by the meaningless pheromone trail. At 1955[s],
the pheromone trial evaporated completely, and all agents
changed their states (S; to Sy).

5.3.2 Task Unsolved

If a task is not solvable, the transition of the state ratio
differs completely as depicted in Fig. 11. The vertical
axis is the state-ratio, and the horizontal axis is time.
Table 5 indicates the parameter settings for this unsolv-
able task experiment. The mass of a prey is now 20[kg]
despite there being just the same number of agents as in
the previous experiment. Therefore, this prey cannot be
carried even though all five agents form SA.

Table 5: Parameter setting for an unsolvable task

The number of agents 5
The number of preys 1
The mass of a prey 20(kg]
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Fig. 11: Transition of the ratio of states in the process of task unsolving

Until phase 3 (1680[s]), the behavior of the swarm was
the same as in Fig. 10. Namely, the swarm searched for a
prey, attracted agents and formed SA. But since the prey
could not be moved by the SA of 5 agents, the last agent of
the SA train tried to reinforce the pheromone trail forever.
Thus, the graph shows an oscillation between pheromone
secretion or attracted (S3 or Sy) and SA standby [End-
SA] or SA standby (S¢ and S7) after 1680[s].

6 Discussion

The swarm has three remarkable features: flexibility, ro-
bustness and parallelism. In this study, we showed that
the proposed swarm algorithm achieves two of the three,
flexibility and parallelism.

In this paper, the task is not solved only by an indi-
vidual agent. Agents need to cooperate with each other,
that is, make a self-assembly structure. The results shown
in section 5.1 describes the overall behavior, especially
about the pheromone trails and the self-assembly, which
are the critical parts of our algorithm. This result vali-
dates that the agents construct the pheromone trails and
the self-assembly structures appropriately. The result of
parallelism shown in section 5.2 makes us confirm that
parallel processing works well.

When the task is solvable, the task solving is acceler-
ated by a lager number of agents (see Fig. 9). This obser-
vation suggests that the present swarm algorithm shows
parallelism. However, the scalability of the parallelism
for the large number of agents and preys is not clear. Ac-
tually, in Fig. 9, the slope of the task solution time (lower
line) is nearly the same as the linear extrapolation (upper
line), when there are many preys. In order to clarify the
scalability, more thorough experiments with a large sys-
tem ought to be conducted. If we can predict the number

of agents needed to solve a task within required time, it
is very useful for actual engineering problems.

The agents regulate their internal states appropriately
corresponding to the surrounding circumstances (see Fig.
10). This is self-organized behavior. The circumstances
consist of not only the preys but also the other agents. As
the agents move and the preys are transported, the cir-
cumstances change from moment to moment. Since the
agents can adapt to such dynamic situations and coor-
dinate their roles, the task could be successfully solved.
But this is not always the case. When the task is funda-
mentally impossible to solve, the agents cannot allocate
their roles and repeat the same action in vain, over and
over again (see Fig. 11).

In order to obtain the results described here, we do
not need to adjust the parameters both by hand and by
some adaptive algorithm such as genetic algorithm. All
result are very generic. This fact suggests that the design
method and the proposed swarm behavior algorithm are
available and efficient.

We did not show that our algorithm has the remained
feature, robustness, directly. But, it is to be expected
from the results shown in Fig. 9 that the swarm can solve
the task if several agents stop working, even though the
solving time may be prolonged, when the overall number
of agents is large enough. But, in realistic situations, the
broken agents may be obstacles for the normal agents. In
order to understand the effect of the broken agents, we
will try to stop some agents while simulating.

7 Conclusion

The features of a swarm are well known, as it cannot be
designed by a top-down approach [3]. In order to design
a swarm behavior, it is necessary to build the behavior



of the swarm into the design of individuals. To develop a References

methodology, we utilize the concept of Umwelt [9], which
was proposed in ethology for understanding animal be-
havior. The Umuwelt is an organism’s own world, consist-
ing of perceptual and effector cues, that are meaningful
information and actions for the organisms.

For designing the swarm behavior, the Umwelt provides
the following three important ideas:

e Bottom-up design: the swarm behavior is designed
from the agent side.

e Back-tracking: Sequences of perceptual and effector
cues can be backtracked if the individuals behavior
is purposeful.

o Umuwelt interaction: Other agents’ effector cues form
one’s own perceptual cues.

Namely, the swarm can be defined as a group of in-
dividuals whose Umuwelts interact with group members.
The design method for swarm behavior algorithm using
Umuwelt is as follows:

1. Identify all perceptual and effector cues by back-
tracking from the final effector cue that forms the
purpose of each individual.

Decide internal states of the individuals from the ef-
fector cues (actions).

Decide the perceptual cues (stimuli) of the individu-
als for each state.

We actually designed swarm behavior achieving the
search and collection of large mass objects following this
procedure (see Fig. 4). The swarm uses self-assembly for
mutual connection among agents, and pheromone trails
to attract other agents. Using a multi-agent system sim-
ulator implementing this algorithm, we showed that the
agents cooperatively transported objects from the field
to the goal. In the solving processes the swarm exhib-
ited flexibility and parallelism, which are the important
features of a swarm. We discussed that it was also natu-
rally expected for the swarm algorithm to show the other
indispensable characteristic, robustness.

Thus, the effectiveness of the Umuwelt for designing
swarm behavior was confirmed to some extent. We can
conclude that the design methodology of the swarm be-
havior based on the concept of Umwelt is effective. Since
the adopted task, “search and collection of large mass ob-
jects” is a kind of general tasks to which swarm behavior is
applied. More general applicability of the concept Umwelt
should be ascertained. We will verify the effectiveness of
Umwelt as a design methodology through designing ac-
tual algorithms for various tasks that the swarm should
show its ability in solving. For firmly ascertaining the ef-
fectiveness, we should apply this methodology to various
tasks in not only the simulated agents but also in robotic
systems.
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