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Abstract

In this thesis, we investigate various kinds of nonclassical logics by the property of identity

connective. Around 1970, R. Suszko proposed the sentential calculus with identity (SCI

for short) to realize some philosophical ideas of L. Wittgenstein's Tractatus. In SCI,

besides the logical value, he also formalized the referent of sentences by using identity

connective. Inspired by his idea, we introduce a weak system, i.e., propositional calculus

with identity (PCI for short), which is obtained from SCI by deleting two axioms which

express the re
exivity and transitivity of identity. As an extension of the simulation

property of SCI, we reconstruct various kinds of nonclassical logics on PCI, including

two types of logics, namely classical logics with additional operators and weak logics with

various kinds of weak implications, e.g., strict/relevance/linear implication. In fact, in

this thesis we show that the following logics can be translated to some extensions of PCI;

classical modal logics K, KT, KB, K4, KD, K5, S4 and S5 with necessary operator 2,

Angell's analytic containment logic AC with relevance entailment;, Corsi's weak logic F

with strict implication * and Girard's classical linear logic GL with linear implication �.

In particular, the modal logic K is shown to be translated into an extension PCIK of PCI.

Then we will focus on the algebraic property of PCIK-algebras, which o�er the algebraic

semantics of extensions of PCIK. We will give a necessary and su�cient condition for a

subvariety of PCIK-algebras to have equationally de�nable principal congruences (EDPC

for short) property.

Keywords : EDPC, identity connective, nonclassical logic, non-Fregean logic,

SCI, Suszko, PCI
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Chapter 1

Introduction

In this chapter we will �rst explain the motivation and short historical background of the

thesis. Nowadays the main current of logic is a mathematical logic which is evolved from

the Hilbert's formalism. In particular, the nonclassical logic is the best subject in logical

�eld, which is opposite to the classical logic, in which it assumes that all propositions

must have true or false logical values (called the law of excluded middle), and most of

mathematics admit this logic to construct their proofs. It is included in the nonclassical

logic that intuitionistic logic, modal logic, temporal logic, many-valued logic, relevance

logic, quantum logic, knowledge and belief logic, and so on. The classi�cation of above

logics depends on the di�erence between objects that each logic deals with. In general,

since the logic can be seen as the subject of formalization, there exist many logics which

depend on the formalization method. Our main interest in this thesis is to construct the

primary logic which is the fundamentals of the above all logics. Namely, in general, the

construction of logic will be obtained from something knowledge acquisition (perception),

and usually we can consider two methods of the formalization, in which identity and

distinction (that is a dual notion of identity) are assumed as the primary perception. The

�rst method is also called Leibniz's principle of identity. Our research is mainly concerned

with the former approach of the above formalization. At �rst, we will survey brie
y Frege,

Wittgenstein and Suszko's results as the former approaches (Section 1). Then, in Section

2, we will give an outline of our main results and an overview of the thesis.

1.1 Motivation and history

In [29], G. Frege analyzed the distinction between sense (or Sinn) and reference (or

Bedeutung) of names, by using his famous morning/evening-star example. Frege claimed

that all logically true (and , similarly, all false) sentences describe the same thing, namely,

have a common referent, while it is possible that two names with di�erent senses have a

common referent. His theory is based on Leibniz's principle of identity with respect to

sense of names, and he thought that the identity sentence A � B is logically true and also

meaningful, di�erent from the trivial case A � A, only because of the above assumption.
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Against the above Frege's principle of logical two-valuedness, L. Wittgenstein proposed

in Tractatus the picture theory of meaning based on logical atomism (or Sachverhalt)

and its composition, i.e., facts (or Tatsache), under an insight that the true property of

language is like a mirror to re
ect the world. It appears the following theses in Tractatus

(see [74] and [77]).

1:1 The world is the totality of facts, not of things.

1:2 The world divides into facts.

Here Thesis 1.1 proposes an ontology of facts, and Thesis 1.2 proposes a variant of

it, known as logical atomism. How to get composite facts from logical atoms was really

constructed by using only She�er's stroke function in Tractatus. By the inspiration of L.

Wittgenstein's Tractatus that facts are constructed by states of a�airs (or situations), R.

Suszko formalized an ontology of facts in Tractatus on the basis of Fregean scheme below,

and called it non-Fregean logic (see [63], [64] and [67]).

s(A) A

r(A)

t(A)

gf

Figure 1.1: Fregean scheme

For any sentence A, let r(A) be the referent of A, i.e., what is given by A, s(A) the

sense of A, i.e., the way r(A) is given by A, and t(A) the logical value of A, i.e., (ft; fg).

Then, it is assumed that assignments s, r and t are related as follows: for any sentences

A and B,

(1) s(A) = s(B) implies r(A) = r(B),

(2) r(A) = r(B) implies t(A) = t(B).

Here the converse of (2) means that sentences with the same logical value have a

common referent, and slightly weakens the original Frege's claim. Suszko introduced the

identity connective� to represent the sameness of referent for sentences, i.e., t(A � B) = t

if and only if r(A) = r(B), while the matreial equivalence connective $ represents the

identi�cation of logical value. Moreover, as followed Frege's treatment of identity, Suszko

assumed that identity should satisfy Leibniz's principle with respect to referent of sen-

tences below:

A1 t(A � A) = t,
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A2 t(A � B) = t implies t(G[A=p] � G[B=p]) = t,

where G[A=p] means the formula obtained from G by replacing each occurrence of

p by A.

Then, we have also the following axiom from the assumption (2) above:

A3 t(A � B) = t implies t(A$ B) = t.

For example, if A="I was in Rome." and B="I was in the capital of Italy.", then we

have A � B becuase that \Rome" and \the capital of Italy" have a common referent.

In the result, the language of his most simple system (i.e., not include any quanti�er

formator) consists of LS = hLS;:;^;_;!;�;?;>i, and the system on LS is called the

sentential calculus with identity (SCI for short). Suszko devoted much of his interest

to theories of situation, which constructed through adding a certain system of axioms

to SCI. Then, a typical feature of SCI is the ability that some kinds of nonclassical

logics can be reconstructed on it. We call them the simulation property of SCI. In fact,

R. Suszko showed that some extensions of SCI really correspond to modal systems S4

and S5, if we interpret A � B as 2(A$ B) (see [65]), and moreover, SCI itself also

correspond to the three-valued  Lukasiewicz logic  L3 if we interpret A � B as (A, B),

where , is a three-valued  Lukasiewicz equivalence (see [68] and [69]). So inspired by

his idea, we �rst introduce a weak system, i.e., propositional calculus with identity (PCI

for short), which is obtained from SCI by deleting two identity axioms of re
exivity and

transitivity. Then, our main purposes of this thesis are to simulate uniformly various

kinds of nonclassical logics as the extensions of PCI logics, and furthermore, we will

investigate what properties of the identity connective we really need to reconstruct each

kind of nonclassical logics on PCI.

1.2 Main results of the thesis and overview

In general, nonclassical logics are divided into two types according to the construction,

i.e., (i): classical logics with additional operators and (ii): weak logics with various kinds

of weak implication, e.g., strict/relevance/linear implication. In fact, in this thesis we will

consider classical modal logics with necessary operator 2 (see [15]) as the former type,

and Angell's analytic containment logic AC with relevance entailment (see [2] and [3]),

Corsi's weak logic F with strict implication (see [16]) and Girard's classical linear logic

GL with linear implication (see [31]) as the latter type. Then, we will give the following

results on some extensions of PCI by de�ning precisely the simulation property as the

syntactical equivalence between two logics (see De�nition 3.4.1).

(1) Classical modal logics with necessary operator 2:

We de�ne PCIK logic as an extension of PCI in order to interpret the sameness of

modal necessitation 2 by identity �. Here we add two identity axioms (WIA1) and

3



(WIA2), and one inference rule (G) into the original PCI, to satisfy the following

conditions:

(R3) �!2� 7�! (�!� � >),

(R4)
 ����
A � B 7�! 2(

 �
A $

 �
B ),

where �!� and
 �
A ,
 �
B denote the results of translations from K to PCIK, and its

converse, respectively.

(WIA1) ((A! B) � (B ! A))! (A � B)

(WIA2) ((A! B) � (B ! A))! ((A! B) � >) ^ ((B ! A) � >)

(G) A B
A � B

Then, by using above translations, we show that they are syntactically equivalent

in a sense of De�nition 3.4.1. Moreover, we introduce Kripke type semantics for

PCIK in the similar way to the modal Kripke type semantics, and by invoking

the completeness result of modal logic, we give a completeness theorem of PCIK

relative to Kripke type semantics. Furthermore, we de�ne PCIK-algebras which

provide an algebraic semantics for PCIK logic, and show the representation theorem

of PCIK-algebras in the similar way to the case of modal algebras, and also give an

alternative completeness result of PCIK logic by using this representation theorem.

At the end, we disccuss that all results mentioned so far, can also be extended to

various extensions (e.g., KT, KB, K4, KD, K5, S4 and S5) of modal logics.

(2) Angell's analytic containment logic with relevance entailment ;:

In the similar way to the previous case, we de�ne PCIW logic as an extension of

PCI in order to interpret Angell's analytic containment � by identity �. Here we

add two identity axioms (IT) and (IR) into the original PCI, to satisfy the following

conditions:

(R1)
����!
�; � 7�! �!� � �!� ^

�!
� ,

(R2)
 ����
A � B 7�! (

 �
A �

 �
B ),

where �!� ,
�!
� and

 �
A ,
 �
B denote the results of translations from AC to PCIW,

and its converse, respectively.

(IT) (A � B) ^ (C � D)! (A � C) � (B � D)

(IR) (A � B)! (A$ B)

Then, the extension PCIW of PCI is nothing but the non-Fregean logic SCI

mentioned in Section 1.1. We show that AC and PCIW are syntactically equivalent

in a sense of De�nition 3.4.1, by de�ning translations between them, which satisfy

the above requirements (R1) and (R2).
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(3) Corsi's weak logic with strict implication *:

In this case in order to interpret the strict implication * by identity �, we need

the following conditions in PCI:

(R5)
���!
� * � 7�! �!� � �!� ^

�!
� ,

(R6)
 ����
A � B 7�! (

 �
A 


 �
B ),

where �!� ,
�!
� and

 �
A ,
 �
B denote the results of translations from F to PCIK, and

its converse, respectively.

Since we can rewrite the second requirement (R6) by (
 �
A 


 �
B ) i� 2(

 �
A $

 �
B ) in

the sight of both Kripke model between F and K, the above requirements (R5) and

(R6) are reduced to (R3) and (R4). Therefore, PCIK logic, introduced in the case

(1) above, can also use to this case. We show that every formulas in F-language can

be tanslated into PCIK with keeping logical validity by introducing an auxiliary

language with a material implication ! to restore the balance of both languages of

F and PCIK.

(4) Girard's classical linear logic with linear implication �:

In the similar way to the previous cases (2) and (3), we de�ne PCIGL logic as an

extension of PCI in order to interpret the classical linear implication � by identity

�. Here we add the identity axioms (LT), (LE), (L*1), (L*2) and (LDN), which

corresponded to axioms (L2), (L3), (10), (L11) and (L18) in GL (see Section 5.3.1),

respectively, under the system PCIK which is also de�ned by adding two identity

axioms (WIA1) and (WIA2), and one inference rule (G) to the original PCI logic.

(R7)
���!
� � � 7�! �!� � �!� ^

�!
� ,

(R8)
 ����
A � B 7�! (

 �
A ��

 �
B ),

where �!� ,
�!
� and

 �
A ,
 �
B denote the results of translations from GL to PCIGL,

and its converse, respectively.

(WIA1) ((A! B) � (B ! A))! (A � B)

(WIA2) ((A! B) � (B ! A))! ((A! B) � >) ^ ((B ! A) � >)

(LT) (A > B) > ((B > C) > (A > C))

(LE) (A > (B > C))! (B > (A > C))

(L*1) A > (B > A �B)

(L*2) (A > (B > C))! (A � B > C)

(LDN) ^^ A! A

(G) A B
A � B

5



Here above each connectives >, ^ and � are abbreviations in PCIGL as :

A > B := (A � A ^B), ^ A := A > :(A � A) and A �B :=^ (A >^ B).

We show in the similar way to the case (3) that every formulas in GL-language can

be tanslated into PCIGL with keeping logical validity by introducing an auxiliary

language with a material implication ! to restore the balance of both languages

of GL and PCIGL. All results mentioned above, can also be extended to various

extensions (e.g., GLc, GLw and GLcw) of Girard' classical linear logic.

In the last part of our thesis, we develop an algebraic study of extensions of PCIK logic.

We show that PCIK-algebras form a variety, and a necessary and su�cient condition for a

subvariety of PCIK-algebras to have equationally de�nable principal congruences (EDPC

for short) property. Here, EDPC property is closely connected with the deduction theorem

of a logic. Because of an isomorphism between the lattice of �lters of PCIK-algebras and

the lattice of congruences of PCIK-algebras, EDPC property of PCIK-algebras can be

restated by that principal �lters of PCIK-algebras are equationally de�nable. Then we

can show that a necessary and su�cient condition for PCIK-algebras to have EDPC by

introducing a unary operator r on PCIK-algebra:

r(x) = (x�t) \ x;

where,

r
0(x) = x;

r
n+1(x) = r(rn(x)):

The thesis is organized as follows. In Chapter 2, we explain basic concepts of the formal

background in our investigations in this thesis. It contains basic notions of deductive

systems (Section 2.1), and the axiomatic deductive system of SCI and basic results on

SCI that is used in this thesis (Section 2.2). At the end we give a note which includes

historical remarks and biblographical informations (Section 2.3).

In Chapter 3, we introduce the axiomatic deductive system of PCI and its related

results in order to simulate various kinds of nonclassical logics. In Section 3.1, at �rst,

we explain the system PCI and its fundamental properties. In Section 3.2, we survey

brie
y Angell's analytic containment logic AC. Then in Section 3.3, we de�ne PCIW

logic by adding two identity axioms (IT) and (IR) to the original system PCI in order

to interpret Angell's analytic containment � by identity �. In Section 3.4, we investigate

a general method of showing syntactical equivalence between various logics. After this,

in Section 3.5, we give translations between AC and PCIW, and hence prove that they

are syntactically equivalent. Finally in Section 3.6, we also give further information on

related results shown in this chapter.

6



In Chapter 4, we investigate how classical modal logics are simulated by PCI logic

which have been introdued in the previous Chapter 3. In Section 4.1, we give a brief

survey of classical modal logics, particularly basic normal modal logic K and its axiomatic

extensions KT, KB, K4, KD, K5, S4 and S5, in syntactical and semantical points of

view (see [15], [52]). Then in Section 4.2, we de�ne PCIK logic by adding two identity

axioms (WIA1) and (WIA2), and one inference rule (G) to the original system PCI in

order to interpret the necessary operator 2 by identity �. After this, in Section 4.3,

we give translations between K and PCIK, and hence prove that they are syntactically

equivalent in a sense of De�nition 3.4.1. In Section 4.4, we also introduce Kripke type

semantics for PCIK logic by exchanging the validity of modal formulas in modal Kripke

type semantics with new validity of identity formulas. Then we can show that PCIK

and K are semantically equivalent relative to the same Kripke frame. So by invoking the

completeness of modal logic, we give a completeness theorem of PCIK relative to Kripke

type semantics. In Section 4.5, we de�ne PCIK-algebras and give a representation theorem

(Theorem 4.5.8) of this algebras. Furthermore, we give an alternative completeness result

of PCIK logic by using the above representation theorem. So far mentioned results concern

with relationships between K and PCIK. But we can successfully extend their results to

various extensions of modal logics. In Section 4.6, we de�ne several extensions of PCIK

which are counterparts of modal extensions of K. Then as the similar way to PCIK, we

can also consider translations between K extensions and PCIK extensions (Section 4.7),

and moreover, Kripke type semantics for PCIK extensions (Section 4.8). Finally, we also

give further information on related results shown in this chapter (Section 4.9).

In Chapter 5, we investigate how weak logics with two kind of weak implications,

e.g., strict/linear implication, are simulated by PCI logic introduced in Chapter 3. In

fact, we consider both systems of Corsi's weak logic with strict implication (see [16]) and

Girard's classical linear logic with linear implication (see [31]). In Section 5.1, we brie
y

survey Corsi's weak logic F and its axiomatic extensions in syntactical and semantical

points of view. Then we know that PCIK logic introduced in Section 4.2 can also use to

interpret the strict implication * by identity�. In Section 5.2, we investigate translations

between F and PCIK. Since F-language LF lacks a material implication!, we de�ne an

auxiliary language LF0 by adding ! to restore the balance between both PCI (i.e., SCI)

and F languages. Then, for an auxiliary system F
0 of this language, we give translations

between F
0 and PCIK, and hence prove that they are syntactically equivalent in a sense of

De�nition 3.4.1. Moreover, we show that every formulas in F-language can be tanslated

into PCIK with keeping logical validity, since F
0 is a conservative extension of F. Next

as another weak logic, in Section 5.3, we give a brief survey of Girard's classical linear

logic and its axiomatic extensions in syntactical and semantical points of view. Then in

Section 5.4, we de�ne PCIGL logic by adding identity axioms (WIA1), (WIA2), (LT),

(LE), (L*1), (L*2) and (LDN), and one inference rule (G) to the original system PCI in

order to interpret correctly the classical linear implication � by identity �. After this, in
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Section 5.5, we show that every formulas in GL-language can be tanslated into PCIGL

with keeping logical validity by applying the similar discussion with the case of Corsi's

weak logic F. Finally in Section 5.6, we also give further information on related results

shown in this chapter.

In Chapter 6, we investigate algebraic properties of PCI logics. In Section 6.1, we

�rst survey broad informations of various methods for the algebraization of deductive

systems. The most famous method to algebraize a logic is to construct a Lindenbaum-

Tarski algebra by factoring the algebras of formulas by the congruence relative to theories

of the logic. Furthermore, we explain equivalential algebras and congruence operators,

which also contribute to algebraize a logic. At the end of this section, we consider the case

of PCI logics introduced so far. In Section 6.2, we show that the class of PCI-algebras,

de�ned by the above algebraization, forms a variety. In fact, we only consider a class of

PCIK-algebas whether this class forms a variety or not. In Section 6.3, we also check a

variety of PCIK-algebras to have EDPC property, and show a necessary and su�cient

condition to have EDPC property. Finally in Section 6.4, we also give further information

on related results shown in this chapter.

