
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Automatic Generation of Model Checking Scripts

based on Environment Modeling

Author(s)
Yatake, Kenro; Nishibata, Hirokazu; Aoki,

Toshiaki

Citation

Research report (School of Information Science,

Japan Advanced Institute of Science and

Technology), IS-RR-2010-001: 1-8

Issue Date 2010-02-10

Type Journal Article

Text version publisher

URL http://hdl.handle.net/10119/8839

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学情報

科学研究科）

Automatic Generation of Model Checking Scripts
based on Environment Modeling

Kenro Yatake, Hirokazu Nishibata, Toshiaki Aoki

2010/2/10

18-RR-2010-001

Automatic Generation of Model Checking Scripts based on Environment Modeling

Kenro Yatake, Hirokazu Nishibata, and Toshiaki Aoki
Japan Advanced Institute of Science and Technology

1-1 Asahidai, Nomi, Ishikawa, Japan, 923-1292
{k-yatake, s0710054, toshiaki}@jaist.ac.jp

Abstract—When applying model checking to the design
models of the embedded systems, it is necessary to model not
only the behavior of the target system but also that of the en-
vironment surrounding the system. In this paper, we presenta
UML-based method to model the environment and to generate
environment instances from the model. In our method, we can
flexibly model the variation of the environment structures and
the sequences of the function calls using class diagrams and
statechart diagrams. We also present a tool to automatically
generate Promela/Spin scripts from the environment model.
In this paper, we explain the details of our method and the
verification of an RTOS design model using the tool.

I. I NTRODUCTION

Recently, model checking [3][4] is drawing attention as a
technique to improve the reliability of the software systems.
Especially, they are widely applied to the verification of
embedded systems. The major characteristics of embed-
ded systems is their reactiveness, i.e., they operate by the
stimulus from the outside world. For example, network
printers operate by printing requests from the client hosts.
For another example, Real-Time Operating Systems (RTOS),
which are embedded in most of the complex embedded
systems, operate by the service calls from the tasks running
on them. In order to apply model checking to such systems,
it is necessary to model not only the behavior of the target
system but also that of the outside world. This is called an
environment.

The most typical approach to model an environment is to
construct a process which calls all the functions provided by
the system non-deterministically. Although it realizes anex-
haustive check for all the possible execution sequences, the
property description tends to become complicated because it
must characterize all the sequences with a single predicate.
Furthermore, it often suffers state explosion because all the
sequences are checked at a time. Another approach is to
call specific sequences of the functions depending on the
properties to check. For example, we limit the range of the
function calls to the normal execution sequences and check
that certain properties hold in that range. The advantage of
this approach is that the property description becomes simple
and precise because the assumptions of the properties are
implied by the sequences themselves, Furthermore, as the
range is limited, we are likely to be able to avoid state
explosion.

We consider the latter approach is more realistic. But
we must further consider the structural variation of the
environment. For example, the environment of an RTOS
consists of a multiple number of tasks and resources. There
are also a variety of values for their priorities. The number
of their variation becomes so huge that we cannot construct
all of them by hand. Therefore, we need a method to
model the structural variation of the environment and to
automatically generate each environment from the model. To
our knowledge, there are no established methods to support
this on the design level.

To satisfy the need, we propose a method to model the
environment based on UML (Unified Modeling Language)
[1]. In our method, we can flexibly model the variation of
the environment and the sequences of the function calls
using class diagrams and statechart diagrams. We also
implemented a tool to automatically generate Promela/Spin
scripts from the model. As an experiment, we applied the
tool to the verification of an OSEK/VDX RTOS [5] design
model. In this paper, we explain the details of our method
and the verification experiment of the RTOS model.

This paper is organized as follows. In section 2, we
explain the approach of our method. In section 3, we
explain the environment model. In section 4, we explain
the generation of environments from the model. In section
5, we explain the implemented tool. In section 6, we
explain the verification experiment. In section 7, we discuss
the effectiveness of our method. In section 8, we give a
conclusion and future work.

