JAIST Repository

https://dspace.jaist.ac.jp/

Title godooooooodouoooooooouoon
ooooooooooo

Author(s) oo, 00

Citation

Issue Date 2010-03

Type Thesis or Dissertation

Text version aut hor

URL http://hdl . handle.net/ 101119/ 8866

Rights

Description Supervisor: ggooo, oooooono, 00

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Efficient Algorithmsfor Geometric Graph Classes

by

Toshiki SAITOH

submitted to
Japan Advanced I nstitute of Science and Technology
in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Supervisor: Associate Professor Ryuhei Uehara

School of Information Science
Japan Advanced Institute of Science and Technol ogy

January 8, 2010

Abstract

It is said that every NP-hard problem has no efficient algorithm. However, many NP-hard
problems on general graphs can be solved efficiently if we restrict graphs to a geometric graph
class. For example, interval graphs form one of the geometric graph class. Coloring problem
whichiswell known NP-hard problem can be solved in linear timeon interval graphs. A variety
of geometric graph classes have been proposed and studied. In this paper, we treat with some
problems for geometric graph classes. These problems are random generation, enumeration,
and graph reconstruction, mainly.

We treat with unlabeled graphs to avoid redundancy. We propose random generation and
enumeration algorithmsfor connected proper interval graphs. We use counting for random gen-
eration algorithms, so we first give the number of connected proper interval graphs of n vertices.
Based on the number, we present a simple algorithm that generates a connected proper interval
graph uniformly at random up to isomorphism. Next we propose an enumeration algorithm of
connected proper interval graphs. This algorithm is based on the reverse search, and it out-
puts each connected proper interval graph in O(1) time. Then we propose random generation
and enumeration algorithms for connected bipartite permutation graphs. These algorithms are
extension of the algorithms of proper interval graphs.

The graph reconstruction conjecture is along-standing open problem in graph theory. There
are many algorithmic studiesrelated it besides mathematical studies, such as deck checking, le-
gitimate deck, preimage construction, and preimage counting. We study these algorithmic prob-
lems limiting the graph classes to interval graphs, permutation graphs, and distance-hereditary
graphs. Since we can solve graph isomorphism problem for these graph classes in polynomial
time, deck checking for these graph classes are easily done in polynomial time. Since the num-
ber of interval graphs that can be obtained from a graph by adding a vertex and edges incident
to it can be exponentially large, developing polynomial time algorithms for legitimate deck,
preimage construction, and preimage counting on these graphs are not trivial. We present that
these problems are solvable in polynomial time on these graph classes.

Acknowledgments

First of al, I would like to express my sincere gratitude to my principal adviser Professor
Ryuhel Uehara of Japan Advanced Institute of Science and Technology for his academic ad-
vice and kind guidance during thiswork. His persistent encouragement and support were really
helpful, and his way of looking at problem, way of presenting materials, and everything were
very exciting to me. He has had a profound influence throughout my academic career. At the
most basic level, he introduced me to the exciting subject of graph algorithm, and provided key
insights and direction on the research side; problem-solving techniques, publications, collabo-
rations, and academic politics. Especially, he provided me with experience of meeting to many
advanced research topics and great researchers who work world wide and actively in thefield of
theoretical computer science. He aso gave me some jobs as assistant and the pay was helpful.
Again, | show my gratitude to my supervisor.

| would like to thank my adviser Professor Tetsuo Asano of Japan Advanced Institute of
Science and Technology for his helpful suggestions, encouragements. He aways alowed me
to make remarks somewhat puerile or nonsense idea, and made some of them into interesting
research themes with fruitful and conscientious discussions.

| would like to express my gratitude to Professor Mineo Kaneko who kindly admitted to be
minor-research adviser, for helpful suggestions and encouragements.

| am no less grateful to the following people for their excellent comments and substan-
tial supports. Associate Professor Mitsuo Motoki of Kanazawa Technical College, Assistant
Professor Masashi Kiyomi of Japan Advanced Institute of Science and Technology, and the
enumeration algorithm seminar’s member.

Some of chaptersin thethesisare based on joint paperswith thefollowing collaborators. As-
sistant Professor Katsuhisa Yamanaka of University of Electro-Communications and Mr. Yota
Otachi of Gunma University.

Finally, | deeply thank my family for their love, patience, and encouragement, and for all
that they have done for my sake; thiswork is dedicated to them.

Contents

Abstract

Acknowledgments

1

I ntroduction

1.1 Random Generation and EnumerationProblems
1.2 GraphReconstructionProblem
1.3 Framework

Preliminaries
BasicGraph Notations
Interval Graphs e

21
2.2

2.3

24

25
2.6
2.7
2.8

221
222

Definitionof Interval Graphs
Compact Interval Representation

223 PQ-treeand MPQ-tree
Proper Interval Graphs

231
232

Definition of Proper Interval Graphs
String Representation.

PermutationGraphs

24.1
24.2

Definition of PermutationGraphs
Modular Decomposition

Bipartite PermutationGraphs o
Distance-Hereditary Graphs
Dyck path and Motzkinpath
Computational Model

Random Generation and Enumer ation

3.1 Random Generation of Proper Interval Graphs
3.2 Enumeration of Proper Interval Graphs.
3.3 Random Generation of Bipartite PermutationGraphs
3.4 Enumeration of Bipartite PermutationGraphs

Reconstruction
Interval Graphs e

4.1

41.1
4.1.2
4.1.3
4.1.4

Deck Checking
Non-interval Graph PreimageCase
Connected PreimageCase o i i i it
Disconnected PreimageCase v

4.2 PermutationGraphs e 45

421 DeckChecking e 46

4.2.2 Non-permutation Graph PreimageCase 46

423 Non-criticalCase e 46

424 Critica Case e 48

4.3 Distance-hereditary Graphs 50
431 DeckChecking e 50

4.3.2 Non-distance-hereditary Graph PreimageCase 51

4.3.3 Distance-hereditary PreimageCase 51

5 Efficient Algorithm for MPQ-tree 53
5.1 Ordered Compact Interval Representation 53
52 FindalP-nodesand@-nodes 55
53 Construct MPQ-tree 57

6 Concluding Remarks 60
A The canonical MPQ-treefor an interval graph 61
References 63
Publications 67

List of Figures

21
2.2

2.3
24

2.5

2.6
2.7
2.8
29
2.10
211
212
2.13
214

2.15
2.16

3.1
3.2
3.3
34
3.5
3.6
3.7

4.1
4.2
4.3
4.4

4.5
4.6

Aninterval graph and itsinterval representation. 7
Theforbidden graphsof interval graphs. The part described k containsk vertices
(k > 0). Thus (c) isachordless cycle of more than three vertices, (d) has more

than five vertices, and (e) has morethan fivevertices. 7
A compact interval representation of aninterval graph. 8
(&) Aninterval graph G. (b) A PQ-tree obtained from G with maximal cliques

Ci(i=1....,49.) AMPQ-treeof G. 9
(a) A proper interval graph G. (b) A proper interval representation of G. (c) A

unitinterval representationof G. 11
(&) A permutation graph. (b) itslinerepresentation. 13
(@) A linerepresentation £. (b) L. () LY. (d)LR. 13
Forbidden graphs of acomparability graph (k>0). 14
Graph and itsmodular decomposition L, 15
GraphHp. . . . 16
A bipartite permutation graph with itslinerepresentation. 17
Proper interval graphs from the bipartite permutation graph in Figure 2.11(a). . 17
Distance-hereditary graph. 19
Forbidden graphs of distance-hereditary graphs. The part described k contains

k vertices (k > 0). (a) hole. (b) house. (c) domino. (d)gem. 19
Dyckpath e 20
Motzkinpath e 20
FamilytreeTs 26
Caseandysisof candidateindices. 27
Anexampleof thebijection. o o 29
TherootinSys. o o o 33
Examplesof theparents. 34
Familytreeof Suz. 35
Construction of arepresentation in S; 4 from the jump representationin Sgs. . . 38
Constructing graph G’ from candidate graph G for deck checking 40
Vertices corresponding to the enclosed intervals are end-vertex set. 41

Compact interval representationsof GandG —s. INnG -5, S\ sisend-vertex set. 43
Compact interval representationsof G and G—s. InG-s, S\ sisnot end-vertex

Sl . L e 43
Addinganinterval [-1,-1] 44
Strong modules M;, M,, and M3 are minimal. We add aline segment in the line

representationof G[Ms]. 47

5.1 (a) Aninput interval representation. (b) The compact interval representation
corresponding to (a). (c) Data structure of ordered compact interval representa-
HON. . . . e

Vi

List of Algorithms

P OO ~NOOUT,WNPRE

=Y
wWN RO

find-all-child-strings 26
find-all-strings e 27
find-all-child-rep 37
deck-checking 40
connected-interval-preimage, 44
non-critical-preimage 438
critical-preimage e e e 49
reconstruct-distance-hereditary 52
construct-MPQ-tree 53
ordered-compact-interval-rep i 55
find-all-@Q-node 56
determine-parent-child-relation 58
create-secCctions i e e e e 58

Vii

Chapter 1

| ntroduction

It is said that every NP-hard problem has no efficient algorithm [18]. However, many NP-hard
problems on general graphs can be solved efficiently if we restrict graphs to a geometric graph
class. For example, interval graphs is one of the geometric graph class. Coloring problem
which is well known NP-hard problem can be solved in linear time on interval graphs. A
variety of geometric graph classes have been proposed and studied [9, 21, 48]. In this paper, we
treat with some problems for geometric graph classes. These problems are random generation,
enumeration, and graph reconstruction, mainly.

1.1 Random Generation and Enumer ation Problems

Recently there has arisen need to process huge amounts of data in the areas of data mining,
bioinformatics, etc. In order to find and classify knowledge automatically from the data, we
assume that the data have a certain structure. We have to attain three efficiencies to deal with
the complex structures: the structure has to be represented efficiently; essentially different in-
stances have to be enumerated efficiently; and the properties of the structure have to be checked
efficiently. In the area of graph drawing, there are several papers [7, 26, 35, 41]. From the
viewpoint of graph classes, the previously studied structures are relatively primitive, and there
are many unsolved problems for more complex structures: Trees are widely investigated as
amodel of such structured data [19, 29, 39, 40], and recently, distance-hereditary graphs are
studied [42].

In this paper, we investigate counting, random generation, and enumeration of graph classes
called proper interval graphs and bipartite permutation graphs. More precisely, we aim to count,
generate, and enumerate unlabeled connected proper interval graphs and bipartite permutation
graphs. From the practical point of view, “unlabeled” and “connected” are reasonable prop-
erties to avoid redundancy. On the other hand, however, they are aso challenges to develop
efficient algorithms. Especially, unlabeled property requires us to avoid generating isomor-
phic graphs. In other words, we have to recognize isomorphic graphs and suppress gener-
ating/counting/enumerating them twice or more. Roughly speaking, the graph isomorphism
problem has to be solved efficiently for our target graph classes in this context. The graph iso-
morphism problem is one of well-known basic problems, and it is still hard on very restricted
graph classes [51]. There are two well known graph classes that the graph isomorphism prob-
lem can be solved in polynomial time; interval graphs[36] and permutation graphs[10]. Hence,
these graph classes are the final goa in this framework. We mention that these graph classes
have been widely investigated since they are very basic graph classes from the viewpoint of

1

graph theory. Moreover, many algorithms have been developed that run efficiently on these
graph classes (see, e.g., [9, 21, 48]) since they have useful properties. From the practical point
of view, when an efficient algorithm is developed and implemented, we have to check itsrelia-
bility. In the time, we have to prepare many or all graphsin the class. Hence, for such popular
graph classes, efficient random generation and enumeration are important.

Unlabeled proper interval graphs can be naturally represented by a language over an apha-
bet = = {'[’,‘]'}. The number of strings representing proper interval graphsis strongly related
to a well known notion called Dyck path, which is a staircase walk from (0, 0) to (2n, 0) that
lies strictly below (but may touch) the diagonal x = 0. The number of Dyck paths of length nis
equal to Catalan number C(n). Thus, our results for counting and random generation of proper
interval graphs with n vertices are strongly related to C(n). The main difference is that we have
to consider isomorphism and symmetry in the case of proper interval graphs. For example, to
generate an unlabeled connected proper interval graph uniformly at random, we have to con-
sider the number of valid representations of each graph since it depends on the symmetry of
the graph. For example, to generate an unlabeled connected proper interval graph uniformly at
random, we have to consider the number of valid representations of each graph sinceit depends
on the symmetricity of the graph. We show in Section 3.1 that the number of connected proper
interval graphs of n + 1 verticesis %(C(n) + (Ln72 J)). Extending the result, we give an O(n) time
and a linear space algorithm that generates a connected proper interval graph with n vertices
uniformly at random.

In Section 3.3, we will show that an unlabeled connected bipartite permutation graph is
strongly related to an extension of a Motzkin path. Motzkin path is one natural extension of
the notion of Dyck path; a Dyck path can be seen as a sequence of +1 and —1, and a Motzkin
path can be seen as a sequence of +1, —1, and 0. An unlabeled connected bipartite permutation
graph related to a 2-Motzkin path that consistsof +1, —1, +0, and —0. Aswe will see, bipartite
permutation graphs have a certain structure, which can be seen as a generalization of the struc-
ture appearing in proper interval graphs implicitly. That is, developing some new nontrivia
techniques based on the results in proper interval graphs, we advance the random generation
algorithm of proper interval graphsto bipartite permutation graphs.

Enumeration agorithmsof proper interval graphsand bipartite permutation graphs are based
on the reverse search devel oped by Avisand Fukuda[2]. We design agood parent-child relation
among the geometric representations of these graph classes in order to perform the reverse
search efficiently. The relation allows us to perform each step of the reverse search in O(1)
time, and hence we have efficient algorithms that enumerates every unlabeled connected proper
interval graph and bipartite permutation graphs with n vertices in O(1) time and O(n) space.
(Each graph G is output in the form of the difference of edges between G and the previous one
so that the algorithm can output it in O(1) time.)

1.2 Graph Reconstruction Problem

Given asimple graph G = (V, E), we call the multi-set {G — v | v € V} the deck of G where
G - vis agraph obtained from G by removing vertex v and the incident edges. The graph
reconstruction conjecture by Ulam and Kelly! is that for any multi-set D of graphs with at
least two vertices there is at most one graph whose deck is D. We call a graph whose deck

1Determining the first person who proposed the graph reconstruction conjecture is difficult, actually. See [24]
for the detail.

is D apreimage of D. No counter example is known for this conjecture, and there are many
mathematical results about this conjecture. For exampletrees, regular graphs, and disconnected
graphs are reconstructible (i.e. the conjecture is true for these classes) [28]. Almost all graphs
are reconstructible from three well-chosen graphs in its deck [5]. Rimscha showed that many
subclasses of perfect graphs, for example interval graphs and permutation graphs, including
perfect graphsthemselvesare recognizable (i.e. looking at the deck of G one can decide whether
or not G belongs to perfect graphs) [45]. Rimscha also showed some of subclasses including
unit interval graphs are reconstructible. There are many good surveys about this conjecture. See
for example [6, 24].

Besides these mathematical results, there are some agorithmic results. We enumerate the
algorithmic problems that we address in this paper.

e Given a graph G and a multi-set D of graphs, check whether D is a deck of G (deck
checking).

e Givenamulti-set D of graphs, determine whether thereis a graph whose deck is D (legit-
imate deck).

e Givenamulti-set D of graphs, construct agraph whose deck is D (preimage construction).

e Given amulti-set D of graphs, compute the number of (pairwise nonisomorphic) graphs
whose decks are D (preimage counting).

Kratsch and Hemaspaandra showed that these problems are solvable in polynomial time for
graphs of bounded degree, partial k-trees for any fixed k, and graphs of bounded genus, in
particular for planar graphs[33]. In the same paper they proved many graph isomorphism(Gl)-
related complexity results. Hemaspaandra et a. extended the results [25].

In this paper, we treat with some graph classes that isomorphism problem can be solved
in polynomial time. Concretely, these graph classes are interval graphs, permutation graphs,
and distance-hereditary graphs. The graph isomorphism problem can be solved in polynomial
time on these graph classes, so developing a polynomial time algorithms for deck checking for
these graph classes is easy. However, the number of the ways of adding one vertex smply is
exponentia so the number of preimage candidates of input graphsis exponential. Thus the key
is how to decrease the candidates.

In this paper, we propose polynomial time reconstruction algorithms for interval graphs,
permutation graphs, and distance-hereditary graphs.

1.3 Framework

We first prepare to propose our algorithmsin Chapter 2. First, we state terminologies of graphs
in Section 2.1. Then, we define some graph classes and introduce some properties of these graph
classes. In Section 2.7, we explain a Dyck path and a Motzkin path for random generation of
proper interval graphs and bipartite permutation graphs.

We propose random generation and enumeration algorithms for proper interval graphs and
bipartite permutation graphs in Chapter 3. We show the random generation and enumeration
algorithms for proper interval graphsin Section 3.1 and 3.2, respectively, and for bipartite per-
mutation graphs in Section 3.3 and 3.4, respectively. We use counting argument for random
generation, so we count proper interval graphsin Section 3.1, and bipartite permutation graphs
in Section 3.3.

We present reconstruction algorithmsfor interval graphs, permutation graphs, and distance-
hereditary graphs in Chapter 4. In each section of Chapter 4, we first propose a deck checking
algorithm. Then we discuss that a preimage of input graphs is not the same graph class of the
input graphs. Finally, we present the reconstruction algorithmswhen a preimage of input graphs
is same the graph class of the input graphs.

In Chapter 5, we propose a simple construction MPQ-tree algorithm. MPQ-trees are infor-
mative data structure for interval graphs. By using MPQ-trees, we can solve the isomorphism
problem for interval graphs. Additionally, we use the MPQ-tree for the reconstruction algo-
rithm of interval graphs, implicitly. However, construction algorithm of MPQ-tree in [32] has
several templates, so the implementation of the algorithm is not easy. Our algorithm is simple
and efficient.

Finally we make some remarks in Chapter 6.

Chapter 2

Praiminaries

2.1 Basic Graph Notations

A graphisapair G = (V, E) of setssuch that E C V?; that is, the elements of E are 2-element
subsetsof V [15]. The elements of V are the vertices (or nodes) of the graph G and the elements
of E areits edges.

Let G = (V,E) beagraph, and edge e € E be e = {u, v}. Two vertices u, v are incident with
an edge e, and u is adjacent to v. The neighbor set of visthe set N(v) = {u € V | {u,Vv} € E}.
The closed neighbor set of visthe set N(v) U {v}, and we denote by N[v]. Verticesu and v are
called weak twinsif N(u) = N(v), and strong twins if N[u] = N[Vv].

The degree of avertex vis|N(v)| denoted by deg(v). A vertex viscalled apendant if visa
degree one vertex. A vertex of degree O isisolated. The sum of degrees of all verticesin graph
G isdenoted by deg(G). Note that deg(G) isequal to twice the number of edgesin G.

Two graphs G = (V,E) and G’ = (V’, E’) are isomorphic if and only if thereis a one-to-one
mapping ¢ : V — V’ which satisfies {u, v} € E if and only if {¢(u), ¢(v)} € E’ for every pair
of verticesu and v. When G isisomorphic to G’, we denote it by G ~ G’. The mapping ¢ is
called isomorphismfrom G to G’. Given graphs G and G’, graph isomorphism problem (Gl) is
the problem to determine whether or not G ~ G’.

A graph G’ = (V’,E’) isasubgraph of agraphG = (V,E) if V' € Vand E’ C E. A subgraph
G’ = (V/,E’) isaninduced subgraph of G = (V,E) if E’ = {{u,v} | u,v € V' and {u,Vv} € E}.
We say that G’ isinduced by V’ and write G[V’] for G’. For avertex v e V, wedenoteby G — v
the graph obtained by removing v and itsincident edgesfrom G. Let S beaset, and se€ S. We
denoteS\ {sjby S -s.

A graph G’ = (V',E’) iscomplement of G = (V,E) if V' =V and E’ = {{u,v} | u,ve V,u #
v, and {u, v} ¢ E}, and we denote complement of G by G = (V, E).

For agiven graph G = (V, E), asequence of distinct verticesvg, vy, - - - , V, isapath, denoted
by (Vo, V1, -+, Vp), if {vj,Vvj;1} € Eforeach 0 < j < £ - 1. Thelength of apath isthe number of
edges on the path. A sequence vo, V1, - -+, V,, Vg isacycleif vo, vy, - - -,V isapath and {v,, o} €
E. Thelength of acycleisthe number of edges on the cycle.

A graph G = (V, E) isconnected if for every pair of verticesu, v € V, thereis a path from u
tov. A graph G isdisconnected if G is not connected. A maximal connected subgraph of G is
called a component of G.

