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Abstract—When applying model checking to the design We consider the latter approach is more realistic. But
models of the embedded systems, it is necessary to model not we must further consider the structural variation of the
only the behavior of the target system but also that of the en- environment. For example, the environment of an RTOS

vironment surrounding the system. In this paper, we present . .
UML-based method to model the environment and to generate consists of a multiple number of tasks and resources. There

environment instances from the model. In our method, we can are al_so a _va_riety of values for their priorities. The number
flexibly model the variation of the environment structures and of their variation becomes so huge that we cannot construct

the sequences of the function calls using class diagrams and a|l of them by hand. Therefore, we need a method to
statechart diagrams. We also present a tool to automaticall 4| the structural variation of the environment and to
generate Promela/Spin scripts from the environment model. - .
In this paper, we explain the details of our method and the automatically generate each enV|ror_1ment from the model. To
verification of an RTOS design model using the tool. our knowledge, there are no established methods to support
this on the design level.

To satisfy the need, we propose a method to model the
environment based on UML (Unified Modeling Language)

Recently, model checking [3][4] is drawing attention as a[1]. In our method, we can flexibly model the variation of
technique to improve the reliability of the software system the environment and the sequences of the function calls
Especially, they are widely applied to the verification of using class diagrams and statechart diagrams. We also
embedded systems. The major characteristics of embedimplemented a tool to automatically generate Promela/Spin
ded systems is their reactiveness, i.e., they operate by theripts from the model. As an experiment, we applied the
stimulus from the outside world. For example, networktool to the verification of an OSEK/VDX RTOS [5] design
printers operate by printing requests from the client hostsmodel. In this paper, we explain the details of our method
For another example, Real-Time Operating Systems (RTOSand the verification experiment of the RTOS model.
which are embedded in most of the complex embedded This paper is organized as follows. In section 2, we
systems, operate by the service calls from the tasks runningkplain the approach of our method. In section 3, we
on them. In order to apply model checking to such systemsgxplain the environment model. In section 4, we explain
it is necessary to model not only the behavior of the targethe generation of environments from the model. In section
system but also that of the outside world. This is called arb, we explain the implemented tool. In section 6, we
environment explain the verification experiment. In section 7, we discus

The most typical approach to model an environment is tahe effectiveness of our method. In section 8, we give a
construct a process which calls all the functions provided b conclusion and future work.
the system non-deterministically. Although it realizesean
haustive check for all the possible execution sequences, th
property description tends to become complicated because i The system like an RTOS does not operate by itself,
must characterize all the sequences with a single predicatbut operates by getting its functions called from outside.
Furthermore, it often suffers state explosion becauséhall t So, in order to verify its behavior, we need to prepare
sequences are checked at a time. Another approach is tm environment to call the functions, and check if the
call specific sequences of the functions depending on theystem operates correctly for each of the function caltp.1Fi
properties to check. For example, we limit the range of thesummarizes this idea. It shows an example of an RTOS. It
function calls to the normal execution sequences and chedknplements data structures such as a tasktlgt[] and
that certain properties hold in that range. The advantage i ready queue eady[] and provides API functions such
this approach is that the property description becomeslsimpasAct i vat eTask() andTer m nat eTask() . If these
and precise because the assumptions of the properties dteictions are called, it manages the scheduling of tasketbas
implied by the sequences themselves, Furthermore, as tlom their priorities. To verify its behavior, we prepare an
range is limited, we are likely to be able to avoid stateenvironment consisting of two tasks T1 and T2 (T2’s priority
explosion. is higher than T1's). It describes a sequence of function

I. INTRODUCTION

Il. APPROACH
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Figure 1. Model checking with an environment

as Promela scripts.