II. APPROACH

The system like an RTOS does not operate by itself,
but operates by getting its functions called from outside.
So, in order to verify its behavior, we need to prepare
an environment to call the functions, and check if the
system operates correctly for each of the function calls. Fig.1
summarizes this idea. It shows an example of an RTOS. It
implements data structures such as a task listtsk[] and
a ready queueready[] and provides API functions such
asActivateTask() andTerminateTask(). If these
functions are called, it manages the scheduling of tasks based
on their priorities. To verify its behavior, we prepare an
environment consisting of two tasks T1 and T2 (T2’s priority
is higher than T1’s). It describes a sequence of function

Figure 1. Model checking with an environment

calls to the RTOS and state transitions of the tasks expected
by the calls. For example, if the function ActivateTask() is
called to T1, it is expected to become running. Then, if the
same function is called to T2, T1 and T2 are expected to
become ready and running, respectively (T2 preempts T1’s
execution). By applying model checking to the RTOS in
combination with the environment, we can verify that the
RTOS satisfies this expectation. Specifically, in each state
of the environment, we check the consistency between the
environment state and the internal values of the RTOS. For
example, if T1 and T2 are ready and running, the ready
queue in the RTOS must contain the identifier value of T1,
and the value of the variableturn (representing the running
task) must be equal to the identifier value of T2. In this way,
we can verify the target system using an environment.

The problem is that this environment is only one of the
cases of the huge number of environment variations. We
need to verify it for all the variations with respect to the
number of tasks and resources, the patterns of the priority
values, the patterns of reference relationships, and so on.But
it is unrealistic to construct all of them by hand. One could
think of constructing a general environment withm tasks
andn resources, but it is likely to end up in state explosion.

To cope with this problem, we introduce a model to
describe the environment variations and automatically gen-
erate all the environment instances from the model. Fig. 2
summarizes this idea. To verify the target system, we first
construct anenvironment model. Then, we input the model to
theenvironment generatorand obtain environment instances.
Finally, we apply model checking to the target system in
combination with each generated instances. The advantage
of this approach is that we can avoid state explosion by
dividing the whole environment into individual environment
which can be checked in a relatively small state space.

The environment model is based on UML. In a class
diagram, we describe the structural variation of the envi-
ronment with respect to the elements such as the number
of objects, attribute values and association multiplicities. In
statechart diagrams, we describe the sequences of function
calls and the state transitions expected for them. As a model
checker, we use Spin. The environment generator inputs an
environment model as a text file and outputs the instances

Figure 2. Environment modeling method

as Promela scripts.

III. E NVIRONMENT MODELS

In this section, we introduce the definition of the envi-
ronment model. It is based on UML, but it also contains
our original notations. We begin with an overview with the
example of RTOS, and then present the formal definition.
The RTOS is based on the OSEK/VDX specification.

A. Overview

1) Class diagram:Fig.3 shows the class diagram of the
environment for RTOS. The class diagram consists of a class
representing the target system and classes representing the
environment. In the figure, the classRTOS is the target
system and the classesTask and Resource are the
environment classes.

The target class defines two kinds of functions as the
interface with the target system. The functions labeled with
action are the functions to drive the target system (called
driver functions). For example,ActivateTask(tid) is
the action to activate the task of IDtid. In order to
define the variation of the function call, the argument of
the action is defined with the range liketid:TD (TD
is defined as{1,2}). In this case, two variations of the
function call are considered :ActivateTask(1) and
ActivateTask(2). The functions labeled withinfo are
the functions to refer to the internal values of the target
system (calledreference functions). These functions are used
to define assertions, which is explained later in this section.

The environment classes are defined with attributes and
associations. Attributes are also defined with the ranges like
pr:{1,3} (representing the priority). In this case, two
variations of the attribute are considered for aTask object.
Associations are defined with multiplicities like(0,TN)
(TN is defined as2). It is a pair of the minimum and the
maximum number of objects linked with an object. Links are
generated between objects so that they cover all the patterns
in this range. The multiplicities of the associations from the
target class to the environment classes represent the number
of objects which instantiate from the environment classes.
In this case, twoTask objects and oneResource object
are created.