A graph G isatreeif G is connected and G contains no cycle. We consider one vertex of a
tree as special, such a vertex is called the root of the tree. A tree with afixed root is a rooted
tree. In arooted tree, ancestors of v are vertices in the path from v to root. If u is ancestor of

v, and u and v are adjacent, we call that u is parent of v and v is child of u. A tree has a vertex
which has no child, such avertex is called aleaf. An ordered tree isarooted tree for which an
ordering is specified for the children of each vertex.

A graph G = (V,E) iscomplete if all the vertices of G are pairwise adjacent. A complete
graph on n verticesisaK,. A subset V' C Visacliquein G if G[V’] is complete. A vertex
v e Vissimplicial in G if N(v) isacliquein G. A subset V' C V isan independent set in G if
no two verticesin V’ are adjacent.

A graph G = (V, E) is bipartite if V can be partitioned into two digoint sets X and Y such
that for every Xy, X, € X, {X1, X2} ¢ E andfor every y1,¥, € Y, {y1, y2} ¢ E. We denote a bipartite
graphby G = (X, Y, E).

A vertex v is universal in graph G if v connects to every vertex in G. We denote by G the
graph obtained by adding one universal vertex to the graph G.Thus, G is always connected.

Given two graphs G, and G,, we define the digoint union G;UG, of G, and G, as
(V1UV,, E1UE,) such that (Vy, E;) isisomorphicto G;, and (V», E») isisomorphic to G,, where
U means the digjoint union.

2.2 Interval Graphs

This section deals with interval graphs. First, we define interval graphs and their properties.
Next, we explain compact interval representation. We use compact interval representation for
reconstruction algorithm of interval graphs in Section 4.1. However, we use the MPQ-tree
instead of compact interval representation for the reconstruction algorithm, implicitly. Con-
struction algorithm of M#PQ-tree in [32] has several templates, so the implementation of the
algorithmis not easy. We propose a simple algorithm that constructs MPQ-tree from ainterval
representation in Chapter 5.

2.2.1 Définition of Interval Graphs

A graph (V,E) withV = {vy, vy, -+ ,V,} isan interval graph if thereis a set of intervals 7 =
{lv> vps -+, Iy}, such that {vi, vj} € Eif and only if Iy, N1y, # @ foreachiand jwith1 <i, j<n.
We call the set 1 of intervals interval representation of the graph. We show an example of a
interval graph and interval representation in Figure 2.1. For each interval |, we denote by L(I)
and R(I) the left and right endpoints of the interval, respectively (hence we have L(I) < R(1)).
Without loss of generality, we can assume that every interval is closed, so we denote an interval
| = [L(I),R(l)]. For two intervals| and J, we write | < Jif L(l) < L(J) and R(I) < R(J).
Interval | and interval J overlapif L(I) < L(J) < R(l) < R(J) or L) < L(l) < RIJ) < R(I).
Inthe Figure 2.1, 1, and I, and |4 and | overlap.
We introduce famous properties for interval graphs below.

Proposition 2.1. Any induced subgraph of an interval graph isan interval graph.

Lemma 2.2 (Fulkerson and Gross[16]). Aninterval graph on n vertices has at most n maximal
cliques.

Theorem 2.3 (Gilmore and Hoffman [20]). Graph G is an interval graph if and only if the
maximal cliques of G can be linearly ordered such that, for every vertex x of G, the maximal
cligues containing x occur consecutively.

b
P
a d e Ib Ic le
— I { | |
L
L |d]
C

Figure 2.1: Aninterval graph and itsinterval representation.

- Pk
—eo *o—o
(@) (b) (©)
k- > -k- -

(d) (€)

Figure 2.2: The forbidden graphs of interval graphs. The part described k contains k vertices
(k > 0). Thus(c) isachordless cycle of more than three vertices, (d) has more than five vertices,
and (e) has more than five vertices.

Theorem 2.4 (Lekkerkerker and Boland [34]). Graph G is an interval graph if and only if G
has no graph described in Figure 2.2 as an induced subgraph.

2.2.2 Compact Interval Representation

In this section, we define a compact interval representation and state its basic properties.

Definition 2.5 ([52]). Aninterval representation I of aninterval graph G = (V, E) is compact
if and only if

e coordinates of endpoints of intervalsin 7 are finite non-negative integers (e denote by
K the largest coordinates of endpoints for convenience. We sometimes call K the length
of 7),

e there exists at least one endpoint whose coordinateisk for every integer k € [0, K], and

e interval multi-set 7 = {l € 7 |k e I} differsfromZ, = {l € I || € |}, and they do not
include each other, for every distinct integersk, | € [0, K].

0o 1 2 3 4 5

Figure 2.3: A compact interval representation of an interval graph.

We show an example of acompact interval representation of an interval graphin Figure 2.3.
Note that there may still be many compact interval representations of an interval graph. How-
ever compact interval representations have some good properties.

Lemma2.6. Let 7 and g be compact interval representations of an interval graph G = (V, E),
and let K, bethe length of 7, and let K, be the length of 7. Then the following holds.

{lel|Oell{lel|lel},....{lel|Kiell}
={{leg|0ell,ileg|lel},....{leT|Kel}}

Proof. We denote by 7 the set of multi-set of intervals{{l € 7 |Oel},{l eI |1lel},....{l €
I | Ky € 1}}, and we denote by 7 the set of multi-set of intervals{{l € F|0el},{l e T|1¢€
1},....{l € I |K; € 1}}. Theverticesrepresented by themulti-set of intervals 7 = {l € 7' |i € I}
correspondto acliquein G. Assumethat 7; never appearsin g for somei. Since Z; representsa
clique C, there must be a set of intervals representing aclique C’ containing C in g (otherwise,
clique C cannot berepresented in 7). Thenfor the samereason, 7 must contain aset of intervals
representing a clique containing C’. This contradicts the compactness of 7. O

From the proof of Lemma 2.6, the following lemmas are straightforward.

Lemma2.7. Let 7 beacompact interval representation of an interval graph G = (V, E), and let
K bethelengthof 7. Then{l € I |i € I} for eachi € {0,..., K} corresponds to each maximal
cligue of G.

Lemma 2.8. The length of a compact interval representation of an n-vertex interval graphisat
most n.

Lemma2.9. All thecompact interval representationsof an interval graph have the same length.
Intervalsin different compact interval representations corresponding to an identical vertex have
the same length.

From Lemma 2.9, lengths of intervals corresponding to a vertex that corresponds to an
interval of length zero in some compact interval representation are always (i.e. in any compact
interval representation) zero.

Lemma 2.10. Vertices corresponding to intervals of length zero in a compact interval repre-
sentation are simplicial.

1 3 5
C1={1,2,4}

ca C={134} 1]13]3 7
2 4 6 C3={3,4,5,6} | | |
Ci C2 C3 Ca={4,7} 2 ¢ 56
.

(@) (b) ©

Figure 2.4: (a) An interval graph G. (b) A PQ-tree obtained from G with maximal cliques C;
(i=1,...,4). (c) A MPQ-tree of G.

2.2.3 PQ-tree and MPQ-tree

The PQ-tree was introduced by Booth and Lueker [8]. We can use it for recognizing interval
graphs. A PQ-tree is arooted tree T with two types of internal nodes, - and Q-nodes. The
leavesof T arelabeled one-to-onewith the maximal cliques of theinterval graph G. Thefrontier
of aPQ-tree T isthe permutation of the maximal cliques obtained by the ordering of the leaves
of T from left to right. The definition that #Q-tree T correspondsto aninterval graph G isgiven
asfollows[8].

Definition 2.11. APQ-tree T correspondsto an interval graph G, if and only if, for every PQ-
tree T’ obtained from T by applying the following rules (1) and (2) a finite number of times,
there is a consecutive arrangement of the maximal cliques on G that represents for the frontier
of T":

(1) Arbitrarily permute the successor nodes of a $-node, or
(2) reversethe order of the successor nodes of a Q-node.

See Figure 2.4(b); we designate a -node by a circle and a Q-node by a wide rectangle.
Booth and Lueker developed a linear time algorithm that either constructs a PQ-tree for G, or
states that G is not an interval graph.

The PQ-tree with appropriate label defined by the maximal cliques is canonical; that is,
given interval graphs G; and G, are isomorphic if and only if corresponding labeled PQ-trees
T, and T, are isomorphic. Since we can determine if two labeled PQ-trees T, and T, are
isomorphic in linear time, the graph isomorphism problem of interval graphs can be solved in
linear time (see [8, 36] for further details).

The M#PQ-tree model, which stands for modified PQ-tree, is developed by Korte and
Mohring to simplify the algorithm for the PQ-tree [32]. The MPQ-tree T* assigns sets of
vertices (or intervals from the view of interval representation) to the nodes of a PQ-tree T rep-
resenting an interval graph G = (V, E). It is possible that no vertices is assigned to some nodes.
A P-node is assigned only one set, while a Q-node has a set for each of its children (ordered
from left to right according to the ordering of the children). For a#-node P, this set consists of
those vertices of G contained in al maximal cliques represented by the subtree of Pin T, but in
no other cliques.

For a Q-node Q, the definition is more involved. Let Qq, - - -, Qn, be the set of the children
(in consecutive order) of Q, and let T; be the subtree of T with root Q; (note that m > 3). We

then assign a set S;, called section, to Q for each Q;. Section S; contains all vertices that are
contained in all maximal cliques of T; and some other T, but not in any clique belonging to
some other subtree of T that isnot below Q (see Figure 2.4(c)). The key property of MPQ-trees
issummarized as follows:

Theorem 2.12 ([32, Theorem 2.1]). Let T be a PQ-tree for an interval graph G = (V, E) and
let T* be the associated MPQ-tree. Then we have the following:

(a) T* can be obtained from T in O(|V| + |E|) time and represents G in O(|V|) space.

(b) Each maximal clique of G corresponds to a path in T* from the root to a leaf, where each
vertex v e V isas close as possible to the root.

(c) In T*, each vertex v appears in either one leaf, one $-node, or consecutive sections
Si, Si1, -+ -, Siyj for some Q-node with j > 0.

Property (b) is the essential property of MPQ-trees. For example, the root of T* contains
all vertices belonging to all maximal cliques, and the leaves contain the simplicial vertices of G.
In [32], they did not state Theorem 2.12(c) explicitly. Theorem 2.12(c) isimmediately obtained
from the fact that the maximal cliques containing a fixed vertex occur consecutively in T(c.f.
Theorem 2.3 and Lemma 2.7). Korte and Mohring state the following lemma in [32] as the
essential properties of the MPQ-tree:

Lemma 2.13 ([32, Lemma 2.2]). Let N be a Q-node. Let S,,..., Sy, (in this order) be the
sections of N, and let V; denote the set of vertices occurring below S; in the MPQ-tree T with
1 < i < m. Then we have the following:

@Si.iNnSj#0fori=2,...,m.

(b) S;cS,andS,1 2 Sy

(c) V1 # 0 and Vy, # 0.

(d) SNS;1\S1#0andS;_1NS;\Sy,#0fori=2,...,m-1.

However, under this conditions, the MPQ-tree is not uniquely determined. There exist two
or more nonisomorphic MPQ-trees for an interval graph. The reason is that two consecutive
sections S; and S;;; can be equal. In the case, we swap them and obtain the different MPQ-
trees. We note that this fact does not imply that the resultsin [32] is wrong. The uniqueness
of the MPQ-tree is not required in their paper, and they did not mind it [37]. However, their
algorithms for the construction of an MPQ-tree surely produce the unique MPQ-tree, which
satisfies the following additional condition (see Appendix A for further details):

(e Sii#Sifori=2,....m-1.

The condition (e) implies that we can rewrite the condition (b) as follows:

(b) S, cS, and Sme1 2 Sy

Hereafter, we will use the conditionsfrom (a) to (€) as the basic properties of an MPQ-tree.

2.3 Proper Interval Graphs

In this section, we introduce proper interval graphs which form a subclass of interval graphs.
Proper interval graphs correspond to strings, and we use string representation of a proper inter-
val graph for random generation (Section 3.1) and enumeration algorithms (Section 3.2). We
will explain string representation of proper interval graphs.

10

e Ib lc Ib lc
Id Id
— I

(@ (b) (©

Figure 2.5: (a) A proper interval graph G. (b) A proper interval representation of G. (c) A unit
interval representation of G.

2.3.1 Definition of Proper Interval Graphs

Aninterval representation is proper if no two distinct intervals| and J exist such that | properly
contains J or viceversa. That is, either | < Jor J < | holdsfor every pair of intervals| and J.
Aninterval graph is proper if it has a proper interval representation (see Figure 2.5(a) and (b)).
If aninterval graph G has an interval representation 7 such that every interval in 7 hasthe same
length, G issaid to be aunit interval graph. Such interval representationiscalled aunit interval
representation (see Figure 2.5(c)). It iswell known that proper interval graphs coincide with
unit interval graphs [46]. That is, given a proper interval representation, we can transform it to
aunit interval representation. A simple constructive way of the transformation can be found in
[4]. With perturbations if necessary, we can assume without loss of generality that L(I) # L(J)
(and hence R(1) # R(J)), and R(I) # L(J) for any two distinct intervals| and J in aunit interval
representation 7. In a unit interval representation, we assume that the intervals are sorted by
left endpoint values.

2.3.2 String Representation

We denote an alphabet {'[’,‘]'} by X throughout the paper. We encode a unit interval repre-
sentation 7 of a unit interval graph G by a string s(Z) in £* as follows; we sweep the interval
representation from left to right, and encode L(1) by ‘[" and encode R(l) by ‘]’ foreach | € T
(e.9., S(Z) = [[[I[1[1]1] in Figure 2.5(c)). We call the encoded string a string representation of G.
We say that astring x in £* is balanced if the number of ‘['sin x isequal to that of ‘]'s. Clearly
S(7) is abalanced string of 2n letters. Using the construction in [4], S(Z) can be constructed
from a proper interval representation 7 in O(n) time and vice versa since theith ‘[’ and theith
‘1" give the left and right endpoints of the ith interval, respectively.

We denote ‘[= ‘]" and ‘" = ‘[’ respectively. For two strings X = XX« -- X, and y =
ViYo - - - Ym IN Z¥, we say that x issmaller thany if (1) n<m, or (2) n = mand there exists an
indexie{1,...,n}suchthat x, =y, forali’ <iandx = ‘[andy; = ‘]". If xissmaller thany,
we denote x < y. We note that the balanced string X = [[- - - []] - - -] isthe smallest among those
of the same length. For astring x = X; X, - - - X, we define the reverse X of X by X = X, Xq_1 - - - X1.
A string x is symmetric if x = x. Here we have the following lemma:

Lemma 2.14 (See, e.g., [13, Corollary 2.5]). Let G be a connected proper interval graph, and
I and 7’ be any two unit interval representationsof G. Then either s(7) = s(Z”) or S(Z) = S(Z7)
holds. That is, the unit interval representation and hence the string representation of a proper
interval graph is determined uniquely up to isomorphism.

11

Notethat G is supposed to be connected in Lemma2.14. If G isdisconnected, we can obtain
severa distinct string representations by arranging the connected components.

A connected proper interval graph G is said to be symmetric if its string representation is
symmetric.

It is easier for our purpose (counting, random generation, and enumeration of unlabeled
proper interval graphs) to deal with the encoded stringsin £* than to useinterval representations.
Given an interval representation I of a proper interval graph G, the smaller of the two string
representations s(J) and s(7) is called canonical. If s(X) is symmetric, s(J) is the canonical
string representation. Hereafter we sometimes identify a connected proper interval graph G
with its canonical string representation.

For astring X = XX --- X, € X" of length n, we define the height h,(i) (i € {0,...,n}) as
follows;

0 ifi = 0,
hx(i)={ h(i-1)+1 ifx="[,
h(i—1)-1 ifx="T.

We say that a string x is nonnegative if min;{hy(i)} isequal to O (we do not have min;{h,(i)} > O
since hy(0) = 0). The following observation isimmediate:

Observation 2.15. Let X = X1 Xy - - - Xon be @ string in 2", (1) xisa string representation of a
(not necessarily connected) proper interval graph if and only if x is balanced and nonnegative.

(2) xisastring representation of a connected proper interval graph if and only if x; = *[’
and xon = ‘], and the string X, - - - Xon_1 1S balanced and nonnegative.

A balanced nonnegative string of length 2n correspondsto awell-known notion called Dyck
path. We will explain Dyck path in section 2.7.

2.4 Permutation Graphs

In this section, first, we define permutation graphs and explain its basic properties. Next, we
explain modular decompositions. Modular decomposition deeply relates to permutation. For
example, using the modular decomposition, we can solve the recognition and isomorphism
problems of permutation graphs. In Section 4.2, we will propose a reconstruction algorithm for
permutation by using modular decomposition.

2.4.1 Définition of Permutation Graphs

A graph G = (V,E) with V = {vi,V,,...,V,} is said to be a permutation graph if and only if
there is a permutation over V such that {vi,v;} € E if and only if (i — j)(n(vi) — n(v;)) < O.
Intuitively, each vertex v; in a permutation graph corresponds to a line ¢; joining two points
on two parallel lines L; and L,. Then two vertices v; and v; are adjacent if and only if the
corresponding lines ¢; and ¢; intersect. The ordering of vertices givesthe ordering of the points
on L3, and the ordering by permutation over V givesthe ordering of the pointson L,. We call
the intersection model a line representation of the permutation graph. For example, Figure 2.6
isapermutation and its line representation, and a permutation 7 = (3,4, 1, 6,5, 2) of Figure 2.6.
Precisely, a line representation £ of a permutation graph G = (V, E) with |V| = n consists of
two parallel linesL; and L, and n points are at regular intervalson L; and L,, respectively. We

12

1 2 3 4 5 6

1 XX

3 416 5 2
(@) (b)

Figure 2.6: (a) A permutation graph. (b) its line representation.

~N pd
@ (b)
tv'ﬂip Rotation tv_ﬂip
(d)

Figure 2.7: (a) A linerepresentation £. (b)LH. (c)£Y. (d)LR.

(©

suppose that these points are numbered from 1 to n on the lines from left to right. Then each
vertex v; € V corresponds to a pair of points (i, z(i)), which means the point i on L; and the
point z(i) on L, are joined by the corresponding line ¢;. For two line representations £ and £/,
suppose £ contains (i, j) if and only if £’ contains (i, j). Then we call them isomorphic and
denoteby £ = L.

Let £ = (L, L,) bealinerepresentation of apermutation graph G = (V, E). For aconnected
permutation graph G, we can construct essentially equivalent representations by flipping £.
On a horizontal flip £H (H-flip for short) of £, each line (i, j) on £ is mapped to the line
(n—i+1,n-j+1). Onavertical flip £Y (V-flip for short) of £, eachline (i, j) on £ is mapped
to the line (j,i). For aline representation £, it is not difficult to see that (L")Y = (£Y)" gives
us a rotation of £. Hence we denote the line representation by LR after this operation (see
Figure 2.7).

We introduce famous properties for permutation graphs bel ow.

Proposition 2.16. Aninduced subgraph of a permutation graph is a permutation graph.

Theorem 2.17 (Pnueli, Lempel, and Even [44]). Graph G isa permutation graphif and only if
G isa comparability graph and a co-comparability graph.

Lemma 2.18 (Gllai [17]). Graph G is a comparability graph if and only if G is (Cy,g, T2, Xo,
X3, X0, Xa1, Xa2, Xaz, Xaa, Xas, XF2<+3, XF5tt, XF, XFX, XF2+3, XF2+2)freg; that is, G has no

13

Dl D

k+1 k K 2k+3 2k+2

Figure 2.8: Forbidden graphs of a comparability graph (k > 0).

graph described in Figure 2.8 as an induced subgraph.
From Theorem 2.17 and Lemma 2.18, we can obtain next theorem, immediately.

Theorem 2.19. Graph G isa permutation graphif and only if GisT,, Xp, X3, X30, X31, Xa2, Xa3,
Xaa, Xa6, XFH3, XFETL, XFs, XF, XF2<+3, XF2+2)-free and co — (Ciss, T2, Xo, Xa, Xa0, Xa1, Xa2
Xa3, Xaa, Xag, XF7H3, XF5tL, XFK, XFK, XF2<+3, XF2+2)-free; that is, G has no graph described
in Figure 2.8 and the complements of them as an induced subgraph.

2.4.2 Modular Decomposition

Modular decomposition is a strong tool for developing fast algorithmsin many areas. Here we
summarize it. For the detail see for example [9, 48].

Let G = (V,E) beagraph. Thesubset M c Visamodulein G, if for all verticesu,ve M
andw € V\ M, {u,w} € Eif and only if {v,w} € E. A module M inG istrivial if M =V,
M =0, or M| = 1. Giscalled aprime (with respect to modular decomposition) if G contains
only trivial modules. A module M is strong if it does not overlap any other modulesin G, i.e.

