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Abstract

Specification translation plays an important part in the integration of
theorem proving and model checking techniques for system verification. Much
effort is required to implement a translation tool in conventional programming
languages. Maude provides powerful meta-programming facilities that allow
us to develop formal translation tools with less effort. In this paper, we present
a modular implementation of a translator that is developed in Maude. The
translator takes a behavioral specification and produces a rewrite theory
specification. The implementation ofthe translator is modular so that multiple
translation strategies can be modularized and embedded in the translator.
Therefore, multiple styles of rewrite theory specifications can be generated
for one behavioral specification.

1. Introduction

Specification translation plays an important part in the
integration of theorem proving and model checking techniques
for system verification [1], [2]. CafeOBJ is equipped with the
capability of theorem proving by interactive equational reason
ing [3], [4] and Maude [5] provides powerful model checking
facilities such as an LTL model checker [6]. Both of them have
their own strengths and weaknesses: (1) model checkers can
verify automatically that systems enjoy properties, provided
that systems should be modeled as state machines whose
(reachable) state spaces are bounded; (2) model checkers
can provide automatically counterexamples; (3) interactive
theorem provers can verify if systems enjoy some properties
even if state space of the system is unbounded, although
computer-human interaction is needed; (4) interactive theorem
provers can help humans understand systems more profoundly
by revealing hidden facts (lemmas) of the systems. Many
efforts have been made to integrate these two verification
techniques so that we are able to find possible "bugs" of a
system at the early stage of verifying it with theorem proving
facility of CafeOBJ [7], [8].

Observational transition systems (OTSs) are used to model
systems when CafeOBJ is used as an interactive theorem
prover. CafeOBJ specifications of OTSs are a class of behav
ioral specifications [9], [10], which are called OTS/CafeOBJ
specifications. On the other hand, Maude specifications of
systems to be model checked are called rewrite theory speci
fications [5]. When we want to use both CafeOBJ and Maude
to analyse a dynamic system, we need to write both an
OTS/CafeOBJ specification and a rewrite theory specification
of the system in CafeOBJ and Maude languages, respectively.

Not only is it time-consuming to write multiple different
specifications for one system by hand, but some significant
differences between different specifications may arise. One
possible way to solve the problem is to automatically translate
one specification into the other [1], [8].

However, it requires much effort to develop translation
tools in conventional programming languages like Java. In
stead, Maude, as a formal meta-tool, provides powerful meta
programming facilities that allow us to develop formal tools
for specification translation with less effort [11], [12]. Given a
specification of two formalisms and a translation strategy, we
can develop a translator with meta-programming in Maude
with less effort than in a conventional programming language.
Many applications have been developed with Maude meta
programming facilities for building execution environments for
a range of languages and logics, such as Real-Time Maude
[13] and an Inductive Theorem Prover (ITP) [14].

We have developed a translator with Maude meta-level
facilities. The purpose of the translator is two-fold. On the
one hand, it automatically translates OTS/CafeOBJ specifica
tions into Maude rewrite theory ones!, which integrates the
CafeOBJ and Maude for system verification in a lightweight
way; on the other hand, its implementation is modular which
shows the advantages of Maude meta-programming, in the
sense that the implementation is modularized and modules can
be reused. Two different translation strategies are modularized
and embedded in the current implementation of translator to
generate two different styles of rewrite theory specifications,
without changing any other modules. With rewrite theory
specifications, we are able to model check a system in
Maude without manually specifying the system once again.
The translator is implemented completely in Maude language.
There are only less than 1,500 lines of code for the translator.
Compared to an existing translator Cafe2Maude [1], which is
implemented in Java with 3,000 lines of code, it shows that
meta-programming facilities of Maude alleviate burdens of
developing formal translators for translations between different
formalisms of systems. Moreover, Cafe2Maude generates only
one style of rewrite theory specifications and it is not easy
to extend the translator with other translation strategies. The
modular implementation of the translator can be regarded as
a method for developing formal translation tools with Maude

1. The translator is available at website http://www.jaist.ac.jp/..-.s0820005



(2)

meta-programming facilities.
The rest of this paper is organised as follows. Section 2

introduces OTS/CafeOBJ specifications and Maude rewrite
specifications briefly. Section 3 describes how the translator
is implemented in Maude. In section 4, a concrete example
is presented to illustrate how the translator works on the top
of Full Maude [15]. Section 5 mentions some related work.
Some conclusions are drawn and directions for future work
are mentioned in Section 6.

2. Algebraic Specifications for Dynamic Systems

2.1. OTS/CafeOBJ Specifications

Observation Transition System (OTS for abbreviation) is
proposed to model a dynamic system [3]. Assume that there
exists a universal state space called T. We further suppose that
data types have been defined in advance, including equivalence
between two data values dl, d2 denoted by d1 = d2 • A system
is modeled by observing quantities inside each state of T and
how these quantities are changed by state transitions. An OTS
S is a triple < O,I, T >, where:

• 0: A finite set of observers. Each observer
0Xl:Dol, ... ,xm:Dom : T -t Do is an indexed function
with m indexes Xl, ... , X m of types Dol,"" D om

respectively. Given an OTS S and two state V1, V2 E T,
we say V1 and V2 are equivalent w.r.t S denoted by
v1 =8 v2, if and only if'Voxl:Dol, ... ,xm:Dom E 0,'VX1
Dol'" 'Vxm : Dom.Oxl, ... ,Xm (vd = 0Xl,,,,,Xm (V2);

• I: The set of initial states such that I ~ T;
• T: A finite set of transitions. Each transition

ty1:Dtl, ... ,Yn:Dtn : T -t T is an indexed function with n
indexes of types Dtl , , D tn respectively, provided that
tYI, ... ,Yn(vd =8 tY1 , ,Yn(V2) for each [v] E Tj =8, each
V1, V2 E [v] and each Yk of type Dtk for k 1, ... ,n.
State tY1 ,... ,Yn (v) is called a successor state of v w.r.t.
S. Each transition tY1, ... ,Yn has a condition in form
c-ty1:Dtl, ... ,Yn:Dtn : T -t Bool, which is called an
effective condition. In the case that c-ty1:Dtl, ... ,Yn:Dtn (v)
does not hold, then tY1"",Yn(v) =8 v.

An OTS can be specified in CafeOBJ straightforwardly. A
specification of an OTS in CafeOBJ is called an OTS/CafeOBJ
specification. In OTS/CafeOBJ specifications, there are two
kinds of sorts, namely visible sorts and hidden sorts. Visible
sorts are mainly used to denote abstract data types, while
hidden sorts represent the universal state space T. A hidden
sort H is declared in the form of * [H] *. In an OTS/CafeOBJ
specification, an arbitrary initial state of the OTS S is repre
sented by a hidden constant init, each observer 0Xl",.,Xm

by an observation operator 0, each transition tY1, ... ,Yn by
an action operator t and an effective condition c-tY1, ... ,Yn
by a conventional operator c-t. Hidden constant init,
observation operator 0, action operator t and operator c-t
are declared as follows:

op init : -> H

op init -> H
bop 0 : H Vol ••• Vom -> V o

bop t : H Vtl •.. V tn -> H

op c-t : H Vtl ... V tn -> Bool

Where, H is a hidden sort denoting T; each V * is a visible sort
denoting a data type D*; Bool is a visible sort denoting truth
values and Xk and Y k are CafeOBJ variables corresponding to
indexes Xk and Yk respectively. Keyword bop (or bops) is
used to declare observation or action operator (or operators),
while op (or ops) for conventional operator (or operators) or
hidden constant (or hidden constants).