Invariants and assertions are defined for the environment
classes. They are written in OCL (Object Constraint Lan-
guage) [2]. Invariants define the constraint on the structure

Figure 3. The class diagram for the RTOS environment

of objects. The invariant for the classTask means: “All
the Resource objects linked to aTask object have the
priorities not lower than theTask object.” Assertions define
the predicate to check in each state of objects. To refer to
the values in the Promela script of the RTOS, theinfo
functions are used. The assertion for the classTask means:
“If a Task object is in the stateRun, the value of the
function GetTurn() must be equal to the identifier of
the object (id is a built-in attribute), and if it is in the
stateRdy, the value of the functionGetTaskState(),
whose argument is the identifier of the object, must be equal
to the value of the functionGetReady()”. The info
functions refer to the variableturn, the struct member
tsk[self.id].stat (representing the task state) and
the constantREADY (representing the state value for ready),
respectively.

2) Statechart diagrams:In statechart diagrams, we define
the state transitions of the environment objects expected
for the function calls of the target system. As we stated
in introduction, we only describe specific sequences of
function calls of the target system. Fig.4 shows the statechart
diagram of the classTask. It describes the normal execution
sequences of RTOS. A transition is triggered by a function
call. For example, the transition (1) means: “When the action
ActivateTask is called for theTask object in the state
Sus (Suspended) and if there are no other tasks in the state
Run, the object transits to the stateRun (Running).” The
expression in[] is the guard condition written in OCL. In
the model, typical expressions are defined as functions like
ExRun()=Task->exists(t|t@Run) (checks if there
exists aTask object in the stateRun). The OCL expressions
in our model also contain our original syntax, but it is
basically a subset of OCL containing the set operations and
the state reference.

A set of synchronous transitionscan be attached to a
transition. A synchronous transition defines the transitions of

other objects which occur synchronously with the transition
of the self object. For example, the transition (2) defines
the synchronous transitionRdy->Run {GetRdyMax()}.
This means: “Along with the transition of the self object,
the Task object obtained by the functionGetRdyMax()
(the task which is in the stateRdy (Ready) and has the
maximum priority) transits from the stateRdy to Run. The
OCL expression in{} represents the synchronized objects
of the transition. We adopted this syntax instead of the usual
event passing simply because it is more direct for describing
synchronization among multiple objects. We do not consider
asynchronous transitions.

Let us note here about the semantic detail of the syn-
chronous transition. If the OCL expression of a synchronous
transition is evaluated to a set of objects, one of them is
chosen non-deterministically as the synchronized object.For
example, ifGetRdyMax() returns a set of two tasks T1
and T2, two transitions are generated. One is to transit T1
from Rdy to Run and the other is to transit T2 fromRdy to
Run. This non-determinism approximates the ideal behavior
of the environment. See 7.1 for the details.

B. Formal definition

1) Class diagrams: The class diagram is defined as
follows:

CD = (C, At, As, Attr, Assoc, Size, Dom, Mult,

Inv, Assr),

Attr : C → 2At, Assoc : C → 2As, Size : C → N,

Dom : At → 2Int, Mult : As → C × N2,

Inv : C → Exp, Assr : C → Exp

The setC is the set of the environment classes. The sets
At and Assoc are the sets of attributes and associations,
respectively. The mappingsAttr and Assoc relate a class
to its attributes and associations, respectively. The mapping
Size relates a class to the number of objects from the class.
The mappingDom relates an attribute to its domain, or the
set of values. We consider only integers for the values of
attributes (for the compatibility with Promela). The mapping
Mult relates an association to the destination class and
the multiplicity. For an associationas with Mult(as) =
(c, min, max), the classc is the destination class and
the natural numbersmin and max are the minimum and
maximum number of the multiplicity. The mappingInv

relates a class to the invariant expression in OCL. The
mappingAssr relates a class to the assertion expression
in OCL. The setExp is the set of OCL expressions. We
abstract away from their concrete syntax.

The target system is defined as a set of functions as
follows:

TS ≡ (A, I, ArgD, ArgN)

F ≡ A ∪ I, ArgN : F → N, ArgD : F × N → 2Int

Figure 4. The statechart diagram of the class Task

The setA is the set of driver functions. The setI is the set
of reference functions. The setF is defined as a union of
these functions. The mappingArgN relates a function to
the number of its arguments. The mappingArgD relates a
function and a natural numbern to the domain of itsn-th
argument.