MNM =0, Mc M, or M c M

holds for any other module M’ in G. We call a module that contains at least two vertices a
multi-vertex module.

A modular decomposition tree of agraph G isarooted tree whose each node corresponds to
each strong module of G such that for any two nodes N; and N, which correspond to modules
M; and M, respectively, N; is an ancestor of N, if and only if M; contains M,. We sometimes
say that strong module M; is the parent of strong module M,, and M, is a child of My, if
the node corresponding to M; is the parent of the node corresponding to M, in the modular
decomposition tree (see Figure 2.9).

A strong multi-vertex module M in graph G whose child modules are disconnected to each
other in G[M] is a parallel module. A strong multi-vertex module M in graph G whose child

14

9 10 12 13

Figure 2.9: Graph and its modular decomposition

modules are disconnect to each other in G[M] is a series module. Let M’ be a strong multi-
vertex module. If M’ is not a parallel module, and M’ is not a series module, then M’ is called
aprimemodule. A graph induced by a prime module is connected in both G and G [48].

We say a strong multi-vertex module M is minimal if every child of M is a module of one
vertex. Note that every graph of the size more than one has at least one minimal strong multi-
vertex module. We introduce a basic lemma.

Lemma 2.20 (Gallai [17]). A minimal strong multi-vertex module that is a prime module in-
duces a prime.

Lemma 2.21. A minimal strong multi-vertex module is either a clique, independent set, or
prime.

Let G = (V,E) beaprime. We say that G iscritical if G — visnot aprimeforany v e V.
We define graph H,,. H, isabipartitegraph (X, Y, E) suchthat X = {X1,..., %}, Y = {Y1,...,¥n},
and {x;,y;} € Eif andonly if i < j. See Figure 2.10.

Theorem 2.22 (Schmerl and Trotter [47]). Given prime graph G = (V,E) with [V| > 2, G is
critical if and only if G isisomorphicto H,, or to H,.

Hence the number of verticesin acritical graph is always even.

2.5 Bipartite Permutation Graphs

When a permutation graph is bipartite, it is said to be a bipartite permutation graph (see Fig-
ure 2.11). Then the following lemma holds:

15

Figure 2.10: Graph H,,.

Lemma 2.23. Let G = (X, Y, E) be a connected bipartite permutation graph with [X] > 0 and
Y| > 0and £ = (L;, L) its line representation. Without loss of generality, we assume that
vy € X correspondsto (1,i) for somei with1 < i < n. Then X and Y satisfy that X = {v; |

V; correspondsto (i, j) withi < jland Y = {v; | v; correspondsto (i, j) withi > j}.

Proof. If v; € X correspondsto (1, 1), G isdisconnected. Hence v, = (1,1) withi > 1 and there
isavertex v;, correspondingto (i’, 1) withi’ > 1. Clearly, £, and ¢; intersect. Hencev; € Y, and
v; and v, satisfy the condition.

To derive a contradiction, we assume that there isav; € X that corresponds to (j, j’) with
j = Jin G. Without loss of generality, every vertex corresponding to £ = (k, k') withk < j
satisfies the condition of the lemma. Then let x; be the number of vertices in X placed before
vj on L, and y; the number of verticesin Y placed before v; on L,, respectively. Moreover,
let y; be the number of verticesin'Y placed beforevj on L,. If j = j/, wehave j — xj = Y| =
yj. Hence G is disconnected, which is a contradiction. Thus assume j > j’. Then, we have
yi+X =] -1<]j-1=Xx;+Y;, equivaently,y; > y;. Thusthereexistsvi € Y with {, = (k, k')
such that k < jand j* < k'. We suppose that v is the leftmost one among such vertices. |If
N(vi) N XN {vy, ..., i1} isempty, itisnot difficult to see that G is not connected (since v; and
Vi are the leftmost pair of the second connected component). Hence vy has some neighbor, say
Vi, IN XN {vy, ..., Vic1). By the assumption, for £ = (], '), & = (k. k'), and £x(X, X'), we have
x<k<jand | <k <x. Thisimpliesthat £; and ¢, intersect, which contradicts that v; and v,
arein X. With asymmetric argument for Y, the lemmafollows. O

One important property isthat they are unique up to isomorphism like Lemma 2.14:

Lemma 2.24. Let G = (V, E) be a connected bipartite permutation graph, and £ and £’ any
two line representations of G. Thenoneof £ = £/, L = LM, £ = £V, and £ = £'R holds.
That is, the line representation of G is unique up to isomor phism.

Proof. By Lemma 2.23, we can partition V to X and Y. Let G[X] = (X, Ex) be a graph
obtained from G by joining two vertices x, X’ € X if and only if N(X) N N(X') # 0. That is,
two vertices x and x’ are joined in G?[X] if the distance between them is 2. In other words, x
and X’ are joined by some vertex in Y. We first show that G2[X] is a connected proper interval
graph. Intuitively, from aline representation of G, we can obtain the interval representation of
G?[X] as follows (see Figure 2.12(a)): we first rearrange the vertices in Y to vertical lines at
regular intervals, and next make the vertices x in X be horizontal intervals spanning N(x). Then

16

1
5
2 6
1 2 3 456 7 8 9 10 11 12
4 8
, 9
1
10
12

(@ (b)

Figure 2.11: A bipartite permutation graph with its line representation.

3 5 6 8 9 11 12 10
O o o o
A 1
2 7 °
1 10

(@ (b)

Figure 2.12: Proper interval graphs from the bipartite permutation graph in Figure 2.11(a).

17

the resultant intervals corresponding to the vertices x in X are proper, and this proper interval
representation can be transformed to the unit interval representation in astraightforward way in
[4]. The resultant graph G?[X] is also connected. Thus Lemma 2.14 implies that the resultant
unit interval representation is unique up to reversal. G?[Y] can be defined in a symmetric way
(see Figure 2.12(b)).

Now, we consider the rewind of this process. Given connected bipartite permutation graph
G = (V,E), Xand Y are determined from G uniquely by Lemma 2.23. Then, by the discussion
above, two proper interval graphs G2[X] and G?[Y] are uniquely determined. By Lemma 2.14,
these unit interval graphs correspond to the unique interval representations. Thus, these unit
interval representations give the unique orderings of X and Y in a natural way, respectively.
Thus, combining these two orderings on X and Y with G = (X, Y, E), we can construct the
line representation of G uniquely as follows. First, we pick up the “leftmost” vertex x; in X
according to the ordering of X. Then pick up the “leftmost” vertex y; from N(x;) according to
the ordering of Y. Now all verticesin N(x;) are placed before x; on L, according to the ordering
of Y, and al verticesin N(y,) are placed before y; on L; according to the ordering of X. Next
we proceeds to x, and y,, and so on. By a simple induction for the size of graph, we can show
that the line representation of G is uniquely determined up to isomorphism. O

Let G = (V, E) be a connected bipartite permutation graph, and £, £, £V, LR itsfour line
representations. It iseasy to see that some of them can beisomorphic. We say G isH-symmetric,
V-symmetric, and R-symmetricif £ = £", £ = £V, and £ = LR, respectively.

Here, we map each representation £ to a string s(£) in £* as follows. We first sweep
the endpoints from left to right on L;, and construct a string s,(£) by adding ‘[when the
endpoint isin X, and ‘]" when the endpoint isin Y (e.g., s1:(£) = [[I[11[]][]] in Figure 2.11).
Next we sweep the endpoints from left to right on L,, and construct a string s,(£) by adding
‘[' when the endpoint isin Y, and ‘]’ when the endpoint isin X (e.g., sx(£) = [I[][[[[][]] in
Figure 2.11). Finaly, we concatenate s,(£) after s;(£) and obtain the resultant string (e.g.,
S(£) = [T in Figure 2.11).

Using the string, we define a canonical representation of G as follows. We first sup-
pose that G is neither H-symmetric, V-symmetric, nor R-symmetric. Thus al strings
S(L), (L), sS(£Y), S(LR) are distinct. Then the canonical representation is the one correspond-
ing to the smallest string. When G satisfies exactly one symmetrical ness with respect to H-flip,
V-flip, or rotation, then four possible representations give two distinct strings. Then the canon-
ical representation is the one corresponding to the smaller string. If G satisfies two symmetri-
calnesses, the last symmetricalnessis also satisfied. Hence, in the case, four representations are
isomorphic and this gives the unique canonical representation. By Lemma 2.24, this rule gives
us a one-to-one mapping between bipartite permutation graphs and canonical representations.

2.6 Distance-Hereditary Graphs

An undirected graph G is distance-hereditary if and only if G is connected, and for any two
distinct vertices x and y in G the length of induced paths between x and y are the same. It
is convenient to define a new graph class not to care if graphs are connected. We define an
undirected graph G is weakly distance-hereditary if and only if for any two distinct vertices x
andy in G the length of induced paths between x and y are the same.

We define a useful pruning sequence for distance-hereditary graphs. We introduce the fol-
lowing two lemmas.

18

<>

2 3

Figure 2.13: Distance-hereditary graph.

(@ (b) (© (d)

Figure 2.14: Forbidden graphs of distance-hereditary graphs. The part described k contains k
vertices (k > 0). (a) hale. (b) house. (c) domino. (d) gem.

Lemma 2.25 (Bendelt and Mulder [3]). Given a graph G = (V, E), and two verticesu,v € V
aretwin. Then G is distance-hereditary if and only if G — u and G — v are distance-hereditary.

Lemma 2.26 (Bendelt and Mulder [3]). Graph G = (V, E) has a pendant vertexw € V. Then G
isdistance-hereditary if and only if G — w is distance-hereditary.

Lemmas 2.25 and 2.26 give rise to an elimination scheme characterization of distance-
hereditary graphs. A sequence Vv, ...V, isapruning sequence if each v; either a pendant vertex
in the graph induced by {v; ... Vv,}, or atwin of some vertex in the graph induced by {v; ... Vv,}.

Theorem 2.27 (Bendelt and Mulder [3]). Graph G isdistance-hereditary if and only if G hasa
pruning sequence.

Nakano et al. proposed a DH-tree for a distance-hereditary graph [42]. We can see the tree
as auniquely defined canonical form of distance-hereditary graphs isomorphic to each other.

Theorem 2.28 (Bendelt and Mulder [3]). Graph G is distance-hereditary if and only if G is
connected, and (hole, house, domino, gem)-free; that is, G has none of the graphsin Figure 2.14
as an induced subgraph.

2.7 Dyck path and Motzkin path

We explain a Dyck path and a Motzkin path for random generation of proper interval graphs and
bipartite permutation graphs. A path in the (x,y) plane from (0, 0) to (2n, 0) with steps (1, 1)
and (1, —1) iscalled a Dyck path of length 2nif it never pass below the x-axis (see Figure 2.15).
It iswell known that the number of Dyck paths of length n is given by the nth Catalan number
C(n) := L(%) (see [50, Corollary 6.2.3] for further details). We will use one of the generalized

n+1

19

(89

(0,0) (16,0

Figure 2.15: Dyck path

(0,0) (8,0

Figure 2.16: Motzkin path

notions of Catalan number; C(n, k) := %((nr_‘f(l/z), which gives us the number of subpaths of
Dyck paths from (0, 0) to (n, k). This can be obtained by a generalized Raney’s lemma about
m-Raney sequences with letting m = 2, length n, and total sum k; see [22, Equation (7.69),
p. 349] for further details.

A path in the (x,y) plane from (0, 0) to (n, 0) with steps (1, 0), (1,1), and (1,-1) is called
a Motzkin path of length n if it never go below the x-axis (see Figure 2.16 and [50, Exercise
6.38] for further details). The number of Motzkin paths of length n is called Motzkin number
M(n); eg., M(1) = 1L, M(2) = 2, M(3) = 4, M(4) = 9, M(5) = 21, M(6) = 51. A 2-Motzkin
path is a Motzkin path that has two kinds of step (1,0). We distinguish them by (1, +0) and
(1, -0). Deutsch and Shapiro show that 2-Motzkin paths have correspondences to ordered trees
and others[14].

In paths above, each step consists of (1, X) for some x in {+1, +0}. Hence we will denote a
path by a sequence of such integers x in {1, +0}.

2.8 Computational M odel

Time complexity is measured by the number of arithmetic operations in the random generation
algorithms. Especially we assume that each binomial coefficient and each (generalized) Catalan
number can be computed in O(1) time. Moreover we assume that the basic arithmetic operations
of these numbers can be donein O(1) time. Actually, abinomial coefficient and a (generalized)
Catalan number requirelinear bits, so thisassumptionisclearly out of the standard RAM model.

20

We have to multiply the time complexity of calculation of these numbersto the complexitieswe
show to obtain the time complexity in the standard RAM model. We employ the assumption in
Section 3.1, 3.3 to simplify the discussion. It is worth remarking that the other algorithms does
not require the assumption, and all the results are valid on the standard RAM mode!.

21

Chapter 3

Random Generation and Enumer ation

3.1 Random Generation of Proper Interval Graphs

In this section, we count the number of mutually nonisomorphic proper interval graphs. We also
propose an algorithm that efficiently generates a proper interval graph uniformly at random.

The number of proper interval graphs has been given by the recurrence equation in [23].
The closed equation of the number of proper interval graphs has been mentioned informally by
Karttunen in 2002 [27]. We here give an explicit proof so that we use some notions for random
generation.

Theorem 3.1 (Karttunen 2002). For any positive integer n, the number of connected proper

interval graphsof n + 1 verticesis %(C(n) + (Ln’/‘ZJ).

Proof. We define three sets S(n), T(n), and U(n) of stringsin 2" of length 2n by

S(n) = {x| xisbaanced, nonnegative, |x = 2n, and X is symmetric},

T(n) = {x| xisbaanced, nonnegative, |x| = 2n, and x is not symmetric}, and

U(n) = {x| xisbaanced, nonnegative, and x| = 2n}.

A balanced nonnegative string corresponds to a Dyck path, so |U(n)| = C(n).

The number of connected proper interval graphs of n + 1 vertices is equal to [T(n)| /2 +
IS(n)| = [UN)I /2 +IS(n)I /2 = 3(C(n) + IS(n)]), by Observation 2.15. The number of elements
in S(n) is equal to that of nonnegative strings X’ of length n, since each symmetric string x is
obtained by the concatenation of strings X’ and x'.

Now the task is the evaluation of the number of nonnegative strings x of length n with
hy(n) = h. Clearly we have C(n, h) = O if h > n. The following equations hold for each integers
iandkwithO <i < k.

(1) C(2k, 21 +1) =0,C(2k+1,2i) =0,

(2) C(2k,0) = C(k), C(k,k) = 1, and

() Ck,i)=Ck-21,i-1)+C(k-1,i +1).

Itisnecessary toshow YL, C(n,i) = (Ln;‘z J) to complete the proof. Thisequation can be obtained
from Equation (5.18) in [22]. O

Next we consider the uniform random generation of a proper interval graph of n vertices.

Theorem 3.2. For any given positive integer n, a connected proper interval graph with n ver-
tices can be generated uniformly at randomin O(n) time and O(n) space. The time complexity
to convert the string representation to a graph representation is O(n+ m) where mis the number
of edges of the created graph.

22

Proof. We denote by y = y; - - - Y2, the canonical string of a connected proper interval graph
G = (V,E) tobeobtained. Wefixy, = ‘[and y,, = ‘]’ and generate X = X; - - - Xop Withy = [X],
wheren’ = n— 1 and x is a balanced nonnegative string.

The idea is simple; just generate a balanced nonnegative string x. However each non-
symmetric graph corresponds to two balanced nonnegative strings, while each symmetric
graph corresponds to exactly one balanced nonnegative (Ssymmetric) string. We use the equa-
tion [T(n')| /2 + |S(n)] = |U(N)] /2 + |S(N')| /2 = %(C(n’) + |S(n’)|) in Theorem 3.1 in or-
der to adjust the generation probabilities. The algorithm first selects which type of string
to generate: (1) a balanced nonnegative string (that can be symmetric) with probability
U /(U)] + IS(M)]) = CM)/(C(N) + (,1),)) OF (2) a balanced nonnegative symmetric
string with probability 1S(n')| /(U(W)| + IS(M)l) = ((7,,)/(C() + (,f5,))- This probabilis-
tic choice adjusts the generation probabilities between symmetric graphs and non-symmetric
graphs.

In each case, the algorithm generates each string uniformly at random using the function
C(n, h) introduced in the proof of Theorem 3.1 as follows:

Case 1: Generation of a balanced nonnegative string of length 2n” uniformly at random. There
is a known agorithm for this purpose [1]. We simply generate sequence of ‘[" and ‘]’ from
left to right. Assume that the algorithm has already generated a nonnegative string X; - - - X of
length k with k < 2n’. Next, we choose either ‘[’ or ‘]’ as X,1. The choice between aternative
next states must be made on the basis of the proportion of terminal strings reached through the
alternatives. The number of nonnegative strings that the next letter is‘[" is p = C(r, hy(k) + 1),
and the number of nonnegative strings that the next letter is‘]" isq = C(r, hy(k) — 1), wherer is
equal to 2n’ — k — 1. Choose ‘[’ as the next letter with probability p/(p + g) = &xr20-hdo+1)

2(r+1)(hy(k)+1)
and choose] with probability p/(p+a) = B Y Then we have a balanced nonnegative
string of length 2n’ uniformly at random.

Case 2. Generation of a balanced nonnegative symmetric string of length 2n” uniformly
at random. The desired balanced nonnegative symmetric string x can be represented as
X = XgXp * + + Xry_1 Xp Xey Xpy—1 + - + Xo X1, Where X3 %, - - - Xy iS @ nonnegative string of length n’. We
thus generate a nonnegative string X’ := X1 X, - - - Xy Of length n” uniformly at random.

Unfortunately, asimilar approach to Case 1 does not work; given apositiveprefix X; X, - - - X,
it seems to be hard to generate X1 - - - Xy that ends at some hy(n") uniformly, since the string
may pass below both of hy(i) and hy(r).

The key ideaisto generate the desired string backwardly. This step consists of two phases.
The algorithm first chooses the height h,(n") of the last letter x, randomly. Then the algorithm
randomly selectsthe height h,(i) of theith letter x; from hy(i + 1) foreachi =n"-1,n"-2,...,1.
That is, we have either hy(i) := hy(i + 1) — 1 or hy(i) := hy(i + 1) + 1in general, and hy(0) = O at
last. From the sequence of the heights, we can construct X = X3 %, - - - Xy in O(n) time and space:
If hy(i) = hy(i + 1) — 1, wehave x, = ‘[, and if hy(i) = hy(i + 1) + 1, wehave x, = ‘]".

We first consider the first phase. By the proof of Theorem 3.1, the number of nonnegative

strings ending at height his (', h), and X, C(. i) = (,17,,). Hence, for each hwith 0 < h <

v, the algorithm sets h,(n) = h with probability C(n, h)/(,/},,)-

Next we consider the second phase. For general i with 1 < i < n’, the height h,(i) is either
hy(i) = hy(i+ 1) + 1 or hy(i) = hy(i + 1) — 1. The number of nonnegative strings of length i
ending at the height hy(i+ 1) + Lis p = C(i,hy(i + 1) + 1), and the number of nonnegative
strings of length i ending at the height hy(i + 1) — 1isq = C(i, hy(i + 1) — 1). The algorithm sets

hy(i) = (i + 1)+ 1 with probability p/(p+q) = CEACLD and setshy(i) = hy(i + 1) -1

23

with probability q/(p + q) = 2FEEEMEDS - The agorithm finally obtains hy(1) = 1 and
h,(0) = O with probability 1 after repeating this process. The string X’ = X;Xp - - - Xy_1Xy Can
be computed from the sequence of heights by traversing the sequence of the heights backwards
and hence we can obtain x = X'x.

O

Note that the only part that requires O(n) space is the generation of X' = XX, - - - Xy from
the sequence of their heights hy(n'), hy(n" — 1), ..., hy(1) in Case 2 in the proof of Theorem 3.2.
Therefore, if we are admitted to output the symmetric string xx by just X, the algorithm in
Theorem 3.2 requires space of only O(n) bits.

In the RAM model, binomial coefficient (E) can be computed in O(k? + klogk) time and
O(K) space with Iriyama’s algorithm[31]. Thus Catalan number and its generalization can be
computed in O(n®) time. Since we compute the generalized Catalan number J times in the
first phase in Case 2, our random generation algorithm can be performed in O(n®) time. Note
that C(n) is exponentialy larger than (Ln;‘zJ) so the probability of selecting Case 2 is closeto O.
Therefore our algorithm runsin O(n?) expected time on the RAM model.

3.2 Enumeration of Proper Interval Graphs

We here enumerate all connected proper interval graphs with n vertices. It is sufficient to enu-
merate each string representation of connected proper interval graphs, by Lemma2.14. Let S,
be the set of balanced and canonical Strings X = X1Xo - - - Xon iN 2" such that x; = ‘[, Xon = ‘],
and the string X, - - - Xon_1 1S NONNegative. We define atree structure, called family tree, in which
each vertex corresponds to each string in S,,. We enumerate all the stringsin S,, by traversing
the family tree. Since S, istrivial whenn = 1, 2, we assumen > 2.