Finally in Chapter 7, we summerize achievements in this thesis, and discuss also some

remaining problems and several further subjects.
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Chapter 2

Preliminaries

In this chapter we will explain basic concepts of the formal background in our investiga-

tions in this thesis. It contains basic notions of deductive systems (Section 1), and the

axiomatic deductive system of SCI and basic results on SCI that will be used in this

thesis (Section 2). At the end we will give a note which includes historical remarks and

biblographical informations (Section 3).

2.1 Methodology of deductive systems

In this section we will introduce several basic notions in the methodology of deductive

systems, e.g., mainly the notion of consequence operators and logical matrices. These

subjects will appear in many \Polish style" books or papers. In order to explain these

notions, we will mainly refer to [19], [76], [17] and [75]. According to the notion of

deductive systems we will view a logic not as a �xed set of logical theorems, derivable

in some logical calculus, but rather as the deducibility relation, or consequence operator

generated by the given logical axioms and rules of inference. On the other hand, logical

matrices are considered as one of the most powerful tools for studying interpretations of

logical constants in a logic, i.e., logical connectives, and give matrix semantics for logics

under an appropriate valuation function between each logic and its logical matrix.

In this section we assume that L is a �xed, but arbitrary sentential language and L

is the set of all L formulas. Then endomorphisms of L are usually called substitutions in

L and let Sb(L) be the set of all such substitutions in L. Then a set X of L formulas is

called invariant if X is closed under substitution, i.e., Sb(X) = X.

2.1.1 Consequence operators

The original meaning of logical consequence is roughly expressed in such a way that A

is a consequence of a set X of formulas if under all possible interpretations of non-logical

terms in X [ fAg, A is true whenever all formulas in X are true. This notion is also

captured in terms of rules of inference. Namely, A is said to be a consequence of X if and

only if it is derivable from X by means of some accepted logical rules. Then having these

9



original meaning on our mind, we can give a precise de�nition of consequence operators

in the following way (see [76]).

De�nition 2.1.1 (i) An unary operator C de�ned on sets of formulas of L is called a

consequence operator if for all X; Y � L, it satis�es the following conditions:

(C1) X � C(X),

(C2) C(C(X)) � C(X),

(C3) if X � Y then C(X) � C(Y ).

(ii) Moreover, a consequence operator C on L is called structural if for all substitution

e of L and all X � L, it satis�es in addition to (C1)-(C3), also

(C4) eC(X) � C(eX), where eX denotes the set of all e(A) for A in X.

The notations of A 2 C(X) and X � C(Y ) are to be read that a formula A C-follows

from X, and everything in X C-follows from Y , respectively. If X � L and A;B; : : : ; G

are in L then, instead of C(X [ fA;B; : : : ; Gg) and C(fA;B; : : : ; Gg), we write brie
y

C(X;A;B; : : : ; G) and C(A;B; : : : ; G), respectively. Let C1 and C2 be two consequence

operators on sets of formulas of L. Then we say that C1 is a subconsequence of C2, or

C2 is a superconsequence of C1, in symbols, C1 � C2 if C1(X) � C2(X) for all X � L. A

theory is an arbitrary set of formulas of L. If X is closed under a consequence operator

C, i.e., X = C(X), then X is called a C-theory. Moreover, C(X) is also called a deductive

system or, simply, a system of C. Here C(X) is the least C-theory containing X, C(;) is

the system of all logically provable or valid formulas, namely tautologies of C, and Th(C)

is the set of all theories of C.

By a logic we will mean either a couple L = (L; C) where L is a �xed language and C

is a structural consequence operator on L, or C itself as a logic. A couple T = (C;AX) is

called a theory in the language L if C is a consequence operator on L and AX � L. For

a given theory T = (C;AX), C is called the logic underlying T, the set AX is called an

axiom set of T and the set C(AX) is called the set of all theorems of T. Given two theories

T1 = (C1; A1) and T2 = (C2; A2), we say that T1 and T2 are equivalent if C1 = C2 and

C1(A1) = C2(A2). If only C1(A1) = C2(A2) holds then the theories T1 and T2 are called

pseudo-equivalent.

A set X � L is consistent relative to C if C(X) 6= L; otherwise X is called inconsistent,

or the consequence C on L is called universal. Moreover, a consistent set X is complete if

every consistent set Y which includes X satis�es C(X) = C(Y ). Here these two notions

are much more general characterization than the classical one since no knowledge on the

concept of negation is needed in this cases. Two sets of formulas X and Y are called C-

equivalent, or simply equivalent with respect to C, if their sets of consequence C coincide,

i.e., C(X) = C(Y ). A set X of formulas is called �nitely axiomatizable if there exists a
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�nite set which is equivalent to X with respect to C. Then the following basic results are

well-known (see [11]).

Proposition 2.1.2 (i) Any consistent set is contained in a maximal consistent set.

(ii) Any maximal consistent set is a theory.

(iii) If A 62 C(X), then there exists a maximal consistent superset Y of X which does

not contain A.

The particular consequence operators which we deal with in this thesis are de�ned as

deducibility or derivability relations. We select a set AX of logical axioms and a family

R of �nitary rules of inference which allow us to draw conclusions from �nitely many

premisses. A set of all derivations which are produced by the above AX and R is called

�nite (AX ;R) derivations. Then, we will de�ne the consequence operator C generated

through �nite (AX ;R) derivations as follows.

De�nition 2.1.3 For any X [ fAg � L, A 2 C(X) if and only if A is derived from

AX [X in �nitely many steps by succesive application of rules in R.

The �nite sequence of formulas which appears in this procedure ends with A, and

is called a (AX ;R) derivation of A from X, and we will write X `(AX ;R) A. Here ev-

ery consequence operator C de�ned in this way is �nite, namely satis�es the following

condition:

(�) A 2 C(X) if and only if either A 2 C(;) or there exist formulas A1; : : : ; An 2 X

such that A 2 C(A1; : : : ; An).

Conversely, let `C denotes the set of all (AX ;R) derivations with X `(AX ;R) A such

that A 2 C(X) for an arbitrary consequence operator C. Then the relation `C between

X and A is called the consequence relation corresponding to C and satis�es the following

equivalence (see [76]).

Proposition 2.1.4 For any X [ fAg � L, X `C A if and only if A 2 C(X).

2.1.2 Logical matrices

A logical matrix M for the language L is a couple M = (A; D) where A is an algebra

similar to L and D is a subset of A, where A is the underlying set of A. Elements of D

are called designated elements of M.

De�nition 2.1.5 Let M = (A;D) be a matrix for L. A homomorphism h from L to A

is called a valuation of A for formulas of L in M. Then for any formula B 2 L, we have

the following de�nitions:
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(i) h satis�es B in (A; D), in symbols, B 2 Sath(A;D), if h(B) 2 D,

(ii) B is true in (A; D), in symbols, B 2 TR(A;D), if B 2 Sath(A;D) for every valua-

tion h of A,

(iii) B is valid in A, in symbols, A j= B, if B 2 TR(A;D) for every nonempty designated

subset D of A,

(iv) B is valid if A j= B for every algebra A.

Two matrices M = (A; D) and N = (B; E) are similar if the algebras A and B have

the same similarity type. A matrix M = (A;D) is appropriate for L, or simply M is a

matrix for L, if the algebra A is similar to L. Any class M of matrices for L is called a

matrix semantics for L. Here every matrix semantics M for L induces the consequence

operator CM as the following way.

De�nition 2.1.6 For any X [ fBg � L, B 2 CM(X) if and only if for any matrix

M = (A; D) in M and any valuation h of L in M, h(B) 2 D whenever h(X) � D.

Here if M = fMg we write CM instead of CM. Given a logic L = (L; C), we will say

that L is strongly complete with respect to a matrix semantics M for L if C = CM. A

matrix semantics M is strongly adequate for a logic L = (L; C) if L is strongly complete

with respect to M. Moreover, matrices of the form LX = (L; C(X)) are called Lindenbaum

matrix for C and the class LC = fLX;X � Lg is called the Lindenbaum bundle for C. A

matrix M for L is called a C-matrix if C � CM and let Matr(C) be the class of all

C-matrices. Then, since LC � Matr(C) for a structural C, we can easily verify that

Matr(C) is strongly adequate for L = (L; C). Consequently, Matr(C) is the greatest

matrix semantics strongly adequate for C.

Let M = (A; D) and N = (B; E) be similar matrices. A mapping h : A ! B is called

a strong homomorphism (or matrix homomorphism) from M to N if h is an algebraic

homomorphism from A to B and h�1(E) = D. 1-1 matrix homomorphisms are called

isomorphic embeddings. Moreover, if an isomorphic embedding h is also onto then h

is called an isomorphism. If h is a strong homomorphism from M onto N then N is

called a strong homomorphic image of M. We write M �= N when matrices M and N are

isomorphic. Then we can easily varify the following equivalence (see [17]).

Proposition 2.1.7 If M �= N then we have CM = CN.

For given an algebra A and a congruence �� on A, let us jaj� denotes the equivalence

class fb; a � b (mod �)g of a on A, and A=� = fjaj�; a 2 Ag the quotient of A by �.

Then we can extend the notion of a congruence on an algebra A to that on a matrix as

follows.
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De�nition 2.1.8 Let M = (A; D) be a matrix for L. A congruence �� on A is called a

congruence on M (or a matrix congruence) if jaj� � D for all a 2 D.

Let Co(M) be the set of all congruences in a matrix M = (A; D). Then Co(M) is

nonempty and obviously Co(M) � Co(A). Moreover, the set (Co(A);�) is a complete

lattice with respect to the set inclusion �. If � 2 Co(M) then M=� = (A=�;D=�)

is called the quotient matrix determined by �, where A=� is the quotient algebra and

D=� = fjaj�; a 2 Dg. A congruence � 2 Co(M) is called compatible with a subset D of

A if a 2 D and a � b (mod �) imply b 2 D for all a; b 2 A. For any � 2 Co(M), the

canonical (or natural) mapping k� from M to M=� is given by the term k�(a) = jaj�.

Given a matrix M = (A; D) and a strong homomorphism h from M to N, we denote by

�h the kernel of h, i.e., for any a; b 2 A, a � b (mod �h) if and only if ha = hb. Let us

state the following simple facts without proofs (see [17]).

Proposition 2.1.9 (i) For any strong homomorphism h from M to N, �h 2 Co(M).

(ii) For any congruence � 2 Co(M), k� is a strong homomorphism from M to M=�.

Moreover, � = �k�
.

(iii) If a strong homomorphism h from M to N is onto, then M=�h
�= N.

2.2 SCI and its basic results

In this section we will make a survey of the axiomatic deductive system of SCI and its

basic results that will serve as a preparation for the investigations in the sequal. The

SCI system was �rstly proposed by R. Suszko to realize some philosophical ideas of L.

Wittgenstein's Tractatus (see [63], [64], [65], [11] and [67]). It is obtained from the classical

sentential calculus by adding a new identity �. In SCI A � B means that both formulas

A and B have a common referent (or same situation), while A$ B means the sameness

of both logical values. A typical feature of SCI is the ability of representing various

nonclassical logics on it. In fact, R. Suszko showed that some axiomatic extensions of

SCI really correspond to modal systems S4 and S5, by interpreting A � B as 2(A$ B)

(see [65]), and moreover, SCI itself also correspond to the three-valued  Lukasiewicz logic

 L3 by interpreting A � B as (A, B), where, is a three-valued  Lukasiewicz equivalence

(see [68] and [69]). Then, the main purposes of this thesis is to realize the above idea of

Suszko's SCI for various kinds of nonclassical logics.

2.2.1 SCI-language and its axiomatic deductive system

Let LS = hLS;:;^;_;!;�;?;>i be the SCI-language consisting of an in�nite denumer-

able set VARS of sentential variables, constants;? (false) and > (true), and the standard

truth functional (TF for short) connectives; : (negation), ^ (conjunction), _ (disjunction)
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and ! (material implication) as well as a new binary connective �, called the identity.

Formulas LS of a given SCI-language LS are de�ned in the usual way. The formula A � B

means intuitively that the situation that A is the same as the situation that B (i.e., both

A and B have a common referent). This formula is called an equation because the SCI-

language was originally designed for two sorted one in which the same symbol � standed

for the identity predicate and the identity connective (see [65]). Letters p; q; r; p1; : : : will

be used to denote sentential variables; A;B;C; : : : will denote formulas of a SCI-language

LS; X; Y; Z; : : : will denote sets of formulas; G[A=p] will denote the formula obtained

from G by replacing each occurrence of p by A. The sentential constants > (and ?)

and other TF-connective $ (material equivalence) are used as the usual abbreviation:

> := A _ :A, ? := :> := A ^ :A and A$ B := (A! B) ^ (B ! A). Also we will

sometime omit parentheses, following the assumption that the priority of each connective

is weak as :;^;_;�;!;$ in order.

The logical axioms for SCI-language LS consist of two sets of schemata TFA (truth

functional axioms), i.e., from (A1) to (A10), and IDA (identity axioms), i.e., from (E1)

to (E3), from (C1) to (C5) and (SI) below:

(A1) A! (B ! A)

(A2) (A! (B ! C))! ((A! B)! (A! C))

(A3) A ^B ! A

(A4) A ^B ! B

(A5) A! (B ! (A ^B))

(A6) A! A _B

(A7) B ! A _B

(A8) (A! C)! ((B ! C)! (A _B ! C))

(A9) A! (:A! B)

(A10) ::A! A

(E1) A � A

(E2) (A � B)! (B � A)

(E3) (A � B) ^ (B � C)! (A � C)

(C1) (A � B)! (:A � :B)

(C2) (A � B) ^ (C � D)! (A ^ C) � (B ^D)
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(C3) (A � B) ^ (C � D)! (A _ C) � (B _D)

(C4) (A � B) ^ (C � D)! (A! C) � (B ! D)

(C5) (A � B) ^ (C � D)! (A � C) � (B � D)

(SI) (A � B)! (A! B)

Also the rule of inference for LS is only modus ponens:

(Mp) A A! B
B

Here the axioms in TFA with modus ponens as the single rule will give all classical truth

functional tautologies (TFT for short). The axioms IDA mean that identity connective

� is not only an equivalence relation but also a congruence relation on LS, and at least

as strong as material equivalence $. Then the axiomatic deductive system C(X) for the

SCI-language LS and any X � LS (or SCI = (LS; C)) is de�ned as the following way.

De�nition 2.2.1 (i) For any X � LS, C(X) is the smallest set of formulas closed

under the rule (Mp), which contains TFA, IDA and X.

(ii) The element of C(;) is called the logical theorem of SCI.

Then it is easily veri�ed that C is a consequence operator and also satis�es the fol-

lowing two propositions (see [11] and [65]).

Proposition 2.2.2 For any X [ fA;Bg � LS, it holds the following equivalences:

(i) B 2 C(X;A) if and only if A! B 2 C(X), (Deduction Theorem)

(ii) :A 2 C(X) if and only if ? 2 C(X;A),

(iii) A 2 C(X) if and only if there exist some �nite subset Y of X such that A 2 C(Y ).

(Compactness)

Proposition 2.2.3 The following are logical theorems of SCI.

(i) A � A

(ii) A � B $ B � A

(iii) :(A � :A)

(iv) A � B ! ((A! B) � (B ! A))

(v) A � B ! (G[A=p] � G[B=p]) (Replacement Law)

(vi) A � > ! A, A � ? ! :A
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(vii) (A � B) � > ! A � B, (A � B) � ? ! :(A � B)

Let C0 be the consequence operator de�ned only from the rule (Mp) and the axioms

TFA. Then C0 is exactly the consequence operator of the classical logic CL. If any

formulas X [ fAg of LS do not contain any occurrences of the identity connective �,

then A 2 C(X) if and only if A 2 C0(X). Hence in this sense, SCI is a conservative

extension of the classical logic CL. If the following formula will be added to SCI as an

additional axiom schema:

(FA) (A$ B)! (A � B),

then both identity � and material equivalence $ are indistinguishable and therefore

we will get CL as the result. Since the formula (FA) indicates the Frege's idea that all

logically true (and similarly false) formulas have to describe the same thing, namely have

a common reference, it was called Fregean Axion. Moreover, because (FA) is not a logical

theorem of SCI, we will call SCI as a non-Fregean logic, while CL is called a Fregean

logic. The following is an essential property of non-Fregean logic (i.e., SCI).

Proposition 2.2.4 (The natural postulate) Any equation which is a logical theorem

of SCI is only a trivial one (i.e., A � A).

This means that logical theorems (tautologies) of SCI are cognitively empty, or in

other words that SCI cannot tell us any non-trivial equation. Hence the following non-

trivial equations are not logical theorems of SCI as the results (see [65]).

(1) :> � ? (5) (A! A) � (A � A)

(2) (A _ :A) � (B _ :B) (6) (A! B) � (:A _B)

(3) (A � B) � (B � A) (7) ::A � A

(4) (A � A) � (B � B) (8) (A$ B) � (A � B)

2.2.2 Well-known extensions of SCI

In view of the natural postulate mentioned in the previous subsection, non-Fregean logics

(i.e., SCI) are very weak. But of course, we can consider the syntactical extension of

SCI which be able to strengthen up to the classical logic CL, and then divide them

into two classes, namely elementary and non-elementary extensions of SCI. The former

extensions are de�ned as SCI with an additional set of axiom schemata added to the

logical axiom TFA [ IDA. On the other hand, the latter extensions are de�ned as SCI

with some additional rules of inference, besides (Mp). Now let us consider the following

additional axiom schemata, for example:

(TA1) A � B, whenever A;B 2 C0(;),

(TA2) A � B, whenever A;B 2 C(;),
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(WIA) ((A! B) � (B ! A))! (A � B),

(SIA) ((A! B) � (B ! A)) � (A � B),

(BIA) ((A � B) � >) _ ((A � B) � ?),

(FA1) (A � B) _ (A � C) _ (B � C),

(FA2) (A � >) _ (A � ?).

In some literatures (e.g., [65], [64] and [67]), some elementary extensions WB, W1,

W2, WT, WH and WF of SCI which can be de�ned below, are discussed. Relations

between these extensions are also shown in Fig 2.1. A system is located above another

one if it is stronger than the other.