2) Statechart diagrams:Let S be the set of states. For
the classci ∈ C, the statechart diagramSDi is defined as
follows:

SDi ≡ (Si, initi, Ti)

Si ⊆ S (Si ∩ Sj = φ, i 6= j), initi ∈ Si,

Ti : Si × Si × Exp × A × 2S×S×Exp

The setSi is the state sets of the classci and the state
initi is the initial state. The setTi is the set of transitions.
For the transition(s1, s2, c, a, st) ∈ Ti, the statess1 and
s2 are the source and destination states, respectively. The
predicatec written in OCL is the guard condition. The
action a is the action to trigger this transition. The setst

is the set of synchronous transitions. For the synchronous
transition(t1, t2, x) ∈ st, the statess1 ands2 are the source
and destination states, respectively. The OCL expressionx

defines the set of the synchronized objects. Actually, states
can take arguments such asOcc(tid) (the state of a
Resource object occupied by theTask object oftid),
but we omit its formalization for simplicity.

IV. GENERATION OF ENVIRONMENTS

A. Overview

Generation of environment instances is done in three
steps: (1) Generation of object graphs, (2) Composition of
statechart diagrams, and (3) Translation into Promela. The
explanation of (3) is left to the next section.

1) Generation of object graphs:The object graph is the
graph structure with nodes represented by objects and edges
represented by the links which instantiate from associations.

Each node has attribute values as its data. The set of object
graphs is generated so that it covers all the variations of
attribute values and association multiplicities. Logically, this
is done in the following three steps:

Firstly, we compute the product of the attribute variations.
In the example, the attributepr of the classTask, and also
of Resource, has two variations. As there are two objects
from theTask class and one object from theResource
class, the number of the attribute variations as a whole
become22 × 21 = 8. Then, we compute the product of
the association variations. Let T1 and T2 be the twoTask
objects and R1 be the singleResource object. Under the
multiplicities of the associations, both T1 and T2 can link
to any of the three objects T1, T2 and R1 (23 = 8 patterns),
and R1 links to at least one of the two objects T1 and T2
(3 patterns). The number of the graph structure satisfying
this constraint is82 × 3 = 192. Finally, from the total of
8 × 192 = 1536 graphs, we retain only the graphs which
satisfy invariants. This results in 104 graphs.

In the actual implementation, we compute the graphs as a
stream, or generate each graph one after another by moving
the parameters in the class diagram within the range of their
variation. This can reduce the computation space to the order
of (|At| + |As|) × |O|.

2) Composition of statechart diagrams:For each object
graph, we compose the statechart diagrams of all the objects
in the graph. The result of the composition is an LTS
(Labelled Transition System). Fig.5 shows an example of
an object graph and its LTS.

In the LTS, each state is represented by the tuple of
the states of all the objects like(Sus,Sus,Fre). Tran-
sitions in statechart diagrams are added to LTS if their
guard conditions are evaluated to true in the LTS state
and the object graph. For example, the transition from
(Sus,Sus,Fre) to (Run,Sus,Fre) by the action
ActivateTask(1) (AT(1)) is added because the guard
condition of the transition (1) in Fig 4 becomes true for

Figure 5. The object graph and its LTS

the object T1 (id==1) and the action argumenttid==1 in
the state(Sus,Sus,Fre). If a transition has synchronous
transitions, the target objects are obtained by evaluating
the OCL expression and they transit along with the tran-
sition of the self object. For example, in the transition
from (Rdy,Run,Fre) to (Run,Sus,Fre) by the ac-
tion TerminateTask(2) (TT(2)), the target object T1
transits fromRdy to Run along with the self object T2
transiting fromRun to Sus.

It could be possible to translate all the statechart diagrams
directly into Promela and leave the composition to SPIN. But
we do not take this approach because the transitions attached
with OCL expressions in our model are difficult to express
directly in Promela. So, we compose the statechart diagrams
at this point outside SPIN.

