JAIST Repository

https://dspace.jaist.ac.jp/

iUy UUg o

Title 000

Author(s) oo, 00

Citation

Issue Date 2010-03

Type Thesis or Dissertation

Text version aut hor

URL http://hdl . handle.net/ 101119/ 8965
Rights

Description Supervisor: ggooo, oooooono, 00

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Efficient Algorithm on Bandwidth Problem

Akihiro Nakanishi (0810044)

School of Information Science,
Japan Advanced Institute of Science and Technology

February 9, 2010

Keywords: linear time algorithm, bandwidth problem, bipartite
permutation graphs.

A layout of a graph G = (V, E) is a bijection o between the vertices in V'
and the set {1,2,...,|V]|}. Bandwidth bw(c) of layout ¢ is max{|o(u) —
o()| | {u,v} € E}. Bandwidth bw(G) of the graph G is min,{bw(o)}.
A layout whose bandwidth is equal to bw(G) is called an optimal layout.
Intuitively, computing bw(G) is to find a linear ordering of vertices with
the minimum maximum distance between two vertices that are adjacent in
G.

Bandwidth problem is an optimization problem to compute bw(G) for
given (G. On the other hand, k-bandwidth problem is a decision problem
which asks if G has a bandwidth at most k£ for given G and k.

The bandwidth problem has wide applications including sparse matrix
computations and molecular biology. For instance, assume that symmetric
sparse matrix S whose all diagonal elements are zero is given. In this case,
there is a graph G whose adjacency matrix is obtained from S by replacing
all the nonzero elements with 1. Let o be an optimal layout of G. The
symmetric matrix obtained from S by reordering its rows and columns
according to the ordering of ¢ has minimum bandwidth among all the
symmetric matrices obtained from S by reordering its rows and columns.
Therefore, solving the bandwidth problem on graph G, we expect that we
can execute calculations such as multiplication of matrices quickly.

Copyright (© 2010 by Akihiro Nakanishi

The bandwidth problem is one of the NP-complete problems. The prob-
lem is NP-complete even if the input is a tree. Cygan and Pilipczuk devel-
oped an O(n?) time exact algorithm for the bandwidth problem on general
graphs in 2008, where n is the number of the vertices in the input graph.
If we restrict graph classes, there are some polynomial time algorithms for
the bandwidth problem and the k-bandwidth problem. There are liner
time algorithms for the bandwidth problem on threshold graphs and chain
graphs. There is an O(nlogn) time algorithm for the k-bandwidth problem
on interval graphs. There is an O(n?) time algorithm for the k-bandwidth
problem on bipartite permutation graphs. In this paper, we propose a
liner time algorithm for the k-bandwidth problem on bipartite permuta-
tion graphs, which improves the known best time complexity O(n?) to
optimal.

We can decompose a bipartite permutation graph to a sequence of chain
graphs Gl = (‘/1, ‘/2, El), G2 = (‘/2, VE),, Eg), ceey Gm = (Vm—h Vm, Em) An
existing algorithm for the k-bandwidth problem on bipartite permutation
graphs uses this property.

Given a bipartite permutation graph G = (X,Y, E), the existing algo-
rithm first computes the V4, V1, Vs, ..., V,, of the vertices XUY', and obtains
a sequence of chain graphs G = (V1, Va, E4), Go = (Va, V3, Es), ..., Gpo1 =
(Vin=1, Vin, Emn—1). Then, it computes a layout o; whose bandwidth is less
than or equal to k for each G;. It arranges each o;(1 < i < m) from left to
right. Even if every bandwidth of G; is less than k, distance in the layout
between two vertices in GG; and G;_1; may exceed k. Thus, it is necessary
to permute the arrangement of vertices. If we do this permuting of the
arrangement of vertices in a naive way, since the number of permutations
of the arrangement of vertices is exponentially large, the time complex-
ity becomes exponential. Existing algorithm repeatedly repairs o7q,...,0;
for ¢+ = 1,2,...,m so that a bandwidth of G; U ... U G; is less than k.
Using a table of size proportional to the number of vertices in G;_1, an
existing algorithm uses O(n?) time in repairing oy, ..., 0;. This is a good
improvement. But there is still room for an improvement.

In this paper, we show that there are at most constant places a vertex
is replaced. Therefore, using an appropriate data structure, we can find
vertices that must be replaced and we can replace vertices quickly. Hence,

we can improve an existing algorithm to liner time.