De�nition 2.2.5 Let SCI = (LS; C) and X � LS. Then each elementary extension of

SCI is de�ned as follows:

(i) WB = (LS; CB) is the elementary extension of SCI, where CB is a superconsequence

of C de�ned by CB(X) = C(X; TA1;WIA),

(ii) W1 = (LS; C1) is the elementary extension of SCI, where C1 is a superconsequence

of C de�ned by C1(X) = C(X; TA2),

(iii) W2 = (LS; C2) is the elementary extension of SCI, where C2 is a superconsequence

of C de�ned by C2(X) = C(X; TA2;WIA),

(iv) WT = (LS; CT) is the elementary extension of SCI, where CT is a superconsequence

of C de�ned by CT(X) = C(X; TA2;SIA),

(v) WH = (LS; CH) is the elementary extension of SCI, where CH is a superconsequence

of C de�ned by CH(X) = C(X; TA2;SIA;BIA),

(vi) WF = (LS; CF) is the elementary extension of SCI, where CF is a superconsequence

of C de�ned by CF(X) = C(X; FA) (or CF(X) = C(X; FA1), or CF(X) = C(X; FA2)).

Three axioms (FA), (FA1) and (FA2) are mutually equivalent and mean that there

exist at most two situations. So Fregean axiom can be seen as a numerical condition

imposed on the universe of situations. As the following proposition shows, WF is the

only consistent invariant theory of CF, i.e., Sb(CF(X)) = CF(X) for any consistent subset

X � LS. Therefore, since WF has no proper consistent extension it is Post complete.

Hence CF is an elementary extension of C with a maximality (see [65]).

Proposition 2.2.6 There exist exactly two Fregean theories of situations, the set of all

CF-tautologies CF(;) and the inconsistent theory LS.
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Figure 2.1: Relations between extensions of SCI

The combination of tautology axiom (TA1) and weak implication axiom (WIA) yields

the Boolean extension WB of SCI (see [67]), in which we can prove the familiar equa-

tional Boolean laws; commutative, distributive and absorption laws, De Morgan laws

and the double negation law. Furthermore, since we have (A _ :A) � (B _ :B) and

(A ^ :A) � (B ^ :B) as logical theorems of WB, we can introduce two sentential con-

stants > and ? by the de�nitions; > � (A _ :A) and ? � (A ^ :A). Then > and ? are

the unit and zero of the Boolean algebra of situations, respectively. Also A � > means,

by the de�nition, exactly that the situation of A is the unit of the Boolean algebra of

situations. The modal operator 2 is usually called intensional in the sense that if we read

formulas of the form 2A as \it is necessary that A" then we must necessarily purify the

meaning of the word \necessity" from any intensional shadows. But if we will interpret

modal operator 2 as 2A := (A � >) in the Boolean extension WB, then 2 is here

extensional in view of the laws of Boolean theories WB because it exactly stands for the

unit of WB.

Obviously, every theorem of WT is a theorem of WB but not conversely, and contains

the following formulas as examples:

(1) (> � >) � >,

(2) ((A � >) � >) � (A � >),

(3) ((A ^ B) � >) � ((A � >) ^ (B � >)),

(4) ((A � >)! A) � >.

Hence if we de�ne an interior operator I on the Boolean theory WT by I(A) := (A � >)

for any formula A in LS, then we can see that the operator I represents in WT a
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kind of topological interior operator on the Boolean algebra of situations (see [65]).

Notice that two operators 2 and � are interde�nable in WT as 2A := (A � >) and

A � B := 2(A$ B). Moreover, if we add the additional bi-valent axiom (BIA) to WT

then we get much stronger theory WH than WT. Then the formula ((A � >) � >)_

((A � >) � ?) is a logical theorem of WH. So in WH the topological Boolean algebra of

situations is a Hanle algebra, which is a topological Boolean algebra of situations with only

two open elements > and ?. It was proved, by using the matrix semantics method, that

the theories WT and WH correspond to Lewis's modal systems S4 and S5, respectively,

on account of results of McKinsey and Tarski (see [46]).

Next we will consider non-elementary extensions of SCI. The consequence operator

CR is called a non-elementary superconsequence of C relative to a rule R of inference if it

is closed under two rules (Mp) and (R) of inference, and contains the same logical axioms

TFA [ IDA as C. A theory T is called a R-theory if it is closed under the rule (R) of infer-

ence. Let us consider three types of non-elementary superconsequences CG; CQF and CI

of C, where the corresponding three inference rules are as follows (see [65]):

(G) A B
A � B

,

(QF) A$ B
A � B

,

(I)
(A! B) � (B ! A)

A � B
.

Then it is easily see that CG; CQF and CI are structural. The set of logical theorems of

WT is closed under two rules (G) and (QF) of inference. Then we have the following

proposition (see [65]).

Proposition 2.2.7 (i) Let T be a theory. Then T is a QF-theory if and only if T is a

G-theory and I-theory.

(ii) The theory WT is the least QF-theory on SCI, i.e., WT = CQF(;).

(iii) The theory WT is the least G-theory on WB, i.e., WT = CG
B (;).

For any theory T, let E(T) be the set of all equations in T. Then a theory T is called

EA-theory if it has only equational axioms, i.e., E(T) = T. Furthermore, the theory

C(E(T)) is called the equational kernel of T, denoted by Ker(T). Obviously, a theory T

is an EA-theory if and only if T = Ker(T). Then we have the following two propositions

(see [65]).

Proposition 2.2.8 Let T be a G-theory. Then we have:

(i) T is an EA-theory, i.e., T = Ker(T),

(ii) all tautology axioms (TA1) are theorems of T,
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(iii) all formulas (A � B)$ ((A � B) � >) are in T,

(iv) A � > is in T whenever (A! B) � > and A � > are in T.

Proposition 2.2.9 Let T = C(D) where D = E(D), namely T is an EA-theory. If A � >

is in T for every logical axiom A in TFA [ IDA and all formulas (A! B) � > !

((A � >)! (B � >)) are in T, then T is a G-theory.

2.2.3 Semantics of SCI

We will interpret the SCI-language LS by using the matrix semantics. An SCI-algebra

A = hA;�;\;[;�; �� ;�; f; ti is an algebra of type h1; 2; 2; 2; 2; 2i such that A is a

non-empty set, � (complemant), \ (meet), [ (join), � (delta), and a � b = �a [ b and

a �� b = (a � b) \ (b � a) for any a; b 2 A (see [11] and [67]). The class of SCI-algebra

is very board, and it includes, in particular Boolean algebras (with an additional binary

operator �). Here f = a \ �a and t = a [ �a are zero and unit of Boolean Algebra, re-

spectively. Given an SCI-algebra A, assume its universe A is divided into two non-empty

subsets. Denote one of them by F and suppose that F is related to the operations in A

as follows: for any a; b 2 A,

(F1) �a 2 F if and only if a is not in F ,

(F2) a \ b 2 F if and only if both a and b are in F ,

(F3) a [ b 2 F if and only if either a or b is in F ,

(F4) a � b 2 F if and only if �a [ b 2 F ,

(F5) a �� b 2 F if and only if (a � b) \ (b � a) 2 F ,

(F6) a�b 2 F if and only if a = b.

Then we will call F as a �lter of A. Furthermore, a couple M = (A; F ) consisting of

an SCI-algebra A and a �lter F in A, is called an SCI-model based on algebra A. A

formula B is valid in A, in symbol, Aj=B if for any valuation v of A and any �lter F ,

v(B) 2 F . Notice that SCI = (LS; C(X)) is an SCI-model whenever X is a consistent

set of formulas. Then for any valuation v of A, we can de�ne the consequence operator

CM relative to an SCI-model M as follows.

De�nition 2.2.10 For any X [ fBg � LS, B 2 CM(X) if and only if for every SCI-

model M = (A; F ) and every valuation v of LS in M, v(B) 2 F whenever v(X) � F .

In fact, S.L.Bloom showed the right class of algebraic structure for SCI by proving

the following strong completeness of SCI (see [10]).

Theorem 2.2.11 SCI is strongly complete with respect to an SCI-model, i.e., C = CM.
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2.3 Notes

In this section we will give a note which includes historical remarks and biblographical

informations. The methodology of deductive system was invented by Alfred Tarski in

1930's. His papers from 1923 to 1938 appear in the book [71]. Also his academic achieve-

ments are summarized in the Journal of Symbolic Logic, Volume 51, Number 4, December

1986. Tarski analysed �rstly the notion of logical consequence in languages with the clas-

sical implication! and negation :, and gave the following axiomatization of consequence

operator C: for any X; Y and fA;Bg � L,

(T1) X � C(X),

(T2) C(C(X)) � C(X),

(T3) C(X) =
S
fC(Y );Y � X and Y is �niteg,

(T4) C(A) = L for some A 2 L,

(T5) If X � Y then C(X) � C(Y ),

(!) B 2 C(X;A) if and only if A! B 2 C(X),

(:)0 C(A) \ C(:A) = C(;) and C(A;:A) = L.

Here the condition (T5) is derivable from (T3). Also under axioms (!) and (T3), (:)0 is

equivalent to the following:

(:) C(X;:A) = L if and only if A 2 C(X).

Nowadays, an arbitrary function C : }(L)! }(L), satisfying merely (T1), (T2) and (T5),

is called a consequence operator. Moreover, if C satis�es additionally (T3), then C is called

�nitary. As a weakening of (T4), we get that C(X) = L implies C(Y ) = L for some �nite

Y � X, and then C is called logically compact. In [43] (also see [44]), G. Malinowski

provided a generalization of Tarski's concept of consequence operator which have related

to the idea that the rejection and acceptance need not be complementary. According

to Malinowski's terminology, M = (A; D;D) is called a q-matrix for L, where D and D

denote to accepted and rejected designated elements of M, respectively. Given a q-matrix

M, we can de�ne the operator WM : }(L)! }(L) as follows: for any X [ fBg � L,

B 2WM(X) if and only if h(X) \D = ; implies h(B) 2 D for any h 2 HOM(L;M);

where HOM(L;M) is a class of all homomorphisms of L intoM. Notice that if D [D = A

thenWM coincides with the consequence operator CN determined by the matrixN = (A;D).

A syntactical counterpart of the above notion can also be de�ned as the following: any

operator W : }(L)! }(L) is called a q-consequence on L if for any X;Y � L, it satis�es

the following conditions:
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(W1) if X � Y then W (X) � W (Y ),

(W2) W (X [W (X)) = W (X).

Moreover, W is called structural if for all substitution e of L and any X � L,

(S) eW (X) � W (eX).

As alternative approaches, G. Gentzen (see [30]) studied, for the case of classical and

intuitionistic logics, a relation between �nite sets of formulas (premisses) and a single

formula (conclusion) by expressing that the conjunction of premisses has the disjunction

of logical conclusions. On the other hand, D. Scott (see [59]) provided a general framework

for studing of the relation between �nite sets of formulas, and moreover, D.J. Shoesmith

and T.J. Smiley (see [61]) extended the framework onto the case of arbitrary sets. The

relation `� }(L)� }(L) is called entailment relation or multiple-conclusion consequence

if for any subsets X;Y;Z of L, it satis�es the following conditions:

(R) if X \ Y 6= ;, then X ` Y , (Re
exivity)

(M) if X ` Y and X � X 0; Y � Y 0, then X 0 ` Y 0, (Monotonicity)

(C) for all Z � L, Z [X ` Y [ (L� Z), then X ` Y . (Cut)

Moreover, ` is called structural if for all substitution e of L and all X; Y � L,

(S) if X ` Y , then eX ` eY .

And ` is called �nitary if

(F) if X ` Y , then X 0 ` Y 0 for some �nite subsets X 0; Y 0 of X; Y respectively.

Here if ` is �nitary and satis�es (M), then ` is closed under (C) if and only if ` is closed

under (Cf) below:

(Cf) for all X; Y; fAg � L, X ` Y;A and X;A ` Y implies X ` Y .

We can �nd in [78] one of intensive investigation for the concept of multiple-conclusion

consequence.

R. Suszko invented his non-Fregean logics in the latter of 1960's. His academic achieve-

ments are summarized in the special issue of Studia Logic, Volume 43, Number 4, 1984.

Moreover, both of the XXXth (Cracow, October 19{21, 1984) and XLVth (Krak�ow, Oc-

tober 26{27, 1999) History of Logic Conferences dedicated to him (see [54]). Although

the research �eld of non-Fregean logics is not so popular, there exist several results which

will be mentioned below. At �rst, various fragments of SCI were investigated in order to

contrast identity connective with truth functional connectives. In [66], Suszko studied the

relationship between equational logic based on identity predicate (which is well known in

universal algebras) and equational logic based on identity connective. A. Michaels studied
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continuously the fragment EN-logic of SCI which only dealt with identity connective �

and the truth functional connective of negation : (see [47]). Moreover, W. Kielak stud-

ied the fragment ENE-logic of SCI which only dealt with identity connective � and the

truth functional connectives of negation : and equivalence $ (see [38]). In [58], M.G.

Rogava showed the Cut-elemination theorem of SCI. In [73], A. Wasilewska gave a new

proof of the decidability theorem of SCI. G. Malinowski and M. Michalczyk gave two

interpolation theorems of SCI (see [45]). Futhermore, M. Omy la studied SCI with quan-

ti�ers (see [49] and [50]), and P.  Lukowski studied intuitionistic sentential calculus with

identity (ISCI for short) (see [40] and [41]). Finally, as more philosophical point of view,

B. Wolniewicz studied the ontology of Wittgenstein's Tractatus (see [77]), which was an

underlying idea of SCI.
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Chapter 3

PCI logics and PCIW extension for

non-Fregean logic

In this chapter we will introduce the axiomatic deductive system of PCI and its related

results in order to simulate various kinds of nonclassical logics. In general, nonclassical

logics are divided into two types according to the construction, i.e., (i): classical logics with

additional operators and (ii): weak logics with various kinds of weak implications, e.g.,

strict/relevance/linear implication. For example, in this thesis we will consider classical

modal logics with necessary operator 2 (see [15]) as the former type, and Angell's analytic

containment logic AC with relevance entailment (see [2] and [3]), Corsi's weak logic F with

strict implication (see [16]) and Girard's classical linear logic GL with linear implication

(see [31]) as the latter type. Here the simulation of logics means syntactical translations

between two logics, which satis�es the syntactic equivalence condition. As an example of

simulation, this chapter devotes to demonstrate how Angell's analytic containment logic

AC is simulated by PCI logic. Similarly, we will discuss the case of a classical modal

logic K, and the cases of Corsi's weak logic F and Girard's classical linear logic GL in

forthcoming two Chapters 4 and 5, respectively. At �rst we will explain the system PCI

and its fundamental properties in Section 1. In Section 2, we will survey Angell's analytic

containment logic AC brie
y. Then in Section 3, we will de�ne PCIW logic by adding two

identity axioms (IT) and (IR) to the original system PCI in order to interpret Angell's

analytic containment � by identity �. In Section 4, we will investigate a general method

of showing syntactical equivalence between various logics. After this, in Section 5, we will

give translations between AC and PCIW, and hence prove that they are syntactically

equivalent. Finally we will also give further information on related results shown in this

chapter (Section 6).

In this thesis, we will assume that basic language underlying PCI and K mentioned

above, is a propositional language L = hL;:;^;_;!;?;>i consisting of an in�nite de-

numerable set VAR of propositional variables, constants; ? (false) and > (true), and

the standard truth functional connectives; : (negation), ^ (conjunction), _ (disjunc-

tion) and ! (material implication). Formulas L of a given language L are de�ned in

24



the usual way. The letters p; q; r; p1; p2; p3; : : : will be used to denote propositional vari-

ables. We will use letters A;B;C; : : : to denote PCI's formulas, and X; Y; Z; : : : to denote

sets of formulas, while letters �; �; 
; : : : to denote formulas in various kinds of nonclas-

sical systems like AC, K, F and GL, and �;�;�; : : : to denote sets of their formulas.

The propositional constants ?;> and another TF-connective $ (material equivalence)

are to be constructed as the usual abbreviation. For example in case of PCI, we have:

? := A ^ :A, > := :? := A _ :A and A$ B := (A! B) ^ (B ! A), and also we will

use G[A=p] to denote the formula obtained from G by replacing each occurrence of p by

A. Moreover, we will sometime omit parentheses when no confusion will occur, following

the assumption that the priority of each connective is weak as :;^;_;!;$ in order.

3.1 Axiomatic deductive system of PCI

In this section we will introduce the axiomatic deductive system of PCI and explain its

fundamental properties. The language of PCI is the same as the SCI-language LS in

Section 2.2. The system PCI is obtained from SCI by deleting two axioms (C5) and (SI).

Therefore the system PCI has the following identity axioms IDA and the rule of modus

ponens (Mp) besides TFA in Section 2.2.

(E1) A � A

(E2) (A � B)! (B � A)

(E3) (A � B) ^ (B � C)! (A � C)

(C1) (A � B)! (:A � :B)

(C2) (A � B) ^ (C � D)! (A ^ C) � (B ^D)

(C3) (A � B) ^ (C � D)! (A _ C) � (B _D)

(C4) (A � B) ^ (C � D)! (A! C) � (B ! D)

(Mp) A A! B
B

Here, in contrast to SCI, we can not assume in PCI that identity connective � is a

congruence relation on LS, and also at least as strong as material equivalence $. But in

PCI, the identity axioms IDA imply that identity connective � is an equivalence relation

on LS while it is not a congruence relation. Both material equivalence $ and identity

� preserve TF-connectives (:;^;_;!) but they are mutually independent. Then the

axiomatic deductive system C(X) for PCI = (LS; C) is de�ned as follows.

De�nition 3.1.1 (i) For any X � LS, C(X) is the smallest set of formulas closed

under the rule (Mp), which contains TFA, IDA and X.
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(ii) The element of C(;) is called the logical theorem of PCI.

It is easily veri�ed that C is a consequence operator. By the similarity to Proposition

2.2.2, we have the following.

Proposition 3.1.2 For any X [ fA;Bg � LP, it holds the following equivalences:

(i) B 2 C(X;A) if and only if A! B 2 C(X), (Deduction Theorem)

(ii) :A 2 C(X) if and only if ? 2 C(X;A),

(iii) A 2 C(X) if and only if there exist some �nite subset Y of X such that A 2 C(Y ).

(Compactness)

Proposition 3.1.3 The following are logical theorems and derived rules of PCI.

(i) (A � B)$ (B � A)

(ii) A � B ! ((A! B) � (B ! A))

(iii) A � B
A$ B

(iv) A A � B
B

Proof. (i), (ii) are straightforward. (iii): The identity connective � is a equivalence

relation by (E1){(E3), and moreover preserves all TF-connectives (:;^;_;!). So if

A � B then A$ B. (iv): this is clear by (iii) and (Mp).