N [1l. ENVIRONMENT MODELS
calls to the RTOS and state transitions of the tasks expected , . . - .
In this section, we introduce the definition of the envi-

by the calls. For example, if the function ActivateTask() is ronment model. It is based on UML, but it also contains

g:lrlr?: ftongl.é): Iz ec);ﬂzgt?g Elt_szc_arclor:rt? druTnzn:rge' Zhegétg(;htiour original notations. We begin with an overview with the
unction : ' . xP .example of RTOS, and then present the formal definition.

become ready and running, respectively (T2 preempts T1 Fhe RTOS is based on the OSEK/VDX specification

execution). By applying model checking to the RTOS in '

combination with the environment, we can verify that theA. Overview

RTOS satisfies this expectation. Specifica"y, in each state 1) Class d|agram|:|g3 shows the class diagram of the
of the environment, we check the consistency between thgnyironment for RTOS. The class diagram consists of a class
environment state and the internal values of the RTOS. quepresenting the target System and classes represenﬁng th

example, if T1 and T2 are ready and running, the readynyironment. In the figure, the clad®TCS is the target
queue in the RTOS must contain the identifier value of T1lgystem and the classeBask and Resource are the

and the value of the variabteur n (representing the running environment classes.

task) must be equal to the identifier value of T2. In this way, The target class defines two kinds of functions as the
we can verify the target system using an environment.  interface with the target system. The functions labeledh wit

The problem is that this environment is only one of theact i on are the functions to drive the target system (called
cases of the huge number of environment variations. Wejriver function3. For exampleAct i vat eTask(ti d) is
need to verify it for all the variations with respect to the the action to activate the task of IDi d. In order to
number of tasks and resources, the patterns of the priorityefine the variation of the function call, the argument of
values, the patterns of reference relationships, and sBwin. the action is defined with the range likei d: TD (TD
it is unrealistic to construct all of them by hand. One couldis defined as{ 1, 2}). In this case, two variations of the
think of constructing a general environment with tasks  function call are considered Acti vat eTask(1) and
andn resources, but it is likely to end up in state explosion.Act i vat eTask( 2) . The functions labeled withnf o are

To cope with this problem, we introduce a model tothe functions to refer to the internal values of the target
describe the environment variations and automatically gensystem (calledeference functions These functions are used
erate all the environment instances from the model. Fig. 2o define assertions, which is explained later in this sactio
summarizes this idea. To verify the target system, we first The environment classes are defined with attributes and
construct arenvironment modelThen, we input the model to associations. Attributes are also defined with the ranges li
theenvironment generatand obtain environmentinstances. pr: {1, 3} (representing the priority). In this case, two
Finally, we apply model checking to the target system invariations of the attribute are considered fofask object.
combination with each generated instances. The advantag&sociations are defined with multiplicities like0, TN)
of this approach is that we can avoid state explosion byTN is defined a<?). It is a pair of the minimum and the
dividing the whole environment into individual environnten maximum number of objects linked with an object. Links are
which can be checked in a relatively small state space. generated between objects so that they cover all the pattern

The environment model is based on UML. In a classin this range. The multiplicities of the associations frdm t
diagram, we describe the structural variation of the envitarget class to the environment classes represent the mumbe
ronment with respect to the elements such as the numberf objects which instantiate from the environment classes.
of objects, attribute values and association multipbsitiin - In this case, tworask objects and on&esour ce object
statechart diagrams, we describe the sequences of functi@me created.
calls and the state transitions expected for them. As a model Invariants and assertions are defined for the environment
checker, we use Spin. The environment generator inputs arlasses. They are written in OCL (Object Constraint Lan-
environment model as a text file and outputs the instanceguage) [2]. Invariants define the constraint on the strectur



inv J other objects which occur synchronously with the transitio
seliasormlr] R of the self object. For example, the transition (2) defines

'\\ tsk:{0.TN} the synchronous transitidRdy- >Run { Get RdyMax() }.
sargebr RIS \ I_I skomg TS means: “Along with the transition of the self object,
:g:g:?g:{':;:::;i:(‘:;%) m Task the Task object obtained by the functioBet Rdy Max ()
action ChainTask{tid:TD,dtid:TD) attepr: (1,3} (the task which is in the statBdy (Ready) and has the
a;fiongel'mw:irce(tid}TtPéﬂTdaﬁz) - tsk:{1.TN) N maximum priority) transits from the staRRdy to Run. The
Moy res:{0LBHJ OCL expression i{} represents the synchronized object
info GetTaskState(tid:TD) K p p ynchronized objects
info GetReady{} RN e { of the transition. We adopted this syntax instead of the lusua
i . ) . . . . .
ni ' o S ! event passing simply because it is more direct for desaibin

™N=2 assert ‘ synchronization among multiple objects. We do not consider

RN=1 self@Run implies GetTurn{}=selfid & asynchronous transitions.