We start with some definitions. Let X = Xy Xo - - - Xon be @ string in 22", If xx,, =[], 1 is
called afront index of x. Contrary, if x;x,1 =][, i iscalled areverseindex of x. For example, a
steing [[[[1L 1L T 1] has 6 front indices 4, 6, 8, 11, 14, and 16, and has 5 reverseindices5, 7,
10, 13, and 15. Thestring ["]" in Sy, is called the root and denoted by r,. Let X = XX, - - - Xon b€
astring in . We denote the string Xy X, - - - Xi_1X X1 X2 - - - Xon Dy X[i] fori = 1,2,...,2n- 1.
We define P(x) by x[j] for x € 2"\ {r,}, where j is the minimum reverse index of x. For
example, for x =[[[[][I[1I[11[1[1], we have P(X) =[[[[[TI[1I[11[1[1] (theflipped pair is enclosed
by the grey box and the minimum reverse indices are underlined).

Lemma 3.3. For every x € S, \ {rn}, we have P(x) € S,.

Proof. For any x € Sy \ {rn}, it is easy to see that P(x) = XX, --- X, satisfiesthat x; = ‘[,
X5, = 1", %, -+ - X, _, isbalanced and nonnegative. Thus we show that P(Xx) is canonical.

We first assume that x is symmetric. Then the minimum reverseindex j of x satisfies j < n,
since x is symmetric and is not the root. If j = n, P(X) is still symmetric and hence P(x) is
canonical. When j < n, wehave xj = X, ;,,, foreach1 < j” < j, x; = ‘[, and %, ;,; ="[".
Hence P(x) < P(X).

Next we consider the case that x is not symmetric. There must be an index i such that
Xi = Xonois1 = [and X, = Xon_iiq foral 1 < i < i, since x is canonical. Moreover we have
1 <i<n,sincexisbalanced. Let ¢ be the minimum reverse index of x. We first observe that
¢ #isincex, =']. Weasoseethat £ < 2n—i+1since Xy = Xonipr foral 1l <i’ <i. If
¢ < i -1, using asimilar argument above, we have P(x) < x < P(X). If ¢ > i, the changes to

24

the string has no effect; we still have X = ‘[" and X, ., = ‘[and hence P(x) < P(X). The last

caseis{ =i — 1. Inthiscase, we have Xi_1% = ‘][", Xn-iz1Xn-iz2 = ‘[[and X = Xon_i-41 for al
1<i’"<i.Thuswehavex x ="‘[]",X . X ., ="[["andx, =X, ., foral 1<i"<i-1
Thisimpliesthat P(x) < P(X). O

Next we define the family tree among stringsin S,,. We call P(x) the parent of x, and xisa
child of P(x) for each x € S, \ {r,}. Notethat x € S,, may have multiple or no children while
each string X € S, \ {ry} has the unique parent P(x) € S,. Given astring X in S, \ {r,}, we
have the unique sequence x, P(x), P(P(x)), ... of stringsin S, by repeatedly finding the parent.
We call it the parent sequence of x. For example, for x =[[[][]][]], we have P(x) =[[[[]]][]],
P(PCO)=IIILILTI], P(P(P(X))) =[[I[1[11]], and P(P(P(P(x)))) = rs. The next lemma ensures
that the root r, isthe common ancestor of all the stringsin S,..

Lemma 3.4. The parent sequence of x in S, eventually ends up with r,.

Proof. For astring X = X; X, - - - Xz in Sy, we define a potentia function p(x) = 3, 2"'b(x;) +
S 27H1 — b(Xasi)), Wwhere b(‘[') = Oand b(*]’) = 1. For any x € S, p(X) is a non-negative
integer, and p(x) = Oif and only if x = r,.

Suppose x is not the root r,. Then x has the minimum reverse index, say j. If j = n, it
is easy to see that p(P(x)) = p(X) — 2. We suppose that] < n. Then we have p(P(x)) =
p(x) — 2" 4+ 211 = p(x) — 271 < p(x) by the definitions of the parent and the potential
function. The case | > nis symmetric and we obtain p(P(x)) < p(x). Therefore we eventually
obtain the root r, by repeatedly finding the parent of the derived string, which completes the
proof. O

We have the family tree T,, of S,, by merging all the parent sequences. Each vertex in the
family tree T,, corresponds to each string in S,,, and each edge corresponds to each parent-child
relation. See Figure 3.1 for example.

Now we give an algorithm that enumerates all the stringsin S,,. The algorithm traversesthe
family tree by reversing the procedure of finding the parent as follows. Given astring xin Sy,
we enumerate al the children of x. Every child of xisintheform x[i] wherei isafront index
of x. We consider the following cases to find every i such that x[i] isachild of x.

Case 1. String x istheroot r,,. The string x has exactly one front index n. Since P(x[n]) = X,
x[n] isachild of x. Since x[i] isnot achild of x when i is not afront index, x has exactly one
child.

Case 2: String x isnot the root. In this case, x has at least two front indices. Let i be any front
index, and j be the minimum reverseindex. If i > j + 1 then x # P(X[i]), sincei is not the
minimum reverse index of x[i]. If i < j + 1, x[i] may be achild of x. Thuswe call i satisfying
the minimum front index or j + 1 acandidateindex of x. For acandidate index i, if X[i] isin S,
(i.e. X[i] iscanonical), i is called a flippable index and X[i] is a child of x. There must exist a
reverse index between any two front indices. Since only the indices the satisfying the minimum
front index or j + 1 can be candidate indices, x has at most two candidate indices. Thus x has
at most two children. For example, x = [[[]][]] has two candidate indices 3 and 6, one reverse
index 5, and one child x[3] = [[1[][]]-

Given a string x in Sy, we can enumerate all the children of x by the case analysis above.
We can traverse T, by repeating this process from the root recursively. Thus we can enumerate
al thestringsin S,,.

Now we have the algorithms and lemma.

25

[LLELII]

[LLLI]
[LLLTI0]]
(IO I] [LLLCTI]
[0C0I] [0 10] i
[T i
(OOnmI it (L1011

[LOOIT Ty oo i
(L]0 (LT ity
COLHI00T 0

(0]

Figure 3.1: Family tree Tg

Algorithm 1: find-all-child-strings
Input: current string X = Xy Xz - + - Xon,

1 begin
Output x.
foreach flippableindex i do
| find-all-child-strings (Xi]); /* Case 2 */
end
end

o g~ W N

Lemma 3.5. Algorithm 2 enumeratesall the stringsin S,,.

By Lemma 3.5 we can enumerate all the strings in S,. We need two more lemmas to
generate each string in O(1) time. First we show an efficient construction of the candidate index
list.

Lemma 3.6. Given a string x in S, and its flippable indices, we can construct the candidate
indiceslist of each child of xin O(1) time.

Proof. Let x[i] be a child of x. Each string x in S, has at most two flippable indices (see
the proof of Lemma 3.4). Let a and b be two flippable indices of x, and let &’ and b’ be two
candidate indices of x[a] or x[b]. We assumethat a < b and &’ < b’ without loss of generality.
We have the two cases below about X[i].

Case 1: A child x[a] of x. If Xa.» = ‘]’, we have two candidateindicesa’ = a—l1andb = a+1
(see Figure 3.2(a)). Otherwise we have one candidate index a' = a — 1 (see Figure 3.2(b)).

26

Algorithm 2: find-all-strings

Input: integer n
1 begin
2 Output theroot X = ry,.
3 find-all-child-strings (x[n]); /* Case 1 */
4 end
2n 1 2n
-1 X=[1 [1---]
2n 1 2n
] x[a] = [[[1---]
2n 1 a 2n
] x=[[---[1]]]
2n 1 2n

.
] Xl =[[---[10]--
(d)

Figure 3.2: Case analysis of candidate indices.

Case 2: A child x[b] of x. If X,.» = ‘]’, we have two candidate indicesa’ = aandb = b+ 1
(see Figure 3.2(c)). Otherwise we have one candidate index a' = a (see Figure 3.2(d)).

By the above case analysis, a candidate index of achild either (1) appears in the previous or
next index of aor b, or (2) isidentical to one of X's. O

Since the number of candidate indices of x isat most two, our family tree is a binary tree.
We note that a candidate index of x can become “non-candidate”. In the case, such index does
not become a candidate index again.

Next lemma shows that there is a method of determining whether a candidate index is flip-

pable.
Lemma 3.7. One can determine whether or not a candidate index is flippablein O(1) time.

Proof. Let X = X;X---Xon be a string in S, and a be a candidate index of x. We denote
x[a] =y = yi1¥2---Yan. A candidate index a is flippable if and only if x[a] is canonical and
VaY3 - - - Yan_1 1S NONNEgative.

We first check whether or not astring y,ys - - - Yan-1 iSnonnegative. We have hy(a) = hy(a)-2
and hy(i) = hy(i) foreach 1 <i <aanda<i < 2n,sincea> 1, Yayar1 = '][', XaXar1 = ‘[]’, and
i =y foreachl<i<aanda+1<i<2n Thusy,ys---Yo1 isnonnegativeif and only if
hy(a) > 2. Therefore we can check the negativity of y,ys - - - Yon_1 in O(1) time using an array of
size n to maintain the sequence of heights of the string. Updates of the array also can be done
in O(1) time.

27

We next check whether or not a string is canonical. We call x- = XX, - - - X, the left string
of X, and XR = XonXon_1 - - - Xne1 theright string of x. Then x is canonical if and only if xt < xR,
We maintain a doubly linked list L in order to check it in O(1) time. The list L maintains the
indices of different charactersin x- and xR. First L isinitialized by an empty since x- = x® for
X = r,. Ingenera L isempty if and only if x is symmetric. We can check whether x- < x® by
comparing Xy and Xfj;;-

Now we have that x is canonical and nonnegative, x[a] is nonnegative, and L consists of
the different indices of x- and x®. Then we have x;; is ‘[’ and X, is‘]’. We introduce two
pointers associated to the candidate index a to update the list efficiently; two pointers p} and p§
that point two elementsin thelist L. Intuitively p5 and pR givethe two indices L[i] and L[i + 1]
such that a is between L[i] and L[i + 1]. When L is empty, p. and pX are also empty. Assume
that L consists of k elements L[1], L[2], ..., L[K]. Then we have one of the following three
cases. (1) If aisbetween L[i] and L[i + 1], p; and pX point L[i] and L[i + 1], respectively. More
precisely, thiscase occurseither 1L <a<nand L[i] <a< L[i +1] forsomeiorn+1<a<2n
and L[i] <2n—a+ 1< L[i+1] for somei. (2) If aislessthan L[1], p and pX point L[1]. This
case occurs either a < L[1] or a> 2n— L[1]. (3) Otherwisg, i.e., thecase L[K] < a < 2n— L[K].
In this case p. and pR point L[K]. Now we assume that we update x by X[a], XaXa:1 = ‘[]’ is
replaced by Xa%a1 = ‘][’ It isstraightforward and tedious that we can update the list L in O(1)
time; typically, if L[p.] < aand a+ 1 < L[pR], the algorithm inserts two new elements between
p. and pRin L. When p} points a, the algorithm remove it from L. The other cases are similar,
and hence omitted.

The flippable index a is updated by a— 1 or a+ 1 by Lemma 3.6. Hence the update of p
and pR can be donein O(1) time, which completes the proof.]

Lemmas 3.6 and 3.7 show that we can maintain the list of flippable indices of each string in
O(1) time, during the traversal of the family tree. Thus we have the following lemma.

Lemma 3.8. Algorithm 2 uses O(n) space and runsin O(|S,|) time.

By lemma 3.8, Algorithm 2 generateseach stringin S, in O(1) time* on average”. However
it may haveto return from the deep recursive calls without outputting any string after generating
a string corresponding to the leaf of a large subtree in the family tree. This takes much time.
Therefore each string may not be generated in O(1) timein the worst case.

This delay can be canceled by outputting the stringsin the “ prepostorder” manner in which
strings are outputted in the preorder (and postorder) manner at the vertices of odd (and even,
respectively) depth of the family tree. See [43] for further details of this method; in [43] the
method was not explicitly named, and the name * prepostorder” was given by Knuth [29]. Now
we have the main theorem in this section.

Theorem 3.9. After outputting the root in O(n) time, the algorithm enumerates every string in
ShinO(1) time,

Let G and G[i] be two proper interval graphs corresponding to a string x and its child x[i],
respectively. We note that G[i] can be obtained from G by removing the one edge which rep-
resents an intersection between (1) the interval with the right endpoint corresponding to X;;1
and (2) one with the left endpoint corresponding to x;. Moreover, the root string represents a
complete graph. Therefore Algorithm 2 can be modified to deal with the graphs themselves
without loss of efficiency. Note that it is not true that every constant delay enumeration algo-
rithm for parentheses appliesto that for proper interval graphs since the sizes of differences may
not equal among string representations and graph representations.

28

+1 +1 +1 -1 -1 +1 -1 -1 +1 -1
Figure 3.3: An example of the bijection

Theorem 3.10. After outputting the n-vertex complete graph in O(n?) time, the algorithm enu-
merates every connected proper interval graph of n verticesin O(1) time.

3.3 Random Generation of Bipartite Permutation Graphs

Let P(n) be the set of permutations corresponding to connected bipartite permutation graphs
of n vertices, and B, the set of distinct (up to isomorphism) connected bipartite permutation
graphs of n vertices. We denote the line representation of a permutation 7 by £, = (L, Ly),
and the graph of 7 by G, = (X, Y, E). Without loss of generality, we assume that X contains the
vertex corresponding to (1, 7(1)) in £, for 7(1) > 1. Now, we construct a 2-Motzkin path as
follows. For each i with 1 < i < n, we see the endpointsat i on L; and L,. Let p; and g; be
the endpointson L; and L,, and we say that p; isin X (and Y) if p; isthe endpoint of a vertex
corresponding to (i, 7(i)) in X (and Y, respectively). If G, is not connected, in each connected
component, we assume that the vertex corresponding to the leftmost point on L; belongsto X.
Then the value z is defined as follows;

+1 ifpisinXandgisinY,
-1 ifpisinYandgqisinX,
+0 if ppandq arein X,
-0 ifpandqg areiny.

That is, two values +0 and —0 are distinguished (for counting) but have the same value. From
the sequence z, . . ., Z,, we can consider apath Z, = (z, ..., z,). Notethat = =’ if and only if
Z, = Z. For the path Z,, we define its height at point i by ¥, z;. To simplify, we define that
the height at point 0 is 0. We show that Z,, isa2-Motzkin path that has positive height at point
i,1<i<n,ifandonlyif r € P(n). To thisend, we need a property of connected permutation

graphs.

Lemma 3.11 ([30, Lemma3.2]). Let 7 bea permutationon {1, ..., n}. Then G, isdisconnected
if and only if there exists k < n such that {7(1), 7(2), ..., n(k)} = {1,2,...,k}.

Then we have the following lemma.

29

Lemma 3.12. Asequence”Z = (z, ..., zZ,) onthealphabet {+1, -1, +0, —0} is constructed from
7 € P(n) inthe above way if and only if Z isa 2-Motzkin path such that Z has height 0 at point
0 and n, and positive height at point i withO < i < n.

Proof. (=) Clearly, zz = +1 and z, = -1 since G, = (X, Y, E) is connected, and X and Y
are nonempty. It is easy to see that the number of +1 is equal to the one of -1 in Z. Thus
>,z = 0. If Z hasheight 0 at some point k with 0 < k < n, we have that #(i) € {1, ..., k} for
1 <i < k. FromLemma3.11, we have that G, is disconnected, which is a contradiction.

(&) We can construct aline representation £ = (L3, L,) from Z asfollows:

1. Atpointi (L<i<n)onLy, putxifze{+1, +0}, otherwise put y;
2. Atpointi (1 <i<n)onlL,, putxifz e {-1,+0}, otherwise put y;
3. Draw aline segment from theith x on L, to theith x on L, for each i;

4. Draw aline segment fromtheithy on L, to theithy on L, for eachi.

Then, we have a permutation 7 of £. Thus, it suffices to show that 7 € P(n), that is, G, is
connected and bipartite. Clearly, two linesin £ intersect only if one of them is aline from x
to x and another lineisfromy toy. So, G, ishipartite. If G, is disconnected then there exists
anindex k < nsuch that (i) € {1,...,k} for 1 < i < k (Lemma 3.11). Obviously, thisimplies
¥ z = 0, which contradicts the assumption. O

From the above characterization, we can count the number of elementsin P(n). Deutsch and
Shapiro [14] have shown the following bijection between 2-Motzkin paths of length n and Dyck
paths of length 2(n+ 1): In a2-Motzkin path, wereplace +1 by (+1, +1), -1 by (-1, -1), +0 by
(+1,-1), and -0 by (-1, +1); Then add +1 before the obtained sequence, and add —1 after the
sequence. Figure 3.3 shows an example. Note that a 2-Motzkin path has height k at point i if
and only if the corresponding Dyck path has height 2k + 1 at point 2i + 1. The following lemma
follows from the bijection.

Lemma 3.13 ([14]). The number of 2-Motzkin paths of lengthnisC(n + 1).
Corollary 3.14. |P(n)| = C(n - 1).

Proof. Let 7 € P(n). Since x bijectively corresponds to Z,, it suffices to count the number
of Z,. Lemma 3.12 and its proof imply that Z, bijectively corresponds to a 2-Motzkin path
of length n — 2 (as the first and the last step in Z, is removed). The corollary follows from
Lemma3.13. O

We can show that the bijection is also a bijection for restricted paths. For z €
{+1, -1, +0, -0}, we define —z naturally. That is, —z = +b if and only if z= b for b € {0, 1}.
A Dyck path D = (dy, ..., dy,) issymmetricif z = —z,j,; for 1 < i < n. The number of sym-
metric Dyck pathsis (Ln72 J) from the proof of Theorem 3.1. A 2-MotzkinpathZ = (zi,...,z,)is
semi-symmetricif z = -z, for L <i < n,and Z issymmetricif z = -z, j,, for z € {+1, -1}
and z = z, i1 for z € {+0, —0}. Note that a 2-Motzkin path can be semi-symmetric only if its
length is even. Obvioudly, the bijection is also a bijection between symmetric 2-Motzkin paths
of length n and symmetric Dyck paths of length 2(n + 1). Furthermore, if n is even, thereisa
bijection between semi-symmetric 2-Motzkin paths of length n and symmetric Dyck paths of
length 2(n+ 1), since asemi-symmetric 2-Motzkin path can be bijectively transformed to asym-
metric 2-Motzkin path by flipping the signs of Osin the right half. From the above observation

and Theorem 3.1, we have the following corollary.

30

n+1

Corollary 3.15. The number of symmetric 2-Motzkin paths of length nis (L(n+l) 12]

the number of semi-symmetric 2-Motzkin paths of length nis also (L(nTl)l/ZJ :

Any given r € P(n), Lemma 2.24 implies that there exist at most four line representations
L., LM, £V and LR for agraph G,. We define four subsets of P(n) as follows: (1) P"(n) =
{m € P(n) | L, isH-symmetric}, (2) PY(n) = {x € P(n) | £, isV-symmetric}, (3) PR(n) = {r €
P(n) | £, is R-symmetric}, and (4) PF(n) = P"(n) n PR(n) n PY(n).

Proposition 3.16. (1) If nis odd, PH(n) and PY(n) are empty. (2) PF(n) = P"H(n) n PY(n) =
PY(n) N PR(n) = PR(n) n P"(n).

Proof. (1) Both H-flip and V-flip exchange X and Y, which are determined uniquely by Lemma
2.23. Thus P"(n) and PY(n) can be nonempty only if |X| = |Y|. Therefore, they are empty if
IX| + Y] is odd.

(2) Letr € PH(n)nPY(n). Then £, = LM = £V. Since LR = (L,'j)v for any =, we have that

LR= (L,'j)v = £V = £,. Hence € PR(n). The remaining two cases are similar. O

). If niseven,

Lemma3.17. [B,| = % (IP(n)| + |P(n)| + [PY(n)| + [PR(n)])-
Proof. From Lemma 2.24 and Proposition 3.16, each connected bipartite permutation graph
corresponds to four, two, and one permutations if it has no, one, and three symmetricalness,
respectively. According to the number of corresponding permutations, we can partition 8, into
three sets 87, 82, and BL. Each element of B! corresponds to exactly i permutations in P(n):
For G € BL, thereexists r € PF(n) such that G =~ G,; For G € B2, there exist two permutations
mp and 77 in (PH(n) U PY(n) U PR(n)) \ PF(n) suchthat G ~ G,, ~ G,,; For G € B, there
exist four permutations;, 1 < i < 4, in P(n) \ (PH (N)UPY(n) U PR(n)) such that G ~ G,, for
1 <i < 4. Combining the inclusion-exclusion principle with Proposition 3.16 implies that
IPH(n) u PY(n) U PRM)| = [P (n)] + |PY(n)] + |PR(n)| - 2|PF(n))|.
So, we have that
1Bl = |B4| + |87 + |5
1
= [PF()| + > (P + [P ()| + |PR(m)| - 3|PT(m)])
1
+3 (IPM)I = [P ()] = [PY(m)] - [PR()| + 2|PF(m)])
1
=7 (IPM)I + [P)| + [PV ()] + [PR(m)]).
asrequired. O

Lemma 3.17 implies that it suffices to count the elements of P(n), P"(n), PY(n), and PR(n)
to show the size of B, For the random generation, |P™ (n)| is also necessary.