Assume that the value returned by observer 0Xl,,,,,Xm in the
initial state is an expression j(X1,"" xm). It can be specified
in CafeOBJ by the following equation:

Where, f (Xl, ... , Xm ) is a CafeOBJ term corresponding to
j(X1,"" x m ). Equation (1) says that the value observed by
observation operator 0 with variables Xl, ... ,Xm is the one
that f (Xl, ..• , Xm ) returns.

Each transition tY1, ... ,Yn is defined by describing what
the value returned by each observer OXl"",Xm in the
successor state is changed into, when tY1, ... ,Yn is ap
plied to the state v and the effective condition c-tY1, ... ,Yn
holds in state v. A conditional equation in the following
form is defined to specify the transition W.r.t. 0Xl, ... ,Xm :

ceq 0 (t (S, Ylt ... , Y n ) ,Xl, ... ,Xm )

e-t(S,Y1,.' .,Yn ,X1, .• • ,Xm )

if c-t (S, Y1, ... , Y n ) .

Where, S is a variable of H that represents the state v;
term t (S, Y1, , Yn) represents the successor state of S;

e-t(S,Y1, ,Yn ,X1, ••• ,Xm ) is a term that represents
the value returned by 0Xl"",Xm in the successor state and the
condition part c-t (S, Y1, ... , Y n ) represents the effective
condition of the transition. For each effective condition, an
equation is defined to check if the effective condition holds in
the given state.

In the case that the effective condition c-tY1 ,... ,Yn (v) always
holds in any state v or the value returned by 0Xl"",Xm is not
changed in the successor state of any state v, the condition
part can be omitted and an unconditional equation is defined
for it as follows:

eq 0 (t (S, Y1, ... , Yn) , Xl, ... , Xm ) =

e - t (S, Y1, . . . , Yn, Xl, . . . , Xm )

Where, e-t (S, Y1, ... , Y n ,X1, ••• ,Xm ) is equal to
o (S, Xl, ... , Xm ) in the second case.

When c-tY1 ,... ,Yn (v) does not hold in state v, values in the
successor state of v are not changed by tY1, ... ,Yn' A conditional
equation is declared for it in the following form:

bceq t(S'Y1," .,Yn ) = S
if not c-t (S, Y1, ... , Yn )



2.2. Rewrite Theory Specifications

Maude is also regarded as an algebraic specification lan
guage whose foundations are membership equational logic
and rewriting logic. In Maude, basic units are modules. There
are two types of modules, namely functional modules and
system modules that represent membership equational theories
and rewrite theories respectively. Functional modules admit
equations, identifying data, and memberships, stating typing
information for some data, while system modules also admit
rewrite rules, describing transitions between states, besides
equations and memberships [5]. Computationally, rewrite rules
specify local' concurrent transitions that can take place in
a system if the pattern in the rule's left-hand side matches
a fragment of the system state and the rule's condition is
satisfied. In that case, the transition specified by the rule can
take place and the matched fragment of the state is transformed
into the corresponding instance of the right-hand side.

A specification of a dynamic system in Maude is a precise
prototype to simulate its behaviors, which is called a rewrite
theory specification. States can be represented both implicitly
and explicitly. A state is called implicit in the sense that values
of the state cannot be read directly, while an explicit state is a
collection of values that can be read directly. Rewrite theory
specifications with implicit states or explicit states are called
implicit-state rewrite theory specifications and explicit-state
rewrite theory specifications respectively2.

2.2.1. Implicit-state rewrite theory specifications. In Maude
implicit-state specifications, states are recursively specified
like those in OTS/CafeOBJ specifications and transitions are
also specified with equations. Definitions of states and tran
sitions are essentially inherited from OTS/CafeOBJ specifi
cations. In implicit-state specifications, there is also a sort
declared to represent the state space. Since Maude has only
one kind of sort that corresponds to visible sorts in CafeOBJ,
the state space is denoted by a conventional sort in implicit
state specifications. A constant of the sort for state space is
declared as the initial state. Some operators are defined over
the sort for state space and some other parameters. Those
operators take a state variable and related parameters to form
new terms that represent new states. Some more operators need
to be defined to retrieve values from a given state. The way
of retrieving values from a state is defined recursively in the
form of equations (or conditional equations) in Maude, by
specifying how values are changed from an arbitrary state to
its successor states. The declarations of operators in Section
2.1 in Maude are in the following forms:

op init : -> H .
op 0 : H Vol Vom -> Vo .
op t : H Vtl Vtn -> H •

op c-t : H Vtl Vtn -> Bool

Where, H is the same kind of sort as others such as Vol. Maude

2. In the rest of paper, we call them implicit-state specifications and explicit
state specifications in the case of not causing ambiguities.

also does not differ behavioral operators from other conven
tional operators. All operators are declared with keyword op
(or ops) as conventional operators.

For model checking purpose, transitions between a state and
its successor states need to be declared explicitly by rewrite
rules in the following form:

crl [t-tran] S => t (S, Y1, ... , Yn) (I)
if c-t (S, Y1,.·" Yn) •

Where, cr1 is a keyword in Maude for the declaration of
conditional rules; t -t r an denotes the label of the rule and
Yk is a constant of type Dtk for k = 1, ... ,n. Maude
basically requires each variable to appear in the left-hand
side if it appears in the right-hand side or conditions to
make rewrite rules executable. Constants are used in the
successor state t (Sf Y1, ... , Yn) instead of variables in
OTS/CafeOBJ specifications (see Section 2.1). An arbitrary
state has IDtll x ... x IDtn I possible successor states w.r.t. the
transition tY1, ... ,Yn' Therefore, given a transition tY1, ... ,Yn' we
need to define IDtll x ... x IDtnl rewrite rules for all possible
transitions between an arbitrary state and its successor states.

2.2.2. Explicit-state rewrite theory specifications. An ex
plicit state is a collection of observable values that are declared
in the form of "Op Prams : Val", where Op is an operator
that corresponds to an observer; Prams is a list of parameters
that correspond to those of the observer and Val represents
the quantity of the observable value, which is called observed
value. For instance, assume there is a state in which a Boolean
variable us ing of process i is set true. We use the term
"using i : true" to represent the value of the state.
Similarly, we construct each term in this form for other values
of the state. The collection of these terms identify the state
explicitly from others. The changes of values between states
are specified with rewrite rules in the following form:

crl [t-tran] : (Op Params Vall) =>
(Op Params : Va12) .

if c-t' (Vall, ... )

Where, c-t' is an auto-generated term corresponding to
the effective condition c-tY1, ... ,Yn that denotes if the effective
condition is satisfied in an explicit state. The rewrite rule says
that if the effective condition holds, the value observed by
observer Op w.r.t. parameters Params changes from Vall
to Va12. Observable values that are changed by a transition
with the same parameters should be specified together by one
rule. Rewrite rules only need to specify the part of state that
actually changes.

3. Modularization of translation strategies

Basic units of an OTS/CafeOBJ specification are modules.
An OTS/CafeOBJ specification consists of exactly one module
which specifies the OTS, and multiple modules which define
necessary data types, operations and axioms that are used to
specify the behaviors of the OTS.