TD={1.TN} self@Rdy implies . .

RD={1.RN} GetTaskState{selfidj—GetReady() hLet us note here I?bhoug tcr:wf semantic de;tall of trt:e syn-
chronous transition. If the expression of a synchronous

transition is evaluated to a set of objects, one of them is
chosen non-deterministically as the synchronized objemt.
example, ifGet RdyMax() returns a set of two tasks T1
and T2, two transitions are generated. One is to transit T1
of objects. The invariant for the classask means: “All  from Rdy to Run and the other is to transit T2 froRdy to

the Resour ce objects linked to arask object have the Run. This non-determinism approximates the ideal behavior
priorities not lower than th&@ask object.” Assertions define of the environment. See 7.1 for the details.

the predicate to check in each state of objects. To refer to o

the values in the Promela script of the RTOS, thef o B Formal definition

functions are used. The assertion for the clB@sk means: 1) Class diagrams: The class diagram is defined as
“If a Task object is in the stateRun, the value of the follows:

function Get Tur n() must be equal to the identifier of _
the object {d is a built-in attribute), and if it is in the CD = (C, At, As, Attr, Assoc, Size, Dom, Mult,

Figure 3. The class diagram for the RTOS environment

state Rdy, the value of the functiorGet TaskSt at e(), Inv, Assr),
whose argument is the identifier of the object, must be equal Attr : C — 24, Assoc: C — 2%, Size: C — N,
to the value of the functiorGet Ready()”. The i nfo Dom : At — 21" Mult : As — C x N2,

functions refer to the variablé ur n, the struct member
tsk[sel f.id].stat (representing the task state) and
the constanREADY (representing the state value for ready), The setC is the set of the environment classes. The sets
respectively. At and Assoc are the sets of attributes and associations,

2) Statechart diagramstn statechart diagrams, we define respectively. The mappingdttr and Assoc relate a class
the state transitions of the environment objects expecteg its attributes and associations, respectively. The inapp
for the function calls of the target system. As we stateds;.e relates a class to the number of objects from the class.
in introduction, we only describe specific sequences offhe mappingDom relates an attribute to its domain, or the
function calls of the target system. Fig.4 shows the staech set of values. We consider only integers for the values of
diagram of the clas§ask. It describes the normal execution attributes (for the compatibility with Promela). The mapupi
sequences of RTOS. A transition is triggered by a functiomysyi¢ relates an association to the destination class and
call. For example, the transition (1) means: “When the actio the multiplicity. For an associations with Mult(as) =
Act i vat eTask is called for theTask object in the state (¢, min,maz), the classc is the destination class and
Sus (Suspended) and if there are no other tasks in the stat@e natural numbersin and max are the minimum and
Run, the object transits to the staRun (Running).” The  maximum number of the muiltiplicity. The mappinbnv
expression irf | is the guard condition written in OCL. In relates a class to the invariant expression in OCL. The
the model, typical expressions are defined as functions likehapping Assr relates a class to the assertion expression
ExRun() =Task->exi sts(t|t @Run) (checks if there jn OCL. The setExp is the set of OCL expressions. We
exists arask object in the stat&un). The OCL expressions apstract away from their concrete syntax.
in our model also contain our original syntax, but it is The target system is defined as a set of functions as
basically a subset of OCL containing the set operations angh|lows:
the state reference.