�

Here note that the replacement law ,i.e., A � B ! (G[A=p] � G[B=p]), does not hold

in PCI, di�erent from SCI. Let C0 be the consequence operation de�ned only from the

rule (Mp) and the axioms TFA. Then C0 corresponds to the classical logic CL, and by

the same reason as SCI, we can show that PCI is also a concervative extension of CL.

3.2 Angell's analytic containment logic AC

In this section we will give a brief survey of Angell's analytic containment logic AC. In

[2, 3], R. B. Angell proposed the logic AC to treat entailment in relevant logic by using

the concept of containment (or the sameness of meanings), in Kant's sense of analytic

containment, which means that � entails � only if the meaning of � is contained in the

meaning of �. Also he compared three systems of similar approach, i.e., Anderson and

Belnap's E (for entailment) and Parry's AI (for analytic implication), and his own AC

(for analytic containment) in the view of the syntactic conditions of entailment in the

sense of containment, described in the following: where � and $ denote the sameness of

meaning and material equivalence, respectively.
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(Ia) If (� � �) is a theorem, then (�$ �) is a theorem of classical logic.

(Ib) If (� � �) is a theorem, then � and � must share at least one variable.

(Ic) If (� � �) is a theorem, then � and � contain all and only the same variables.

(Id) If (� � �) is a theorem, then a variable occurs positively (negatively) in � if and

only if it occurs positively (negatively) in �.

(Ie) If (� � �) is a theorem, then a tautology or inconsistency is implicit in � if and only

if it is implicit in �.

(If) If (� � �) is a theorem, then � and � have identical maximal ordered normal forms.

Here above notions of positively (negatively) occurrence, implicit and maximal ordered

normal form appear precisely in [3].

Then it was shown that only the system AC admits above all conditions. Following

Angell, we will introduce the axiomatic deductive system of AC in the following. Let

LA = hLA;�;^;�i be the AC-language consisting of an in�nite denumerable set VAR

of propositional variables and primitive connectives; � (negation), ^ (conjunction) and

� (synonymity). Formulas LA of a given AC-language LA are de�ned in the usual way.

The letters p; q; r; p1; p2; p3; : : : will be used to denote propositional variables; �; �; 
; : : :

will denote TF-formulas of a AC-language LA which contains only TF-connectives (and

';  ; � denote formulas including those containing �); �;�;� will denote sets of for-

mulas. The connectives _ (disjunction), ! (material implication), ; (entailment) are

to be constructed as the abbreviation: � _ � :=� (� �^ � �), �! � :=� � _ � and

�; � := (� � � ^ �). Here the formula (�; �) may be interpreted as � entails � in

the sense of � analytically contains �. Also we will sometime omit parentheses, following

the assumption that the priority of each connective is weak as �;^;_;�;;;! in order.

AC is axiomatized for �rst degree entailments, that is only treats formulas without

nestings of ;. The logical axioms and rules of inference for AC-language LA consist of

a set of schemata from (a1) to (a5) and substitution (Sb), adjunction (Ad) and material

implication (Im) as rules of inference below:

(a1) � ��� �

(a2) � � (� ^ �)

(a3) (� ^ �) � (� ^ �)

(a4) (� ^ (� ^ 
)) � ((� ^ �) ^ 
)

(a5) (� _ (� ^ 
)) � ((� _ �) ^ (� _ 
))

(Sb)
� � � '

'[�=�]
,where '[�=�] means the result of replacing some � in ' by �.
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(Ad)
� �

� ^ �

(Im)
�; �

�! �

Then the axiomatic deductive system AC(�) for AC = (LA; AC) is de�ned as follows.

De�nition 3.2.1 (i) For any � � LA, AC(�) is the smallest set of formulas closed

under rules of (Sb), (Ad) and (Im) which contains from (a1) to (a5) and �.

(ii) The element of AC(;) is called the logical theorem of AC.

It should be noticed that (Sb) rule is not the usual substitution, but a restricted

substitution, i.e., substitution only for �rst degree entailments. And we also have the

following remark (see [3]).

Remark 3.2.2 For any formula ' 2 LA, if ' 2 AC holds, then either ' does not contain

� connective at all or ' is of the form of � � � for some TF-formulas �; � 2 LA.

3.3 PCIW logic with identity as relevance entailment

In this section we will de�ne PCIW logic as an extension of PCI in order to interpret

Angell's analytic containment � by identity � (see [34] and [35]). Then we need the

following conditions in PCI:

(R1)
����!
�; � 7�! �!� � �!� ^

�!
� ,

(R2)
 ����
A � B 7�! (

 �
A �

 �
B ),

where �!� ,
�!
� and

 �
A ,
 �
B denote the results of translations from AC to PCIW, and

its converse, respectively.

Since the identity connective � has to satisfy both rules (Sb) and (Im) of inference

from requirement (R1), we need to add the following two identity axioms (IT) and (IR)

in PCI.

(IT) (A � B) ^ (C � D)! (A � C) � (B � D)

(IR) (A � B)! (A$ B)

Then we will get the extension PCIW of PCI below, which is nothing but non-Fregean

logic SCI in 2.2. Here we can also consider each extensions of PCIW as the same way to

extensions of SCI.

De�nition 3.3.1 Let PCI = (LS; C) and X � LS. Then PCIW = (LS; CW) is the ele-

mentary extension of PCI, where CW is a superconsequence of C de�ned by CW(X) =

C(X; IT; IR).
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3.4 General method of identi�ng various logics

In this section we will investigate a general method of showing syntactical equivalence

between various logics owing to mainly K. Segerberg's book [60]. For two logics which are

formulated in very di�erent object languages, we can intuitively say that these logics are

the same or at least equivalent if they are equally strong, or they come to the same thing.

We can also say this fact if the languages in which they are formulated are intertranslat-

able, namely if what can be also expressed in one language can be expressed in other one.

And moreover, whenever a formula in one logic is valid, then its counterpart in the other

is also valid. We will de�ne the above notion of equivalent of logics more precisely in the

following.

Suppose that L1 and L2 are two logics in the language L1 and L2 such that L1 = (L1; C1)

and L2 = (L2; C2) where C1 and C2 are structural consequence operators on L1 and L2,

and the sets of formulas of which are L1 and L2, respectively. Furthermore assume that

the languages L1 and L2 have equivalence connectives$1 and$2, respectively. Then we

de�ne syntactically equivalent of two logics L1 and L2 as follows.

De�nition 3.4.1 (i) L1 and L2 are syntactically equivalent with respect to t1 and t2

if and only if t1 : L1 ! L2 and t2 : L2 ! L1 are functions such that the following

conditions are satis�ed:

(1) For all � 2 L1, (t2(t1(�))$1 �) 2 L1,

(2) For all A 2 L2, (t1(t2(A))$2 A) 2 L2,

(3) For all � 2 L1, � 2 L1 i� t1(�) 2 L2,

(4) For all A 2 L2, A 2 L2 i� t2(A) 2 L1.

(ii) L1 and L2 are called syntactically equivalent if there exist functions t1 and t2 with

respect to which they are syntactically equivalent.

The de�nition of the above syntactic equivalence can be understood intuitively as

follows (see also Fig 3.1). Two functions t1 and t2 are to be understood as translations of

one language into the other. Conditions (1) and (2) are to denote a way of checking that

two translations do their jobs that at least they are inverse operations of one another.

Conditions (3) and (4) are meant to guarantee that both translations preserve logical

relationships.

Theorem 3.4.2 Syntactic equivalene is an equivalence relation in the class of logics

L = (L; C), where L is a �xed language and C is a structural consequence operation on

L.

Since syntactic equivalence is an equivalence relation, it partitions the class of all

logics. Then in general a logic can simply be seen one of those equivalence classes.
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L1 L2

extensions of PCIvarious nonclassical logics

A

� t1(�)

t2(A)

t1

t2

Figure 3.1: Syntactical equivalence of logics

We can use the word 'extension' as refer to either languages or logics. Suppose that

L1 = hVAR1;BOP1;AdOP1;RNK1i and L2 = hVAR2;BOP2;AdOP2;RNK2i are languages,

where VAR1 and VAR2 are denumerably in�nite variables, BOP1 and BOP2 Boolean op-

erators, AdOP1 and AdOP2 additional non-Boolean operators, and RNK1 and RNK2

ranks, respectively. Then we have the following de�nitions.

De�nition 3.4.3 (i) L1 is a sublanguage of L2 or L2 is an extension of L1 if the

following conditions are satis�ed:

(1) VAR1 � VAR2,

(2) BOP1 � BOP2,

(3) AdOP1 � AdOP2,

(4) RNK1 and RNK2 agree on BOP1 [ AdOP1.

(ii) If L1 = (L1; C1) and L2 = (L2; C2) are logics on L1 and L2 respectively, and in

addition to (1)-(4), also

(5) C1 � C2,

then we say that L1 is a sublogic of L2 or that L2 is an extension of L1.

(iii) Furthermore, an extension L2 of L1 is conservative over L1 if

(6) L1 = L2 \ (}(L1)� }(L1)).

(iv) An extension L2 of L1 is de�nitional over L1 if it is satis�ed in addition to (1)-(6),

also

(7) VAR1 = VAR2.
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Theorem 3.4.4 If L1 and L2 are logics such that L2 is a conservative de�nitional ex-

tension of L1, then L1 and L2 are syntactically equivalent.

Corollary 3.4.5 Two logics are syntactically equivalent if there is a logic that is a con-

servative de�nitional extension of both.

3.5 Translations between AC and PCIW

The Angell's analytic containment language and its axiomatic deductive system AC were

already introduced in Section 3.2. At �rst we will de�ne two translations tA and tP

between AC-language LA and SCI-language LS in order to show two logics AC and

PCIW are syntactically equivalent with respect to these maps in the sense of De�nition

3.4.1.

De�nition 3.5.1 Let L1A be the set of AC formulas which contains only �rst degree en-

tailments. Then the mapping tA : L1A ! LS, called a AC -translation, is de�ned inductively

as follows:

(i) tA(p) := p; p 2 VAR,

(ii) tA(� �) := (tA(�)! ?),

(iii) tA(� ^ �) := (tA(�) ^ tA(�)),

(iv) tA(� � �) := (tA(�) � tA(�)).

De�nition 3.5.2 The mapping tP : LS ! LA, called a PCI-translation, is de�ned induc-

tively as follows:

(i) tP(p) := p; p 2 VAR

(ii) tP(?) :=� (tP(A)! tP(A))

(iii) tP(:A) :=� tP(A)

(iv) tP(A _ B) :=� (� tP(A)^ � tP(B))

(v) tP(A ^ B) := (tP(A) ^ tP(B))

(vi) tP(A! B) := (tP(A)! tP(B))

(vii) tP(A � B) := (tP(A) � tP(B))

For two maps tA and tP we can prove the following two propositions.

Proposition 3.5.3 For any formula ' in L1A, ' 2 AC implies tA(') 2 PCIW.
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Proof. By induction on the length of derivation in AC.

(i) Base step: We have to check the provability of each axioms of AC in PCIW after

a tA-translation. But this is a routine work and will be omitted.

(ii) Induction step: We have to check the admissibility of (Sb),(Ad) and (Im) in PCIW

after a tA-translation. (Sb): Assume that � � �, ' are provable in AC. Then

by I.H. tA(� � �); tA('), i.e., tA(�) � tA(�); tA(') hold in PCIW. Here PCIW is

closed with respect to � because of the additional axiom (IT). Hence we have the

derivation of '[�=�] in PCIW. (Ad): This case is trivial, since PCIW is based on

classical logic. (Im): This case is also trivial because of the additional axiom (IR)

in PCIW.

�

Proposition 3.5.4 For any formula A in LS such that A has no nestings of �, A 2 PCIW

implies tP(A) 2 AC.

Proof. By induction on the length of derivation in PCIW.

(i) Base step: By noticing that we have also schemata which are obtained by replacing

� as $ in (a1){(a5), this case is trivial and will be omitted.

(ii) Induction step: We have to check the admissibility of (Mp) in AC after a tP-

translation. (Mp): Assume that A, A! B are provable in PCIW. Then by I.H.

tP(A); tP(A! B), i.e., tP(A); tP(A)$ (tP(A) ^ tP(B)) hold in AC. Since AC is

closed under substitution for logical equivalence, we can derive tP(A) ^ tP(B). So

we have also the derivation of tP(B) in AC.

�

Therefore we can prove the following two theorems.

Theorem 3.5.5 (i) For any formula ' in L1A, tP(tA('))$ ' 2 AC

(ii) For any formula A in LS such that A has no nestings of �, tA(tP(A))$ A 2 PCIW

Proof. Both cases are almost trivial and will be omitted. �

Theorem 3.5.6 (i) For any formula ' in L1A, ' 2 AC if and only if tA(') 2 PCIW.

(ii) For any formula A in LS such that A has no nestings of �, A 2 PCIW if and only

if tP(A) 2 AC.

Proof. By using Proposition 3.5.3, 3.5.4 and Theorem 3.5.5. �

Hence we may conclude that two logics AC and PCIW are syntactically equivalent

by De�nition 3.4.1, Theorem 3.5.5 and Theorem 3.5.6.

32



3.6 Notes

In Section 3.1, we introduced the system PCI by deleting two axioms (C5) and (SI) from

SCI in order to simulate a classical modal logic K. The reason why is that (C5) and

(SI) correspond to axioms (4) and (T) of modal logics, respectively, whenever we will

attempt to interpret modal necessitation 2 by identity � (see Section 4.6). As a result,

PCI is no longer a non-Fregean logic in the sense of R. Suszko. However, PCI is very

interesting as a logical system because that various nonclassical logics can be simulated

on some extensions of PCI. Then, we will postpone to interpret PCI philosophically in

further research, after using this system in many directions.

In Section 3.4, we introduced the de�nition of syntactically equivalent between two

logics. In fact, if two logics are syntactically equivalent, then moreover, we can translate

any proofs of both logics mutually.

In Section 3.2, we mentioned three relevance systems E, AI and AC. Extensive studies

of the �rst two systems appear in [1] and [53], respectively. The concepts of entailment

in E and AI are often connected with containment and deducibility, respectively. All

three systems reject coincidentally the paradoxes of strict implication, e.g., �; (�_ � �)

and (�^ � �); �, since these formulas express neither relations of containment nor of

deducibility. Here the �rst degree entailment theorems of E include all �rst degree entail-

ment theorems of AC, and also AI contains AC. Let L
1 be the �rst degree entailment

theorems for any system L. Then we have the following relationships between E, AI and

AC (see [2]):

(E1
\AI

1) = (AC� (�; (�_ � �)))1

E
1 = (AC� (�; (� _ �)))1

AI
1 = (AC� ((� _ �) ; (�_ � �))� ((� _ (�^ � �)) ; �))1

(E1
[AI

1) = (AC� ((� _ �) ; (�_ � �))� ((� _ (�^ � �)) � �))1
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Chapter 4

PCIK extension for classical normal

modal logic

In this chapter we will investigate how classical modal logics are simulated by PCI logic

which have been introdued in the previous Chapter 3. R. Suszko showed already that

modal systems S4 and S5 can be simulated on some extensions of SCI. Here we will

concentrate on the weaker modal system K. In Section 1, we will give a brief survey

of classical modal logics, particularly basic normal modal logic K and its axiomatic ex-

tensions KT, KB, K4, KD, K5, S4 and S5, in syntactical and semantical points of

view (see [15] and [52]). Then in Section 2, we will de�ne PCIK logic by adding two

identity axioms (WIA1) and (WIA2), and one inference rule (G) to the original system

PCI in order to interpret correctly the necessary operator 2 by identity �. After this, in

Section 3, we will give translations between K and PCIK, and hence prove that they are

syntactically equivalent in a sense of De�nition 3.4.1. In Section 4, we will also introduce

Kripke type semantics for PCIK logic by exchanging the validity of modal formulas in

modal Kripke type semantics with new validity of identity formulas. Then we can show

that K and PCIK are semantically equivalent relative to the same Kripke frame. So by

invoking the completeness of modal logic, we will give a completeness theorem of PCIK

relative to Kripke type semantics. In Section 5, we will de�ne PCIK-algebras, which is

an algebraic counterpart of PCIK logics, and give a representation theorem (Theorem

4.5.8) of this algebras. Furthermore, we will give an alternative completeness result of

PCIK logic by using the above representation theorem. So far mentioned results concern

with relationships between K and PCIK. But we can successfully extend their results to

various extensions of modal logics. In Section 6, we will de�ne several extensions of PCIK

which are counterparts of modal extensions of K. Then as the similar way to PCIK, we

can consider translations between K extensions and PCIK extensions (Section 7), and

moreover, Kripke type semantics for PCIK extensions (Section 8). Finally we will also

give further information on related results shown in this chapter (Section 9).
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4.1 Classical normal modal logics

In this section we will brie
y survey classical modal logics in syntactical and semantical

points of view. In particular, we will explain basic normal modal logic K and various

axiomatic extensions of K.

4.1.1 Basic normal modal logic K and its axiomatic extensions

Let LK = hLK;:;^;_;!;2;?;>i be the classical normal modal language, where

hL;:;^;_;!;?;>i is an underlying propositional language and 2 (necessary) is a unary

operator. The logical axioms and rules of inference for K-language LK consist of sets

of schemata TFA, which are same as from (A1) to (A10) in SCI, the additional axiom

schema (K), and the necessitation (Ns) rule besides modus ponens below (see [15]):

(K) 2(�! �)! (2�! 2�)

(Ns) �
2�

Then the axiomatic deductive system K(�) for K = (LK;K) is de�ned as follows.

De�nition 4.1.1 (i) For any � � LK, K(�) is the smallest set of formulas closed un-

der the rules of (Mp) and (Ns), which contains TFA, (K) and �.

(ii) The element of K(;) is called the logical theorem of K.

Then it is easily veri�ed that K is a consequence operator. By the similarity to

Proposition 2.2.2, we have the following.

Theorem 4.1.2 For any � [ f�; �; 
g � LK, it holds the following equivalences:

(i) :� 2 K(�) if and only if ? 2 K(�;�)

(ii) � 2 K(�) if and only if there exist some �nite subset � of � such that � 2 K(�).

(Compactness)

(iii) For any p 2 VAR, (� � �)! (
[�=p] � 
[�=p]) is a logical theorem of K.