B. Formal definition

In the following, we represent the elements in the sets
Attr(ci) and Assoc(ci) as atij (j = 1...|Attr(ci)|) and
asij (j = 1...|Assoc(ci)|).

1) Generation of object graphs:Let OG be the set of the
object graphs generated from the class diagram. We define
each elementGi ∈ OG as follows:

Gi = (O, V ali, Linki)

V ali : At → O → Int, Linki : As → O → 2O

The setO is the set of objects. This set is common to
all the object graphs. We represent each element inO as
oij (i = 1...|C|, j = 1...Size(ci)). The objectoij is thej-th
object in the classci. The mappingV ali relates an attribute
and an object to its value. The mappingLinki relates an
association and an object to the set of the destination objects.
The elements of the mappingsV ali andLinki are defined
as the following computation.

Firstly, we compute the product of attributes and associ-

ations:

X ≡

|C|∏

i=1

|Attr(ci)|∏

j=1

Dom(atij)
|ci|,

Y ≡

|C|∏

i=1

|Assoc(ci)|∏

j=1

L
|ci|
ij

where

Lij ≡ {s|s ⊂ Ok ∧ min ≤ |s| ≤ max},

Ok ≡ {okj |1 ≤ j ≤ |ck|},

(ck, min, max) ≡ Mult(asij)

Then, we compute the product of the both:

Z ≡ {Z1, ..., Z|X||Y |} ≡ X × Y

Finally, we define the elements inV ali andLinki in terms
of Z as follows:

V ali(atjk) ≡

|cj|⋃

m=1

{ojm 7→ [[[[Zi]1]j]k]m}

Linki(asjk) ≡

|cj|⋃

m=1

{ojm 7→ [[[[Zi]2]j]k]m}

where[P]n is then-th element in the tuplePD
At this point, we eliminate fromOG the graphs which do

not satisfy the invariantInv, or updateOG as follows:

OG = {Gi ∈ OG| ∀ojk ∈ O. Evali[o](Inv(cj))}

The mappingEvali[o] : Exp → V relates an OCL
expression to the value which is obtained by evaluating the
expression in the context of the objecto in the graphGi.
The setV is the value set of all the OCL expressions and
defined asV ≡ Int ∪ Bool ∪ O ∪ 2O.

2) Composition of statechart diagrams:Firstly, we com-
pute the product of arguments for each actiona ∈ A:

Wa ≡

ArgN(a)∏

j=1

ArgD(a, j)

For the argument tuplew ∈ Wa, [w]n represents itsn-th
argument.

Then, we define the LTS for the object graphGi ≡
(O, V ali, Linki) as follows:

Ei = (Pi, ciniti, Qi, Ri)

Pi : 2O→S , ciniti ∈ Pi, Qi ⊂ A,

Ri : Pi × Pi × Qi × W, W ≡
⋃

a∈A

Wa

The setPi is the set of states. Each state is represented by the
mapping from an object to its state, i.e, ifp(o) = s for the
statep ∈ Pi, the objecto is in the states ∈ S. The statecinit

is the initial state. The setQi is the set of actions. The setRi

is the set of transitions. For the transition(p, q, a, w) ∈ Ri,
the setsp and q are the source and destination states,a is
the action to trigger this transition andw is the argument
tuple of the actiona.

Now, we generate each LTSEi by the following al-
gorithm. For simplicity, we present the algorithm for the
case where the OCL expression of a synchronous transition
always evaluates to a single object.

1) Let Pi = Qi = Ri = φ.
2) Define the initial stateciniti so that ciniti(ojk) =

initj.
3) Let p = ciniti and Pi = {u} (p is a variable for

temporal use).
4) For each objectojk, transition(p(ojk), c, a, s, st) ∈ Tj,

and argumentw ∈ Wa, do the following steps.
5) If the guard conditionEvali[ojk][p][w](c) = true ∈

Bool, create a new stateq with q(omn) defined as
follows:

• If m = j andn = k, thens.
• If there exists a synchronous transition(x, t1, t2) ∈

st such that the target objectEvali[ojk][p][w](x) =
{omn} andp(omn) = t1, thent2.

• Otherwise,p(omn).