A set of synchronous transitionsan be attached to a TS = (A1, ArgD, ArgN)
transition. A synchronous transition defines the transsiof F=AUI, ArgN :F — N, ArgD : F x N — 2/

Inv:C — Exp, Assr:C — FExp



(1) [tid=selfid &IExRun(}] ? I T
Acti Ktid) [tid=selfid&&ExRun(}&8&
( h! GetPr{GetRun(}}>=selfpr]

Il Sus | e — ActivateTask(tid)
(2) lEdey()S;:((’)& Res{self]]
Uccres|sel
[;:‘I’=se'f"d&:5‘“dy() TerminateTask(tid) [tid—self id&tid!=dtid8lsSus{dtid}&
Te;ﬂciggf:g:k?t]id) | Rdy->Run {GetRdyMax(}}| | HasTask{selfdtid)&!OccRes{self}&ExRdy(}
&GetRdyMaxPr()>=ID2Task{dtid}.pr]
[tid=selfid&tid\=dtid&IsSus{dtid) ChainTask{tid,dtid)
) ) &HasTask{self,dtid)&!OccRes{self) | Sus->Rdy {ID2Task{dtid)},
[tid=self.id RExRun(}i: &(IExRay(} | | | Rdy->Run {GetRdyMax(}} | Rdy I
GerPr{GetRun(}]<self.pr] GetRdyMaxPr{}<ID2Task{dtid).pr}]
ActivateTask{tid) ChainTask{tid,dtid)
| Run->Rdy {GetRun(}} | Sus->Run {ID2Task{dtid}} [tid=selfid&tid=dtid&
HasTask{self,dtid)&!0ccRes{self}&
|{ Run } ExRdy{)}&GetRdyMaxPr>=ID2Task{dtid}.pr]

ChainTask(tid,dtid)
| Rdy->Run {GetRdyMax{}}

[tid=self.id&tid—dtid&
HasTask{self,dtid}&!0OccRes{self}&8&
{!ExRdy(} | GetRdyMaxPr{}<self.pr})] ChainTask(tid,dtid)

Figure 4. The statechart diagram of the class Task

The setA is the set of driver functions. The sétis the set Each node has attribute values as its data. The set of object
of reference functions. The sét is defined as a union of graphs is generated so that it covers all the variations of
these functions. The mappingrgN relates a function to attribute values and association multiplicities. Lodigahis
the number of its arguments. The mappidggD relates a is done in the following three steps:
function and a natural number to the domain of its:-th Firstly, we compute the product of the attribute variations
argument. In the example, the attributer of the classTask, and also
2) Statechart diagramsiet S be the set of states. For of Resour ce, has two variations. As there are two objects
the classc; € C, the statechart diagramiD; is defined as from the Task class and one object from tliResour ce
follows: class, the number of the attribute variations as a whole
o become2? x 2! = 8. Then, we compute the product of
SD; = (Si, init;, Ty) the association variations. Let T1 and T2 be the Wask
S; €S (SinNS; =¢, i#j), init; € S;, objects and R1 be the singResour ce object. Under the
T;:S; x S; x Exp x A x 29%5xExp multiplicities of the associations, both T1 and T2 can link
_ to any of the three objects T1, T2 and RE & 8 patterns),
The sets; is the state sets of the class and the state  5nq R1 |inks to at least one of the two objects T1 and T2
init; is the |n|_t|.al state. The séf; is the set of transitions. (3 patterns). The number of the graph structure satisfying
For the transition(s1, s, ¢, a,st) € T;, the statess; and  this constraint is8? x 3 = 192. Finally, from the total of
s are the source and destination states, respectively. The, 199 — 1536 graphs, we retain only the graphs which
predicatec written in OCL is the guard condition. The satisfy invariants. This results in 104 graphs.
action a is the action to trigger this transition. The set In the actual implementation, we compute the graphs as a
is the set of synchronous transitions. For the synchronougiream or generate each graph one after another by moving
transition(ty, 2, z) € st, the states, ands, are the source  the parameters in the class diagram within the range of their
and destination states, respectively. The OCL expression yariation. This can reduce the computation space to the orde
defines the set of the synchronized objects. Actually, statepf (| 4¢ + | As|) x |O|.
can take arguments such &c(tid) (the state of a  2) Composition of statechart diagram&or each object
Resour ce object occupied by thdask object oftid),  graph, we compose the statechart diagrams of all the objects
but we omit its formalization for simplicity. in the graph. The result of the composition is an LTS
(Labelled Transition System). Fig.5 shows an example of
) an object graph and its LTS.
A. Overview In the LTS, each state is represented by the tuple of
Generation of environment instances is done in threghe states of all the objects likgeSus, Sus, Fre). Tran-
steps: (1) Generation of object graphs, (2) Composition ositions in statechart diagrams are added to LTS if their
statechart diagrams, and (3) Translation into Promela. Thguard conditions are evaluated to true in the LTS state
explanation of (3) is left to the next section. and the object graph. For example, the transition from
1) Generation of object graphsThe object graph is the (Sus, Sus, Fre) to (Run, Sus, Fre) by the action
graph structure with nodes represented by objects and edgést i vat eTask(1) (AT(1)) is added because the guard
represented by the links which instantiate from associatio condition of the transition (1) in Fig 4 becomes true for