Lemma 3.18. |PV(n)| = C(n/2 - 1) for evenn.

Proof. Let n = 2mand = € PY(2m). We claimthat Z, = (z, ..., Zy) contains neither +0 nor
—-0. If z = +0Ofor somei, 1 <i < 2m, £, containsthe lines (i, j) and (k,i) for some j and k,
k <i < j. However, since L, isV-symmetric, £, contains (j, i) aswell. Thisimpliesthat j = k,
a contradiction. The proof of z # —0 isamost the same. Thus Z, bijectively correspondsto a
Dyck path of length 2(m — 1), asrequired.]

31

Lemma3.19. [PR()| = (y2)

Proof. From Corollary 3.15, it suffices to show that 7 € PR(n) if and only if the 2-Motzkin path
Z, issymmetric and has positive height at pointi with1 <i < n.

(=) Suppose z = +1. Thenthelines (i, j) and (k,i), 1 < jandi < k, arein L,. Since
n € PR(n), wehavethat (n— j+1,n—i+1)and(n—i+1,n-k+1)areasoin L. Therefore,
Z,i;1 =-1sincei < jandi < k. Thecasez = -1l issimilar.

Next, suppose z = +0. Thenthelines (i, j) and (k, i),k < i < j, arein £,. Since n € PR(n),
wehavethat (n— j+ 1L, n—-i+1)and(n—-i+ 1, n-k+1)areasoin L,. Therefore, z,_i,1 = +0
sincek <i < j. Thecasez = -0 issimilar.

(=) Clearly, r € P(n). Let(i,]) € L,. Weshowtha (n—- j+1n-i+1)isdsoin L,.
Without loss of generality, we assume that i < j, namely (i, j) € X. Leti and j be the kth
endpoints of linesin X, on L; and L,, respectively. For 1 < ¢ < i, the number of indices ¢ such
that z, € {+1, +0} isk — 1. Since Z, issymmetric, for n—i + 1 < £ < n the number of indices ¢
suchthat z, € {—1, +0} isalso k— 1. Thisimpliesthat thepoint n—i+1on L, isthe (]X|-k+ 1)th
endpoint of alinein X. Similarly, we can show that thepointn— j+ 1 on L, isthe(]X| —k+ 1)th
endpoint of alinein X. Therefore, (N— j+1L,n—-i+1)e L,. m|

Lemma 3.20. |P"(n)| = (L(n’_“l)l/zj) for even n.

Proof. Theideaof proof isamost the same as the one of Lemma 3.19.

Let n = 2m. From Corollary 3.15, it suffices to show that 7 € P"(2m) if and only if the
2-Motzkin path Z, is semi-symmetric and has positive height at pointi with1 <i < 2m.
(=) Let (i,), (ki) € £;. Sincen € P"(2m), we have that 2m—i + 1,2m- j + 1) and
@2m-k+21,2m-i+1)aedsoin L, Itiseasy to seethat (i, j) is positive if and only if
(2m-i+1,2m- j+1)isnegative. In the same way, we can seethat (k, i) ispositiveif and only
if (2m-Kk+1,2m—i+ 1) isnegative. Thus, z = —Zm_i;1.

(<) Clearly, 7 € P(2m). Let (i,) € £L,. We show that (2m—-i+1,2m— j+ 1)isasoin
L. Without loss of generality, we assumethati < j, namely (i, j) € X. Leti and j be the kth
endpoints of linesin X, on L; and L,, respectively. For 1 < ¢ < i, the number of indices ¢ such
that z, € {+1,+0} isk — 1. Since Z, is semi-symmetric, for 2m—i + 1 < ¢ < 2mthe number of
indices ¢ such that z, € {-1, -0} isalso k — 1. Thisimpliesthat the point 2m—-i+ 1on L, isthe
(IX] = k + 1)th endpoint of alineinY. Similarly, we can show that the point2m— j+ 1on L, is
the (IX] — k+ 1)th endpoint of alinein Y. Therefore, 2m—-i+1,2m—-j+ 1) € L,. O

Lemma3.21. [PF(n)| = (Lgﬂjgﬁj) for even n.

Proof. Let n = 2m. From Theorem 3.1, it suffices to show that 7 € PF(2m) if and only if the
2-Motzkin path Z, isasymmetric Dyck path and has positive height a point i with1 <i < 2m.
Thisisimplied by the proofs of Lemmas 3.18 and 3.20. O

Lemmas 3.17, 3.18, 3.19, and 3.20, and Proposition 3.16 together show the number of

elements of B,,. We use awell-known relation Z(ngf 11) = (zr:]“) for the even case.

Theorem 3.22. For n > 2, the number of connected bipartite permutation graphs of n vertices
isgiven by
1 . .
B = 12 (Ct =D+ Cv2-1+(])) ifniseen
Hem-D+("30) if nisodd.

(n-1/2

32

L1

L2

Figure 3.4: Therootin S, 3.

Theorem 3.23. For any given positive integer n, a connected bipartite permutation graph with
n vertices can be generated uniformly at randomin O(n) time and O(n) space.

Proof. Basically, using the same idea as random generation of a proper interval graph with
Lemma 3.13, the algorithm generates a 2-Motzkin path uniformly at random, and outputs the
corresponding graph. However, this straightforward algorithm does not generate a connected bi-
partite permutation graph uniformly at random since it does not consider symmetricalness of the
graph. That is, comparing to an asymmetric graph, the chances of graphs with one symmetrical-
ness and three symmetricalness are only a half and a quarter, respectively. Hence the algorithm
adapts the probability as follows. From the lemma 3.17, the algorithm first chooses one of four
sets P(n), PH(n), P¥(n),and PR(n) with probabilities [P(n)| /1B, |PH(N)] /1B, [PY ()| /1Bxl,
and |PR(n)| /18|, respectively. Next, in each case, the algorithm generates each element uni-
formly at random.

Case 1. Generation of an element of P(n) uniformly at random. The algorithm simply picks up
an element by generation a 2-Motzkin path same as Case 1 of Theorem 3.2.

Case 2: Generation of an element of PH(n) uniformly at random. The algorithm generates
a semi-symmetric 2-Motzkin path. The algorithm first constructs the left half of the semi-
symmetric 2-Motzkin path by using Case 2 of Theorem 3.2. Then the right half can be con-
structed from the left half since the resultant 2-Motzkin path has to be semi-symmetric.

Case 3: Generation of an element of PV(n) uniformly at random. The algorithm generates a
2-Motzkin path that consists of only +1 and —1, or consequently a Dyck path. Hence we can
use the same algorithm of Theorem 3.2 Case 1.

Case 4: Generation of an element of PR(n) uniformly at random. This caseissimilar to Case 2.
The agorithm first generates a nonnegative 2-Motzkin path of half length, and extendsit to be
symmetric.]

3.4 Enumeration of Bipartite Per mutation Graphs

In this section we give an efficient algorithm to enumerate all bipartite permutation graphs of n
vertices. Our agorithm can enumerate such graphsin O(1) time for each.

Our approach is to repeatedly enumerate all bipartite permutation graphs of the specified
number of vertices. If we can enumerate all bipartite permutation graphs with p = |X| and
g = Y], such graphs of n vertices can be enumerated by repeating the method for each pair of
(p.@) = (51,15, (1531+1,15] = 1),...,(n—1,1). By the above observation and Lemma 2.24,
it is sufficient to enumerate all canonical representations of bipartite permutation graphs with
p=IXlandq=Yl.

We first define the family tree among the set of canonical representations of bipartite per-
mutation graphs. Then we give an algorithm to traverse the family tree efficiently.

33

L1 L1
m
L2 L2
@
L1 L1
M
L2 L2
(b)

Figure 3.5: Examples of the parents.

We need some definitions. Let S 4 be the set of canonical representations of bipartite per-
mutation graphs of p verticesin X and q verticesin Y. Since a graph corresponding to a rep-
resentation in Sy also corresponds to a representation in Sq, ,, we assume p > g without loss
of generality. The root, denoted by R g, in Sy is the smallest representation in Sy q, that is,
S(Rog) = [[---[11---1[---[]]---]. See Figure 3.4 for an example. As we will see, the root
corresponds to the root vertex in atree structure among Sy .

Let £ = (L1, Ly) be arepresentation in Spq \ {Rpg). Let S(L) = XXz - -+ Xzn. We denote
S1(L) = XaXo - -+ Xy aNd $(L) = Xqs1Xni2 -~ Xon. Thus, let $1(Rpq) = [[---[]] -+ -], that consists
of p‘[’sand g ‘]’s. Now we define “the parent” P(L) of the representation £ in S, 4 asfollows.
We have two cases.

Casel: si(L) # si(Rpg)- Leti betheindex of s;(£) suchthat x; = ‘]’ and x, = ‘[’ foral i’ <1,
and j betheindex of s;(£) suchthat x; = ‘[and x; = ‘]’ forall i < j’ < j. Then j iscalled the
swappable point of £. P(L) isthe representation obtained from £ by swapping two endpoints
a j—1and jonL;. SeeFigure3.5(a).

Case 2: s1(£) = s1(Rpg)- Inthis case we define P(L) by swapping two endpointson L,. Let k
be the index of s,(£) such that x, = ‘[and x¢ = ‘]’ for al k < k', and | be the index of s,(£)
suchthat x = ‘] and x, = ‘[foral | < |” < k. Then| is called the swappable point of L.
P(L) isthe representation obtained from £ by swapping two endpointsat | and | + 1 on L,. See
Figure 3.5(b).

In both cases P(L) is called the parent of £ and £ iscalled achild of P(L). We can observe
that s(P(L)) issmaller than s(£). The parent P(L) of LinS,4\ {Ryq} isaways defined, since
there exists the swappable point of L. The next lemma shows we finally obtain theroot in S
by repeatedly finding the parent.

Lemma 3.24. Let L bearepresentationin Syq \ {Rpq). The sequence obtained by repeatedly
finding the parent ends up with the root R, .

Proof. For arepresentation £ with S(£) = X1Xo - - Xon, We define a potential function f(£) =
T2 22g(x), where g(‘[') = Oand g(‘']') = 1. f(£) is a mapping from £ into non-negative
integer. We can observethat f(Ryq) isthe smallest among values of representationsin S .

34

Figure 3.6: Family tree of S, 3.

Let j be the swappable point of £. In Case 1, we have f(P(£)) = f(£) — 22-(-D 4 220-] =
f(£) - 221 < (L) by the definition of the parent and the potential function. Similarly, in
Case 2, we have f(P(L)) = f(£) — 2200+ 4 220=(1+n+d) — £(£) — 220-(+0-1 < £(1), Therefore
f(P(L)) < f(£) holds. Since the parent of £ is always defined for £ in Sy \ {Ryq}, we
eventually obtain R, by repeatedly finding the parent of the derived representation, which
completes the proof. O

By merging all these sequences we can have the family tree of Sy, denoted by T, 4. The
root vertex of T4 correspondsto R, the vertices of T, 4 correspond to representationsin Sy 4
and each edge corresponds to a relation between arepresentation in S \ {Rpq} and its parent.
See Figure 3.6 for an example.

Now we give an algorithm that enumerates all representationsin S, 4. The algorithm tra-
verses a family tree and enumerates canonical representations corresponding to the vertices of
the family tree. To traverse a family tree, we design finding all children of a given canonical
representation.

We need some definitions. £4][i] istheline representation obtained from £ by swapping two
endpointsatiandi + 1 on Ly, and similarly £,[i] isthe line representation obtained from £ by
swapping two endpointsat i — 1 andi on L,. If £ = P(£y[i]) (and £ = P(L;[i])), wesay i is
anominated point on L; (and L, respectively). £;[i] (and L;[i]) isachild of Lonlyifiisa
nominated point on L; (and L) and £;[i] (and £[i], respectively) is connected and canonical.

For astring s(£) = X1% - - - Xon, We define the connectivity value c(i) fori = 0,1,...,2nas
follows:

0 ifi=0,n
c(i)—{c(i—1)+1 if (x =" andi<n)or(x="] andi>n)
ci-1)-1 if(x="Tandi<n)or(x =" andi>n)

Intuitively, c(i) for i < nisthe number of ‘[’s minus the number of ‘]’sin XX, - - - X, and c(i)
for i > nisthe number of ‘]’s minus the number of ‘['sin Xp 1 X2 - %. We note that if

35

c(i) = c(n + 1) holds, then the bipartite permutation graph corresponding to £ is disconnected.
A bipartite permutation graph is connected if and only if we have c(i) # c(n + i) for each
i=12,....,n—1 Wesay Lisconnected if c(i) # c(n+i)foreachi=1,2,...,n— 1.

A naive way to generate all children is as follows. We construct £,[i] for each i =
1,2,...,n -1, then check whether or not (1) i is a nominated point on L,, (2) £4][i] is con-
nected and (3) £[i] iscanonical. If all conditions are satisfied, £4[i] is a child. Similarly, we
check whether or not £,[i] isachild for eachi = 2, 3,...,n. Thismethod takes much running
time to generate all children.

To improve the running time, we first show that the list of nominated points can be main-
tained efficiently and next propose an efficient method to check whether or not a canonical
representation is connected and canonical.

Lemma 3.25. Let £ = (L1, L,) be a representation in S, 4. There exist at most 3 nominated
pointson L; and L.

Proof. Let S(£) = X3 X2 - - - Xon. We consider the following two cases.

Casel: si(L) # si(Rpg). Leti betheindex of sy(£) suchthat x, = ‘]" and x, = ‘[’ foral i’ <.
Theni—1isanominated pointonL;. Let j betheindex of s;(£) suchthat x; = ‘[’ and xj = ‘]’
foralli < j < j. If Xj52 = ‘]’ holds, then j is a nominated point. Other pointson L; are not
nominated points and there is no nominated point on L.

Case 2: 51(£) = s1(Rpq). Clearly we have one nominated point p on Ly, where p is equal to
the number of ‘['sin Xy %, - - - X,. Now we consider nominated pointson L. Let k be the index
of s,(£L) such that xc = ‘[' and x = ‘]’ for al k < k. Then k + 1 is anominated point on L.
Let | betheindex of s,(£) suchthat x, = *]" and x, = ‘[foral | <I” < k. If x_; = ‘[holds,
then | isanominated point on L,. Other pointson L, are not nominated. O

Lemma 3.26. Given £ and its nominated points, we can construct the list of nominated points
of each child in O(1) time.

Proof. We first consider the nominated pointson L;. Let ny,n, (N < ny) be two nominated
pointson L;. We consider each case of £;[n;] and £L3[n,].

Case 1: Li[m]. If Xq42 = ‘[thenn, = ny + 2 holds or £ has only one nominated point n;. In
this case £;[n;] has one nominated point n; — 1 on L;. Otherwise, X, > = ‘1", Li[n1] hastwo
nominated pointsn; — 1andn; + 1 on L. £41[n;] has no nominated point on L.

Case2: Li[ny]. If Xp12 = ‘[', then £;[n,] has one nominated point n;. Otherwise, Xn,.2 = ‘17,
L4[n;] has two nominated pointsn; and n, + 1.

Therefore each nominated point of £;[n;] and £,[n,] (1) appears in the previous or next
point of ny or ny, (2) disappears from the list, or (3) isidentical to one of L’s.
The case on L, is symmetric and hence omitted. O

Now we have the algorithm in Algorithm 3, that generates all children of a given represen-
tation L. For each nominated point i on L; (and L,), it first checks whether £4[i] (and £[i])
is connected and canonical, and then recursively callsit for £4[i] (and £[i], respectively) if it
satisfies the conditions. Starting at the root in Sy, o, by calling the algorithm recursively, we can
traverse the family tree T, , and generate all representationsin S .

By Lemma3.26, steps 3 and 6 can be donein O(1) timein each recursivecall. Theremaining
task is checking whether or not £ is connected and canonical efficiently.

36

Algorithm 3: find-all-child-rep
Input: line representation £

1 begin

2 Output £;

3 foreach nominated pointi on L; do

4 | if £4[i] is connected and canonical then find-all-child-rep(Ly[i]).

5 end

6

7

8

9

foreach nominated pointi on L, do
| if L[i] isconnected and canonical then find-all-child-rep(L,[i]) .
end

end

We first consider the check of connectivity of a representation. By symmetry we only con-
sider .£4[i] without loss of generality. Assume £ is connected. Then £4[i] is connected only if
c@i) # c(n+1i)andc(i + 1) # c(n+ i+ 1). We can check such conditionsin O(1) time using an
array of size 2n to maintain the sequences of connectivity values of £,[i]. Update of the array
also can be donein O(1) time. Therefore, the connectivity of £4[i] can be checked in O(1) time.

Next we check whether or not £ is canonical. When p # q, S(£) iscanonical if S(£) isthe
smallest string among s(£Y), S(£M™) and s(£LR). If p = g, we need more discussions. Let £ bea
representationin S, 4 and G be the bipartite permutation graph corresponding to £. Then there
exists aline representation £’ obtained from £ by swapping lines corresponding to verticesin
X and onesin Y. Similarly, we denote by £V, £, LR the representations obtained from £V,
L1, LR by swapping lines corresponding to verticesin X and onesin Y, respectively. Then £
iscanonical if and only if (L) isthe smallest string among s(£Y), S(£M), S(£LR), s(£), (£Y),
(LM and s(LR).

If we can check whether given two strings s(£) and s(7) for any 7 € {£H, £V , LR
L. LV, Y LRy satisfy (L) < s(X), then we can check whether s(£) is canonical by ap-
plying the method for each pair of s(£) and other strings.

Lemma 3.27. One can determine whether or not £ = (L4, L) iscanonical in O(1) time.

Proof. Let S(£) = XiXo---%n and S(I) = WiYo---Yo, for any 7 e {LH LV, LR
L£,LV, L9 £RY. We maintain a doubly linked list L in order to check s(£) < S(Z) in O(1)
time. Thelist L maintainsthe indices of different charactersin s(£) and (7). L isempty if and
only if s(£) = s(Z). We can check whether s(£) < (1) by comparing X1y and y, 1, where
L[i] istheith elementin L.

The update of L isasfollows. Let ny, N, be the nominated pointson L; of £. We maintain
i suchthat L[i] < ng <L[i +1] and j suchthat L[j] < n, < L[] + 1]. It iseasy to see we can
update L usingi and j in O(1) time. Since nominated point n; (and ny) isupdated by n; or n; — 1
(and ny + 1 or ny + 1, respectively) by Lemma 3.25, i and j can be updated in O(1) time. The
caseon L, issimilar and hence omitted. O

Therefore steps 4 and 7 in Algorithm 3 can be computed in O(1) time.
Lemma 3.28. Our algorithm uses O(n) space and runsin O(|Sy,q) time.

By Lemma 3.28, our algorithm generates each representation in O(1) time “on average’.
Algorithm 3 may return from the deep recursive calls without outputting any representation

37

Ly Ly
—pp
Lo Lo
Figure 3.7: Construction of arepresentation in S; 4 from the jJump representation in Sgs.

after generating a representation corresponding to the leaf of alarge subtree in the family tree.
This takes much running time. Therefore each representation cannot be generated in O(1) time
inworst case. Thisdelay can be canceled by outputting the representationsin the “ prepostorder”
in which representation are outputted in the preorder (and postorder) at the vertices of odd (and
even, respectively) depth of afamily tree. In such manner delay process can be bounded by at
most 3 edge traversals of afamily tree.

Lemma 3.29. After outputting the root in O(n) time, our algorithm enumerates every represen-
tationin Sy 4 in O(1) time in worst case.

Now we consider to enumerate all canonical representations corresponding to bipartite per-
mutation graphs of n vertices. By applying Lemma 3.29 for each (p.q) = ([51.15)). (51 +
1,151 = 1),....(n— 1,1) in this order, we can enumerate all such representations. Every rep-
resentation which is not the root is generated in O(1) time. However, the root in S is not
constructed from the last outputted representation in S,_1 .1 in O(1) time.