(Replacement Law)

The elementary extension of K with an additional axiom � will be denoted by K� �.

Moreover, 3 (possible) operator is the abbreviation of :2:. Then it is well-known in

some literatures (see [15] and [52]) that there exist the following extensions of K:

(1) KT = K� (2�! �)

(2) KB = K� (�! 23�)
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(3) K4 = K� (2�! 22�)

(4) KD = K� (2�! 3�)

(5) K5 = K� (3�! 23�)

(6) S4 = KT4 = K� (2�! �)� (2�! 22�)

(7) S5 = KT5 = K� (2�! �)� (3�! 23�)

4.1.2 Kripke type semantics for normal modal logics

Let F = (W;R) be a modal Kripke frame for LK, where W is a non-empty set and R a

binary relation on W . Moreover,M = (W;R; V ) is a modal Kripke model for LK, where

F = (W;R) is a modal Kripke frame and V a valuation on F which is a map from VAR

to 2W such that V (p) � W for any p 2 VAR, V (?) = ; and V (>) = W . Then for any

point a 2W , we can extend V to the valuation of modal formulas j=K : FORK ! 2W as

the following way.

De�nition 4.1.3 Given a modal Kripke modelM = (W;R; V ), the notion of validity of

modal formulas at any point a 2 W is de�ned inductively as follows:

(i) M; aj=Kp if and only if a 2 V (p) for any variable p 2 VAR,

(ii) M; a 6j=K? andM; aj=K>,

(iii) M; aj=K� ^ � if and only ifM; aj=K� andM; aj=K�,

(iv) M; aj=K� _ � if and only ifM; aj=K� orM; aj=K�,

(v) M; aj=K�! � if and only ifM; aj=K� impliesM; aj=K�,

(vi) M; aj=K2� if and only if for all b with aRb,M; bj=K�.

For any Kripke frame F = (W;R), a formula � is valid on F , in symbols, Fj=K� if

M; aj=K� for any a 2 W and any valuation j=K. Then the logics recalled so far are well-

known to be sound and complete with respect to natural classes of modal Kripke frames

below (see [15] and [52]).

Theorem 4.1.4 (Modal completeness) For any formula ' 2 LK and any modal Kripke

frame F = (W;R), it holds the following equivalence:

(i) � 2 K if and only if Fj=K� for all F .

(ii) � 2 KT if and only if Fj=K� for all F such that R is re
exive.

(iii) � 2 KB if and only if Fj=K� for all F such that R is symmetric.
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(iv) � 2 K4 if and only if Fj=K� for all F such that R is transitive.

(v) � 2 KD if and only if Fj=K� for all F such that R is serial.

(vi) � 2 K5 if and only if Fj=K� for all F such that R is Euclidean.

(vii) � 2 S4 if and only if Fj=K� for all F such that R is quasi-ordered.

(viii) � 2 S5 if and only if Fj=K� for all F such that R is equivalence.

4.2 PCIK logic with identity as modality

In this section we will de�ne PCIK logic as an extension of PCI in order to interpret the

sameness of modal necessitation 2 by identity � (see [34] and [35]). Then we need the

following conditions in PCI (see also Fig 4.1):

(R3) �!2� 7�! (�!� � >),

(R4)
 ����
A � B 7�! 2(

 �
A $

 �
B ),

where �!� and
 �
A ,
 �
B denote the results of translations from K to PCIK, and its

converse, respectively.

extension PCIKmodal logic K

A � >

2(�$ �) A � B

2�
tK

tP

Figure 4.1: Requirements of simulation of K

Here we notice that A � B ! ((A! B) � (B ! A)) and (A! B) � > ^ (B ! A)

� > ! (A! B) � (B ! A) are theorems of PCI by Theorem 3.1.3 (ii) and axiom (E3),

respectively. Hence in order to satisfy (R3) under (R4), we need to add the following two

identity axioms (WIA1) and (WIA2) in PCI. Moreover, we also need to satisfy (G) rule

in PCI from (Ns) rule in K.

(WIA1) ((A! B) � (B ! A))! (A � B)

(WIA2) ((A! B) � (B ! A))! ((A! B) � >) ^ ((B ! A) � >)
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(G) A B
A � B

Then we will get the extension PCIK of PCI below, in which we can show to satisfy

the counterpart of axiom (K) in K (see Theorem 4.2.2 (xiv)).

De�nition 4.2.1 Let PCI = (LS; C) be PCI logic, CG a G-theory of C and X � LS.

Then PCIK = (LS; C
G
K) is a non-elementary extension of PCI, where CG

K is a supercon-

sequence of C de�ned by CG
K (X) = CG(X; WIA1;WIA2).

Then two axioms (E1) and (C1) in PCI are derivable in PCIK. Also we have the

following theorems in PCIK.

Theorem 4.2.2 The following are derived rules and logical theorems of PCIK.

(i)
(A! B) � (B ! A)

A � B
(WI)

(ii) A$ B
A � B

(QF)

(iii) A � A (E1)

(iv) (A � B)! (:A � :B) (C1)

(v) (A � B)$ (B � A) and (A � B) � (B � A)

(vi) ((A! B) � (B ! A))$ (A � B) and ((A! B) � (B ! A)) � (A � B) (SIA)

(vii) ::A � A

(viii) (:A � B)$ (A � :B) and (:A � B) � (A � :B)

(ix) (:A � :B)$ (A � B) and (:A � :B) � (A � B)

(x) :? � > and ? � :>

(xi) > � (A _ :A) and ? � (A ^ :A) and > � (A � A)

(xii) ((A ^ B) � A)$ ((A _ B) � B) and ((A ^B) � A) � ((A _B) � B)

(xiii) ((A! B) � >)$ ((A ^ :B) � ?) and ((A! B) � >) � ((A ^ :B) � ?)

(xiv) ((A! B) � >)! ((A � >)! (B � >))

(xv) ((A ^B) � >)$ ((A � >) ^ (B � >)) and ((A ^B) � >) � ((A � >) ^ (B � >))

(xvi) (A � B)$ ((A$ B) � >) and (A � B) � ((A$ B) � >) (R1)

(xvii) (A � B)$ ((A � A ^B) ^ (B � B ^ A))
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Proof. All the proof of (iii){(v) and (vii){(xiii) are straightforward and will be omitted.

(i): This is derived directly from (WIA1). (ii): Suppose A$ B. Then both A! B and

B ! A hold. So we can apply (G) rule to these and get (A! B) � (B ! A). Then (WI)

rule yields the desired result. (vi): ((A! B) � (B ! A))! (A � B) is a (WIA1) itself.

To show the other direction note that (A � B)! ((A � B) ^ (B � A))! ((A! B) �

(B ! A)) hold by (E2),(C4). The second part follows immediately from (QF) rule.

(xiv): Notice that (> ! B)$ B is a theorem and also (1): (> ! B) � B by (QF)

rule. Moreover, by (E1),(C4) we have ((A � >) ^ (B � B))! ((A! B) � (> ! B))

and apply (E3) and (2) to this we get (2): (A � >)! (A! B) � B. Since we have

also (3): ((A! B) � B)! (((A! B) � >)! (B � >)) by (A5) ,(E3) combining the

results (2) and (3) yield (A � >)! (((A! B) � >)! (B � >)). Note �nally that TFA

permits the exchange of premise we get the desired result. (xv): In order to prove

((A ^B) � >)! ((A � >) ^ (B � >)) take the axiom (A3): (A ^B)! A. Then by

(G) rule and (xiv) we get (((A ^B)! A) � >)! (((A ^B) � >)! (A � >)) and sim-

ilarlly (((A ^B)! B) � >)! (((A ^B) � >)! (B � >)). Therefore by (A5) we get

the desired result. To prove the converse direction assume (A � >) ^ (B � >) and apply

(C2), then we get the result from (QF) rule. (xvi): At �rst by (vi),(WIA2) and (xv) we

can show (A � B)$ ((A$ B) � >). Then by (QF) rule the result follows. (xvii):

A � B ! A � B

(E1)
...

A � A
A � B ! A � A

(A1); (Mp)

A � B ! A � B ^ A � A
(A5); (Mp)

(C2);A � A ^ A
...

A � B ^ A � A! A � A ^B
A � B ! A � A ^B

(A2); (Mp):

Moreover, by the similar way, we get also A � B ! B � B ^ A. Hence by (A5),(Mp)

we get A � B ! (A � A ^B) ^ (B � B ^ A). The converse is a trivial by (E2),(E3).

�

4.3 Translations between K and PCIK

In this section we will give translations between K and PCIK, and hence prove that they

are syntactically equivalent. How to show the syntactically equivalent of two logics follows

the previous discipline in Section 3.4. At �rst we will de�ne two translations tK and tP

between K-language LK and SCI-language LS in order to show two logics K and PCIK

are syntactically equivalent with respect to these maps.

De�nition 4.3.1 The mapping tK : LK ! LS, called a K-translation, is de�ned induc-

tively as follows:

(i) tK(p) := p; p 2 VAR,
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(ii) tK(?) := ?,

(iii) tK(:�) := :tK(�),

(iv) tK(� ^ �) := (tK(�) ^ tK(�)),

(v) tK(� _ �) := (tK(�) _ tK(�)),

(vi) tK(�! �) := (tK(�)! tK(�)),

(vii) tK(2�) := (tK(�) � >).

De�nition 4.3.2 The mapping tP : LS ! LK, called a PCI-translation, is de�ned induc-

tively as follows:

(i) tP(p) := p; p 2 VAR,

(ii) tP(?) := ?,

(iii) tP(:A) := :tP(A),

(iv) tP(A ^ B) := (tP(A) ^ tP(B)),

(v) tP(A _ B) := (tP(A) _ tP(B)),

(vi) tP(A! B) := (tP(A)! tP(B)),

(vii) tP(A � B) := 2(tP(A)$ tP(B)).

For two maps tK and tP we can prove the following propositions.

Proposition 4.3.3 For any formula � in LK, � 2 K implies tK(�) 2 PCIK.

Proof. By induction on the length of derivation in K.

(i) Base step: We have to check the provability of each axioms of K in PCIK after a

tK-translation. The case of TFA is trivial since every tK-translation preserves the

structure of TF-connectives and also PCIK has TFA axioms. So we only consider

the case of (K).

tK(�) = tK(2(�1 ! �2)! (2�1 ! 2�2))

= ((tK(�1)! tK(�2)) � >)! ((tK(�1) � >)! (tK(�2) � >))

Then, this is a theorem of PCIK because of Theorem 4.2.2 (xiv). Hence, tK(�) 2 PCIK.

(ii) Induction step: Assume that we have established the theorem for some step, and

consider a new derivation from these by applying inference rules of K.

(Mp): This case is trivial since every tK-translation preserves the structure of TF-

connectives and PCIK also has (Mp) rule.

(Ns): Assume that tK(�1) 2 PCIK holds by I.H. Moreover,> 2 PCIK holds. Hence,

by (G) rule we get (tK(�1) � >) 2 PCIK. But tK(�) = tK(2�1) = (tK(�1) � >) by

the de�nition, so tK(�) 2 PCIK.
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Thus the tK-translation of any formula provable in K is also provable in PCIK.

�

Proposition 4.3.4 For any formula A in LS, A 2 PCIK implies tP(A) 2 K.

Proof. By induction on the length of derivation in PCIK.

(i) Base step: We have to check the provability of each axioms of PCIK in K after a

tP-translation. The case of TFA is trivial because of the similar reason in the above

Proposition 4.3.3. Next we will consider IDA and show the typical cases of them

below.

1) A = (C4)

tP(A) = tP((A1 � B1) ^ (C1 � D1)! (A1 ! C1) � (B1 ! D1))

= 2(tP(A1)$ tP(B1)) ^ 2(tP(C1)$ tP(D1))

! 2((tP(A1)! tP(C1))$ (tP(B1)! tP(D1)))

Then, this is clearly a theorem of K, so tP(A) 2 K.

2) A = (WIA1)

tP(A) = tP(((A1 ! B1) � (B1 ! A1))! (A1 � B1))

= 2((tP(A1)! tP(B1))$ (tP(B1)! tP(A1)))! 2(tP(A1)$ tP(B1))

Then, this is clearly a theorem of K, so tP(A) 2 K.

3) A = (WIA2)

tP(A) = tP(((A1 ! B1) � (B1 ! A1))! ((A1 ! B1) � >) ^ ((B1 ! A1) � >)

= 2((tP(A1)! tP(B1))$ (tP(B1)! tP(A1)))

! 2((tP(A1)! tP(B1))$ tP(>)) ^2((tP(B1)! tP(A1))$ tP(>))

Then, this is clearly a theorem of K, so tP(A) 2 K.

(ii) Induction step: Assume that we have established the theorem for some step, and

consider a new derivation from these by applying inference rules of PCIK.

(Mp): This case is trivial because of the similar reason in the above Proposition

4.3.3.

(G): Assume that both tP(A1) and tP(B1) are theorem of K by I.H. Then, it is

possible to derive the following proof in K.

P (A1)

tP(B1)! tP(A1)

P (B1)

tP(A1)! tP(B1)
(A1)

tP(A1)$ tP(B1)
(A5)

2(tP(A1)$ tP(B1))
(Ns)

Hence, by the de�nition we get 2(tP(A1)$ tP(B1)) 2 K. But tP(A) = tP(A1 � B1)

= 2(tP(A1)$ tP(B1)) by the de�nition, so tP(A) 2 K.

Thus the tP-translation of any formula provable in PCIK is also provable in K.
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Moreover, we can show the following.

Theorem 4.3.5 (i) For any formula � in LK, tP(tK(�))$ � 2 K.

(ii) For any formula A in LS, tK(tP(A))$ A 2 PCIK.

Proof. (i): By induction on the length of the formula �. It is clear that base step

and induction steps for TF connectives (:;^;_;!) hold, so we will only attention to 2

operator. Assume that tP(tK(�1))$ �1 2 K holds and consider the formula � = 2�1.

Then in K, the following equivalences hold.

tP(tK(2�1))$ tP(tK(�1) � >) (Def.4.3.1(vii))

$ 2(tP(tK(�1))$ tP(>)) (Def.4.3.2(vii))

$ 2(�1 $ >) (I.H.,tP(>)$ >)

$ 2�1 ((�1 $ >)$ (�1 ^ >)$ �1)

(ii): By induction on the length of the formula A. For the same reasons of (i) we will only

attention to identity connective. Assume that both tK(tP(A1))$ A1 and tK(tP(B1))$ B1

are provable in PCIK by I.H., and consider the formula A = (A1 � B1). Then in PCIK,

the following equivalences hold.

tK(tP(A1 � B1))$ tK(2(tP(A1)$ tP(B1))) (Def.4.3.2(vii))

$ tK(tP(A1)$ tP(B1)) � > (Def.4.3.1(vii))

$ (tK(tP(A1))$ tK(tP(B1))) � > (Def.4.3.1(vi),(iv))

$ (A1 $ B1) � > (I.H.)

$ (A1 � B1) (Th.4.2.2(xvi))

�

Theorem 4.3.6 (i) For any formula � in LK, � 2 K if and only if tK(�) 2 PCIK.

(ii) For any formula A in LS, A 2 PCIK if and only if tP(A) 2 K.

Proof. (i): The only-if-part obtains from Proposition 4.3.3. Also other direction can

easily be proved as follows:

tK(�) 2 PCIK =) tP(tK(�)) 2 K (Prop.4.3.4)

=) � 2 K (Th.4.3.5(i))

(ii): The only-if-part obtains from Proposition 4.3.4. Also if-part is as follows:

tP(A) 2 K =) tK(tP(A)) 2 PCIK (Prop.4.3.3)

=) A 2 PCIK (Th.4.3.5(ii))

�

Hence we can conclude that two logics K and PCIK are syntactically equivalent by

De�nition 3.4.1, Theorem 4.3.5 and Theorem 4.3.6.
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4.4 Kripke type semantics for PCIK logics

In this section we will introduce Kripke type semantics for PCIK logics, and then show a

completeness of PCIK logic with respect to this semantics. Since (A � B)$ 2(A$ B) is

a theorem of PCIK under the de�nition 2A$ (A � >), we can de�ne Kripke models for

PCIK, in the similar way as the case of normal modal logic K, by exchanging the validity

of modal formulas in modal Kripke model with new validity of identity formulas according

to the above equivalence. A PCIK Kripke frame F for LS is a pairs (W;R), which is

the same as a modal Kripke frame (see Section 4.1). The only di�erence between both

PCIK and K Kripke model is the de�nition of validity of formulas. Let M = (W;R; V )

be a PCIK Kripke model for LS, where F = (W;R) is a PCIK Kripke frame and V a

valuation on F which is a map from VAR to 2W such that V (p) � W for any p 2 VAR,

V (?) = ; and V (>) = W . Then for any point a 2 W , we can extend V to the valuation

of PCIK formulas j=P : LS ! 2W , in the similar way as the case of K, by the following

way.

De�nition 4.4.1 Given a PCIK Kripke modelM = (W;R; V ), the notion of validity of

PCIK formulas at any point a 2 W is de�ned inductively as follows:

(i) M; aj=Pp if and only if a 2 V (p) for any variable p 2 VAR,

(ii) M; a 6j=P? andM; aj=P>,

(iii) M; aj=PA ^B if and only ifM; aj=PA andM; aj=PB,

(iv) M; aj=PA _B if and only ifM; aj=PA orM; aj=PB,

(v) M; aj=PA! B if and only ifM; aj=PA impliesM; aj=PB,

(vi) M; aj=PA � B if and only if for all b with aRb,M; bj=PA () M; bj=PB.

Here the validity of classical parts in both PCIK and K Kripke model is the same. For

any Kripke frame F = (W;R), a formula A is valid on F , in symbols, Fj=PA ifM; aj=PA

for any a 2 W and any valuation j=P. Next we will show the semantical equivalence

between PCIK and K with respect to the same Kripke frame by using translations tK

and tP.