IV. GENERATION OF ENVIRONMENTS



ations:
Composition of
. Stateiharts IC| [Attr(ci)|
XEH H Dom(atij)‘c”,
i=1 j=1

|C| |Assoc(c;)|

12,2 — lei
£ v=]] II %5
(Sus,Run,Fre) =1 j=1

N
]

pr=1

T2:Task

pr=3

CT(1,1)
Ij (Run,Sus,Fre)

(Sus,Sus,Fre)

P—_
LAtz €21 argy |
GR(1,1) GR(2,1) where
RR(LY T2 RR(2,2) .
( (Run,Sus,0cc1) | [ (RdyRunfre) | [ (Sus,Run,0cc2) | Lij = {3|3 C O Amin < |S| < ma$}7
GR(2,1 — .
AT(2) T2 AT(1) O, = {ok[1 < j < e},
RR(1,1) (2.2} RR(2,1) . .
Run,Rdy,0ccl Rdy,Run,0cc2 (Ckv mn, max) = MUlt(aSij)

Then, we compute the product of the both:

7 = {Zla--wZ|XHY\} =XxY

Figure 5. The object graph and its LTS

Finally, we define the elementshal; and Link; in terms
the object T1i(d==1) and the action argumeni d==11in  of 7 as follows:

the statg Sus, Sus, Fr e) . If a transition has synchronous 5]

transitions, the target objects are obtained by evaluating _

the OCL expression and they transit along with the tran- Vali(at;) = ul{ojm = [llZehlslelm}
sition of the self object. For example, in the transition m‘_cj‘

from ( Rdy, Run, Fre) to (Run, Sus, Fre) by the ac- N _ 11

tion Ter mi nat eTask(2) (TT(2)), the target object T1 Linki(asse) = Wyl{ojm = [llZ]a)slklm}
transits fromRdy to Run along with the self object T2 N
transiting fromRun to Sus.

It could be possible to translate all the statechart diagram
directly into Promela and leave the composition to SPIN. But’
we do not take this approach because the transitions attache OG = {G; € OG| Yo\, € O. Eval;[o](Inv(c;j))}
with OCL expressions in our model are difficult to express

directly in Promela. So, we compose the statechart diagram&'® mapping Eval;[o] : Ezp — V relates an OCL
at this point outside SPIN. expression to the value which is obtained by evaluating the

expression in the context of the objectin the graphG;.
The setV is the value set of all the OCL expressions and
defined asi’ = Int U Bool U O U 2°.

In the following, we represent the elements in the sets 2) Composition of statechart diagramfirstly, we com-
Attr(c;) and Assoc(c;) as at;; (j = 1...]Attr(c;)|) and  pute the product of arguments for each actioa A:
as;j (j = 1...|Assoc(c;)]). ArgN(a)

_1) Generation of object graphd:et OG b(_e the set of the _ W, = H ArgD(a, j)
object graphs generated from the class diagram. We define
each elementr; € OG as follows:

where[P],, is then-th element in the tuplé’D
At this point, we eliminate fron©G the graphs which do
ot satisfy the invariantnv, or updateOG as follows:

B. Formal definition

j=1
For the argument tupley € W, [w],, represents its:-th

G; = (0,Val;, Link;) argument. _ _

Val; : At — O — Int, Link; : As — O — 2¢ Then, we define the LTS for the object gragh =
(O, Val;, Link;) as follows:

The setO is the set of objects. This set is common to E; = (P, cinit;, Q;, R;)

all the object graphs. We represent each elemen® ias - O;5 . _ ’ S

0y (i = 1..|C]|, j = 1...Size(ci)). The objecty, is the j-th P2 2777, ciniti € B, Qi C 4,

object in the class;. The mappind/al; relates an attribute Ri: PEX P x Qi xW, W= U W,

and an object to its value. The mappidgnk; relates an acA

association and an object to the set of the destination tshjec The setP; is the set of states. Each state is represented by the

The elements of the mappindg&a/; and Link; are defined mapping from an object to its state, i.e zifo) = s for the

as the following computation. statep € P;, the objecb is in the states € S. The statecinit

Firstly, we compute the product of attributes and associis the initial state. The s&); is the set of actions. The s&}



is the set of transitions. For the transition ¢, a, w) € R;,
the setsp and ¢ are the source and destination statess
the action to trigger this transition and is the argument
tuple of the actioru.

Now, we generate each LT%,; by the following al-
gorithm. For simplicity, we present the algorithm for the
case where the OCL expression of a synchronous transitig
always evaluates to a single object.

Rdy_Run_Fre:

get _RTCOS_info();

assert

(ret _Cet TaskState_l==ret_Get Ready &&

ret _Get Turn==2);

i f
:: Term nateTask(2) -> goto Run_Sus_Fre;
.. GetResource(2,1) -> goto Rdy_Run_Ccc2;

5

1) Let P, =Q; = R; = ¢.

2) Define the initial statecinit; so thatcinit;(ojr) =
im'tj.

3) Let p = cinit; and P, = {u} (p is a variable for
temporal use).

4) For each objeat;, transition(p(o;x), ¢, a, s, st) € T,
and argumentv € W,, do the following steps.

5) If the guard conditionEval;[ojx][p][w](c) = true €
Bool, create a new state with ¢(o,,,) defined as
follows:

o If m =7 andn = k, thens.

« If there exists a synchronous transiti@n ¢, t2)
st such that the target objeEtwal; (o] [p][w](z)
{0mn} @andp(om,) = t1, thents.

« Otherwisep(on,y,).

Here, the mappingval;[o][p][w] : Exzp — V relates

S

an OCL expression to the value which is obtained by'fhe

evaluating the expression in the gra@h and the state
p, with the self objecb and the action argumeni.

6) Let Ql = {CL} U QZ andRi = {(pa q,a, U))} U R’L

7) If ¢ € P;, continue the current loop. Otherwise, let
P, ={q}U P; andp = ¢, and go to 4.

V. ENVIRONMENT GENERATOR

fi;
- %

Figure 6. Promela script for the environment (partially)

their return values. For example, the reference function
Get TaskSt at e(ti d) must be implemented as the func-
tion Get TaskState(tid, ret) in target system. This

is because the function in Promela is “inline”. To express a
return value for an inline function, we need to pass a vagiabl
to its argument and let the function set the return value to
the variable. So, the functiodBet TaskSt ate(tid, ret)
must be implemented so that it sets the return valueeto

in its body, e.g.ret=tsk[tid].stat;.

With this interface rule in mind, let us see how
the LTS states are translated into Promela. Fig.6 shows
Promela script for the statd®kdy Run_Fre of
the LTS in Fig.5. Firstly, inside the inline function
get RTOS info(), the inline functions correspond-
ing to the reference functions are called. For exam-
ple, Get TaskState(1,ret Get TaskState 1); is
called. The second argument represents the return value
of the reference functioet TaskSt at e( 1) . Then, this
return variable is used imssert. The assertion in the

We implemented the environment generator which inputenvironment model is translated into Promela by replacing
the environment model as a text file and outputs the enV|ront~He calls of the reference functions with the corresponding

ment instances as Promela scripts. It is used in the comm
line as follows:

% envgen rtos. env

104 cases are generated (188 mlli-secs).
% cd rtos_cases; Is

casel.spin case2.spin case3.spin ...