As shown in Fig. 1, firstly, CafeOBJ modules are parsed
according to the syntax of CafeOBJ. If these modules are
parsed successfully, they are converted into Maude functional
modules, with ignorance of the differences between hidden
sorts and visible sorts, behavioral operators and other con
ventional operators. Besides, the module, in which the OTS
is specified, is parsed to be a module of sort OTSModule
which is predefined to represent the CafeOBJ module inside
the translator. A module of sort OTSModule is called an OTS
module, which is composed of six parts. Header is a sort
for the name of an OTS module and ImportList is for a
list of module names that denote their corresponding mod
ules are imported to the current module. HiddenSortDecl
denotes declarations of hidden sorts; OpDeclSet is a sort
for declarations for conventional operators that are declared
with keyword op (or ops); OTSDeclSet denotes a set of
declarations for behavioral operators such as observers and
action operators that are declared with keyword bop (or
bops) and EquationSet is a set of equation definitions.

sort OTSDecl OTSDeclSet OTSModule
subsort OTSDecl < OTSDeclSet .
op bop_:_->_. : Qid TypeList Type ->

OTSDecl [ctor format(g 0 gog 0 0 0)] .

op bops_:_->_. : QidList TypeList Type ->
OTSDecl [ctor format(g 0 gog 0 0 0)]

op mod*_'{ '} : Header ImportList
HiddenSortDecl OpDeclSet OTSDeclSet
EquationSet -> OTSModule
[ctor gather(& & & & & &)
format(d d s n++i ni d d ni n--i d)] .

op emptyOTSModule : -> OTSModule .

After the OTS/CafeOBJ specification is parsed successfully,
translation part is called. In the translation part, there are
two translation strategies modularized and embedded without
changing other parts. They are called with different commands
and work independently. Translation Strategy 1 produces a
system module according to the functional modules which
CafeOBJ modules are translated into. The system module
specifies transitions of the OTS with states specified implicitly.
Translation Strategy 2 generates a system module that specifies
the OTS with states specified explicitly, according to the
OTS module and the functional modules. Both of the rewrite
specifications can be used by built-in model checking facilities
of Maude for verification of the systems that they specify.

3.1. Translation into Implicit-state Specifications

3.1.1. Extension of the structure of state. Maude implicit
state specifications share the same data types and structures
as states that are defined in OTS/CafeOBJ specifications.
CafeOBJ modules are converted into Maude functional mod
ules at syntax level without differing hidden sorts from other
visible sorts and behavioral operators from other conventional
operators. Data types and structures that are defined in func
tional modules are used to represent implicit states. Transitions

1 -,-------'

;"".:1. ~ .~
'i; _'"

(built-in)

Fig. 1. Framework of the translator

between states are specified implicitly with equations like in
OTS/CafeOBJ specifications.

However, Maude can not search a state space with transi
tions that are specified with equations. For model checking
purpose, transitions between states need to be specified ex
plicitly with rewrite rules like (I). Given an arbitrary state,
we need to get its all possible successor states according
to each transition tY1, ... ,Yn' Successor states caused by a
transition with different parameters may be different. To make
successor states finite, we basically need to select a suitable
finite set for each parameter sort Dtl , ... , Dtn . Then, we get
IDtll x ... x IDtn I possible successor states for an arbitrary
state w.r.t. the transition t Y1 ,... ,Yn' We need to define a rewrite
rule to specify the transition from the arbitrary state to one
of its possible successor states. There are IDtll x ... x IDtn I
rewrite rules declared for the transition tY1, ... ,Yn'

This approach is not only inflexible because we have to
fix a finite set for each parameter sort before the translation,
but inefficient with the increase of the number of rewrite
rules. There is a way to overcome this inconvenience, in
which a transition only needs a rewrite rule to be defined
for it. Furthermore, we do not need to fix a finite set for
each parameter sort before the translation. Given an arbitrary
state S, we can get a successor state of S with a transition
tY1, ... ,Yn and relevant parameters of sort Vtl, ... , V tn . We use
variables Y1, ... , Yn as parameters to get a general successor
state of S with the transition tY1, ... ,Yn' which is in the form
of t (S, Y1, ..• , Yn) . Consequently, the rewrite rule for the
transition is in the following form:

crl [t-tran] S => t(S, Yl, '.~,Yn) on
if c-t (S, Yl,.·., Y n )

However, the rewrite rule becomes inexecutable because



variables that appear at right-hand side and condition part do
not appear at left-hand said. To make rewrite rules executable,
we need to guarantee those variables appear at the left-hand
side. In the left-hand side, there is supposed to be a term
containing those variables as well as the state variable S

that appear in the right-hand or condition part. Therefore, we
extend the sort of state space to a new one that consists of
two parts. One is a term that contains variables that appear
in the right-hand side or condition part and the other part is
a variable of sort of state. The new sort is called OTSState
that is defined as follows:

sort OTSSate .
op [_;_, ... _] : H Type ... Type ->

OTSState [ctor]

The constructor consists of two parts. The first part is a state
of the sort H, which corresponds to the hidden sort in the
OTSICafeOBJ specification. The second part is a list of sorts
which we call common parameter list. Elements in the list
are separated by commas and each is a set of constants of
the same sort. The common parameter list is determined by
the parameters of action operators and it is automatically
generated during the translation.

For convenience, the multiset {Vtl , ... , V t n } of parameter
sorts of the transition tY1"",Yn is denoted by Pt. The notation
Sv* stands for a sort that represents the set of constants
of sort V"'. Assume that the set of action operators in the
OTSICafeOBJ specification is denoted by A. For any action
operator tEA, if there is a sort V E Pt , we add the sort
Sv to the common parameter list. Then, we get a common
parameter list that contains all parameters for action operators
in A. There may be some redundant sorts in the list. For
instance, assume there are two action operators tl, t2 E A
and sort V E Pt1 , V E Pt2 • We do not need to add twice the
sort V to the list. If the sort V appears twice or more times
in Pt for tEA, we have to add the sort Sv twice or more
times respectively to the common parameter list. To make the
target rewrite rule simpler, we reduce the common parameter
list to the minimal one by removing those redundant sorts. A
common parameter list is minimal in the sense that the length
of the list is minimal.

We define some functions (see Appendix A) to get the
minimal common parameter list for a collection of action
operators. Function buildTypeList takes a collection of
declarations of action operators and returns a list of sorts. The
list is composed of sorts that there is at least one action opera
tor taking as parameter sorts. Function combineTypeList
combines two lists of sorts TyL and TyL' together with two
auxiliary functions tilter and cover. Function tilter
gets the common part of TyL and TyL' and cover gets
those sorts that only appear either in TyL or in TyL' . The
two parts are combined together as the returned value of
combineTypeList.

For each sort V'" in the target list, if V'" does not have a
corresponding sort declared to represent the set of items of
v"', we declare a new sort SvO' and related operations on SvO'

for V",. For example, action operators tl and t2 are declared
in the OTSICafeOBJ specification as follows:

bop tl : H VI V2 -> H
bop t2 : H VI V2 V3 V3 -> H

The minimal common parameter list for the action operator
set {tl, t2} is "Sv1 , Sv2 , Sv3 , Sv3 ".

3.1.2. Construction of rewrite rules for transitions. This
step is to build transitions between two states with rewrite
rules according to the action operators that are declared in
the OTSICafeOBJ specification. Terms at left-hand side and
right-hand side of rewrite rules are of the sort OTSState.

The function buildTransitionRules (see Appendix
A) generates rewrite rules for all action operations. It takes two
parameters and returns a set of rewrite rules. One parameter is
the declaration of the constructor of sort OTSState and the
other is a collection of declarations of action operators that are
defined in OTS modules. The declaration of the constructor
contains' the name of the constructor OP and a list of sorts
of common parameter list TyL. A declaration of an action
operator contains the name of the action operator OP' and
a list of sorts of parameters TyL' as well as a hidden sort
Ty' . Functions buildLHS and buildRHS generate terms
for left-hand side and right-hand side respectively. Given the
constructor of sort OTSState, the list of sorts of parameters,
an action operator OP' , the list of sorts of its parameters and
the hidden sort Ty' , buildLHS returns a term that represents
an arbitrary state of OTSState. A typical term at the left
hand side term is in the following form:

[S ; V1@t11:Vl V1Set@t11:VlSet,
V2@t11:V2 V2Set@t11:V2Set,
V3@t11:V3 V3Set@t11:V3Set,
V3@t12:V3 V3Set@t12:V3Set ]

A variable X of sort S can be declared on the fly like X: S.