Here, the mappingEvali[o][p][w] : Exp → V relates
an OCL expression to the value which is obtained by
evaluating the expression in the graphGi and the state
p, with the self objecto and the action argumentw.

6) Let Qi = {a} ∪ Qi andRi = {(p, q, a, w)} ∪ Ri.
7) If q ∈ Pi, continue the current loop. Otherwise, let

Pi = {q} ∪ Pi andp = q, and go to 4.

V. ENVIRONMENT GENERATOR

We implemented the environment generator which inputs
the environment model as a text file and outputs the environ-
ment instances as Promela scripts. It is used in the command
line as follows:

% envgen rtos.env
104 cases are generated (188 milli-secs).
% cd rtos_cases; ls
case1.spin case2.spin case3.spin ...

The commandenvgen inputs the environment model
rtos.env and outputs the instancescasen.spin un-
der the directlyrtos_cases. If the target system is
implemented as a filertos.spin, it can be verified
by placing it in rtos_cases and doing, for example,
spin -a case1.spin; gcc pan.c; ./a.out.

Let us explain about the interface between the target
system and the environment model. Basically, the inter-
face matches if the script of the target system contains
the functions which are defined in the target class of
the environment model. For example, for the driver func-
tion ActivateTask(tid), there must be the function
ActivateTask(tid) in target system. For reference
functions, we need to add an extra argument to express

� �
Rdy_Run_Fre:
get_RTOS_info();
assert
(ret_GetTaskState_1==ret_GetReady &&
ret_GetTurn==2);

if
:: TerminateTask(2) -> goto Run_Sus_Fre;
:: GetResource(2,1) -> goto Rdy_Run_Occ2;
fi;

� �
Figure 6. Promela script for the environment (partially)

their return values. For example, the reference function
GetTaskState(tid) must be implemented as the func-
tion GetTaskState(tid,ret) in target system. This
is because the function in Promela is “inline”. To express a
return value for an inline function, we need to pass a variable
to its argument and let the function set the return value to
the variable. So, the functionGetTaskState(tid,ret)
must be implemented so that it sets the return value toret
in its body, e.g.,ret=tsk[tid].stat;.

With this interface rule in mind, let us see how
the LTS states are translated into Promela. Fig.6 shows
the Promela script for the stateRdy_Run_Fre of
the LTS in Fig.5. Firstly, inside the inline function
get_RTOS_info(), the inline functions correspond-
ing to the reference functions are called. For exam-
ple, GetTaskState(1,ret_GetTaskState_1); is
called. The second argument represents the return value
of the reference functionGetTaskState(1). Then, this
return variable is used inassert. The assertion in the
environment model is translated into Promela by replacing
the calls of the reference functions with the corresponding
return variables. Other expressions in the assertion such
as self@Run and self.id are evaluated in the trans-
lation process. Finally, driver functions are called non-
deterministically to transit to the destination states.

VI. EXPERIMENT

We conducted an experiment to verify that an RTOS
design model conforms to the OSEK/VDX RTOS specifica-
tion. The design model is implemented in Promela following
the approach in [12]. We call this modelRTOS model.
For the verification, we constructed the environment model
based on the specification. We have presented this model in
the examples so far. We generated the environment instances
by the tool, and conducted model checking for some of the
environments in Spin.

Fig. 7 shows the number of generated environments
and the time taken for the generation. The computation
time increases exponentially with the number of tasks and
resources. But, we can generate environments efficiently

Figure 7. The number of generated environments (CPU:2.4GHz, Mem-
ory:4.0GB)

for the cases which capture the important properties of the
RTOS. Some of the properties are:

1) The task of the high priority must be executed before
that of the low priority.

2) If the task of the low priority occupies a resource whose
priority is higher than the task of the high priority, it is
executed before the task of the high priority.

3) If a task occupies multiple resources, the priority of the
task is risen to the maximum priority of the resources.