Theorem 4.4.2 Let F = (W;R) be a modal Kripke frame. Then F can be regarded

also as a PCIK Kripke frame. Let tK : LK ! LS be a K-translation and tP : LS ! LK a

PCI-translation. Then the following equivalences are satis�ed:

(i) For any formula � in LK, Fj=K� if and only if Fj=PtK(�),

(ii) For any formula A in LS, Fj=PA if and only if Fj=KtP(A).
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Proof. First, we note that each valuation V on F as a modal Kripke frame can be

regarded also as a valuation on F as a PCIK Kripke frame, and vice versa. To show (i) of

our Theorem, it su�ces to show by induction on the length of a formula � in LK that in

a given M = (W;R; V ), for any a 2 W M; aj=K� if and only if M; aj=PtK(�). Assume

that for any a 2W M; aj=K�1 i� M; aj=PtK(�1). Then we have:

M; aj=K2�1 i� 8b(aRb =) (M; bj=K�1)) (Def.4.1.3(vi),hypothesis)

i� 8b(aRb =) (M; bj=PtK(�1))) (hypothesis,I.H.)

i� 8b(aRb =) (M; bj=PtK(�1)()M; bj=P>))

i� M; aj=PtK(�1) � > (Def.4.4.1(vi))

i� M; aj=PtK(2�1) (Def.4.3.1(vii))

To show (ii) of our Theorem, it su�ces to show by induction on the length of a

formula A in LS that in a given M = (W;R; V ), for any a 2W M; aj=PA if and only if

M; aj=KtP(A). Assume that for any a 2 WM; aj=PA1 i� M; aj=KtP(A1) andM; aj=PB1

i� M; aj=KtP(B1) . Then we have:

M; aj=PA1 � B1 i� 8b(aRb =) (M; bj=PA1 ()M; bj=PB1))(Def.4.4.1(vi),hypothesis)

i� 8b(aRb =) (M; bj=KtP(A1)()M; bj=KtP(B1))) (hypothesis,I.H.)

i� 8b(aRb =)M; bj=K(tP(A1)$ tP(B1)))

i� M; aj=K2(tP(A1)$ tP(B1)) (Def.4.1.3(vi))

i� M; aj=KtP(A1 � B1) (Def.4.3.2(vii))

�

Then by invoking the completeness of normal modal logic K, we can give a complete-

ness theorem of PCIK relative to Kripke type semantics.

Theorem 4.4.3 (PCIK completeness) For any A 2 LS, A 2 PCIK if and only if

Fj=PA for every PCIK Kripke frame F .

Proof. By Theorem 4.3.6 (ii), we have A 2 PCIK i� tP(A) 2 K. By the completeness

of the modal logic K (Theorem 4.1.4), we also have tP(A) 2 K i� Fj=KtP(A) for any

modal Kripke frame F . By Theorem 4.4.2 (ii), we have Fj=KtP(A) for any modal Kripke

frame F i� Fj=PA for any PCIK Kripke frame F . Thus, we have our theorem.

�

4.5 PCIK algebras and its representation theorem

In this section we will introduce PCIK-algebra which provides an algebraic semantics for

PCIK logic which is introdued in Section 4.2, and show the representation theorem of

PCIK-algebras in the similar way to the case of modal algebras. LetA0 = hA;�;\;[;�; f; ti

be a Boolean algebra with a carrier set A, complement �, meet \, join [, inclusion �,

zero (f) and unit (t). Here if a \ b = a or a [ b = b holds, we write a � b and mean that
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a is contained in b. Then we will de�ne a PCIK-algebra AK = hA0;�i as a Boolean al-

gebra A0 with an additional binary operation � which satis�es the following conditions:

for every x; y; r; z 2 A,

(1) x�x = t,

(2) x�y � y�x,

(3) (x�y) \ (y�z) � x�z,

(4) x�y � (�x�� y),

(5) (x�y) \ (r�z) � (x ? r)�(y ? z), where ? 2 f\;[;�g,

(6) (x � y)�(y � x) � x�y,

(7) (x � y)�(y � x) � ((x � y)�t) \ ((y � x)�t).

Here we omitted extra parentheses, following the assumption that the priority of each

operation is weak as �, \, [, �, � in order. The next lemma is an algebraic translation

of Theorem 4.2.2 (xiv), (xv) and (xvi).

Lemma 4.5.1 For any PCIK-algebra AK = hA0;�i, we have the following equations:

(i) (x � y)�t � (x�t � y�t),

(ii) (x \ y)�t = (x�t) \ (y�t),

(iii) x�y = (x �� y)�t, where x �� y = (x � y) \ (y � x).

De�nition 4.5.2 (see [14] and [22]) Let A0 = hA;�;\;[;�; f; ti be a Boolean algebra.

Then we de�ne:

(i) A subset F of A is called a �lter of A0 if F satis�es the following conditions:

(1) t 2 F ,

(2) a 2 F and a � b implies b 2 F ,

(3) a; b 2 F implies a \ b 2 F .

(ii) Moreover, a �lter F of A0 is a maximal �lter (or ultra�lter) if F is maximal with

respect to the property that f 62 F .

(iii) A �lter F of A0 is proper if f 62 F .

Lemma 4.5.3 Let F be a �lter of a Boolean algebra A0. Then we have:

(i) F is an ultra�lter of A0 if and only if exactly either of a or �a belongs to F for any

a 2 A.
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(ii) F is an ultra�lter of A0 if and only if it satis�es both (1) f 62 F and (2) for any

a; b 2 A a [ b 2 F if and only if a 2 F or b 2 F .

Proof. (i): Suppose F is a �lter of A0. To show only-if-part, assume that F is an ultra�l-

ter. Then we have A0=F �= 2 since the interval [F;r] of Co(A0) has exactly two elements

and so A0=F is simple. Let kF : A0 ! A0=F be the natural homomorphism. Then for

any a 2 A, kF (�a) = �kF (a) and so kF (a) = 1=F or kF (�a) = 1=F as A0=F �= 2. Hence

a 2 F or �a 2 F . Therefore if we are given a 2 A then exactly one of a;�a is in F as

a \ �a = f 62 F . To show the converse assume that exactly one of a;�a is in F for any

a 2 A. Then ifG is another �lter ofA0 with F � G and F 6= G, let a 2 G� F . As�a 2 F

we have f = a \ �a 2 G. Hence G = A. Thus F is an ultra�lter. (ii): To show only-if-

part, assume that F is an ultra�lter with a [ b 2 F . Then as (a [ b) \ (�a \ �b) = f 62 F

we have �a \ �b 62 F . Hence �a 62 F or �b 62 F . By the above (i) we have either a 2 F

or b 2 F . Since t 2 F , for given a 2 A we have t = a [ �a 2 F . Hence a 2 F or �a 2 F .

But both a;�a can not belong to F as a \ �a = f 62 F .

�

Let M(A) be the set of all maximal �lters of a Boolean algebra A0. Then it is well-

known, in [22], that (}(M(A));�) yields also a Boolean algebra, and the following repre-

sentation theorem (Th. 4.5.6) ofA0 holds. We say that a subset M has a �nite intersection

property if for any �nite subset fc1; � � � ; cng of M , the in�mum c1 \ � � � \ cn 6= f if and

only if the �lter [M)(= fb 2 A;m1 \ � � � \mn � b for some mi 2Mg) generated by M

is proper (see e.g. [22]). We will show two lemmas which are essential in proving the

representation theorem.

Lemma 4.5.4 For any subset M of A, M has a �nite intersection property if and only

if there exists an ultra�lter F of A0 with M � F .

Proof. The only-if-part is trivial since M has clearly �nite intersection property when

there exists an ultra�lter F with M � F . Conversely if M has �nite intersection prop-

erty, then a �lter generated by M is proper by the de�nition. Let P = fG � A;G is a

proper �lter of A0 with M � Gg and consider the partial order set (P;�). Clearly, P is

nonempty since [M) 2 P . Moreover, for any chain K = fGi; i 2 Ig of (P;�),
S
i2I Gi is

the supremum of (P;�). Therefore by Kuratowski-Zorn Lemma, (P;�) has a maximal

element F . Moreover, F is clearly a maximal �lter with M � F .

�

Lemma 4.5.5 For any homomorphism h : A! B, h(a) 6= f for any a 2 A with a 6= f if

and only if h is an injection.
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Proof. It is su�cient to show that there exists a 2 A with a 6= f and h(a) = f, when

h is not an injection. By our assumption there exist x and y in A such that x 6= y and

h(x) = h(y). Without loss of generality, assume x 6� y. Let a = x \ �y. Then we get

a 6= f and h(a) = h(x) \ �h(y) = f .

�

Theorem 4.5.6 Let A0 be a Boolean algebra and M(A) the set of all maximal �lters of

A0. Then the map

s : a 7�! fF 2 M(A); a 2 Fg

is an isomorphism of A into }(M(A)).

Proof. At �rst we will show that s is a homomorphism. By the de�nition of s, we have

(1): a 2 F if and only if F 2 s(a). Since a \ b 2 F if and only if a 2 F and b 2 F , we have

s(a \ b) = s(a) \ s(b) where \ on the right side denotes the set theoretical intersection.

Furthermore, since every �lter F 2 M(A) is maximal, by Lemma 4.5.3 (i) and (ii), we infer

that a 2 F if and only if �a 62 F , and a [ b 2 F if and only if a 2 F or b 2 F , respectively.

They imply by (1) that s(�a) = �s(a) and s(a [ b) = s(a) [ s(b) where � and [ on the

right side of each equation denote the set theoretical complement relative to M(A) and

the set theoretical sum, respectively. Thus s is a homomorphism of A into }(M(A)). Next

for any a 2 A with a 6= f , there exists an ultra�lter F with a 2 F by Lemma 4.5.4. So

s(a) 6= ;. Hence by Lemma 4.5.5 we get s is an injection.

�

Next we will consider the case of PCIK-algebras AK = hA0;�i. A subset F of A is

called a PCIK-�lter of AK if F satis�es the following conditions:

(F1) F is a lattice �lter of A0,

(F2) for any a 2 A, a 2 F implies a�t 2 F .

Then for any PCIK-algebras AK and any PCIK-�lter F , M = (AK; F ) is called a PCIK-

model. For any PCIK-algebras AK, a formula B is valid in AK, in symbols, AKj=B,

if h(B) 2 F for any valuation h of AK and any PCIK-�lter F . Now we will prove the

representation theorem of PCIK-algebra by using the following de�nitions of duality of

frame and algebra (see also Fig 4.2).

De�nition 4.5.7 Let AK = hA0;�i be a PCIK-algebra and F = (W;R) a PCIK Kripke

frame . Then we de�ne:

(i) AK+ = (M(A); R) is called the dual frame of AK if M(A) is the set of all maxi-

mal �lters of a Boolean algebra A0 and for any F;G 2 M(A), FRG if and only if

F� � G, where F� = fx$ y; x�y 2 Fg,
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(ii) moreover, F+ = h}(W );��i is called the dual algebra of F if for any X;Y �W ,

X��Y = fF ; for any G 2 W such that FRG(G 2 X () G 2 Y )g.

AK = (A0;�) F
+ = (}(W );��)

AK+ = (M(A); R�) F = (W;R)

PCIK-algebra

Kripke frame

f g

Figure 4.2: Dual algebra/frame of PCIK-algebras

Theorem 4.5.8 Let AK = hA0;�i be a PCIK-algebra and M(A) the set of all maximal

�lters of A0. Then the map

h : a 7�! fF 2 M(A); a 2 Fg

is an isomorphism of AK = hA0;�i into (AK+)+ = h}(M(A));��i.

AK = (A0;�) (AK+)+ = (}(M(A));��)

AK+ = (M(A); R�)

f g

h

Figure 4.3: Embedding of PCIK-algebras

Proof. By Theorem 4.5.6 it is clear that s is a homomorphism for operations (\;[;�)

and an injection. So it is su�cient to show s(x�y) = s(x)��s(y) for any x; y 2 A. This

implies by (1) in the proof of Theorem 4.5.6 that x�y 2 F if and only if for any G 2 M(A)

such that FRG(G 2 s(x) () G 2 s(y)) if and only if for any G 2 M(A) such that
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F� � G(x 2 G () y 2 G). So we will show x�y 2 F if and only if for any G 2 M(A)

such that F� � G(x 2 G () y 2 G). The only-if-part: x�y 2 F =) x$ y 2 F� � G

=) x$ y 2 G =) (x 2 G () y 2 G). The if-part: assume x�y 62 F . Then either

y 62 [F� [ fxg) or x 62 [F� [ fyg) hold. For the former case, let X = fH is a proper �lter;

[F� [ fxg) � H and y 62 Hg. Let H0 = [F� [ fxg) in the former case. Hence H0 2 X and

so X 6= ;. Furthermore for any chain K = fHi; i 2 Ig of (X;�),
S
i2I Hi is a supremum

of (X;�). Therefore by Kuratowski-Zorn Lemma, (X;�) has a maximal element H�.

Moreover, H� is clearly a maximal �lter. Hence we get that there exists H� 2 M(A) such

that F� � H�(x 2 H� 6() y 2 H�). We can show this also in the latter case.

�

Finally from the above representation theorem, we can prove an alternative complete-

ness theorem of PCIK logic with respect to Kripke type semantics as the following way.

Lemma 4.5.9 For any PCIK Kripke frame F and any A 2 LS, the following conditions

are equivalent:

(i) Fj=PA for a PCIK Kripke frame F = (W;R),

(ii) F+j=A for a PCIK-algebra F
+ = (}(W );��).

Proof. By de�nitions of validity for PCIK Kripke frame and PCIK-algebras, for any

p 2 VAR and any w 2W , if we de�ne a valuation v 2 HOM(LS; }(W )) such that wj=Pp

() w 2 v(p), then we get wj=PA () w 2 v(A) for any A 2 LS. Therefore, we have

v(A) = W (i.e., = t
F
+) () wj=PA for any w 2 W .

�

Theorem 4.5.10 For any A 2 LS and any PCIK logic, the following conditions are

equivalent:

(i) A 2 PCIK,

(ii) Fj=PA for any PCIK Kripke frame F ,

(iii) AKj=A for any PCIK-algebra AK.

Proof. (i) =) (ii): soundness of Theorem 4.4.3. (iii) =) (i): usual construction of

Lindenbaum-Tarski algebra. (ii) =) (iii): Assume that v(A) < tB for some algebra B and

some v 2 HOM(LS; B). Then since B can be embedded into (B+)+ by the representation

theorem (see Theorem 4.5.8), the above valuation v can also be seen a valuation of (B+)+.

Therefore, we have not (B+)+j=A. Hence, we have not B+j=PA by Lemma 4.5.9.

�
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4.6 Several extensions of PCIK

We can successfully extend all results so far gotten to various extensions of modal logics.

In this section, we will introduce several elementary extensions of PCIK which are coun-

terparts of modal extensions of K. So let us �rst consider the following additional axiom

schemata of PCIK logic.

PCIK logic modal logic

|||||||||||||||||||||||||||||||||||-

(IR) (A � B)! (A$ B) T : 2�! �

(IS) (A$ B) ^ (C $ D)! (A � :C) � (B � :D) B : �! 23�

(IT) (A � B) ^ (C � D)! (A � C) � (B � D) 4 : 2�! 22�

(IL) (A � :B)! :(A � B) D : 2�! 3�

(IE) :((A � C) � (B � D))! (A � B) _ (C � D) 5 : 3�! 23�

(IO) (A$ B)! (A � B) Z : �! 2�

Then we have the following extensions PCIKT, PCIKB, PCIK4, PCIKD, PCIK5,

PCIKZ, PCIS4, PCIS5 and PCIKTZ of PCIK, which can be de�ned below.

De�nition 4.6.1 Let PCIK = (LS; C
G
K ) and X � LS. Then elementary extensions of

PCIK are de�ned as follow:

(i) PCIKT = (LS; C
G
KT) is the elementary extension of PCIK, where C

G
KT is a super-

consequence of CG
K de�ned by CG

KT(X) = CG
K (X; IR).

(ii) PCIKB = (LS; C
G
KB) is the elementary extension of PCIK, where C

G
KB is a super-

consequence of CG
K de�ned by CG

KB(X) = CG
K (X; IS).

(iii) PCIK4 = (LS; C
G
K4) is the elementary extension of PCIK, where C

G
K4 is a supercon-

sequence of CG
K de�ned by CG

K4(X) = CG
K (X; IT).

(iv) PCIKD = (LS; C
G
KD) is the elementary extension of PCIK, where C

G
KD is a super-

consequence of CG
K de�ned by CG

KD(X) = CG
K (X; IL).

(v) PCIK5 = (LS; C
G
K5) is the elementary extension of PCIK, where C

G
K5 is a supercon-

sequence of CG
K de�ned by CG

K5(X) = CG
K (X; IE).

(vi) PCIKZ = (LS; C
G
KZ) is the elementary extension of PCIK, where C

G
KZ is a supercon-

sequence of CG
K de�ned by CG

KZ(X) = CG
K (X; IO).
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(vii) PCIS4 = (LS; C
G
S4) is the elementary extension of PCIK, where C

G
S4 is a supercon-

sequence of CG
K de�ned by CG

S4(X) = CG
K(X; IR; IT).

(viii) PCIS5 = (LS; C
G
S5) is the elementary extension of PCIK, where C

G
S5 is a supercon-

sequence of CG
K de�ned by CG

S5(X) = CG
K(X; IR; IE).

(ix) PCIKTZ = (LS; C
G
KTZ) is the elementary extension of PCIK, where C

G
KTZ is a su-

perconsequence of CG
K de�ned by CG

KTZ(X) = CG
K (X; IR; IO).

Next we will show logical theorems of each extension of PCIK.

Theorem 4.6.2 The following are logical theorems of PCIKT.

(i) :(A � :A) and :(> � ?)

(ii) (A � >)! A and :A! :(A � >)

(iii) ((A � B) � >)! (A � B) and :(A � B)! :((A � B) � >)

(iv) (A � ?)! :A and A! :(A � ?)

(v) ((A � B) � ?)! :(A � B) and :(A � B)! :(:(A � B) � ?)

(vi) ? � (A � :A) and ? � (? � >)

(vii) (A$ B)! :(A � :B) (IR)�

Proof. (i): By (IR),(A � :A)! (A$ :A) is a theorem. Hence by contraposition

and (Mp) rule we get the desired result. This yields also :(> � ?). (ii): By (IR),

(A � >)! (A$ >)! A, and also :A! :(A � >). (iii){(v): Similar to (ii). (vi): By

(i) and (G) rule :(A � :A) � > is a theorem. Moreover, by (C1) :(A � :A) � > !

::(A � :A) � :> ! (A � :A) � ?. So (Mp) rule yields the desired result. (vii): By

(IR) (A � :B)! (A$ :B)! :(A$ B) holds, hence also (A$ B)! :(A � :B).

�

Theorem 4.6.3 The following are logical theorems of PCIKB.