Note that VlSet is the sort of sets consisting of terms of
sort VI. Variable names are generated automatically with a
mechanism for avoiding name conflict. The number following
"t1" in the variable name is used to avoid name conflict of
variables in the case that two or more variables of the same
sort appear in the term like V3 @t 11 and V3 @t 12.

Function buildRHS takes the same parameters as function
buildLHS. It returns a state of OTSState that represents all
possible successor states of the state at left-hand side w.r.t. the.
given action operator. The first part of the term at right-hand
side is a term that represents a successor state of S and the
other part is the minimal common parameter list without any
changes with the one at left-hand side. A term that represents a
successor states is composed of three parts: an action operator,
the state S and parameters except S that are available in the
minimal common parameter list.

Take t 1 for example. Term t1 (S, V1@t11, V2@t11) is a
successor state of S w.r.t. tl. Because variables V1 @t 11 and
V2 @t 11 can be replaced with all possible constants of sort
VI and V2, t1 (S, V1@t11, V2@t11) represents all possible



successor states of S w.r.t. tl. The right-hand side term for tl
is as follows:

[tl (S, Vl@tll :VI, V2@tll :V2) ;
Vl@tll:VI V1Set@tll:VISet,
v2@tll:V2 V2Set@tll:V2Set,
V3@tll:V3 V3Set@tll:V3Set,
V3@t12:V3 V3Set@t12:V3Set ]

Function buildCondition builds a condition part for a
conditional rewrite mle. The condition part of the target
rewrite mle can be constmcted by replacing the action op
erator by its corresponding effective condition operator in
the successor state. For example, we get the condition part
c-tl (S, Vl@Tll, V2@Tll) for t l by replacing tl with
c-tl in term tl (S, Vl@Tll, V2@Tll), where C-tl is the
effective condition of tl'

With terms of left-hand side, right-hand side and condition
part, a conditional rewrite mle can be constmcted in a system
module. As an example, the rewrite mle with respect to tl is
declared as follows:

crl [tl]
[S ; Vl@tll:VI V1Set@tll:VISet,

V2@tll:V2 V2Set@tll:V2Set,
V3@tll:V3 V3Set@tll:V3Set,
V3@t12:V3 V3Set@t12:V3Set] =>

[tl (S, Vl@tll :VI, V2@tll :V2) ;
Vl@tll:VI V1Set@tll:VISet,
V2@tll:V2 V2Set@tll:V2Set,
V3@tll:V3 V3Set@tll:V3Set,
V3@t12:V3 V3Set@t12:V3Set]

if c-tl(S, Vl@Tl, V2@Tl) .

Function buildTransitionRules is defined recursively.
It generates a rewrite mle for each action operator and returns
none for an empty set of declarations of action operators.

3.1.3. Generation of a system module. With rewrite mles
generated for all action operators, a system module is
built by function buildTransitionSystem (see Ap
pendix A). It generates a system module according to the
OTS/CafeOBJ module that specifies the OTS. The prede
fined functional module STATE is imported to the target
system module. The auto-generated functional module ME
which the OTS module is translated into, is also imported
to the system module. Function buildSortListSet is
used to declare sort Sv* for each sort V* in TyL in the
case that Sv* is not defined in the input OTS/CafeOBJ
modules. The returned value of buildSortListSet is
assigned to variable SS and added to the target system
module. Function buildListConnector declares an op
erator "_, _" for each Sv* which denotes concatenation
operation with identity the empty item. The declaration of
the constmctor of OTSState is returned by the function
buildStateConstructor and added to the module with
the predefined function addOps. Variable OPDS' denotes a
set of declarations of constants. These constants are empty

identities of sort Sv*' Rewrite mles that are generated by
function buildTransitionRules are added by function
addRl s. The generated system module is added to the
database which is initiated in Full Maude.

When using an implicit-state specifications for the purpose
of model checking in Maude, we need to give an initial state
of sort OTSState, from which Maude starts searching the
whole state space. Because the initial state of an OTS has
been declared in the OTS/CafeOBJ specification and translated
into an equivalent term in functional modules in Maude, we
only need to initiate the minimal common parameter list, like
((Vll VI2), (V2I V22), (V3I V32), (V3I V32)), where Vnl and
Vn2 (n = 1,2,3) are constants of sort V n , which are declared
beforehand. It is worth pointing out that set (V3I V32) has to
be declared twice in the parameter list, because the sort V3
appears twice in the transition t2. We get an initial state like
[ init ; ((Vll VI2), (V2I V22), (V3I V32), (V3I V32) ) ]
of sort OTSState, from which Maude LTL model checker
can build a search graph with rewrite mles that are declared
before, to check if there is a state violating the property to be
verified.

3.2. Translation into Explicit-state Specifications

3.2.1. Construction of Explicit-state Structure. States are
specified implicitly in OTS/CafeOBJ specifications. To build
an explicit-state specification in Maude, implicit states need
to be translated into explicit states first. An explicit state is a
collection of observable values. These observable values are
regarded as basic units of an explicit state. A sort OValue is
defined to represent observable values. A collection of terms
of sort OValue form a state. To differ from the state sort
in the OTS/CafeOBJ specification, a new sort OTSState for
state is declared beforehand in functional module STATE-ES
as follows:

fmod STATE-ES is
sorts OTSState OValue .
subsort OValue < OTSState
op nil -> OTSState .
op _ OTSState OTSState -> OTSState

[assoc comm id: nil] .
endfm

Sort OValue is a subsort of OTSState. The constmctor
of sort OValue consists of three parts: an observation op
erator, parameters of the observation operator and the value
that it observes. An instance of sort OValue is called an
observable value. A state consists of one or more observable
values. Declarations of constmctors for OValue are in the
form of"op 0_:_ : ParameterList V -> OValue"
in Maude, where 0 is an observation operator that is declared
in CafeOBJ; ParameterList denotes parameters of 0 ex
cept for the hidden sort that is declared for state space and V is
the sort of the value that 0 observes. For instance, assume there
is an observation operator 0 declared for observer 0Xl"",Xm



in CafeOBJ like "bop 0 : H Vol ... Vom -> V". Its cor
responding declaration as an observable value in Maude is
"op 0_... _:_ : Vol ... Vom V -> OValue". In case
of m 0, ParameterList is null. The declaration is writ
ten like "op 0':_ : V -> OValue". Assume the value
that 0Xl,""X", observes in a state S with parameters Xl, ... ,Xm
is Cv, where parameters Xl, ... , Xm are constants of sorts
Vol, ... , Vom and Cv is a constant of sort V. Its corresponding
observable value is "0 Xl ... Xm : CV" which is a part of
state S.

The operator "_ _" is used to combine two states of
OTSState to form a new state that is still of sort OTSState.
The commutativity and associativity of the operator means that
there is no particular order for values in an explicit state.

In a state, an observer OXl, .•• ,x", returns different values
with different parameters. To make returned values finite, we
need to select a suitable finite set for each parameter sort
[8]. For each sort vk(k = 01, ••• , om) of 0Xl,''''X"" we
give a finite set of Vk denoted by FTv k Maude can not
select a finite sort for each parameter sort automatically. We
need to manually fix finite sets for those parameter sorts in
OTS/CafeOBJ specifications by declaring finite constants for
each finite sort3, before loading them into the translator.

Then, we can get IFTV011 x ... x IFTVo", I observable values
w.r.t. 0Xl""'X", in each state S. Observable values are in form
"0 Xl ... Xm : TV", where TV is a term of sort V that
depends on Xl, ... , Xm. These observable values are parts of
state S w.r.t. OXl,''''X"" Similarly, observable values of other
observers are constructed in state S. The collection of all these
observable values is regarded as an explicit state of state S.