For checking the property (1), we need at least 2 tasks. For
(2), we need at least 2 tasks and 1 resource. For (3), we need
at least 1 task and 2 resources. In any case, we can generate
the environments in a small amount of time. Of course,
we need to verify the cases with more objects to increase
the reliability of the properties. Furthermore, we need to
verify for a wider range of variation for the task priority and
resource priority (This case is only for the ranges{1,3}
and{2,4}). To do this, we need a technique to improve the
computation time of the environment generation (See 7.2).

We checked some of the environments in Spin. The result
is that we could not find any errors in the cases of less than
3 tasks, but found errors for some of the cases of more than
2 tasks. Specifically, assertion errors (state inconsistencies)
occur in the cases where multiple tasks of the same priority
can become ready. When the tasks of the same priority
become ready, the RTOS model is designed to run the task
which became ready first. This is realized by remembering
their order in the ready queue. On the other hand, the
environment model is defined so that it chooses one of these
tasks non-deterministically as we explained in 3.1. So, it
contains the transition in which the order of execution is
reversed, i.e., a task is made to run before the one which
became ready before the task. When this transition occurs,
the states between the RTOS model and the check model
become inconsistent. This error is a false negative and not
that of the RTOS model. False negatives can happen because
the environment is modeled by over-approximating the ideal
behavior of the environment (See 7.1).

VII. D ISCUSSION

A. Expressiveness of the environment model

The environment model expresses the state transitions in
OCL. This expressiveness is not always enough to describe
the accurate behavior of the environment. For example, as

we explained in 6.2, RTOS chooses the task to run based on
the ready queue, but the environment model cannot express
such execution history. One could think of introducing the
ready queue also in the environment model. But this makes
the complexity of the environment model same as that of
the RTOS model. This results in the need for verifying
the environment model itself. Furthermore, the ready queue
is an internal object of the RTOS, and not considered
an environment. So, we kept the environment model as
simple as possible by approximating the ideal behavior with
non-determinism. Under this approximation, false positives
can occur as explained in the experiment since the model
contains the sequences which cannot occur in the RTOS
model. Currently, we are excluding the false negative cases
structurally using invariants. For example, the above casecan
be excluded by the invariant: “If there are more than 2 tasks,
their priorities are different from each other.” In order to
check more precise properties such as “The RTOS schedules
the ready tasks of the same priority in the order of FIFO”, we
need to construct by hand the specific environments which
can capture the property.

B. Parallelizing model checking

To make our method effective, we have to address the
problem: “How can we efficiently check all the generated en-
vironments?” As the number of the generated environments
becomes quite large, it is unrealistic for users to check allof
them by hand. Even if we check them automatically using
some script languages, it will require a lot of time. This prob-
lem can be solved by taking advantage of the fact that each
case can be checked independently of others. Specifically,
we can check all the cases in parallel by distributing them to
PC clusters. For example, if we distribute them uniformly to
1000 PCs, we can reduce the time simplely to 1/1000. Along
with the distribution, we need to consider an effective way
to feedback the check results to the user. This is a problem
of data mining, i.e., how to retrieve a useful information
from the huge number of check results. For this problem,
we consider it effective to display all the results as a list
of Boolean values indicating if each case contains an error
or not. This allows us to have a bird’s eye view of all the
results to identify the boundary of the error cases such as
“The cases with less than 3 tasks are OK, but not for more.”
We also need to devise the user interface to navigate from
the list to the details of the error messages.

We can also parallelize the generation of environments. As
we mentioned, we are generating environment as a stream.
By breaking up this stream into fragments and distributing
them to PC clusters, we can reduce the computation time of
the generation. For example, the time to generate the case
of 4 tasks and 1 resource, which took more than 9 hours
by a single PC, would be reduced to less than 1 minute by
1000 PCs.

VIII. R ELATED WORK

O. Tkachuk, et.al [6] proposes Bandera Environment Gen-
erator (BEG) which automatically generates the environment
for the verification of Java programs in Bandera. In BEG,
the environment is generated from the specifications of
the environment written by the user, called environment
assumptions, or by analyzing the programs which imple-
ments the environment. The environment assumptions are
described as the sequences of the method calls in the form of
regular expressions. This approach corresponds to describing
a single instance of the environment model in our method.
On the other hand, our method can express the set of
the instances as a class model and automatically generate
possible instances based on the variations of the class model.