The commandenvgen inputs the environment model
rtos. env and outputs the instancesasen. spi n un-
der the directlyrtos_cases. If the target system is
implemented as a filat os. spin, it can be verified
by placing it inrtos_cases and doing, for example,
spin -a casel.spin; gcc pan.c; ./a.out.

an

return variables. Other expressions in the assertion such
assel f @Run andsel f.id are evaluated in the trans-
lation process. Finally, driver functions are called non-
deterministically to transit to the destination states.

VI. EXPERIMENT

We conducted an experiment to verify that an RTOS
design model conforms to the OSEK/VDX RTOS specifica-
tion. The design model is implemented in Promela following
the approach in [12]. We call this mod&TOS model
For the verification, we constructed the environment model

Let us explain about the interface between the targebased on the specification. We have presented this model in
system and the environment model. Basically, the interthe examples so far. We generated the environment instances
face matches if the script of the target system containdy the tool, and conducted model checking for some of the
the functions which are defined in the target class ofenvironments in Spin.
the environment model. For example, for the driver func- Fig. 7 shows the number of generated environments
tion Acti vateTask(tid), there must be the function and the time taken for the generation. The computation
Acti vat eTask(tid) in target system. For reference time increases exponentially with the number of tasks and
functions, we need to add an extra argument to expresesources. But, we can generate environments efficiently



RT] 1 | 2 | 3 | a | we explained in 6.2, RTOS chooses the task to run based on

BN 4(0.05) 20(0.0s) 140(0.55) 1540 (81.3s) the ready queue, but the environment model cannot express
BN s(0.09) 104(0.2s)  1496(31.6s) 30664 (9.4h) such execution history. One could think of introducing the
N 120019 468(265) 15132 (56.1m) N/A ready queue also in the environment model. But this makes
BN 16019 1840 (62.45) N/A N/A the complexity of the environment model same as that of

. _ the RTOS model. This results in the need for verifying
5:394{%(7;-8) The number of generated environments (CPU:2.4®4m-  the environment model itself. Furthermore, the ready queue
o is an internal object of the RTOS, and not considered
an environment. So, we kept the environment model as

) ) ) simple as possible by approximating the ideal behavior with
for the cases which capture the important properties of the,_geterminism. Under this approximation, false positiv

RTOS. Some of the pr.operti-es. are. can occur as explained in the experiment since the model
1) The task of the high priority must be executed beforecontains the sequences which cannot occur in the RTOS
that of the low priority. model. Currently, we are excluding the false negative cases

2) If the task of the low priority occupies a resource whosestructurally using invariants. For example, the above case
priority is higher than the task of the high priority, it is be excluded by the invariant: “If there are more than 2 tasks,
executed before the task of the high priority. their priorities are different from each other” In order to

3) If atask occupies multiple resources, the priority of thecheck more precise properties such as “The RTOS schedules
task is risen to the maximum priority of the resources.the ready tasks of the same priority in the order of FIFO”, we

For checking the property (1), we need at least 2 tasks. Fameed to construct by hand the specific environments which
(2), we need at least 2 tasks and 1 resource. For (3), we needn capture the property.

at least 1 task and 2 resources. In any case, we can generate

the environmen_ts in a small amount of ti_me. Of courseg. Parallelizing model checking

we need to verify the cases with more objects to increase

the reliability of the properties. Furthermore, we need to To make our method effective, we have to address the
verify for a wider range of variation for the task prioritycan problem: “How can we efficiently check all the generated en-
resource priority (This case is only for the randek, 3} vironments?” As the number of the generated environments
and{ 2, 4}). To do this, we need a technique to improve thebecomes quite large, it is unrealistic for users to chechkfall
computation time of the environment generation (See 7.2)them by hand. Even if we check them automatically using