Thisdelay can be canceled asfollows. Let £ = (L4, L) bearepresentationinS, 4. Then Lis
jump representation if s,(£) = s1(Rpq) and s(£L) =[] ---][[- - - []. See Figure 3.7. When jump
representationin S, is generated, we construct arepresentation K in S, 1 4-1 by swapping the
threelines(p,n), (n—1,n-2), (n,n-1) to (p,n- 1), (n—1,n), (n,n — 2), respectively. See
Figure 3.7. We note that the line (n — 1, n — 2) is switched to a line corresponding to a vertex
in X, and K can be generated from £ in O(1) time. Then we enumerate all representations in
Spi1,g-1 by traversing Tp,14-1 asfollows. After K isgenerated, the descendants of K in Tp,14-1
are enumerated by Algorithm 3, and we construct P(K). Then we traverse the descendants
of P(K) except the subtree rooted at K and construct P(P(K)). We repeat this process until
the root is generated. We note that P(K’) can be generated in O(1) time by maintaining the
swappable point and its data structures can be updated in O(1) time. Therefore we have the
following theorem.

Theorem 3.30. After outputting the root in Sz 1, one can enumerate every canonical repre-
sentation of a bipartite permutation graph of n verticesin O(1) time.

We note that (1) swapping two endpoints of a canonical representation corresponds to
adding or removing one edge in the corresponding graph and (2) a graph can be constructed
from the graph corresponding to a jump representation by a constant number of operations to
add and remove edges. We have the following theorem.

Theorem 3.31. The algorithm enumerates every connected bipartite permutation graph of n
verticesin O(1) time.

38

Chapter 4

Reconstruction

4.1 Interval Graphs

In this section, we propose reconstruction algorithms for interval graphs. First, we present
a deck checking algorithm for interval graphs. Our reconstruction algorithm enumerates the
preimage candidates, and checks whether each candidate isreally a preimage of the input deck.
Thus the deck checking algorithm is one of the basic part of reconstruction algorithm.

Our algorithm outputs preimages that are interval graphs. However it is possible that a
non-interval graph has a deck that consists of interval graphs, though it is exceptional. Since
considering this case al the time in the reconstruction algorithm makes it complex, we attempt
to get done with this special case.

Next, we present reconstruction algorithms for interval graph preimage. Our agorithms
have two cases that connected preimage case and disconnected preimage case. First, we pro-
pose the algorithm for connected case by using the compact interval representation. Then we
consider the disconnected preimage case. If we use the connected case algorithm in the discon-
nected case directly, we have to consider many cases. Our algorithm for the disconnected case
transforms the input graphs to the multi-set of connected preimage, then we use the connected
case algorithm.

4.1.1 Deck Checking

First of this subsection, we introduce a famous theorem bel ow.

Theorem 4.1 (Lueker and Booth [36]). Giventwo interval graphsG; and G,, we can determine
whether they are isomorphic in O(n + m) time, where n is the number of vertices of G; and G,,
and misthe number of edges of G; and G.

We next show following lemmafor deck checking a gorithm.

Lemma 4.2. Given an interval graph G which can be connected or disconnected, the graph G
obtained by adding one universal vertex to the graph G is always a connected interval graph.

Proof. It is obvious that G is connected. Consider a compact interval representation 7 of G.
Let K bethelength of 7. Then 7 U {[0, K]} isan interval representation of G. Therefore G isa
connected interval graph. O

We have the following theorem and Algorithm 4.

39

Figure 4.1: Constructing graph G’ from candidate graph G for deck checking

Theorem 4.3. There is an O(n(n + m)) time algorithm of deck checking for n-vertex m-edge
graph and its deck (or a deck candidate) that consists of interval graphs.

Proof. LetG = (V, E) beagraph, whereVis{1,2,...,n},and |E|isequal tom. LetG; (i € V) be
agraph obtained by removing vertex i from G. Supposethat G, G,, .. ., G, areinterval graphs.
It is clear that (G}, G}, ...,G,} isadeck of G if and only if the multi-set {G1, G, ..., Gy} is
equal to themulti-set (G}, G,, . . ., G,}. Hence we can determine whether or not the given multi-
st D = {G],G,,...,G} is adeck of the input graph G by checking whether or not G' =
G1UG,U ... UG, is isomorphic to GjUG,U...UG),. Since the digoint union of two interval
graphs is an interval graph, we can use well-known linear time isomorphism algorithm [36]
for this checking. We describe the algorithm in Algorithm 4. Since the number of vertices of
GU... UG, is O(n?), and since the number of edges of G,U ... UG, is O(mn + n?), the time
complexity of thisalgorithm is O(n(n + m)). O

Algorithm 4. deck-checking
Input: graph G = (V, E), multi-set D = {G}, G, ..., G}}

1 begin

2 Let G’ be an empty graph.

3 | foreach vertexve Vdo G = G'U(G - v);

4 | if G’ isisomorphicto G;UG,U - -- UG, then return True.
5 else return False.

6 end

4.1.2 Non-interval Graph Preimage Case

Note that we can easily prove that all the members in a deck of an interval graph are interval
graphs from Theorem 2.4.

40

| |
0 1 2 3 4 5

Figure 4.2: Vertices corresponding to the enclosed intervals are end-vertex set.

Theorem 4.4. If ninterval graphs G;,G,, ..., G, have a preimage G that is not an interval
graph, we can reconstruct G fromG,, G,, ... G,, in O(n?) time.

Proof. Assume that G,,G,,..., G, are the deck of G, and G is not an interval graph. Then G
must be one of the graphs described in Figure 2.2, since any graph that is obtained by removing a
vertex from G isan interval graph (containing nonein Figure 2.2). Itisclear that G, G,, ..., G,
have the same number of vertices, n— 1, and the number of verticesin G isn. Since the number
of graphs of sizenin Figure 2.2 is O(1), we can check if one of them isa preimage of the input
graphs in polynomial time with deck checking algorithm. The time complexity is O(n(n + m))
from Theorem 4.3, where mis the number of edges of apreimage. Since the numbers of edges
in (a), (b), (c), (d), and () are O(n), the time complexity is definitely O(n?). O

Therefore we concentrate on an algorithm that tries to reconstruct an interval graph whose
deck isthe set of the input graphs in the remaining subsections.

4.1.3 Connected Preimage Case

First we define end-vertex set. The end-vertex set is intuitively a set of vertices whose corre-
sponding intervals are at the left end in at least one interval representation. Our algorithm adds
a vertex adjacent to all the vertices in an end-vertex set of an interval graph in the input deck.
This enables usto avoid exponential times constructions of preimage candidates.

Definition 4.5. For an interval graph G = (V, E), we call a vertex subset S c V an end-vertex
set if and only if in some compact interval representation of G all the coordinates of the left
endpoints of intervals corresponding to verticesin S are 0, and S is maximal among such
vertex subsets with respect to the interval representation.

See Figure 4.2 for example. It isclear from the definition of compact interval representations
that an end-vertex set contains at least one ssmplicial vertex.

We show some lemmas about end-vertex sets. We can estimate that the number of essentially
different preimage candidates is O(n?) by these lemmas.

Lemma4.6. Let S be an end-vertex set of an interval graph G = (V, E). If two verticesv and w
in S have the same degree, then N[Vv] is equal to N[w].

Proof. Sincevandw isin S, on some compact representation of G, the interval corresponding
tovisl, = [0, k], and theinterval correspondingtowisl,, = [0, k,] for somek, and k,,. Assume
that k, is not equal to k,,. We can assume that k, is greater than k,, without loss of generality.

41

Then N[w] ¢ N[v] holds due to the definition of a compact representation. This contradicts the
fact that v and w have the same degree (see Figure 4.2 for the better understanding). O

Lemma4.7. A connected interval graph has at most O(n) end-vertex sets.

Proof. An end-vertex set of an interval graph G isintheform {l € 7|0 € I} for some interval
representation 7 of G. Thus, from Lemmas 2.6 and 2.8, there are at most O(n) end-vertex sets
for G. O

Now we refer the well-known lemma about the degree sequence.

Lemma 4.8 (Kelly’'sLemma [28]). We can compute the degree sequence of a preimage of the
input n graphsin O(n) time, if we know the number of edges in each input graph.

Proof. LetG,, Gy, ..., G, betheinput graphs. Assumethat graph G hasadeck {G,, G,, ..., Gy}
Then there are vertices vy, Vs, . . ., Vi, such that G; is obtained by removing v; from G for each i
in{l1,2,...,n}. Thus

deg(Gi) = deg(G) — 2deg(vi)
holdsfor eachi € {1, 2, ..., n}. Hence we have

n-2

Therefore we can easily calculate the degree sequence of G, i.e., (deg(G)—-deg(G,))/2, (deg(G)—
deg(G2))/2.,. . ., (deg(G) — deg(Gn))/2.

We can calculate deg(G;) in constant time, provided we know the number m; of edgesin G;,
for deg(G;) isequal to 2m;. Thus the time complexity to calculate deg(G) is O(n), and the total
time complexity to obtain the degree sequence of G isaso O(n).

deg(G) =

O

Now we present an algorithm for reconstructing a connected interval graph. Suppose that
an n-vertex connected interval graph G has a deck of interval graphs {G,,G,,...,Gn}. Let I
be a compact interval representation of G. There must be anindex i € {1,..., n} such that G;
is obtained by removing a simplicial vertex sin the end-vertex set S corr&spondlng to 7. We
show that we can reconstruct G from G;. Moreover we can check whether or not G; is G; for
every j € {1, ..., n}. Therefore we can reconstruct G by checking if G; isthe desired G; for every
je{l,...,n}.

There are two cases about the number of simplicial verticesin S.

(i) S hasonly onesimplicial vertex s.
(if) S hasat least two simplicial vertices.

In the case (ii), S\ {s} = Ng(9) is still an end-vertex set of G; (see Figure 4.3). In the case (i),
S\ {s} is contained by vertices corresponding to {I € 7 | 1 € I} which is an end-vertex set of
Gi (see Figure 4.4). In both the cases, we thus have to add a simplicial vertex to an end-vertex
set of G; in order to reconstruct G. We denote the end-vertex set of G; by S (S \ {s} ¢ S holds).
Since there are O(n) end-vertex sets of G; by Lemma 4.7, checking if each end-vertex set S’ in
Gi is S takes O(n) timesiterations. Checking whether an end-vertex set S’ is S issimple. Since
if S’ is S, we can reconstruct G, we simply try to reconstruct G. If we can reconstruct G, S’ is
S, and we of course obtain G. Otherwise, S’ isnot S.

42

Ss

(@) (b)
Figure 4.3: Compact interval representationsof Gand G — s. InG — s, S\ sisend-vertex set.

S Ss

v

\ 4

(@) (b)

Figure 4.4: Compact interval representationsof Gand G — s. InG — s, S\ sisnot end-vertex
Set.

Now we explain how to reconstruct G from S’ that isa candidate of S. Let 7’ be an interval
representation of G; whose corresponding end-vertex set is S’. Note that 7’ is easily obtained
in O(n + m) time by using the data structure called MPQ-tree [32]. Since S \ {s} c S holds,
S\ {s} c S’ holds, if S’ is S. Hence we can obtain an interval representation of G by extending
intervals corresponding to vertices in S \ {s} c S’ to the left by one and adding an interval
[-1,-1]. If weknow S\ {s}, we can obtain G, since G has the interval representation obtained
from I by extending intervals corresponding to verticesin S \ {s} to the left by one and adding
aninterval [-1, —1] (see Figure 4.5). In order to specify S\ {s} in the polynomial time, we show
the following lemma.

Lemma 4.9. Let G be an interval graph. Let S be an end-vertex set of G, and let 7 be an
compact interval representation of G whose corresponding end-vertex set isS. Let S; and S,
be subsets of S such that the degree sequence of vertices in S; and the degree sequence of
verticesin S, are the same. Let G; be a graph whose interval representation is obtained by 7
extending interval correspondingto S; to theleft by oneand adding an interval [-1, —1], and let
G, be a graph whose interval representation is obtained by 7 extending interval corresponding
to S, to the left by one and adding an interval [—1, —1]. Then G; isisomorphic to G,.

Proof. The neighbor sets of S; and S, are the same due to Lemma 4.6. Hence G; and G, are

43

Figure 4.5: Adding aninterval [—-1, —1]

isomorphic.]

Since we know the degree sequence of G;, and we can know the degree sequence of G by
Lemma 4.8, we can know the degree sequence of S \ {s}. We denote the degree sequence by
(dg,do, ..., d). Now we can specify S\ {s} ¢ S’; S\ {s} is the subset of S’ such that whose
degree sequenceinG;jis(d; —1,d, - 1,...,d, — 1). Note that there may be exponentially many
subsets of S’ whose degree sequencesinG; are(d; —1,d, -1, ...,d, — 1). However Lemma4.9
guarantees that any of such subsets can be S\ {s}, i.e. al the graphs reconstructed under the
assumption that some subset of S’ whose degree sequenceis(d;—1,d,—1,...,d —1) aeS\{s}
are isomorphic to each other. Therefore we can specify S\ {s} in S’. To be more precise, if we
can find such S\ {s}, S’ isthe desired S, and we can thus reconstruct G. The whole algorithm
isdescribed in Algorithm 5.

Algorithm 5: connected-interval-preimage
Input: multi-set D = {G1, Gy, -+ - , Gy}

1 begin
2 foreach G; € D do
3 foreach end-vertex set S’ of G; do
4 Let 7’ be an interval representation of G; whose corresponding end-vertex set
IsS’.
5 Compute the degree sequence (dy, - - - ,d)) of S\ {s};
6 Let S* be asubset of S” whose degree sequenceinG;is(d; —1,---,d - 1).
7 if there does not exist such S* then go to the next iteration;
8 Let G* be an interval graph whose interval representation is obtained from 7’
by extending interval corresponding to verticesin S* to the left by one and
adding aninterval [-1, —1].
9 if deck-checking(G*, D)=True then Output G*.
10 end
11 end
12 if output no graph then return No.
13 end

Now we consider the time complexity of this algorithm. For each G;, construction of an
MPQ-tree of G; in O(n + m) time helps us to list each S’ and 7’ in O(n) time. Computing

44

the degree sequence (dy, da, . . ., d) takes O(n) time from Lemma4.8. Since obtaining S* needs
sorting of the degree sequence, it requires O(nlogn) time. It is clear that reconstructing an
interval graph from itsinterval representation takes O(n + m) time, if the endpoints of intervals
are sorted. deck checking algorithm costs O(n(n + m)). Therefore the total time complexity of
thisalgorithm is O(n((n+ m) + n(n+m+nlog n+ n(n+m)))) = O(n*(n+m)). Note that we have
to check every output preimage is not isomorphic to each other for preimage counting. Since
the number of output preimage may be O(n?), we need O(n*(n + m)) time for this checking. If
the graph reconstruction conjecture istrue, the time complexity of this checking can be omitted.

Theorem 4.10. There is a polynomial time algorithm that lists up connected interval graphs
that are preimages of the input n interval graphs. The time complexity for outputting one con-
nected interval graphis O(n*(n + m)), and that for outputting all is O(n*(n + m)).

4.1.4 Disconnected Preimage Case

Consider the case that the input graphs G4, G, . . ., G, have a disconnected preimage G. Then
from the argument in the Theorem 4.4, G must be an interval graph. Further it is proven that the
graph reconstruction conjectureistruein thiscase [28] (note that thisfact does not imply that the
reconstruction can be donein polynomlal time). Lemma 4.2 and the fact that {G,,G,, ..., Gy}
isadeck of G if and only if (G G,,...,G U {G)isadeck of G simplify our algorithmin this
case.

Since we can know the degree sequence of G by Lemma 4.8, we can know the degree se-
quence of G by Lemma 4.8. Thus we can obtain G by the algorithm described in the previous
subsection. Note that we do not know G, thus in fact we cannot use the algorithm itself. How-
ever in the algorithm we can omit the case that G; in the algorithm is G, since every interval
graph has at least two end-vertex set and so does G. Further we can omit checking if G isin the
deck of G. If the new algorithm (omitting checking if G isin the deck of G) returns some G, we
can construct G from it. Then now we can check if G isapreimage of G, ..., G,. Therefore
we have the theorem bel ow.

Theorem 4.11. Thereisa polynomial timealgorithmthat outputsa disconnected interval graph
that is the preimage of the input n interval graphs, if there exists. The time complexity of the
algorithmis O(n*(n + m)).

Therefore we have the following theorem from Theorems 4.4, 4.10, and 4.11.

Theorem 4.12. There are O(n3(n + m)) time algorithms for legitimate deck and preimage con-
struction, and there is an O(n*(n + m)) time algorithm for preimage counting, where n is the
number of vertices of preimage and mis the number of edges of preimage.

4.2 Permutation Graphs

In this section, we propose a reconstruction algorithm for permutation graphs. The framework
of this section is the same as previous section. First, we present a deck checking agorithm for
permutation graphs. Since an O(n?) time isomorphism algorithm for permutation graphs [49]
is known, devel oping a polynomial time deck checking algorithm for permutation graphsis not
very difficult. Next, we consider the non-permutation preimage case to simplify our algorithms.
Finally, we present the algorithms for permutation graph preimage. Our algorithms have two

45

parts. Oneisfor apreimage G that has aminimal strong multi-vertex module M such that G[M]
is not critical, and the other part is for otherwise. In both the parts, we construct polynomially
many candidates of a preimage, and use deck checking algorithm to check whether each candi-
date is a preimage. Since we of course do not know the properties of a preimage when we are
given ainput deck, we execute both these two parts for the input deck.

4.2.1 Deck Checking
First of this subsection, we introduce a famous theorem below.

Theorem 4.13 (Spinrad and Valdeg[49]). Given two permutation graphs G; and G,, we can
determine whether they are isomorphic in O(n?) time, where n is the number of vertices of G,
and Go.

Thus developing a polynomial time algorithm for deck checking for permutation graphsis
easy.

We present a deck checking algorithm. This algorithm is the same as Algorithm 4. Given
amulti-set D that consists of permutation graphs, and given a preimage candidate G = (V, E)
whose deck consists of permutation graphs, we first prepare the deck D of G in O(n(n + m))
time, where n is the number of vertices of G and mis the number of edges of G. We then add
a universal vertex to every graph in D and D in order to make each graph connected. Note
that for any permutation graph G, G is also a permutation graph. Since the disjoint union of
permutation graphs is clearly a permutation graph, we can check if D and D are isomorphic in
O((n(n+1))?)=0(n*) time by applying the isomorphism algorithm for permutation graphsto the
disioint union of graphsin D and the disjoint union of graphsin D. Now we obtain the theorem
below.

Theorem 4.14. There is an O(n*) time deck checking algorithm for a deck that consists of
permutation graphs, and a preimage candidate G = (V, E) whose deck consists of n permutation

graphs.

4.2.2 Non-permutation Graph Preimage Case

Let D = {Gy,Gy, -+, Gy} be adeck consisting of n graphs G,,G,,...,Gy. It is clear that
G4, Gy, . ..,G, have the same number of vertices n — 1, and that the number of vertices in a
preimage G isn. Since the number of the forbidden graphs of the size nis O(1), we can check if
one of them is a preimage of the input graphs in the polynomial time with deck checking algo-
rithm. The time complexity is O(n*), since the time complexity of the deck checking algorithm
isO(n%).

Theorem 4.15. If n permutation graphs G4, G,, . . ., G, have a preimage G that is not a permu-
tation graph, we can reconstruct G from G, G, ..., G, in O(n*) time.

4.2.3 Non-critical Case

First we consider the case that apreimage G = (V, E) hasaminimal strong multi-vertex module
M suchthat [M| > 3, and G[M] isnot critical. If M isaprime module, since G[M] isaprime due
to Lemma2.20, G[M] hasavertex v such that G{M] —v isaprime, and hence M —visaminimal
strong multi-vertex module of G{M] — v. If M is not a prime module, due to the definition of

46

G[M3]

Figure 4.6. Strong modules M4, M,, and M3 are minimal. We add a line segment in the line
representation of G[Ms].

modular decomposition, G[M] is a complete graph, or G[M] consists of independent set. And
thus G[M] aso has a vertex v such that M — v is a minimal strong multi-vertex module of
G[M] —v.

We search for apreimage by adding a vertex v to every minimal strong multi-vertex module
M’ of every graph in the deck to check if M’ isthe desired M — v. For every candidate, we use
the deck checking algorithm to check if it isa preimage.

If we can specify Ng(Vv), we can construct a candidate of G. We can easily specify Ng(v)\ M’,
since M’ U {v} should be a module in G, i.e. every vertex in M’ and v should seem the same
from the verticesin V \ M’. Thusthe remaining task is specification of N(v) N M’.

Due to the definition of a modular decomposition, M’ is one of a clique, an independent
set, and a module that induces a prime. It is not difficult to construct the candidate of G if M’
isaclique, or M” consists of independent set, since we know the degree sequence of G from
Lemma4.8, that is, we know the degree deg(v) of vin G. To be concrete, we have to connect v
to deg(v) — [N(v) \ M’| verticesin M’.