3.2.2. Construction of Initial States. In OTS/CafeOBJ spec
ifications, initial states are implicitly specified with equations
(see Section 2.1). In the initial state, an observer may re
turn different values with different parameters. We need to
get all observable values of all observers to construct an
initial explicit state that is behaviorally equivalent to the
implicit one. For the observer 0Xl,''''X", , we get the term
f (x1, • • • , Xm ) as the value that 0Xl, •.. ,x", returns with
parameters Xl, ... , Xm, by replacing variables Xl, ... , Xm
with constants Xl, ... , Xm in (1). An observable value can
be constructed as "0 Xl ... Xm : f (Xl, ... , Xm ) ". Sim
ilarly, we can get other observable values for OXl,''''X", with
other different parameters. Furthermore, we get observable
values with other observer for the initial state. The collection
of all these observable values is of sort OTSState and forms
the initial explicit state that satisfies the following equation:

eqinit' = (0 Xl ... Xm:f(Xl, ... 'Xm » ...

Where, init' is a constant of sort OTSState that represents
the initial explicit state.

A function buildInitialState (see Appendix B) is
defined to construct an initial explicit state and function
buildInitialEquationl declares an equation that says

3. We do not consider the finite sort with constructors in the current
implementation of the translator.

a constant is equivalent to the initial explicit state. Function
buildInitialEquation calls the two functions above
to get the equation and adds it to the target system module.
Function buildInitialEquation takes five parameters.
Sort Bop20pList denotes a list of mapping from a decla
ration of an action operator in OTS/CafeOBJ modules to its
corresponding declaration of observable value in Maude; sort
TypeConstantsList denotes a list of items that record all
constants of parameter sorts; OTSModule is the input OTS
module; SModule in parameters is an auto-generated system
module to which the initial state will be added and FModule
is a flattened functional module that is translated from the
input OTS/CafeOBJ modules. A flattened module in Maude
is a module with its sub-modules flattened to it [16]. First,
the buildInitialEquation function calls the function
unfoldEquationSet to flatten the equations in FM by
replacing variable parameters of observers with constants, like
"eq 0 (init, Xl' ... ' Xm ) = f (Xl, ... , xm )". The
buildInitialState function is used to build a list of ob
servable values to represent the initial state with these flattened
equations and the corresponding constructors of observers. Ob
servable values are like "0 Xl .... Xm : f (Xl, ... , Xm ) "
and the collection of them is the initial explicit state that is
behaviorally equivalent to the one defined in the OTS module.
Function buildInitialEquationl returns an equation
that says the constant init of sort OTSState is equivalent
to the initial state so that we can use the constant to denote the
initial explicit state. Function buildInitialEquation
calls addEqs to add the equation to the target rewrite system.

3.2.3. Construction of transitions between explicit states.
Like in the implicit-state specification, the transition between
a state and each of its successor states needs to be specified
explicitly in the explicit-state specification. For a dynamic
system, given an arbitrary state, it is sufficient to specify all
possible transitions from an arbitrary state to its successor
states.

Given an action operator tY1, ... ,Yn with constants Yl,"" Yn
of sorts Vtl, ... , Vtn as its parameter, first, we need to con
struct an arbitrary explicit state. An arbitrary explicit state is
composed of a collection of observable values with variables
as their corresponding observed values. For example, we
take variable Xv as the observed value of observer OXl""'X",

w.r.t. parameters Xl, ... , xm . The corresponding observable
value is "0 Xl ... xm : XV". Because rewrite rules only
need to specify the part of a state that actually changes,
observable values that are not changed by a transition with
some parameters do not need to be considered into the target
rewrite rule if its observed value is not used by other observ
able values. For instance, if the observed value of 0Xl""'X",

w.r.t. parameters Xl, ... ,Xm is not changed by the transition
tYl, ... ,Yn with some parameters and the observed values is also
not used by other observable values, the observable value
"0 Xl... Xm : XV" can be removed from the target
rewrite rule that specifies the transition tY1, ... ,Yn with the
related parameters.



(4)

(6)

(5)

To get those observable values that are changed by t Yll ... ,Yn

with constants Yl, ... , Yn' we get the relevant equations that
specify the transition tY1, ... ,Yn in form of (2) and replace the
parameters of tY1,.,.,Yn with constants Yl,"" Yno We get a
collection of equations in the following form:

ceq o(t(S'Yl1" .,Yn) ,Xl", .,Xm ) (3)
e-t(S'Yl1" .,Yn,Xl, ... ,Xm )

if c-t (S, Yl1 ... , Yn)

In the case that a transition does not have effective condition,
the equation is in the form like:

eq o(t(S'Yl1" .,Yn),Xl," .,Xm ) =

e - t (S, Y11 . . . , Yn' Xl, . . . , Xm )

We only consider those observers that equations corresponding
to the action operator tY1, ... ,Yn specify.

Then, we flatten the equations by replacing the variables that
are used as parameters of observers with all possible values
that the variables can be, and get equations in the following
forms:

ceq o(t(S,Yl, ... ,Yn),Xl, ,Xm )

e-t(S'Yl'" .,Yn,Xl, ,xm )

if c-t (S, Yl, ... , Yn)

e q 0 (t (S, Y11 . . . , Yn) , Xl, . . . , Xm )

e-t (S, Yl1 ... , Yn' Xl, ... , xm )

For each equation, we can build an observable value by
introducing a new variable like "0 Xl ... Xm : XV". The
observable value is a part of the arbitrary state. The collection
of these observable values compose the arbitrary state which
is the term at left-hand side of the target rewrite rule.

The next step is to get a successor state of the arbitrary
explicit state. For each observable value in the arbitrary state,
we need to know how the observable value is changed by
an action operator and construct its corresponding observed
value in the successor state. For observer OXl,".,X= with
parameters Xl, ... , X m , according to (5), the observed value
is changed into "e-t(S,Yl1 ... ,Yn,Xl, ... ,Xm )"

by the transition tY1, ... ,Yn with constants Yl,"" Yno We
replace the term "0 (S, Xl, ... , xm )" with the variable
Xv in term "e-t(S'Yl'" .,Yn,Xl, ... ,xm )" and
get a term like "e-t' (Xv, Yl1 ... , Yn' Xl, ... , xm )"

which is the observed value of OXl,".,X= with parameters
Xl, ... ,Xm in the successor state. The observable value
"0 Xl... Xm : e - t' (XV, Yl, . . . , Yn' Xl, . . . , Xm ) "

is a part of the successor state.

If there is no such an equation declared in the OTS/CafeOBJ
specification, it means the transition instance tY1, ... ,Yn with
parameters Yl, ... , Yn does not change values that are ob
served by OXl, ... ,X=' In this case, the observable value stays the
same without any change. Successor observable values of other
observable values are constructed similarly. The collection of
all successor observable values composes the successor state of
the arbitrary state w.r.t. the transition tY1, ... ,Yn with parameters
Yl, ... , Yno Similarly, successor states of the arbitrary state
with the transition tY1, ... ,Yn and other different parameters
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Fig. 2. Construction of rewrite rules

can be constmcted. Furthermore, successor states with other
transitions can be built in the same way.

Generally, a transition instance takes place under the con
dition that its corresponding effective condition holds in the
state. In the case that an action operator has an effective
condition, we need to build a conditional rewrite rule to specify
this transition. Besides the arbitrary state and its successor
state w.r.t. the transition tY1, ... ,Yn and parameters Yl,···, Yn ,

a condition part is also needed for the target conditional rewrite
rule.