(i) A! :(:A � >) � >

(ii) ((A � ?) � :(A � >)) � ((:A � >) � :(:A � ?))

(iii) :((A � :C) � (B � :D))! (A$ B) _ (C $ D) (IS)�
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Proof. (i): By (IS), A$ (A$ >)! (:A$ ?)! (:A$ ?) ^ (? $ ?)!

(:A � :?) � (? � :?)! (:A � >) � ? ! :(:A � >) � >. (ii): By (C1), (A � ?)

$ (:A � >) and (A � >)$ (:A � ?) hold and also by (IS) ((A � ?)$ (:A � >))

^((A � >)$ (:A � ?))! ((A � ?) � :(A � >)) � ((:A � >) � :(:A � ?)). Hence

by (Mp) rule we get the desired result. (iii): By (IS), (A$ :B) ^ (C $ :D)!

(A � :C) � (:B � ::D) and equivalently :(A$ B) ^ :(C $ D)! (A � :C) �

(B � :D) hold. So we get the result by law of contraposition.

�

Theorem 4.6.4 The following are logical theorems of PCIK4.

(i) (A � B)! ((A � A) � (A � B)), (A � B)! ((A � B) � >)

(ii) (A � B) ^ (B � C)! ((A � A) � (A � B)) ^ ((A � B) � (A � C))

(iii) :((A � C) � (B � D))! :(A � :B) _ :(C � :D) (IT)�

Proof. (i): Since A � A is a theorem (A � B)! (A � B) ^ (A � A)! (A � A) �

(B � A) hold by (IT). Moreover, by (A � A) � >, (E3) we get the second theorem. (ii):

Similar to (i). (iii): By (IT) (A � :B) ^ (C � :D)! (A � C) � (:B � :D)!

(A � C) � (B � D). So by contraposition we get the desired result.

�

Theorem 4.6.5 The following are logical theorems of PCIKD.

(i) :(A � :A) and :(> � ?)

(ii) (A � >)! :(A � ?) and (A � ?)! :(A � >)

(iii) ((A � B) � >)! :((A � B) � ?) and ((A � B) � ?)! :((A � B) � >)

(iv) (A � B)! :(A � :B)

(v) :((A � ?) � :(:A � >)) and :((A � >) � :(:A � ?))

(vi) :((A ^ :A) � >) and :((A _ :A) � ?)

(vii) :((A � B) � :(B � A)) and :((? � ?) � :(> � >))

Proof. (i){(iv) and (vii): Straightforward. (v): By Theorem 4.2.2 (ix) (A � ?) �

(:A � >) holds. Moreover, by (IL) (A � ?) � (:A � >):((A � ?) � :(:A � >)) holds.

Hence by (Mp) rule we get the desired result. The proof of second theorem is similar to

�rst one. (vi): It hold that (A ^ :A) � ? by Theorem 4.2.2 (xi) and (A ^ :A) � ? !
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:((A ^ :A) � :?) by (IL). So the result is clear by (Mp) rule. The second is similar to

the �rst.

�

Theorem 4.6.6 The following are logical theorems of PCIK5.

(i) :(A � B) ^ :(C � D)! (A � C) � (B � D) (IE)�

(ii) :((A � :C) � (B � :D))! (A � B) _ (C � D)

(iii) :(A � :B) ^ :(C � :D)! (A � C) � (B � D)

Proof. (i): By contraposition of (IE) we get the result. (ii): By (IE)

:((A � :C) � (B � :D))! (A � B) _ (:C � :D)! (A � B) _ (C � D) holds. (iii):

By above (i) :(A � :B) ^ :(C � :D)! (A � C) � (:B � :D)! (A � C) � (B � D)

holds.

�

Theorem 4.6.7 The following are logical theorems of PCIS4.

(i) (A � B)$ ((A � B) � >)

(ii) ((A � C) � (B � D))$ (A � B) ^ (C � D)

(iii) :(A � :B) _ :(C � :D)$ :((A � C) � (B � D))

Proof. (i): By Theorem 4.6.2 (iii) and Theorem 4.6.4 (i), we get the desired result. (ii):

The left direction is due to (IT). The converse also can be shown as follows: By applying

(IR),(IT) (A � C) � (B � D) ! (A � C)$ (B � D)! (A � C) ^ (B � D)

! (A � B) � (C � D) holds. Then by (IR) we get (A � B) � (C � D)! ((A � B)$

(C � D))! (A � B) ^ (C � D). (iii): The right direction is due to Theorem 4.6.4 (iii).

The converse is as follows: By above (i) (A � C) � (B � D)! (A � C) � (:B � :D)

! (A � :B) ^ (C � :D) holds. So by contraposition we get the desired result.

�

Theorem 4.6.8 The following are logical theorems of PCIS5.

(i) (A � :B)! :(A � B) (IL)

(ii) (A � B) ^ (C � D)! (A � C) � (B � D) (IT)

(iii) (A$ B) ^ (C $ D)! (A � :C) � (B � :D) (IS)
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(iv) (A � B) _ (C � D)$ :((A � C) � (B � D))

(v) ((A � C) � (B � D))$ :(A � B) ^ :(C � D)

(vi) :(A � B)$ ((A � B) � ?) and :(A � B) � ((A � B) � ?)

(vii) ((A � B) � >) _ ((A � B) � ?)

(viii) :(A � >) � ((A � >) � ?)

(ix) ((A � >) � >) _ ((A � >) � ?)

Proof. (i): By (IR),(IR)* we get (A � B)! :(A � :B), so the result by contraposition.

(ii): By above (i) we get (A � B) ^ (C � D)! :(A � :B) ^ :(C � :D). So by The-

orem 4.6.6 (iii) we get the desired result. (iii): It is clear that (C $ D)$ (:C $ :D)

holds. So by above (i) we get (A$ B) ^ (C $ D)! (A$ B) ^ (:C $ :D)!

:(A � :B) ^ :(:C � ::D). Moreover, by Theorem 4.6.6 (iii) we get :(A � :B)^

:(:C � ::D)! (A � :C) � (B � :D). (iv): The left direction is due to (IE). The

converse is as follows: By applying (IR),(IT) (A � C) � (B � D)! (A � C)$ (B � D)

! (A � C) ^ (B � D)! (A � B) � (C � D) holds. Then by (IR) we get (A � B) �

(C � D)! (A � B)$ (C � D)! :(A � B)$ :(C � D)! :(A � B) ^ :(C � D).

Hence by contraposition we get the desired result. (v): Same as (iv). (vi): The left direc-

tion is due to Theorem 4.6.2 (v). The converse is as follows: by Theorem 4.6.2 (i),4.6.6

(i) :((A � B) � ?) ^ :(> � ?)! ((A � B) � >) � (? � ?)! ((A � B) � >) � >

holds. Then we get the result by using two times of Theorem 4.6.2 (iii), moreover second

by (QF) rule. (vii): Theorem 4.6.7 (i) and above (vi) yield the result. (viii): Due to above

(vi). (ix): Due to above (vii).

�

Theorem 4.6.9 The following are logical theorems of PCIKZ.

(i) A! (A � >)

(ii) :(A � :B)! (A$ B) (IO)�

Proof. (ii): By (IO) A! (A$ >)! (A � >). (ii): By (IO) (A$ :B)! (A � :B)

holds, so by contraposition we get the desired result.

�

Theorem 4.6.10 The following are logical theorems of PCIKTZ.

(i) (A � B)$ (A$ B) and (A � B) � (A$ B)

(ii) :A$ (A � ?) and :A � (A � ?)
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(iii) (A � B) � :(A � :B) and :(A � B) � (A � :B)

(iv) :((A � C) � (B � D))! (A � B) _ (C � D) (IE)

(v) (A � B) _ (A � C) _ (B � C) and (A � >) _ (A � ?)

Proof. (i): (IR),(IO) yield (A � B)$ (A$ B). Second is by (QF) rule. (ii): The

left direction is due to Theorem 4.6.2 (iv). The converse is as follows: By above (i)

:(A � ?)! :(A$ ?)! ::(A$ >)! (A$ >)! A holds. So by contraposition

we get the result. (iii): It is clear that (A � B)$ :(A � :B) holds by (IR),(IR)*,

so (QF) rule yields the result. Second is same as �rst. (iv): By above (iii) and (IR)

:(A � B) ^ :(C � D)! (A � :B) ^ (C � :D)! (A$ :B) ^ (C $ :D)!

(A$ :B)$ (C $ :D)! (A$ C)$ (:B $ :D) hold, and by above (i) we get

(A$ C)$ (:B $ :D)! (A$ C)$ (B $ D)! (A � C) � (B � D). (v): Theo-

rem 4.6.9 (i) and above (ii) yield the result.

�

Corollary 4.6.11 PCIKTZ is identical to classical propositional logic CL.

Proof. By the above Theorem 4.6.10 (i), both connectives � and $ are identical. So

PCIKTZ collapses to CL.

�

4.7 Translations between K extensions and PCIK ex-

tensions

In this section we will consider translations between K extensions and PCIK extensions

in the same manner as the case of PCIK. Let L be any modal extensions KT, KB, K4,

KD, K5, S4 and S5 of K. Then we have the similar results to the case of K above (see

Section 4.3).

Proposition 4.7.1 For any formula � in LK, � 2 L implies tK(�) 2 PCIL.

Proof. The proof is similar to Proposition 4.3.3 except that we have to consider the

following cases in addition:

(T) 2�! �

(B) �! 23�

(4) 2�! 22�
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(D) 2�! 3�

(5) 3�! 23�

(T): By De�nition 4.3.1, we have tK(2�! �) = tK(�) � > ! tK(�). Then, this is a

theorem of PCIKT because of Theorem 4.6.2 (ii). (B): By De�nition 4.3.1, we have

tK(�! 23�) = tK(�)! :(:tK(�) � >) � >. Then, this is a theorem of PCIKB be-

cause of Theorem 4.6.3 (i). (4): By De�nition 4.3.1, we have tK(2�! 22�) = tK(�) � >

! (tK(�) � >) � >. Then, this is a theorem of PCIK4 because of Theorem 4.6.4 (i). (D):

By De�nition 4.3.1, we have tK(2�! 3�) = tK(�) � > ! :(:tK(�) � >). Then, this

is a theorem of PCIKD because of Theorem 4.6.5 (iv). (5): By De�nition 4.3.1, we

have tK(3�! 23�) = :(tK(�) � >)! ((tK(�) � ?) � ?). Then, this is a theorem of

PCIK5 because of Theorem 4.6.6 (i).

�

Proposition 4.7.2 For any formula A in LS, A 2 PCIL implies tP(A) 2 L.

Proof. The proof is similar to Proposition 4.3.4 except that we have to consider the

following cases in addition:

(IR) (A � B)! (A$ B)

(IS) (A$ B) ^ (C $ D)! (A � :C) � (B � :D)

(IT) (A � B) ^ (C � D)! (A � C) � (B � D)

(IL) (A � :B)! :(A � B)

(IE) :((A � C) � (B � D))! (A � B) _ (C � D)

(IR): By De�nition 4.3.2, we have tP((A � B)! (A$ B)) = 2(tP(A)$ tP(B))!

(tP(A)$ tP(B)). Then, this is a theorem of KT because of axiom (T). (IS): By De�nition

4.3.2, we have tP((A$ B) ^ (C $ D)! (A � :C) � (B � :D)) = (tP(A)$ tP(B))^

(tP(C)$ tP(D))! 2(2(tP(A)$ :tP(C))$ 2(tP(B)$ :tP(D))). Then, this is a the-

orem of KB because of axiom (B). (IT): By De�nition 4.3.2, we have tP((A � B) ^ (C � D)

! (A � C) � (B � D)) = 2(tP(A)$ tP(B)) ^2(tP(C)$ tP(D))! 2(2(tP(A)$ tP(C))

$ 2(tP(B)$ tP(D))). Then, this is a theorem of K4 because of axiom (4). (IL): By Def-

inition 4.3.2, we have tP((A � :B)! :(A � B)) = 2(tP(A)$ :tP(B))! :2(tP(A)$

tP(B)). Then, this is a theorem of KD because of axiom (D). (IE): By De�nition 4.3.2,

we have tP(:((A � C) � (B � D))! (A � B) _ (C � D)) = :(2(2(tP(A)$ tP(C))$

2(tP(B)$ tP(D))))! 2(tP(A)$ tP(B)) _2(tP(C)$ tP(D)). Then, this is a theorem

of K5 because of axiom (5).

�

56



Theorem 4.7.3 (i) For any formula � in LK, � 2 L if and only if tK(�) 2 PCIL.

(ii) For any formula A in LS, A 2 PCIL if and only if tP(A) 2 L.

Proof. The proof is similar to Theorem 4.3.6.

�

Hence we can conclude that two logics L and PCIL are syntactically equivalent by

De�nition 3.4.1, Theorem 4.3.5 and Theorem 4.7.3.

4.8 Kripke type semantics for PCIK extensions

In this section we will de�ne Kripke type semantics for each extension of PCIK, which

have been introduced in Section 4.6. At �rst, we get the following properties of Kripke

frame for validating each additional axioms of PCIK in Section 4.6.

Theorem 4.8.1 For any PCIK frame (W;R) and any valuation j=P, the following hold:

(i) (W;R)j=PIR if and only if R is re
exive,

(ii) (W;R)j=PIS if and only if R is symmetric,

(iii) (W;R)j=PIT if and only if R is transitive,

(iv) (W;R)j=PIL if and only if R is serial,

(v) (W;R)j=PIE if and only if R is Euclidean,

(vi) (W;R)j=PIO if and only if R is isolated.

Proof. We will only show two cases (i) and (iii).

(i): Assume that R is not re
exive. Then it is not aRa for some a in W . Let

p and q be distinct variables. We will de�ne a valuation j=P by (1) xj=Pp and (2)

(xj=Pq () x 6= a) for any x 2 W . Then we get aRy(yj=Pp () yj=Pq) for any y 2 W .

Therefore, aj=Pp � q. On the other hand, we have aj=Pp but a 6j=p q by the de�nition.

So, a 6j=p p$ q. Hence for some instance of IR, we get (W;R) 6j=p ((p � q)! (p$ q)).

Conversely assume that (W;R) such that R is re
exive. Assume (W;R)j=P(A � B).

Then for any a 2 W , aj=P(A � B) i� for any b 2 W , aRPb(bj=PA () bj=PB) i� for

any b 2 W , aRPb(bj=PA$ B). Now assume that aj=P(A � B). As R is re
exive we get

aj=PA$ B since aRa. Hence aj=PA � B =) aj=PA$ B. So we get (W;R)j=P(A � B)

! (A$ B).

(iii): Assume that R is not transitive. Namely, there exist aRb and bRc but not aRc for

some a; b; c in W . Let p; q; r; s be distinct variables. We will de�ne a valuation j=P by (1)

xj=Pp, xj=Pq, xj=Pr and (2) (xj=Ps () aRx) for any x 2W . Then we get aj=Pp � q and
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aj=Pr � s. Therefore, aj=P(p � q) ^ (r � s). On the other hand, we have for any y 2 W ,

yj=Pp � r, and b 6j=p q � s by the de�nition. So, a 6j=p (p � r) � (q � s) since aRb. Hence

for some instance of IT, we get (W;R) 6j=p ((p � q) ^ (r � s)! (p � r) � (q � s)).

Conversely assume that (W;R) such that R is transitive. Assume (W;R)j=P(A � B)

^(C � D). Then (a): for any a 2 W , aj=P(A � B) ^ (C � D) i� for any d 2 W ,

aRd(dj=PA () dj=PB) ^ (dj=PC () dj=PD). Assume that bj=PA � C. Namely,

(b): (xj=PA () xj=PC) for any x 2 W with bRx. On the other hand, we get (c):

(xj=PA () xj=PB) and (xj=PC () xj=PD) since R is transitive and (a). From (b)

and (c), we get (d): (xj=PB () xj=PD). Therefore, bj=PB � D. Conversely, if we

assume that bj=PB � D, then similarly we get bj=PA � C. Hence for any b 2 W with

aRb, we have (bj=PA � C () bj=PB � D). So, aj=P(A � C) � (B � D).

�

De�nition 4.8.2 For any PCIK frame (W;R), we de�ne several restricted PCIK frames

as the following way:

(i) A frame (W;R) is called PCIKT Kripke frame if R is re
exive,

(ii) A frame (W;R) is called PCIKB Kripke frame if R is symmetric,

(iii) A frame (W;R) is called PCIK4 Kripke frame if R is transitive,

(iv) A frame (W;R) is called PCIKD Kripke frame if R is serial,

(v) A frame (W;R) is called PCIK5 Kripke frame if R is Euclidean,

(vi) A frame (W;R) is called PCIS4 Kripke frame if R is re
exive and transitive,

(vii) A frame (W;R) is called PCIS5 Kripke frame if R is re
exive and Euclidean.

Finally, let L be any modal extensions KT, KB, K4, KD, K5, S4 and S5 of K. Then,

by the similarity to Theorem 4.4.3, we can give an alternative proof of the completeness

theorem for PCIL.

4.9 Notes

By the requirement conditions (R3) and (R4) in Section 4.2, we have the equivalence

A � B = 2(A$ B) in PCIK. Then the identity denotes to the necessitation of each

material equivalence formula, namely the sameness of all possible worlds (or situations)

that each material equivalence formula can be accessible. Moreover, (G) rule say that if

A and B are theorems, then they must to have the same possible worlds that they can

be accessible in a form of material equivalence A$ B, because A$ B holds always with

respect to >.
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It is possible that SCI simulates stronger modal systems, e.g., S4 and S5. We can

�nd in [67] more serious discussion about the relationship between SCI and modal logics.

According to this literature, Suszko regarded SCI as not a kind of modal logic but the new

foundations of logic , while many logician had initially the impression that SCI merely is

a kind of modal logic. We agreed with his views by the results that SCI (and also PCI)

can simulate various logics, besides modal logics.

In Section 4.4, we discussed the representation theorem of PCIK-algebras. For modal

algebras, the similar result is well-known. Let AMK = hA0; Ii be a modal algebra, where

A0 is a Boolean algebra and I is an interior operator such that the following conditions

hold: for every x; y 2 A,

(1) It = t,

(2) I(x \ y) = Ix \ Iy.

Then by using the following de�nitions of duality of frame and algebra, we get the

representation theorem of modal algebras.