Next we consider the case that G[M’] isa prime. A permutation graph that is a prime with
respect to modular decomposition has a unique representation [9, 38]. Thus there are only
O(IM’[?) ways of connection of v and vertices in M’. Note that the number of permutation
diagrams obtained by adding aline segment to a permutation diagram is clearly O(JM’|?), since
there are O(|M’|) choices for the end-point on L1, and there are O(|M’|) choices for the end-
point on L, (see Figure 4.6). Therefore by checking each of O(/M’|?) candidates whether it is
a preimage with the deck checking algorithm, we have a polynomial time algorithm. We show
in Algorithm 6 the whole algorithm for the case that a preimage has a module that does not
induce acritical graph.

We now mention the time complexity of the algorithm in Algorithm 6. There are n graphs
in the deck. Each graph G in the deck has O(n) minimal strong multi-vertex modules. Note

47

Algorithm 6: non-critical-preimage
Input: multi-set D = {G1,Gy, - - -, G}
1 begin
2 foreach graph G; € D do
3 foreach minimal strong multi-vertex module M’ of G; do
4 Prepare an isolated vertex v.
5 Connect v to verticesin V \ M’ suitably.
6
7
8
9

if M”isaclique, or M” areindependent set then
Connect v to deg(v) — IN(v) \ M’| verticesin M".
deck-checking(Gj +v,D).

else
10 Create a unique permutation diagram of G[M’].
11 foreach way of adding v do deck-checking(G; + v, D);
12 end
13 end
14 end
15 end

that the total number of the size of minimal strong multi-vertex modulesin G is O(n), and there
are O(IM’|) candidates for each minimal strong multi-vertex modules M’, so we generate O(n?)
candidates. We can compute these modulesin O(n+ m) time[12]. The time complexity of deck
checking is O(n*). We can compute a permutation diagram of a permutation graph in O(n + m)
time. Therefore the time complexity of the agorithmis O(n - (n - (n + m) + n? - n*)) = O(n’).
Hence we have the theorem below.

Theorem 4.16. If a preimage G = (V, E) that is a permutation graph has a minimal strong
multi-vertex module M such that M| > 3, and G[M] is not critical, we can reconstruct G in
o(n’) time.

424 Critical Case

Lastly we consider the case that for every minimal strong multi-vertex module M of a preimage
G = (V,E), G[M] iscritical, or every minimal strong multi-vertex module has the size two.

Assume that all the minimal strong multi-vertex modules of G have the size two. Since a
module of the size two makes twins, the reconstruction of G is easy in this case. Any graph
G’ in the deck is obtained by removing a vertex that is one of twins from G. Thus G can be
reconstructed by copying avertex in G’. We make weak and strong twins of each vertex of every
graph in the deck, and check whether the obtained graph is a preimage by the deck checking
algorithm. Thus, this algorithm runsin polynomial time.

Now we consider the case that some of minimal strong multi-vertex modulesin G have the
size more than two. Let M be a minimal strong multi-vertex module of G whose size is more
than two. Then since G[M] isacritical graph, G[M] isisomorphic to Hyy, or Hjy. X, and x, are
almost twinsin both the H;y, and H,y, (see Figure 2.10). Infact N, (X0) and Ny, (X2) differ only
iny;, and Nm[xl] and NW[XZ] also differ only iny;. We denote by v; and v, the verticesin M

Corresponding to x; and x, such that |N(_:,[M] (V1)| = |NG[M] (V2)| +1, or |N(_:,[M] [V1]| = |N(_:,[M] [Vz] | +1

48

holds. Since M isamodule of G, Ng(v1) contains exactly one vertex in addition to the vertices
in Ng(V2), or Ng[Vv1] contains exactly one vertex in addition to the verticesin Ng[V].

Now we consider G — v,. G — v, must be in the deck. Thus we check for every graph G’ in
thedeck if itisG — v,. If G' isG — v,, we can reconstruct G from G’ by copying avertex in G’
and removing an edge. We show the algorithm in Algorithm 7.

Algorithm 7: critical-preimage

Input: multi-set D = {G1,Gy, -+ - , Gy}

begin

foreach graph G; € D do

foreach vertex v of G, do

Make weak twin v’ of vertex v.

deck-checking(G; + Vv, D).

foreach edge e of N(v') do
Removee.
deck-checking (G + Vv, D).
Adde.

end

RemoveV'.

Make strong twin v’ of vertex v.

deck-checking(G; + Vv, D).

foreach edge e of N(v') do
Removee.
deck-checking (G + Vv, D).
Adde.

end

RemovevV'.

© 00 N o g b~ W DN P

N O T s T S =
o N o o b W N R O

=
©

end

N
o

end

N
=

end

N
N

We mention the time complexity. There are O(n) graphsin the deck. The number of vertices
in each graph is O(n). We have to remove O(n) edges in each iteration. The time complexity
of deck checking is O(n*). Thus the total time complexity of the algorithmisO(n-n-n-n%) =
O(n"). Thus we have the theorem below.

Theorem 4.17. If every minimal strong multi-vertex module of a graph G induces a critical
graph, or if every minimal strong multi-vertex module of a graph G has the size two, we can
reconstruct G in O(n’) time.

Combining Theorem 4.15, 4.16 and 4.17, we have the following theorem.

Theorem 4.18. Thereisan O(n’) time preimage construction algorithmfor a deck D consisting
of n permutation graphs.

Since we can use preimage construction algorithmsfor legitimate deck and preimage count-
ing, we also have the legitimate deck and preimage counting algorithms running in the same
time complexity for permutation graphs.

49

4.3 Distance-hereditary Graphs

In this section, we propose a reconstruction algorithm for distance-hereditary graphs. The
framework of this section is the same as previous section. First, we present a deck checking al-
gorithm for the basic part of reconstruction algorithm. Next, we consider that a preimage is not
a non-distance-hereditary graph. Finally, we propose a reconstruction algorithm for distance-
hereditary graphs by using pruning sequence.

4.3.1 Deck Checking

We have to be more careful in the case of distance-hereditary graphs, since a distance-hereditary
graph must be connected, and adding auniversal vertex breaks (weakly) distance-hereditariness.
First we show the isomorphism agorithm for weakly distance-hereditary graphs.

Lemma 4.19. For two weakly distance-hereditary graphs G, and G,, we can check if G; and
G, areisomorphicin O(n + m) time, where n is the number of verticesin G, (and of coursein
G,), and misthe number of edgesin G;.

Proof. The O(m) isomorphism agorithm in [42] does not explicitly use the property that
distance-hereditary graphs are connected. It makes two DH-trees corresponding to the two
input distance-hereditary graphs, and compare them. Each node of a DH-tree correspondsto an
operation of adding twins or adding pendants, and the root correspondsto K,. We only have to
replace theroot K, by K;. Since adding k — 1 weak twinsto K; resultsin k isolated vertices, we
can generate any disconnected weakly distance-hereditary graphsfrom K. It isstraightforward
to modify the algorithm in [42] to handle such a case without affecting the time complexity. O

Moreover the following lemmais useful for the deck checking agorithm.

Lemma 4.20. Given two sets of weakly distance-hereditary graphs S; = {Gy,..., Gy} and
S; = {G],...,G}, we can determine if S; is equal to S, in O(k(n + m)) time, where n is the
maximum number of verticesin G,,...,Gy and G, ..., G;, and mis the maximum number of
edgesinGy,...,Gcand G}, ..., G,.

Proof. We extend the DH-tree for a weakly distance-hereditary graph described above to the
DH-tree for a set S of weakly distance-hereditary graphs. The root corresponds to an empty
graph, and the DH-trees of all the elementsin S are the children of the root. Then we can use
the similar algorithm to that in [42]. O

Now we describe deck checking algorithm for distance-hereditary graphs. Given a deck
D that consists of weakly distance-hereditary graphs at least two of which are connected, and
given a distance-hereditary preimage candidate G = (V, E), we prepare the deck D of G in
O(IV| - |E[) time. We can check if D and D are equivaent in O(]V]| - |E|) time by Lemma 4.20.
We thus obtain the theorem below.

Theorem 4.21. There is O(|V| - |E|) time deck checking algorithm for a deck that consists of
weakly distance-hereditary graphs at least two of which are connected, and for a preimage
candidate G = (V, E) which is a distance-hereditary graph.

50

4.3.2 Non-distance-hereditary Graph Preimage Case

A distance-hereditary graph G is connected, and has no cycle of length more than five, no
house, no domino, and no gem as an induced subgraph from Theorem 2.28. This means that
the forbidden graphs of weakly distance-hereditary graphs are cycles of length more than five, a
house, a domino, and agem. If a connected graph G is not distance-hereditary (it turns out that
G has some forbidden graph as an induced subgraph), and if G has a deck consisting of weakly
distance-hereditary graphs, and at least two of them are connected, then G must be the one of
acycle of length more than five, a house, a domino, or a gem, since otherwise some graphsin
the deck have the forbidden induced subgraphs. We can check if the input deck is a deck of a
house, of a domino, or of a gem in constant time, since the size of these graphs are constant.
We can check if the input deck is a deck of a cyclein O(n?) time, since the deck of a cycle of
length n consists of n paths of length n — 2. Thus we have the theorem bel ow.

Theorem 4.22. If n weakly distance-hereditary graphs G,,G,, ..., G, including at least two
connected graphs have a non-distance-hereditary preimage G, we can reconstruct G from
G1,Gy,...,G,inO(r?) time.

4.3.3 Distance-hereditary Preimage Case

A distance-hereditary graph has twins or a pendant from Theorem 2.27. It is easy to develop
a polynomial time preimage construction algorithm for the deck of a graph that has twinsor a
pendant. If a preimage has twins, we can reconstruct it by copying every vertex in the deck and
checking if the resulting graph is a preimage by deck checking algorithm. If a preimage has a
pendant, we can reconstruct it by adding a degree one vertex to every vertex in the deck and
checking if it is a preimage by deck checking algorithm. Thus we have the theorem bel ow.

Theorem 4.23. Givenadeck D = {Gy, .. ., G,} consisting of weakly distance-hereditary graphs
at least two of which are connected, we can list up every distance-hereditary graph whose deck
isD, if any, in O(n®m) time, where n isthe number of graphsin D, and misthe number of edges
in a preimage.

Proof. Copying every vertex in every graph in D requires O(nm) time. Adding a pendant to
each vertex in every graph in D requires O(n?) time. Each deck checking costs O(nm) time.
The maximum number of deck checking executionsis O(n?). Hence we need O(nm+ n? + nm-
n?)=0(nm) time. O

Since we can use preimage construction algorithmsfor legitimate deck and preimage count-
ing, we also have the legitimate deck and preimage counting algorithms running in the same
time complexity for distance-hereditary graphs.

51

Algorithm 8: reconstruct-distance-hereditary

Input: multi-set D = {G1,Gy, -+ - , Gy}

1 begin

2 foreach graph G; € D do

3 foreach vertexv e G; do

4 Adding a pendant vertex v’ that adjacent to v.
5 deck-checking(G; + Vv, D).

6 RemoveV'.

7 end

8 foreach vertex v e G; do

9 Adding aweak twin vertex v’ of v.
10 deck-checking(G; + Vv, D).
11 Adding an edge {V/, v}.
12 deck-checking(G; + Vv, D).
13 RemoveV'.

14 end

15 end

16 end

52

Chapter 5
Efficient Algorithm for MPQ-tree

MPQ-trees are informative data structure for interval graphs. By using MPQ-trees, we can
solve the isomorphism problem for interval graphs. Additionally, we use the MPQ-tree for the
reconstruction algorithm, implicitly. However, the construction algorithm of MPQ-treein [32]
has several templates, so the implementation of the algorithm is not easy.

We propose a simple constructing MPQ-tree algorithm in this chapter. We show the outline
of our algorithm in Algorithm 9. In this algorithm, we give an interval representation of an
interval graph as an input.

Algorithm 9: construct- MPQ-tree
Input: interval representation 1
1 begin
2 Sort endpoints of 7.
3 Convert 7 to a*“ordered” compact interval representation 7.
4 Partition intervals into sets such that each set corresponds to a (#- or Q-) nodein the

MPQ-tree.
5 Determine the parent-child relations of the nodes, and create sections of Q-nodes.

6 end

5.1 Ordered Compact Interval Representation

In this section, we present algorithms to transform a given interval representation 7 into a
ordered compact interval representation 7.

First, we sort the interval representation 7. Figure 5.1(a) is an example of input interval
representation. After step 2 of Algorithm 9, we have an interval representation in the form of
alinked list of endpoints; e.g., (A,B,C,D,a,c, E,F,d,G, f, b, e g), where the upper and lower
case |letters stand for the left and right endpoints, respectively. The algorithm uses an array of
lists storing endpoints of intervals to represent a compact interval representation; Figure 5.1(c)
shows the data structure of the compact interval representation drawn in Figure 5.1(b). We can
convert a sorted interval representation to a compact interval representation in O(n) time [52].

We here introduce an ordering of intervals that makes our algorithm simple.

Definition 5.1. We say that a compact interval representation is ordered if the representation
satisfies the following conditions:

53

| | | | | | | | |

Al | la E! | le | | | | |
I | I I | I | Alp E ¢ 0 1 2
I | I I | I | |
| | | | | | | | | | |

\ 4 A y
| B | | b | | B | b |
I T T I I T I B E G
| | | | | | |
| C c F f | | C,c F f | D F g
| '_| | | |
| | | | A d f
: D | d G ! .g D d Gig : c e
| | | ' | c b
| | | | | | | : | | | | :
0 1 2 3 4 5 6 0 1 2 3 a
(@) (b) (©)

Figure 5.1: (a) Aninput interval representation. (b) The compact interval representation corre-
sponding to (a). (c) Data structure of ordered compact interval representation.

1. Left endpoints L(i) precede right endpoints R(j) with L(i) = R(j).

2. Aleft endpoint of an interval i precedes any left endpoints of intervals j with L(i) = L(j)
and R(i) > R(j).

3. Aright endpoint of an interval i precedes any right endpoints of intervals j with R(i) =
R(j) and L(i) < L(j).

4. For apair i and j with R(i) = R(j) and L(i) = L(j), the right endpoint of i precedes the
right endpoint of j if and only if the left endpoint of j precedes the left endpoint of i.

We next show the following theorem and Algorithm 10 which constructs the ordered com-
pact interval representation from the compact interval representation.

Theorem 5.2. For any given compact interval representation (in a form of an array of lists
storing endpoints of intervals), we can compute the ordered compact interval representation (in
the same form) in O(n) time and O(n) space.

Proof. First, we sweep the endpointsin agiven compact interval representation one by one. For
eachinterval |, we assign the label i that the left endpoint of | appearsto theith left endpoint in
the ordered compact interval representation. In this process, we only use an array that store the
number of unlabeled left endpoint for each coordinate.

Next, we append the left endpoint in order of the small label. Then, we append the right
endpoint in order of the large label. Therefore, this algorithm converts the compact interval
representation to the ordered compact interval representation.

Using an array that maintains the correspondence of |eft and right endpoints, we can write
the index in O(1) time. Thus, the ordered compact interval representation can be computed in
O(n) time and space. O

Algorithm 10: ordered-compact-interval-rep
Input: compact interval representation 7

1 begin

2 foreach endpointe € 7 do

3 if endpoint eisleft then

4 \ Increment the number of |eft endpoint in the coordinate of e.
5 else

6 Determine the label of theinterval | which has the right endpoint e from the

coordinate of left endpoint of |.

7 Update the array of assigned label.

8 end

9 end
10 for i = 1tondo Append left endpoint which has label i.
1 for i = ndownto 1 do Append right endpoint which has label i.

12 end

5.2 Find all £-nodes and Q-nodes

We explain how to find all @-nodesin this section. We can find -nodes easily after finding all
Q-nodes.
We first give the following lemma.

Lemma 5.3. Let T be an MPQ-tree corresponding to an interval graph G, and 7 be a com-
pact interval representation of G. If two intervalsi and j in I overlap, two vertices v; and v;
corresponding to i and j appear in the same Q-node.

Proof. We assumethat v; and v; appear in different nodes N; and N; in T, respectively. Because
i and j overlap, v; adjacent to vj. From the definition of MPQ-tree, N; is an ancestor of N;
or N; is an ancestor of N;. Without loss of generality, we assume that N; is an ancestor of
N;. Then, the maximal cliques C; containing v; contains the maximal cliques C; containing v;,
or the intersection of C; and C; is empty. However, i and j overlap in the compact interval
representation by Lemma 2.7, so C; ¢ C; and Ci N Cj # ¢. It contradicts the assumption,
so v; and v; appear in the same node N in T. And by the same reason, it is clear that N is a
Q-node. O

We can obtain next lemma from Theorem 2.12 and Lemma 5.3, immediately.

Lemmab5.4. Let T be an MPQ-tree corresponding to an interval graph G. Each Q-node g on
T consistsof intervals 7 on any interval representation 7 of G, where |’ satisfies the following
properties.

1. | € I’ overlaps with some other interval in 77, or
2. | € I’ isunion of the other intervalsin 7.

We show Algorithm 11. This algorithm finds intervals overlapping with some other in-
terval. The algorithm maintains Q-node candidates in a stack and updates Q-nodes candidates

55

Algorithm 11: find-all-Q-node

13
14
15
16
17
18
19
20
21

Input: ordered compact interval representation 7

beg

end

in
initi

dize stack S and state;

foreach endpoint e € 7 (eisan endpoint of interval i) do

end

if eisleft then
Pushito S.
elseif thetop of S isinterval i and statefi] = 0 then
| Pop the left endpoint from S.
else
if state][i]=0then
| Make anew Q-node q of intervalson S from interval i to the top.
else
Merge intervals in the Q-node to which i belongs and intervalson S from
interval i to the top into a new Q-node q.
end
Set states of intervalsin q whose stateis 0 to 1.
Set state|i] to 2.
if every state of interval inqgin 2 then
\ Remove endpoints of intervalsin q from S.
end

end

56

efficiently by using an array state. For each interval i, the array state stores as follows:

0 right endpoint of i is not processed, and i belongs to no @Q-node.
statefli] = 41 right endpoint of i is not processed, and i belongsto a certain Q-node.
2 right endpoint of i is processed.

On step 3, endpoints are searched according to the ordering under the conditions1to 4 in
Definition 5.1. This can be done by simply sweeping the data structure of the ordered compact
interval representation. If the endpoint e is left, the agorithm pushes interval i which has
endpoint e in the stack S (see steps 4 and 5). If eisright, we compare i and the top of the
stack S. At thistime, if i is not equal to thetop of S, intervalson S from interval i to the top
belong to the same Q-node from Definition 5.1 and Lemma 5.4. Since Q-nodes whose intervals
have been processed will be removed on steps 16 and 17, a Q-node obtained by this agorithm
exactly containsintervals that must be in the node.

We here show the complexity. A naive implementation of this algorithm does not achieve
O(n) time. We introduce a good data structure to run the algorithm in O(n) time. We maintain
each Q-node candidate as a pair of two indices in the stack. The lemma below guarantees the
validness of the method.

Lemma5.5. \erticesin a @-node candidate are consecutive on stack.

Therefore, the algorithm can maintain a set of Q-node candidates by top and bottom of the
set on stack. Thus, two sets of Q-node candidates are merged in O(1) time.

Lemma 5.6. The total computational cost of merging Q-nodesin the algorithmis O(n).

Proof. At first, the number of sets of Q-node candidates is at most n. One merger, which takes
O(2) time, decreases the number of sets by one. The total number of mergersisthus at most n.
Therefore, it takes O(n) time in total to merge the Q-node candidate sets.]

We obtain the following lemma from the Lemmas 5.5 and 5.6.

Theorem 5.7. Our algorithm partitions intervals into sets such that each set corresponds to a
(P or @Q)-node in the MPQ-tree, and runsin O(n) time.

5.3 Construct MPQ-tree

We construct an M#PQ-tree from the ordered interval representation 7 and each node of the
MPQ-tree. Concretely, we first determine the parent-child relations of the nodes. We next
create sections of @Q-nodes.

We define node interval for each node on M#PQ-tree. Let P be a#-node on the MPQ-tree
T, and let 7, be a multi-set of intervals that belong to P. For any two intervalsi, j € 7, two
vertices corresponding toi and j are contained in all maximal cliques represented by the subtree
of PinT, butin no other cliques, soi and j correspond to the same interval from Lemma 2.7.
We call someinterval i € 7p P-node P interval.

Let Q be a@-node on the MPQ-tree T, and let 74 be amulti-set of intervals that belong to
Q. We define Q-node Q interval asi = Uz, |-

We have the following lemma.

57

Lemma5.8. For any two nodeintervalsi and j, i do not overlap j, i.e.
inNj=0,icj,orjci.