In the OTS/CafeOBJ specification, there is an effective
condition c-tY1, ... ,Yn declared and a related equation defined
for the term c-t (S, Yl, ... , Y n ). The right-hand side of
the equation is a term that returns a Boolean value. The
term contains values that are returned by observers in the
state S. By replacing these values with related variables that
are introduced to represent an explicit state for S, we get
a new Boolean expression as the effective condition of the
transition tY1, ... ,Yn with parameters Yl,"" Yn' The expres
sion is represented by the term c-t' (Xl, ... , Xn ,) , where
Xl, ... ,Xn , are variables introduced for observable values and
n' = IFTV011 x ... x IFTVoJ x IFTvtll x ... x IFTvtJ.

With the arbitrary explicit state, its successor state and the
condition term, a conditional rewrite rewrite is defined for
the transition tY1, ... ,Yn with parameters Yl"'" Yn- Function
convertEq2Rl (see Appendix C) converts equations that
are defined in OTS/CafeOBJ modules to specify behaviors,
into rewrite rules in Maude which specify the equivalent
behaviors of dynamic systems. It takes a set of declarations
of action operators, a set of equation and two other related
parameters. The function returns a set of rewrite rules for
the target system module. Equations first are flattened by



replacing variables in parameters with constants, as shown in
Fig. 2. For each declaration of an action operator, function
convertEq2Rl calls function buildAllSuccessors to
get all possible successors that are in OTS/CafeOBJ syntax
like OP (S, pl, ... , p2) according to the given action
operator and different parameters. A transition from the ar
bitrary state S to one of its successor states is called an
transition instance. Function convertEq2RlAux is defined
to get a set of rewrite rules for all transition instances. For
each transition instance, convertEq2RlAux calls function
convertEq2RlAuxl to get a set of rewrite rules that
specify the changes of all observed values caused by the
transition instance. Function convertEq2RlAuxl selects
the equations that are related to the transition instance and
call function convertEq2RlAux2 with these equations.
Function convertEq2RlAux2 builds a rewrite rule for each
related equation and simplifies the condition part with the new
introduced variable by calling function buildSingleRule
(see the second step in Fig. 2). The set of rewrite rules and
the condition part are passed to the function combineRules
which constructs a new rewrite rule by combining all the left
hand side terms of the rewrite rules as the left-hand side
term of the new rule and all the right-hand side terms as
the right-hand side term (see the third step in Fig. 2). If
the condition part is not null, then combineRules returns
a condition rewrite rule. The new generated rewrite rule is
passed to function eliminateObservers which replaces
the observers in the rewrite rule with their corresponding
operators that are auto-generated in Maude. Then, we get a
rewrite rule for a concrete transition.

A system module can be constructed with the three steps
above for an OTS. The system module mainly consists of the
following four parts with states specified explicitly:

I) functional modules that are defined for data types;
2) operators that are declared for observers of OTSs;
3) an equation that is defined for the initial state;
4) rewrite rules that are built for transitions.

3.3. Correctness and Comparison

From the practical viewpoint, the first translation strategy
generates a system module that explicitly specifies transitions
between states, without changing behaviors that are defined
in its corresponding OTS/CafeOBJ specification. If a counter
example is found in translated implicit-state specifications,
there must be a path from the initial state to the state that
violates the desired property. In the original OTS/CafeOBJ
specification, that state is also reachable. Consequently, the
counter-example is also a counter-example of the original
OTS/CafeOBJ specification. The correctness· of the second
translation strategy is proved at theoretical level in [8].

Both of the two translation strategies have strengths and
weaknesses. Although state space is required to be finite or
bounded for model checking, the first translation strategy
does not require related parameter sorts to be finite before
translation. We only need to provide finite sets for those

sorts when we construct initial states for model checking.
The second translation strategy enumerates all possible rewrite
rules between explicit states. We need to give an appropriate
finite set for each parameter sort before the translation. Any
changes to a parameter sort cause some rewrite rules to be
removed or added. We have to re-translate the specification
once we remove or add some elements to parameter sorts.

However, to evaluate a value of an implicit state, it needs
to backtrack to the initial state and evaluate the value of each
state in the path from the initial state to that state. The implicit
state specification is not so efficient as the explicit-state one
in which we can get values of explicit states directly.

4. Execution Environment and an Example

4.1. Execution Environment

The translator runs on the top of Full Maude. In the environ
ment of Full Maude [15], we can launch the translator with
the command load ots. Besides the commands provided
by Full Maude, the translator supports it own two com
mands, namely conv2exps and conv2imps that are used
to generate explicit-state rewrite specifications and implicit
state rewrite specifications respectively. Like Full Maude, the
translator needs commands to be enclosed in parentheses to
differ from commands supported by Core Maude. Besides,
each modules in OTS/CafeOBJ specifications has to be en
closed in parentheses to differ from the input module for Core
Maude [12], [16].

4.2. An Example of Semaphore Mechanism

Semaphore is a mechanism for restricting access to shared
resources to a fixed number of processes at a time. The place
where at most one process is allowed to enter is called the
critical section. In a system with semaphore, there is a public
integer variable x that all processes can access. Each process
has a private Boolean variable to denote whether it is in the
critical section. When a process p wants to enter the critical
section, it first checks if x > O. In the case that x > 0,
p decreases x by 1 and sets its private Boolean variable true.
The should be done atomically. If x :S 0, process p has to wait
until x > 0. If process p wants to leave the critical section,
p has to increase x by 1 and sets its private Boolean variable
false, which is also an atomic operation.

4.2.1. OTS/CafeOBJ specification for semaphore. To spec
ify the semaphore, we need to declare a new sort called Pid
in a loose module PROCESS to identify each process. The
module PROCESS is defined as shown in Fig. 3.

With the module PROCESS and the built-in module INT,
we can define the following module SEMAPHORE to specify
the semaphore mechanism. Modules PROCESS and INT are
imported. A hidden sort Sys is declared to represent state
space. There is a observation using taking Pid as one of
parameter and returning a Boolean value. It denotes whether



mod! PROCESS { [Pid]
op _=_ : Pid Pid -> Bool {comm}
var I : Pid eq (I = I} = true

mod* SEMAPHORE (
pr(INT) pr(PROCESS)
*[Sys]* op init : -> Sys
bop using : Sys Pid -> Bool
bop semaphore : Sys -> Int
bops down up : Sys Pid -> Sys
ops c-down c-up : Sys Pid -> Bool
var S : Sys var Xll : Pid var Yll : Pid var Y2l : Pid
eq using (init, Xll) = false .
eq semaphore (init) = 1 .
ceq using(down(S, Yll), Xll) = (if Xll == Yll then true

else using(S, Xll) fi) if c-down(S, Yll)
ceq semaphore(down(S, Yll» =

semaphore(S) - 1 if c-down(S, Yll)
bceq down(S, Yll) = S if not c-down(S, Yll)
eq c-down(S, Yll) =

not using(S, Yll) and semaphore(S) > 0 .
ceq using(up(S, Y2l), Xll) = if Xll == Y2l then false

else using(S, Xll) fi if c-up(S, Y2l)
ceq semaphore(up(S, Y2l» =

semaphore(S) + 1 if c-up(S, Y2l) .
bceq up(S, Y2l) = S if not c-up(S, Y2l)
eq c-up(S, Y2l) = using(S, Y2l) . }

Fig. 3. System module: SEMAPHORE-EXPS

a process is using the shared resources or not. Observation
semaphore only takes Sys as its parameter and returns an
integer that stands for the value of the semaphore in a state.
The first two equations in the module say that every process
is not in the critical section and the value of the semaphore
is LThere are two action operators down and up specifying
the enter and leave operations of each process respectively.