We checked some of the environments in Spin. The resultome script languages, it will require a lot of time. Thislpro

is that we could not find any errors in the cases of less thatem can be solved by taking advantage of the fact that each
3 tasks, but found errors for some of the cases of more thagase can be checked independently of others. Specifically,
2 tasks. Specifically, assertion errors (state incongigteh ~ we can check all the cases in parallel by distributing them to
occur in the cases where multiple tasks of the same priority°C clusters. For example, if we distribute them uniformly to
can become ready. When the tasks of the same priorit§000 PCs, we can reduce the time simplely to 1/1000. Along
become ready, the RTOS model is designed to run the taskith the distribution, we need to consider an effective way
which became ready first. This is realized by rememberingo feedback the check results to the user. This is a problem
their order in the ready queue. On the other hand, thef data mining, i.e., how to retrieve a useful information
environment model is defined so that it chooses one of thesgom the huge number of check results. For this problem,
tasks non-deterministically as we explained in 3.1. So, iwe consider it effective to display all the results as a list
contains the transition in which the order of execution isof Boolean values indicating if each case contains an error
reversed, i.e., a task is made to run before the one whichr not. This allows us to have a bird’s eye view of all the
became ready before the task. When this transition occursgsults to identify the boundary of the error cases such as
the states between the RTOS model and the check modéThe cases with less than 3 tasks are OK, but not for more.”
become inconsistent. This error is a false negative and ndl/e also need to devise the user interface to navigate from
that of the RTOS model. False negatives can happen becaute list to the details of the error messages.
the environment is modeled by over-approximating the ideal We can also parallelize the generation of environments. As
behavior of the environment (See 7.1). we mentioned, we are generating environment as a stream.
By breaking up this stream into fragments and distributing
) _ them to PC clusters, we can reduce the computation time of
A. Expressiveness of the environment model the generation. For example, the time to generate the case
The environment model expresses the state transitions iof 4 tasks and 1 resource, which took more than 9 hours
OCL. This expressiveness is not always enough to describlgy a single PC, would be reduced to less than 1 minute by
the accurate behavior of the environment. For example, as000 PCs.

VIl. DISCUSSION



VIIl. RELATED WORK experiment of an OSEK/VDX RTOS design model. The

0. Tkachuk, et.al [6] proposes Bandera Environment Genéffectiveness of our method is summarized as follows: (1)
erator (BEG) which automatically generates the envirortmen! "€ model can be described in UML which is familiar
for the verification of Java programs in Bandera. In BEG,t0 most of the engineers. (2) It avoids the state explosion
the environment is generated from the specifications oProblem by dividing the whole environment into small cases
the environment written by the user, called environmenfased on its structure. (3) It can be generally applied to the
assumptions, or by analyzing the programs which imp|e_ver|f|cat|on of reactive systems especially for those whose
ments the environment. The environment assumptions af@vironment has a lot of structural variation such as OS and
described as the sequences of the method calls in the form §fiddleware. _ _
regular expressions. This approach corresponds to dasgrib ~ Future work is, on the theoretical side, to prove the
a single instance of the environment model in our methodcorrectness of the environment generation algorithm, and o
On the other hand, our method can express the set dhpe practical side, to implement a parallel distributed elod
the instances as a class model and automatically generatB€cking framework based on our method.
possible instances based on the variations of the classimode

J. Penix, et.al [8] verifies the time partitioning of DEOS
RTOS by Spin. The environment is obtained from the [1]
universal environment which tries nondeterministic fumact
calls to the target system by constraining it with the as- [2] J. warmer and A. Kleppe. The object constraint language:
sumption described in LTL [9]. This method is effective precise modeling with UML. Addison-Wesley, 1999.
when the assumption can be described simply, but this
becomes difficult when the environment includes complex[
transitions. In our method, we do not consider the universal
environment, but describe the specific range of functiolscal [4] Jeff Magee and Jeff Kramer: Concurrency: State models &
using statechart diagrams. This allows us to describe a more  Java programs, , 1999.
precise behavior of the environment. Our method also deals
with the variation of the environment structure. [5] OSEK/VDX, URL:http://portal.osek-vdx.org/.

P. Parizek, etal [7] Proposes a method to combine th6,1[6] O. Tkachuk, et.al: Automated environment generation fo
model checkers Java PathFinder and Protocol Checker. This * software model checking. In Proceedings of the 18th IEEE In-
method targets at the verification of Java components whose ternational Conference on Automated Software Enginegring
protocols are described in ADL (Architecture Description 2003.

Language). It conducts model checking by searching the

. . 7] Pavel Parizek and Frantisek Plasil: Specification ana-Ge
program states by Java PathFinder in the Java part and b3L eration of Environment for Model Checking of Software
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