Proof. Leti beanodeinterval of node N;, and j be anode interval of N;. If two node intervals
i and j overlap, there areintervalsi’ € N, and j* € N; that overlap. From Lemma5.3,i” and j’
must belong to the same Q-node. m|

Algorithm 12: determine-parent-child-relation
Input: ordered compact interval representation 7, $-nodes and Q-nodes
begin

foreach endpoint e € 7 (eisendpoint of interval i) do

Let N be anode on the M#PQ-tree which containsi.

1
2
3
4 if eisleft and N isunprocessed then

5 Set N to the child of the top node of the stack S.
6

7

8

9

Push N to the stack S.
end
if eisright and intervalsin N are processed then Pop S (remove N from S).

end

10 end

By Lemma 5.8 and definition of MPQ-tree, node N is an ancestor of N’ if and only if
node interval of N contains node interval of N’. Therefore, we can design Algorithm 12 that
determines parent-child relation of the MPQ-tree. This agorithm maintains only stack, so the
algorithm runsin O(n) time.

Theorem 5.9. Algorithm 12 determines parent-child relations on the MPQ-tree correspond-
ing to interval representation 7, and runsin O(n) time.

Algorithm 13: create-sections
Input: ordered compact interval representation 7, -nodes and Q-nodes
begin
foreach @-node Q do
foreach child node N of Q do
Create section Sy.
Assign interval s that right endpoints are unprocessed when N is made.
if Sy isequal to the left section of Sy then
| Merge Sy and the left section of Sy
end

© 0o N o O b~ w N

end
end

=
o

end

[N
[N

Next, we design Algorithm 13 for creating sections of each @-node Q. The algorithm
creates sections for each child of Q, and assignsintervalsto the sections. However, if we only

58

process avobe, section S; isequal to other section S, so the algorithm leaves one section S; and
removes other sectionswhich isequal to S;.

We show the time complexity. The number of nodes on MPQ-tree is O(n). We process
nodes in order of determining the parent-child relation from Algorithm 12, because we can
remember the endpointswhich are assigned section Sy. If Sy hasleft endpoint or the left of Sy
has right endpoint, we must not merge Sy into the left of Sy. Otherwise we merge Sy into the
left of Sy, so we can perform steps 4 to 7 in O(1) time. Therefore, Algorithm 13 runsin O(n)
time.

Theorem 5.10. Algorithm 13 creates sections for each Q-node on the M#PQ-tree correspond-
ing to interval representation 7, and runsin O(n) time.

Therefore we have the following theorem from Theorems 5.2, 5.7, 5.9, and 5.10.

Theorem 5.11. If theinput is given in the interval representation with the endpoints sorted by
the coordinates, we can obtain an MPQ-tree corresponding to an interval graphsin O(n) time.

59

Chapter 6

Concluding Remarks

We proposed efficient random generation and enumeration algorithmsfor proper interval graphs
and bipartite permutation graphs. We investigated unlabeled connected graphs. To deal with
unlabeled graphs, it is important to determine whether or not two unlabeled graphs are iso-
morphic. In this sense, counting/random generation/enumeration on a graph class seems to be
intractable if the isomorphism problem for the class is as hard as that for general graphs (see
[51] for further details of this topic). It is known that the graph isomorphism problem can be
solved in polynomial time for interval graphs and permutation graphs. Hence the future work
would be the extensions of our algorithmsto general unlabeled interval graphs and permutation
graphs.

We presented polynomial time reconstruction algorithms for interval graphs, permutation
graphs, and distance-hereditary graphs. These results do not help directly the proofs of the
graph reconstruction conjecture on these graph classes. The conjecture on these graph classes
still remains to be open.

Kratsch and Hemaspaandra showed that preimage construction on graph class C is Gl-hard
if the graph isomorphism is Gl-hard on C [33]. Remaining famous graph classes that we can
find in [9] on which graph isomorphism are not Gl-hard contain circular-arc graphs and circle
graphs (of course there are other non-Gl-hard classes such as threshold graphs. However we
mention here higher classesin the hierarchy of theinclusion relation). preimage construction on
circular-arc graphs may be a challenging problem. Ma and Spinrad showed that a circle graph
G has a unique representation if G is a prime with respect to split decomposition [38]. Split
decomposition is a generalization of modular decomposition. Therefore it may be possible that
preimage construction on circle graphsis solvablein polynomial timein asimilar way described
in this paper. Circle graphs contain permutation graphs and distance-hereditary graphs.

60

Appendix A

The canonical MPQ-treefor an interval
graph

In [32], Korte and Mohring proposed two algorithms that construct an M#PQ-tree for given
interval graph G = (V, E) in O(n + m) time, wheren = |[V| and m = |E|.

The first one constructs a PQ-tree T of G and labels it. The constructed MPQ-tree is
essentially the same as the labeled PQ-tree which is used by Colbourn and Booth in [11] to
solve the graph isomorphism problem for interval graphs, and hence it is canonical.

The second one incrementally constructs an MPQ-tree from G with the vertex set ordered
by LexBFS. The authors do not mind if the constructed MPQ-tree by the second algorithmis
unique or not in the paper.

In this section, we show that the second M#PQ-tree T is isomorphic to the first one. In
other words, the MPQ-tree T constructed by the second algorithmis also canonical. Korte and
Mohring show and use the following conditions, which are insufficient to the uniqueness [32,
Lemma2.2]: Let N bea@-node. Let Sy,..., Sy (inthisorder) be the sections of N, and let V,
denote the set of vertices occurring below S; in T with 1 < i < m. Then we have the following
conditions:

@S.inS#0fori=2,...,m.

(b) S; € S;and Sy 1 2 S

(©) V1 # 0and Vy, # 0.

(d) SNS;1\S1#0andS;i_1NS;\S,#0fori=2,...,m-1.

The conditions and their definition of an MPQ-treeallow that S; = S;,1 for somei withl <i <
m-— 1. In the case, the MPQ-tree can have redundancy and we can obtain different MPQ-trees
by swapping the sections S; and S;,; with associated subtrees induced by V; and Vi,;. Thus
MPQ-tree is not uniquely determined up to isomorphism for an interval graph. On the other
hand, the M#PQ-tree constructed by the first algorithm is unique. Hence, to make the second
MPQ-tree unique, it is sufficient to reduce the redundancy. Precisely, it is sufficient to add the
following condition:

(e Sii#Sifori=2,...,.m-1.

As aresult, by the condition (€), we can replace the condition (b) by the following one:

(b’) S;cS,and S,1 O S

We here show the main theorem in this section:

Theorem. The second algorithm proposed by Korte and Mohring in [32] produces the MPQ-
tree that satisfies the conditions (b’) and (e€). Thus, the second algorithm surely produces the
canonical MPQ-tree for an interval graph.

61

Proof. The second algorithm in [32] incrementally modifies the current MPQ-tree T for each
vertex vy, Vo, . . ., Vi, Which is ordered by LexBFS. We prove the correctness by the induction of
n. At thefirst step, T consists of a #-node containing v;, and hence T has no redundancy for
the sections. Now we assume that T does not have the redundancy before adding a vertex v;,
and show that the addition of v; does not generate the redundancy.

Then there isa path P in T such that al nodes that have to be modified by the addition of
vi areon P (Lemma4.1in[32]). Moreover, P is a subpath of a path from aleaf to the root of
T. Let P be the path (uy, U, ..., Uy) such that the algorithm starts the modification from u; and
endsat ux. (Inthenotationin[32], u; = N, and ux = N*.) We check each modification does not
produce the redundancy step by step, based on the case analysisin [32]. We have two cases.
Case (a): k = 1. Thealgorithm usestemplates either (L1), (P1), the upper onein (Q1), or (Q2).
Templates (L1) and (P1) do not generate Q-node, and we have done. In the upper one in (Q1),
the algorithm generates new sections By, ..., By, Those sectionswere AUB,, AUB,, ..., AUB,
and the common set A isremoved. By the inductive hypothesis with the property (€), we have
AU B; # AU Bj,; and hence B; # B;,;. Hence we still have the property (€). In the case (Q2),
we have two cases. In any case, for the leftmost two consecutive sections, we have A ¢ S; and
A c (AU B) by the inductive hypothesis. Hence we have no redundancy.
Case (b): k > 1. Inthe case, we have three subcases for u;, Uy, and u; with 1 < j < k. We
remind that they are processed from uy, u; foreach j = 2,3,..., k-1, and u.
Case (b-1): For u;. Templates either (L2), (P2), the lower one in (Q1), or (Q2) is applied to
deal with the node u;. In templates (L2) and (P2), a redundant @-node is generated. More
precisely, we have the following invariance:

(*) The leftmost two consecutive sections contains the same set A in the Q-node.

In template (Q1), two Q-nodes are generated. The lower one does not have the redundancy
with the same reason in the case (@), and the upper one has the same redundancy with the
invariance (x). In template (Q2), it does not have the redundancy if B # 0, but it has the
redundancy with the invariance (x) when B = 0.

Case (b-2): Foru; with1 < j < k. Inthe case, one of templates (P3) and (Q3) isapplied. By the
invariance of the case (b-1), only possible redundant sectionsare Sp and S; in the figure. Hence,
if B # 0, the modification avoids the redundancy. On the other hand, when B = 0, we still have
the same redundancy with theinvariance (). Thisisrepeated foreach j = 2,3,...,k—1. Hence
the leftmost two consecutive sections may have the redundancy.

Case (b-3): For uk. In the case, template (Q3) is applied. The node uy, which is denoted by
N* in [32], always contains the vertices not in N(v;), where v; is the vertex added to T. Hence
we have B # (. Before applying the template (Q3), we may have the redundancy Sp = S;.
However, after applying, the sections are modifiedto AU Sp, AUB U S;. Hence, by B # 0, we
awayshave AU Sy c AUBU S; at thislast step.

Summarizing up, the algorithm in [32] constructs the canonical M#PQ-tree, which has no
redundancy. Hence it isisomorphic to the MPQ-tree constructed by the first algorithm. O

62

Bibliography

[1] D. B. Arnold and M. R. Sleep. Uniform Random Generation of Balanced Parenthesis
Strings. ACM Transaction Programming Languages and Systems, 2(1):122—-128, 1980.

[2] D.Avisand K. Fukuda. Reverse Search for Enumeration. Discrete Applied Mathematics,
65:21-46, 1996.

[3] H.J. Bandelt, and H. M. Mulder. Distance-hereditary graphs. Journal of Combinatorial
Theory, Series B, 41:182—-208, 1986.

[4] K. P. Bogart and D. B. West. A short proof that ‘ proper=unit’. Discrete Mathematics,
201:21-23, 1999.

[5] B. Bollobas. Almost every graph has reconstruction number three. Journal of Graph
Theory, 14:1-4, 1990.

[6] J. A. Bondy. A graph reconstructor’s manual. Surveysin Combinatorics, London Math-
ematical Society Lecture Note Series, 166:221-252, 1991.

[7] N. Bonichon. A bijection between realizers of maximal plane graphs and pairs of non-
crossing Dyck paths. Discrete Mathematics, 298:104-114, 2005.

[8] K.S. Boothand G. S. Lueker. Testing for the consecutive ones property, interval graphs,
and graph planarity using PQ-tree algorithms. Journal of Computer and System Sciences,
13:335-379, 1976.

[9] A.Brandstadt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey. SIAM, 1999.

[10] C. J. Colbourn. On Testing Isomorphism of Permutation Graphs. Networks, 11:13-21,
1981.

[11] C. J. Colbournand K. S. Booth. Linear time automorphism algorithmsfor trees, interval
graphs, and planar graphs. S AM Journal on Computing, 10:203-225,1981.

[12] E. Dahlhaus, J. Gustedt, and R. M. McConnell. Efficient and practical algorithms for
sequential modular decomposition. Journal of Algorithms, 41:360-387, 2001.

[13] X. Deng, P. Hell, and J. Huang. Linear-time Representation Algorithms for Proper
Circular-arc Graphs and Proper Interval Graphs. SAM Journal on Computing,
25(2):390-403, 1996.

[14] E. Deutsch and L. W. Shapiro. A bijection between ordered trees and 2-Motzkin paths
and its many consequences. Discrete Mathematics, 256(3):655-670, 2002.

63

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

R. Diestel. Graph Theory. Springer, 3rd edition, 2006.

D. R. Fulkersonand O. A. Gross. Incidence matrices and interval graphs. Pacific Journal
of Mathematics, 15:835-855, 1965.

T. Galai. Transitiv orientierbare graphen. Acta Mathematica Hungarica, 18:25-66,
1967.

M. R. Garay and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, 1979.

R. Geary, N. Rahman, R. Raman, and V. Raman. A Simple Optimal Representation for
Balanced Parentheses. In Symposium on Combinatorial Pattern Matching (CPM 2004),
pages 159-172. Lecture Notes in Computer Science Vol. 3109, Springer-Verlag, 2004.

P. C. Gilmore and A. J. Hoffman. A characterization of comparability graphs and of
interval graphs. Canadian Journal of Mathematics, 16:539-548, 1964.

M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Annals of Discrete
Mathematics 57. Elsevier, 2nd edition, 2004.

R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley
Publishing Company, 1989.

P. Hanlon. Counting interval graphs. Transactions of the American Mathematical Society,
272(2):383-426, 1982.

F. Harary. A survey of the reconstruction conjecture. Graphs and Combinatorics, Lecture
Notes in Mathematics, Vol. 406, 18-28, 1974.

E. Hemaspaandra, L. Hemaspaandra, S. Radziszowski, and R. Tripathi. Complexity
results in graph reconstruction. Discrete Applied Mathematics, 152:103-118, 2007.

Y. Kaneko and S.-i. Nakano. Random Generation of Plane Graphs and Its Application.
|EICE Transactions on Fundamentals, J85-A(9):976-983, 2002.

A. Karttunen. Personal communication. 2008.

P. J. Kelly. A congruence theorem for trees. Pacific Journal of Mathematics, 7:961-968,
1957.

D. E. Knuth. Generating All Trees, volume 4 of The Art of Computer Programming.
Addison-Wesley, fascicle 4 edition, 2005.

Y. Koh and S. Ree. Connected permutation graphs. Discrete Mathematics,
307(21):2628-2635, 2007.

Y. Komaki, and M. Arisawa. Nano Piko Kyoushitsu (in Japanese). Kyouritsu shuppan,
1990.

N. Korte and R. H. Mohring. An Incremental Linear-Time Algorithm for Recognizing
Interval Graphs. SSAM Journal on Computing, 18(1):68-81, 1989.

64

[33]

[34]

[35]

[36]

[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

D. Kratsch and L. A. Hemaspaandra. On the complexity of graph reconstruction, Math-
ematical Systems Theory, 27:257-273, 1994.

C. G. Lekkerkerker and J. C. Boland. Representation of afinite graph by a set of intervals
on therea line. Fundamenta Mathematicae, 51:45-64, 1962.

Z.Liand S.-i. Nakano. Efficient generation of plane triangul ationswithout repetitions. In
International Colloquium Automata, Languages and Programming (ICALP 2001), pages
433-443. Lecture Notes in Computer Science Vol. 2076, Springer-Verlag, 2001.

G. S. Lueker and K. S. Booth. A Linear Time Algorithm for Deciding Interval Graph
Isomorphism. Journal of the ACM, 26(2):183-195, 1979.

R. H. Mohring. Personal communication. 2003.

T. H. Ma, and J. P. Spinrad. An O(n?) algorithm for undirected split decomposition.
Journal on Algorithms, 16:145-160, 1994.

J. I. Munro and V. Raman. Succinct Representation of Balanced Parentheses and Static
Trees. SAM Journal on Computing, 31:762—776, 2001.

S.-i. Nakano. Efficient Generation of Plane Trees. Information Processing Letters,
84(3):167-172, 2002.

S.-i. Nakano. Enumerating Floorplans with n Rooms. |EICE Transactions on Funda-
mentals, E85-A(7):1746-1750, 2002.

S.-i. Nakano, R. Uehara, and T. Uno. A New Approach to Graph Recognition and Ap-
plications to Distance Hereditary Graphs. Journal of Computer Science and Technology,
24(3):517-533, 2009.

S.-i. Nakano and T. Uno. Constant time generation of trees with specified diameter. In
International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2004),
pages 33-45. Lecture Notes in Computer Science Vol. 3353, Springer-Verlag, 2004.

A. Pnudli, S. Even, and A. Lempel. Transitive orientation of graphs and |dentification of
Permutation Graphs. Canadian Journal of Mathematics, 23:160-175, 1971.

M. von Rimscha. Reconstructibility and perfect graphs. Discrete Mathematics, 47:283—
291, 1983.

F. S. Roberts. Indifference graphs. In F. Harary, editor, Proof Techniques in Graph
Theory, pages 139-146. Academic Press, 1969.

J. H. Schmerl, and W. T. Trotter. Critically indecomposable partially ordered sets, graphs,
tournaments and other binary relational structures. Discrete Mathematics, 113:191-205,
1993.

J. P. Spinrad. Efficient Graph Representations. American Mathematical Society, 2003.

65

[49] J. P. Spinrad, and J. Valdes. Recognition and isomorphism of two-dimensional partial
orders. In International Colloguium Automata, Languages and Programming (ICALP
1983), pages 433-443. Lecture Notes in Computer Science Vol. 154,Springer-Verlag,
1983.

[50] R. P Stanley. Enumerative Combinatorics, volume 2. Cambridge, 1999.

[51] R. Uehara, S. Toda, and T. Nagoya. Graph Isomorphism Completeness for Chordal Bi-
partite Graphs and Strongly Chordal Graphs. Discrete Applied Mathematics, 145(3):479—
482, 2004.

[52] R.Ueharaand Y. Uno: On computing longest pathsin small graph classes. International
Journal of Foundation of Computer Science, 18:911-930, 2007.

66

Publications

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

OO0 O0O0,0D00,0000.000000MPQree000D0O0OO0OOODODO. O
OO000DO0b0bO0oooooOo LADODbObOoO, pp.16:1-16:10, 2007.

Toshiki Saitoh, Masashi Kiyomi, and Ryuhel Uehara. Simple Efficient Algorithm for
MPQ-tree of an Interval Graph. |EICE Technical Report, COMP2007-24, pp.49-54,
2007.

Toshiki Saitoh, Masashi Kiyomi, and Ryuhel Uehara. Simple Efficient Algorithm for
MPQ-tree of an Interval Graph. KOREA-JAPAN Joint Workshop on Algorithms and
Computation (WAAC 2007), pp.121-126, 2007.

00 00,0000,00 0,00 00. Proper Interval Graphs0 00000000
0.00LAODDD00, pp.22:1-22:8, 2008,

Masashi Kiyomi, Toshiki Saitoh, and Ryuhei Uehara. Reconstruction of Connected Inter-
val Graphs. Acceleration and Visualization of Computation for Enumeration Problems,
pp.128-134, 2008.

Toshiki Saitoh, Katsuhisa Yamanaka, Masashi Kiyomi, and Ryuhel Uehara. Random
Generation and Enumeration of Proper Interval Graphs. The 3rd Annual Workshop on
Algorithms and Computation (WALCOM 2009), Lecture Notesin Computer Science Vol.
5431, pp.177-189, 2009.

Masashi Kiyomi, Toshiki Saitoh, and Ryuhei Uehara. Reconstruction of Interval Graphs.
The 15th International Computing and Combinatorics Conference (COCOON 2009),
L ecture Notesin Computer Science Vol. 5609, pp.106-115, 2009

00 00,00 00,00 00,00 O00. BipartitePermutation Graph D 0 0 00O
OOooooD. oo LtAd0Ooogo, 2009.

Toshiki Saitoh, Yota Otachi, Katsuhisa Yamanaka, and Ryuhel Uehara. Random Gen-
eration and Enumeration of Bipartite Permutation Graphs. IEICE Technical Report,
COMP2009-30, pp.35-42, 2009.

Masashi Kiyomi, Toshiki Saitoh, and Ryuhel Uehara. Reconstruction Algorithms for
Permutation Graphs and Distance-Hereditary Graphs. 1PSJ S G Technical Report, 2009-
AL-126, pp.5:1-5:8, 20009.

Toshiki Saitoh, Yota Otachi, Katsuhisa Yamanaka, and Ryuhei Uehara. Random Gener-
ation and Enumeration of Bipartite Permutation Graphs. The 20th International Sympo-
sium on Algorithms and Computation (ISAAC 2009), L ecture Notes in Computer Science
Vol.5868, pp.1104-1113, 2009.

67

[12] Masashi Kiyomi, Toshiki Saitoh, and Ryuhel Uehara. Reconstruction Algorithm for Per-
mutation Graphs. The 4th Annual Workshop on Algorithms and Computation (WALCOM
2010), Lecture Notes in Computer Science Vol. 5942, pp.125-135, 2010.

68