The third conditional equation says that if process Y11
satisfies the effective condition of the action operator down in
state S, namely the value of c-down (S, Y11) is true, we
get a new state down (S, Y11) that differs from the state
S. In the state down (S, Y11), the value of the observation
using is true in terms of process Y11. The transition by
action operator down with process Y11 only changes the value
for Y11. Other processes denoted by X11 returns values in
the predecessor state S, that is using (S, X11). In the case
that the effective condition is not satisfied, the state Sand
its successor state down (S, Y11) can be regarded to. be
behaviorally equivalent. Similarly, the last four equations in
the module are defined for the action operator up.

4.2.2. Translation results. As mentioned in Section 4.1, the
input specification should be enclosed in parentheses before
being loaded into the translator. Besides, a dot "." has to be
added manually to the end of each declarations of operations
and variables, because Maude can not recognize the invisible
character of line feed. By convention, we use the character dot
"." as the end of a line.

If the modules PROCESS and SEMAPHORE are correct in
terms of syntax, they can be parsed and loaded successfully
by the translator. Otherwise, the translator will output an error
message pointing out the place that violates the CafeOBJ
grammar. After loading the modules into the translator, we can
use the command (conv2imps .) to get an implicit-state

mod SEMAPHORE-IMPS is
including STATE . including SEMAPHORE
sorts PidSet. subsort Pid < PidSet .
op __ : PidSet PidSet -> PidSet [assoc comm id: nil] .
op '[_;_'] : Sys PidSet -> OTSState [ctor] .
op nil : -> PidSet [ctor] .
crl [S:Sys ; Pid@downl:Pid PidSet@downl:PidSet] =>

[down(S:Sys,Pid@downl:Pid); Pid@downl:Pid
PidSet@downl:PidSet] if c-down(S:Sys,Pid@downl:Pid)
= true [label down] .

crl [S:Sys ; Pid@upl:Pid PidSet@upl:PidSet] =>
[up(S:Sys,Pid@upl:Pid); Pid@upl:Pid
PidSet@upl:PidSet] if c-up(S:Sys,Pid@upl:Pid)
= true [label up] .

endm

Fig. 4. System module: SEMAPHORE-IMPS

rewrite specification named SEMAP HORE- IMP S. The transla
tor will output a message saying the translation is successfully
done. The show module command asks the translator print
out the content of the module SEMAPHORE-IMPS as show
in Fig. 4.

Where, the module STATE is a built-in module in the
translator with the sort OTSState declared in it. The module
SEMAPHORE is a function module that is translated from the
loose module SEMAPHORE in CafeOBJ. New sort PidSet
is declared to be a set sort of sort Pid. The first rewrite
rule says that if a process Pid@down1 satisfies the effective
condition in the state S, it can reach its successor state
down (S, Pid@down1). Similarly, the second conditional
rule specifies the action operator up.

With the system module, Maude can search the whole
reachable state space to check whether a property holds in
every reachable state from the initial state. For instance, there
are two processes in the system, namely p and q. The initial
state should be [init ; p q]. We feed the following
command into Maude to check whether there is a state S in
which both p and q are in the critical section:

search [1, 100] [init; p:Pid q:Pid]
=>* [S:Sys ; p:Pid q:Pid] such that

using(S:Sys, p:Pid) and
using(S:Sys, q:Pid)

Maude returns "No solution", which means that there is no
such kind of state in the first 100 depth from the initial state.
The fist number in square brackets denotes the desired number
of solutions that we hope Maude to return and the second
means the maximal depth of the search.

In the OTS of semaphore mechanism, besides the sort Sys,
there is only one additional parameter Pid for observers
and transitions. To get an explicit-state rewrite specification,
we first choose a non-empty and finite subset for sort Pid.
We declare two constants p and q for Pid in the module
PROCESS by adding the statement "ops p q : -> Pid".
Then, we feed the two CafeOBJ modules into the translator.
With the command (conv2exps .), we have a system
module named SEMAPHORE-EXPS generated as shown in
Fig.'5.

The following command asks Maude to search the whole



mod SEMAPHORE-EXPS is
including STATE-ES. protecting PROCESS .
protecting INT . sorts Sys
op c-down : Sys Pid -> Bool . op c-up : Sys Pid -> Bool
op down : Sys Pid -> Sys . op init : -> OTSState .
op semaphore':_ : Int -> OValue op up : Sys Pid -> Sys .
op using_:_ : Pid Bool -> OValue .
eq init = semaphore : 1 (using p : false) using q : false .
crl semaphore : semaphore@:Int (using p : usingp: Bool)

using q : usingq:Bool => semaphore: (semaphore@:Int + 1)
(using p : if p == p then false else usingp:Bool fi)
using q : if q == p then false else usingq:Bool fi

if usingp:Bool = true [label upp] .
crl semaphore : semaphore@: Int (using p : usingp: Bool)

using q : usingq:Bool => semaphore: (semaphore@:Int + 1)
(using p : if p == q then false else usingp: Bool fi)
using q : if q == q then false else usingq:Bool fi

if usingq:Bool = true [label upq] .
crl semaphore: semaphore@:Int using p : usingp:Bool)

using q : usingq:Bool => semaphore: (semaphore@:Int - 1)
(using p : if p == p then true else usingp:Bool fi)
using q : if q == p then true else usingq:Bool fi

if not usingp:Bool and semaphore@:Int > 0 = true [label downp]
crl semaphore : semaphore@:Int (using p : usingp: Bool)

using q : usingq:Bool => semaphore: (semaphore@:Int - 1)

(using p : if p == q then true else usingp:Bool fi)
using q : if q == q then true else usingq:Bool fi

if not usingq:Bool and semaphore@:Int > 0 = true [label downq]
endm

Fig. 5. System module: SEMAPHORE-EXPS

reachable state space, restricting to two processes p and q,
to check whether there is a state that violates the mutual
exclusion property.

search [1] init =>* (using p : true)
(using q : true) S:OTSState .

Maude also returns "No solution".

5. Related work

There have been many formal specification languages and
verification tools proposed. A combination of some of those
languages and tools enables us to take advantages of them and
get rid of their weaknesses. One promising way of combing
two verification tools is to translate specifications written in
one language into the ones written in the other language.
Some studies have been conducted on the topic of specification
translation.

Attiogbe has proposed a way to model check state machines
written in Event B by translating state machines in Event B
into those in PROMELA that is the specification language
for SPIN [17], with the purpose of model checking liveness
properties for state machines written in Event B. George and
Haxthausen have formally analyzed the Mondex electronic
purse protocol [2]. They have specified Mondex in the RAISE
specification language (RSL) and analyzed Mondex by trans
lating the specifications in RSL into those for the PVS theorem
prover and the SAL model checkers. The reason why they
select both PVS and SAL as their verification tools is that
they are able to make use of advantages of PVS for interactive
theorem proving and SAL for model checking.

Their translators are implemented in conventional program
ming languages, while our translator described in the paper
has been implemented in Maude. Based on our experiences,
it shows that a translator can be implemented with less effort

and be more extensible thanks to Maude meta-programming
facilities.

Much effort has been made on model transformation
in Model-Driven (Software) Engineering (MDE) [18]. In
MDE, high-level models are transformed towards more
implementation-oriented models. Our technique described in
the paper may also be contributed to model transformation,
which is one piece of our future work.

6. Conclusion and future work

We introduce a modular implementation of a translator in
Maude, which needs less effort than in other conventional pro
gramming languages. Translation strategies are modularized
and embedded in the implementation. The modularization of
the implementation allows us embedded different translation
strategies in the translator. It is one piece of our future work
to come up with other translation strategies for the translation
from OTS/CafeOBJ specifications into Maude rewrite theory
specifications.