J. Penix, et.al [8] verifies the time partitioning of DEOS
RTOS by Spin. The environment is obtained from the
universal environment which tries nondeterministic function
calls to the target system by constraining it with the as-
sumption described in LTL [9]. This method is effective
when the assumption can be described simply, but this
becomes difficult when the environment includes complex
transitions. In our method, we do not consider the universal
environment, but describe the specific range of function calls
using statechart diagrams. This allows us to describe a more
precise behavior of the environment. Our method also deals
with the variation of the environment structure.

P. Parizek, et.al [7] proposes a method to combine the
model checkers Java PathFinder and Protocol Checker. This
method targets at the verification of Java components whose
protocols are described in ADL (Architecture Description
Language). It conducts model checking by searching the
program states by Java PathFinder in the Java part and by
Protocol Checker in the ADL part. Although the environ-
ment can be modeled in ADL, it cannot express the variation
of the environment using classes like in our method.

J. Lilius, et.al [11] proposes vUML for verifying UML
models in Spin. It verifies statechart diagrams by translating
into Promela and feedbacks the error trace as sequence
diagrams. Our method is similar to this work in that it deals
with the statechart diagrams. But we are using them for
describing the environment, not the target system itself. As
the environment describes the specification which must be
met by the target system, it should be described declaratively.
So, we introduced the pre- and post-conditions style notation
instead of the standard event communication. vUML also
has the facility to create environment, but it only inputs the
external events non-deterministically to the system.

IX. CONCLUSION

In this paper, we presented a UML-based method for
modeling and generating the environments for the model
checking of embedded systems. We also presented a tool to
automatically generate Promela/Spin scripts from the envi-
ronment model. Using the tool, we conducted the verification

experiment of an OSEK/VDX RTOS design model. The
effectiveness of our method is summarized as follows: (1)
The model can be described in UML which is familiar
to most of the engineers. (2) It avoids the state explosion
problem by dividing the whole environment into small cases
based on its structure. (3) It can be generally applied to the
verification of reactive systems especially for those whose
environment has a lot of structural variation such as OS and
middleware.

Future work is, on the theoretical side, to prove the
correctness of the environment generation algorithm, and on
the practical side, to implement a parallel distributed model
checking framework based on our method.

REFERENCES

[1] OMG. Unified Modeling Language. URL:
http://www.omg.org/.

[2] J. Warmer and A. Kleppe. The object constraint language:
precise modeling with UML. Addison-Wesley, 1999.

[3] G.J.Holzmann: The Spin Model Checker - Primer and Refer-
ence Manual, Addison-Wesley, 2004.

[4] Jeff Magee and Jeff Kramer: Concurrency: State models &
Java programs, , 1999.

[5] OSEK/VDX, URL:http://portal.osek-vdx.org/.

[6] O. Tkachuk, et.al: Automated environment generation for
software model checking. In Proceedings of the 18th IEEE In-
ternational Conference on Automated Software Engineering,
2003.

[7] Pavel Parizek and Frantisek Plasil: Specification and Gen-
eration of Environment for Model Checking of Software
Components, Electronic Notes in TCS, pp.143-154, 2007.

[8] John Penix, Willem Visser, et.al.: Verification of Time Parti-
tioning in the DEOS Scheduler Kernel, International Confer-
ence on Software Engineering, pp.488-497, 2000 .

[9] Corina S. Pasareanu: DEOS Kernel: Environment Modeling
using LTL Assumptions, NASA Ames Technical Report
NASA-ARC-IC-2000-196, 2000.

[10] Oksana Tkachuk and Sreeranga P. Rajan :Application of
automated environment generation to commercial software,
International Symposium on Software Testing and Analysis,
2006.

[11] J. Lilius and I. Paltor. vUML: A tool for verifying UML
models. In Proceedings of Automated Software Engineering,
ASEf99. IEEE, 1999.

[12] Toshiaki Aoki, Model Checking Multi-task Software on Real-
time Operating Systems, International Symposium on Object-
Oriented Real-Time Distributed Computing 2008, pp.551-
555, 2008.

	名称未設定.pdf
	IS-RR-2010-001