Furthermore, we only focus ourselves on the introduction
to the translator in this paper, instead of presenting a de
tailed description of its implementation. We are going to
propose a methodology for developing formal tools with meta
programming facilities of Maude with the implementation of
the translator as a concrete example. On the other hand, we
would like to consider the translation from rewrite specifica
tion to behavioral specification, which seems more sensible
in terms of the integration of model checking and theorem
proving.
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Appendix A
Key functions to build an implicit-state rewrite system

op buildTransitionSystem : OTSModule -> SModule .
op buildTypeList : OTSDeclSet -> TypeList .
op combineTypeList : TypeList TypeList -> TypeList
op buildStateConstructor : Type TypeList -> OpDecl
op buildTransitionRules : OpDecl OTSDeclSet -> RuleSet

ceq buildTransitionSystem(
mod* ME { IL HSD OPDS OTSDS EqS })
addImports ((including , STATE .) (including ME .),
addSorts(SS,
addSubsorts(declareSubsort(TyL),
addOps(buildListConnector(SS),

addOps(OPD,
addOps(OPDS' ,
addRls(buildTransitionRules(

OPD, getTransitions(OTSDS)),
setName(emptySModule, qid(string(ME) + "-IMPS")))))))))

if TyL .= buildTypeList(
getTransitions(OTSDS)) /\

SS buildSortListSet(TyL) /\
TyL' buildTypeListList(TyL) /\
OPD buildStateConstructor(

getSort(HSD), TyL') /\
OPDS' addIdentityOp(TyL)

eq buildTypeList((bop OP : Ty TyL -> Ty' .) OTSDS)
combineTypeList(TyL, buildTypeList(OTSDS)) .

eq combineTypeList(TyL, TyL') (filter(TyL, TyL')) (cover (TyL, TyL'))
eq buildStateConstructor(Ty, TyL)

(op buildOperator(size(TyL)) : Ty TyL -> 'OTSState [ctor] .) .

eq buildTransitionRules((op OP : Ty TyL -> 'OTSState [AttS] .),
(bop OP' : Ty' TyL' -> Ty' .) OTSDS) =

(crl buildLHS(OP, OP', Ty', TyL, TyL') => buildRHS(OP, OP', Ty', TyL, TyL')
if buildCondition (OP', Ty', TyL') [label (OP')] .)

buildTransitionRules((op OP Ty TyL -> 'OTSState [AttS] .), OTSDS) .

eq buildTransitionRules((op OP Ty TyL -> 'OTSState [AttS] .), none) = none

eq buildLHS(OP, OP', Ty', TyL, TyL') =
OP[qid("S:" + string(Ty')), buildParameters(OP', TyL, nil)] .

eq buildRHS(OP, OP', Ty', TyL, TyL') =
OP[OP' [qid("S:" + string(Ty')),

buildSinglePara(OP', TyL', nil)], buildParameters(OP', TyL, nil)] .

eq buildCondition(OP, Ty', TyL')
(qid(" C -" + string(OP)) [qid("S:" + string(Ty')),
buildSinglePara (OP, TyL', nil)] , true. Bool) .



Appendix B
Key functions to construct an initial explicit state

op buildlnitialEquation :
Bop2opList TypeConstantsList OTSModule SModule FModule -> SModule

op buildlnitialEquationl : TermList -> Equation .
op buildlnitialState : Bop2opList Constant EquationSet -> TermList .

ceq buildlnitialEquation(BOPL, TCL, OTSM, SM, FM) =
addEqs(buildlnitialEquationl(TL), SM)
if EqS unfoldEquationSet(TCL, getEqs(FM)) /\

TL := buildlnitialState(BOPL, getlnitialState(OTSM), EqS) .

eq buildlnitialEquationl((T, TL))
if TL =/= (empty) . EmptyCommaList then (eq'init.OTSState
else (eq 'init.OTSState = T [none] .) fi .

eq buildlnitialState(BOPL, CON, EqS) =
buildlnitialStateAux(BOPL, CON, getEquations(CON, EqS)) .

eq buildlnitialState(BOPL, CON, none) = empty.

, _ [T , TL] [none].)

eq buildlnitialStateAux(BOPL, CON, (eq OP[TL] T' [Attr] .) EqS ) =

(buildlnitialStateAuxl(BOPL, OP, TL, T'), buildlnitialStateAux(BOPL, CON, EqS)) .
eq buildlnitialStateAux(BOPL, CON, none) empty

ceq buildlnitialStateAuxl(BOPL, OP, TL, T') =
buildlnitialStateAux2(BOP20P, OP, TL, T')
if BOP20P := getBOP20P(BOPL, OP) /\ BOP20P =/= nil.

eq buildlnitialStateAux2([(bop OP : TyL -> Ty .) ;
(op OP' : TyL' -> Ty' [Attr] .)], OP, (T, TL), T') = (OP'[TL, T']) .

eq buildlnitialStateAux2(BOP20P, OP, TL, T') empty [owise] .

Appendix C
Key functions to construct transitions between explicit states

op convertEq2Rl : Bop2opList TypeConstantsList OTSDeclSet EquationSet -> RuleSet .
op convertEq2RlAux : Bop2opList TermList EquationSet -> RuleSet .
op convertEq2RlAuxl : Bop2opList Term EquationSet -> RuleConditionPair .
op convertEq2RlAux2 : Bop2opList Term EquationSet EqCondition -> RuleConditionPair
op buildSingleRule :

Bop2opList Qid TermList Equation EqCondition -> RuleConditionPair .

ceq convertEq2Rl(BOPL, TCL, (OTSD OTSDS), EqS) =
convertEq2Rl(BOPL, TCL, OTSD, EqS) convertEq2Rl(BOPL, TCL, OTSDS, EqS)

if OTSDS =/= none .

eq convertEq2Rl(BOPL, TCL, (bop OP : Ty TyL -> Ty .), EqS)
convertEq2RlAux(BOPL, buildAllSuccessors(TCL, OP, TyL), EqS) .

ceq convertEq2RlAux(BOPL, (T, TL), EqS ) = Rl convertEq2RlAux(BOPL, TL, EqS)
if TL =/= empty /\

Rl := eliminateObservers(BOPL, combineRules (convertEq2RlAuxl (BOPL, T, EqS)))

eq convertEq2RlAuxl(BOPL, OP[TL], (ceq OP' [OP[T, TL], TL'] = T' if EqC [AttrS] .) EqS)



convertEq2RlAux2(BOPL, OP[TL],
(ceq OP' [OP [T, TL], TL'] = T' if EqC [AttrS] .) EqS, EqC) .

ceq convertEq2RlAux2(BOPL, OP[TL], EqS, EqC') =
< EqC3 ; (Rl Rls) >

if ((ceqOP'[OP[T, TL], TL'] =T' ifEqC [AttrS].) EqS') :=EqS /\

< EqC" ; Rl > :=
buildSingleRule(BOPL, OP, TL, (eq OP'[OP[T, TL], TL'] = T' [AttrS] .), EqC') /\
< EqC3 ; Rls > := convertEq2RlAux2(BOPL, OP[TL], EqS', EqC") .

ceq buildSingleRule (BOPL, OP, TL, (eq OP' [OP [T, TL], TL'] T' [AttrS] .), EqC)

< replaceCondition(EqC, OP' [T, TL'], VAR) ;
(rl T" => OP" [TL', replaceTerm (T', OP' [T, TL'], VAR)]
[label (buildVar(OP, TL))] .) >

if ([ (bop OP' : Ty TyL -> Ty' .) ;
(op OP" : TyL' -> ' OValue [none] .) ] BOPL') BOPL /\

VAR := qid(string(buildVar(OP', TL')) + 11.11 + string(Ty')) /\

T" : OP" [TL', VAR] .