De�nition 4.9.1 Let AMK = hA0; Ii be a modal algebra and F = (W;R) a modal Kripke

frame . Then we de�ne:

(i) AMK+ = (M(A); R) is called the dual frame of AMK if M(A) is the set of all maximal

�lters of a Boolean algebra A0 and for any F;G 2 M(A), FRG if and only if FI � G,

where FI = fx; Ix 2 Fg,

(ii) moreover, F+ = h}(W ); I�i is called the dual algebra of F if for any X � W ,

I�X = fF ; for any G 2 W such that FRG and G 2 Xg.

Theorem 4.9.2 Let AMK = hA0; Ii be a modal algebra and M(A) the set of all maximal

�lters of A0. Then the map

h : a 7�! fF 2 M(A); a 2 Fg

is an isomorphism of AMK = hA0; Ii into (AMK+)+ = h}(M(A)); I�i.
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Chapter 5

Corsi's weak logic F and PCIGL
extension for classical substructural

logic

In this chapter we will investigate how weak logics with two kinds of weak implications,

e.g., strict/linear implication, are simulated by PCI logic introduced in Chapter 3. In

fact, we will consider both systems of Corsi's weak logic with strict implication (see [16])

and Girard's classical linear logic with linear implication (see [31]). In Section 1, we

will brie
y survey Corsi's weak logic F and its axiomatic extensions in syntactical and

semantical points of view. Then we know that PCIK logic introduced in Section 4.2

can also use to interpret the strict implication * by identity �. In Section 2, we will

investigate translations between F and PCIK. Since F-language LF lacks a material

implication!, we will de�ne an auxiliary language LF0 by adding! to LF to restore the

balance between both PCI (i.e., SCI) and F languages. Then, for an auxiliary system

F
0 of this language, we will give translations between F

0 and PCIK, and hence prove that

they are syntactically equivalent in a sense of De�nition 3.4.1. Moreover, we will show that

every formulas in F-language can be tanslated into PCIK formulas with keeping logical

validity, since F
0 is a conservative extension of F. Next as another weak logic, in Section

3, we will give a brief survey of Girard's classical linear logic and its axiomatic extensions

in syntactical and semantical points of view. Then in Section 4, we will de�ne PCIGL

logic by adding identity axioms (WIA1), (WIA2), (LT), (LE), (L*1), (L*2) and (LDN),

and one inference rule (G) to the original system PCI in order to interpret correctly the

classical linear implication � by identity �. After this, in Section 5, we will show that

every formulas in GL-language can be tanslated into PCIGL with keeping logical validity

by applying the similar discussion with the case of Corsi's weak logic F. Finally we will

also give further information on related results shown in this chapter (Section 6).

60



5.1 Corsi's weak logic F

In this section we will brie
y survey Corsi's weak logic F in syntactical and semantical

points of view. In [16], G. Corsi investigated sublogics of intuitionistic propositional logic

which are characterized by classes of transitive Kripke models, in which logical connectives

are interpreted in a standard way like intuitionistic logic but heredity of truth is not

assumed. Therefore, Corsi's system has strict implication and strict negation, so that

next we will introduce the axiomatic deductive system of F to consider the interpretation

of strict implication by identity connective � in our system PCI.

Let LF = hLF;^;_;*;?;>i be the F-language containing of an in�nite denumerable

set VAR of propositional variables, constant; ? (false), and intuitionistic connectives; ^

(conjunction), _ (disjunction) and * (strict implication). Formulas LF of a given F-

language LF are de�ned in the usual way. The propositional constant; > (true) and other

connectives; � (strict negation),
 (strict equivalence) are to be constructed as the usual

abbreviation: � � := � * ?,> :=� ? := ?* ? and �
 � := (� * �) ^ (� * �). Also

we will sometime omit parentheses when no confusion will occur, following the assumption

that the priority of each connective is weak as �;^;_;*;
 in order.

The logical axioms and rules of inference for F-language LF consist of a set of schemata

from (a1) to (a10) and modus ponens (FMp) and a fortiori (FAf) as rules of inference

below:

(a1) � * �

(a2) (� * �) ^ (� * 
) * (� * 
)

(a3) (� ^ �) * �

(a4) (� ^ �) * �

(a5) (� * �) ^ (� * 
) * (� * � ^ 
)

(a6) � * (� _ �)

(a7) � * (� _ �)

(a8) (� * �) ^ (
 * �) * (� _ 
 * �)

(a9) � ^ (� _ 
) * (� ^ �) _ (� ^ 
)

(a10) ?* �

(FMp)
�1; : : : ; �n �1 ^ � � � ^ �n * �

�

(FAf) �
� * �

Then the axiomatic deductive system F (�) for F = (LF; F ) is de�ned as follows.
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De�nition 5.1.1 (i) For any � � LF, F (�) is the smallest set of formulas closed under

rules of (FMp) and (FAf), which contains from (a1) to (a10) and �.

(ii) The element of F (;) is called the logical theorem of F.

Then it is easily veri�ed that F is a consequence operator. By the similarity to

Proposition 2.2.2, we have the following.

Theorem 5.1.2 For any � [ f�; �; 
g � LF, it holds the following equivalences:

(i) :� 2 F (�) if and only if ? 2 F (�;�)

(ii) � 2 F (�) if and only if there exist some �nite subset � of � such that � 2 F (�).

(Compactness)

(iii) For any p 2 VAR, (� � �)! (
[�=p] � 
[�=p]) is a logical theorem of F.

(Replacement Law)

The elementary extension of F with an additional axiom � will be denoted by F� �.

Then the following extensions of F are discussed in [16]:

(1) FD = F� �� >

(2) FR = F� (� ^ (� * �) * �)

(3) FT = F� ((� * �) * (
 * (� * �)))

(4) FS = F� (� * (�_ � (� * �)))

(5) FC = F� ((
 ^ (� * �)) * �) _ ((� ^ (
 * �)) * �)

(6) FZ = F� (� * (� * �)) ^ (�_ � �)

Let F = (W;R) be F Kripke frame for LF, which is the same as a modal Kripke

frame (see Section 4.1). The only di�erence between both F and K Kripke model is the

de�nition of validity of formulas. Let M = (W;R; V ) be F Kripke model for LF, where

F = (W;R) is F Kripke frame and V a valuation on FF which is a map from VAR to 2W

such that V (p) � W for any p 2 VAR, V (?) = ; and V (>) = W . Then for any point

a 2 W , we can extend V to the valuation of F formulas j=F : LF ! 2W , in the similar

way as the case of K, by the following way.

De�nition 5.1.3 Given F Kripke model M = (W;R; V ), the notion of validity of F

formulas at any point a 2 W is de�ned inductively as follows:

(i) M; aj=Fp if and only if a 2 V (p) for any variable p 2 VAR,

(ii) M; a 6j=F? andM; aj=F>,
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(iii) M; aj=F� ^ � if and only ifM; aj=F� andM; aj=F�,

(iv) M; aj=F� _ � if and only ifM; aj=F� orM; aj=F� and

(v) M; aj=F� * � if and only if for all b with aRb,M; bj=F� impliesM; bj=F�.

Here the validity of classical parts in both F and K Kripke model is the same. For

any Kripke frame F = (W;R), a formula � is valid on F , in symbols, Fj=F� ifM; aj=F�

for any a 2 W and any valuation j=F. Then every extensions of F, recalled so far, are

well-known to be sound and complete with respect to natural classes of F Kripke frames

(see [16]).

Theorem 5.1.4 (Corsi's weak logic completeness) For any formula � 2 LF, any F

Kripke frame F = (W;R) and any valuation V on F , it holds the following equivalence:

(i) � 2 F if and only if Fj=F� for all F .

(ii) � 2 FD if and only if Fj=F� for all F such that R is serial.

(iii) � 2 FR if and only if Fj=F� for all F such that R is re
exive.

(iv) � 2 FT if and only if Fj=F� for all F such that R is transitive.

(v) � 2 FS if and only if Fj=F� for all F such that R is symmetric.

(vi) � 2 FC if and only if Fj=F� for all F such that R is connected.

(vii) � 2 FZ if and only if Fj=F� for all F such that R is isolated.

5.2 Translation of F into PCIK

In this section we will consider an extension of PCI in order to interpret the strict

implication * by identity � (see [34] and [35]). Then we need the following conditions

to hold in PCI:

(R5)
���!
� * � 7�! �!� � �!� ^

�!
� ,

(R6)
 ����
A � B 7�! (

 �
A 


 �
B ),

where �!� and
�!
� ,
 �
A and

 �
B denote the results of translations from F to PCIK,

and its converse, respectively. Since we can rewrite the second requirement (R6) by

(
 �
A 


 �
B ) i� 2(

 �
A $

 �
B ) in the sight of both Kripke model between F and K, the

above requirements (R5) and (R6) are reduced to (R3) and (R4). Therefore, PCIK logic

introduced in Section 4.2 can also use to do our jobs. But at �rst to restore the balance

between both F and PCI languages, we need to extend the F-language by adding one

more material implication ! (see Fig 5.1 below).
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hLS;^;_;!;�;?i

LF0 = LF + f!g

A � A ^B� * �

A � B�
 �

tF

tP

LF = hLF;^;_;*;?i

F

F
0

PCIK

Figure 5.1: Requirements of simulation of F

Let this auxiliary language be LF0 = hLF0;:;�;^;_;!;*;$;
;?;>i. The logical

axioms and rules of inference for F
0-language LF0 are obtained from a set of schemata

from (a1) to (a10) and two rules of inference, modus ponens (FMp) and a fortiori (FAf),

by adding the additional axiom schemata TFA, which are same as from (A1) to (A10)

in SCI for TF-connective part (:;^;_;!), (FW1), (FW2) and the modus ponens (Mp)

rule for ! below:

(FW1) ((�! �)
 (� ! �))! (�
 �),

(FW2) ((�! �)
 (� ! �))! ((�! �)
 >) ^ ((� ! �)
 >),

(Mp)
� �! �

�
.

Then the axiomatic deductive system F 0(�) for F
0 = (LF0; F 0) is de�ned as follows.

De�nition 5.2.1 (i) For any � � LF0, F 0(�) is the smallest set of formulas closed

under the rules of (FMp), (FAf) and (Mp), which contains from (a1) to (a10), and

from (A1) to (A10), (FW1), (FW2) and �.

(ii) The element of F 0(;) is called the logical theorem of F
0.

Then we will get the following basic properties of F
0, in which (viii) is the result of

completeness theorem for F relative to Kripke type semantics.

Theorem 5.2.2 The following are derived rules and logical theorem of F
0.
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(i)
� * �

�! �
(FIm)

(ii)
� � * �

�
(FMp)

(iii)
� �

�
 �
(FG)

(iv)
�$ �

�
 �
(FQF)

(v)
�
 �

�! �

(vi)
� * (� * 
)
�! (� ! 
)

(vii) ((� * � ^ �) ^ (� ^ � * �))$ (� * �)

(viii) For any formula � in LF0 such that � not contains ! connective at all, � 2 F
0 if

and only if � 2 F.

Proof. (i): this is almost obvious since every axiom and inference rule of F is classically

valid. (ii), (v) and (vi): these follow from (i) and (Mp). (iii): this follows from (FAf) and

(FMp). (iv): suppose �$ �, then we get (�! �)
 (� ! �) by (A3), (A4) and (FG).

So, we get the desired result by (FW1) and (Mp).

(vii) : 1 Put A = (� * � ^ �) ^ (� ^ � * �)

2 A! (� * � ^ �) (A3)

3 � ^ � * � (a4)

4 A! (� ^ � * �) (3,A1,Mp)

5 A! (� * � ^ �) ^ (� ^ � * �) (2,4,A5)

6 (� * � ^ �) ^ (� ^ � * �) * (� * �) (a2)

7 (� * � ^ �) ^ (� ^ � * �)! (� * �) (6,FIm)

8 A! (� * �) (5,7,transitivity of !)

9 � * � (a1)

10 (� * �)! (� * �) (9,A1,Mp)

11 (� * �)! (� * �)

12 (� * �)! (� * �) ^ (� * �) (10,11,A5)

13 (� * �) ^ (� * �)! (� * � ^ �) (a5,FIm)

14 (� * �)! (� * � ^ �) (12,13,trans.of !)

15 � ^ � * � (a3)

16 (� * �)! (� ^ � * �) (15,A1,Mp)

17 (� * �)! (� * � ^ �) ^ (� ^ � * �) (14,16,A5)

(viii): The if-part is trivial since F
0 is an extension of F by the above de�nition. To prove

the converse direction we will consider the Kripke model for F
0. Given a Kripke model
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M = (W;R; V ) for F, we get the Kripke model MF0 for F
0 by adding to it one more

de�nition of F
0 formula's interpretation as

MF0 ; aj=F0�! � if and only if MF0; aj=F0� implies MF0 ; aj=F0�:

Then we can easily prove the soundness of F
0 with respect to above Kripke model, that is

for any formula � in LF0, � 2 F
0 implies FF0j=F0� for any frame FF0 = (WF0 ; RF0). Hence

if we assume � 62 F for some formula � in LF then by the completeness result for F there

exists a world a in the model M = (W;R; V ) for F such that M; a 6j=F �. Then by the

above interpretation of!, this model can also be seen as the modelMF0 for F
0, so we get

MF0; a 6j=F0 � for some formula � in FORF and a world a inMF0 . Then by the soundness

of F
0, we have � 62 F

0.

�

Next we will give translations between F
0 and PCIK, and hence prove that they are

syntactically equivalent. How to show the syntactically equivalent of two logics follows

the previous discipline in Section 3.4. At �rst we will de�ne two translations tF and tP

between F
0-language LF0 and SCI-language LS in order to show two logics F

0 and PCIK

are syntactically equivalent with respect to these maps.

De�nition 5.2.3 The mapping tF : LF0 ! LS, called a F-translation, is de�ned induc-

tively as follows:

(i) tF(p) := p; p 2 VAR,

(ii) tF(?) := ?,

(iii) tF(� ^ �) := (tF(�) ^ tF(�)),

(iv) tF(� _ �) := (tF(�) _ tF(�)),

(v) tF(�! �) := (tF(�)! tF(�)),

(vi) tF(� * �) := (tF(�) � tF(�) ^ tF(�)).

De�nition 5.2.4 The mapping tP : LS ! LF0, called a PCI-translation, is de�ned induc-

tively as follows:

(i) tP(p) := p; p 2 VAR,

(ii) tP(?) := ?,

(iii) tP(:A) := tP(A)! ?,

(iv) tP(A ^ B) := (tP(A) ^ tP(B)),

(v) tP(A _ B) := (tP(A) _ tP(B)),
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(vi) tP(A! B) := (tP(A)! tP(B)),

(vii) tP(A � B) := (tP(A)
 tP(B)).

For two maps tF and tP, we can prove the following two propositions.

Proposition 5.2.5 For any formula � in LF0, � 2 F
0 implies tF(�) 2 PCIK.

Proof. The proof is in the same manner as modal logic in Section 4.3.

Base step: We can easily check all of the following formulas are provable in PCIK.

(a1) tF(� * �) = tF(�) � tF(�) ^ tF(�)

(a2) tF((� * �) ^ (� * 
) * (� * 
))

= ((tF(�) � tF(�) ^ tF(�)) ^ (tF(�) � tF(�) ^ tF(
)))

� ((tF(�) � tF(�) ^ tF(�)) ^ (tF(�) � tF(�) ^ tF(
))) ^ (tF(�) � tF(�) ^ tF(
))

(a3) tF(� ^ � * �)

= (tF(�) ^ tF(�)) � (tF(�) ^ tF(�)) ^ tF(�)

(a4) tF(� ^ � * �)

= (tF(�) ^ tF(�)) � (tF(�) ^ tF(�)) ^ tF(�)

(a5) tF((� * �) ^ (� * 
) * (� * � ^ 
))

= ((tF(�) � tF(�) ^ tF(�)) ^ (tF(�) � tF(�) ^ tF(
)))

� ((tF(�) � tF(�) ^ tF(�)) ^ (tF(�) � tF(�) ^ tF(
)))

^(tF(�) � tF(�) ^ (tF(�) ^ tF(
)))

(a6) tF(� * (� _ �)) = tF(�) � tF(�) ^ (tF(�) _ tF(�))

(a7) tF(� * (� _ �)) = tF(�) � tF(�) ^ (tF(�) _ tF(�))

(a8) tF((� * �) ^ (
 * �) * (� _ 
 * �))

= ((tF(�) � tF(�) ^ tF(�)) ^ (tF(
) � tF(
) ^ tF(�)))

� ((tF(�) � tF(�) ^ tF(�)) ^ (tF(
) � tF(
) ^ tF(�)))

^((tF(�) _ tF(
)) � (tF(�) _ tF(
)) ^ tF(�))

(a9) tF(� ^ (� _ 
) * (� ^ �) _ (� ^ 
))

= (tF(�) ^ (tF(�) _ tF(
))) � (tF(�) ^ (tF(�) _ tF(
)))

^((tF(�) ^ tF(�)) _ (tF(�) ^ tF(
)))

(a10) tF(?* �) = ? � ? ^ tF(�)

(FW1) tF(((�! �)
 (� ! �))! (�
 �))

= ((tF(�)! tF(�)) � (tF(�)! tF(�)))! (tF(�) � tF(�))
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(FW2) tF(((�! �)
 (� ! �))! ((�! �)
 >) ^ ((� ! �)
 >))

= ((tF(�)! tF(�)) � (tF(�)! tF(�)))

! ((tF(�)! tF(�)) � >) ^ ((tF(�)! tF(�)) � >))

Induction step: We have to check the admissibility of (FMp), (FAf) and (Mp) in PCIK

after a tF-translation.

Case1: Assume that �1; : : : ; �n; �1 ^ � � � ^ �n * � are provable in F
0. Then by I.H.

tF(�1); : : : ; tF(�n); tF(�1 ^ � � � ^ �n * �) hold in PCIK. Here tF(�1 ^ � � � ^ �n * �) =

(tF(�1) ^ � � � ^ tF(�n) � (tF(�1) ^ � � � ^ tF(�n)) ^ tF(�). Hence, it is possible to derive the

following proofs in PCIK, where we only show the case of n=2 for simplicity. At �rst,

from above �rst two hypothesis we get the following proof in PCIK:

tF(�1)

tF(�1) � >
(G)

tF(�2)

tF(�2) � >
(G)

(tF(�1) � >) ^ (tF(�2) � >)
(A5;Mp)

(tF(�1) ^ tF(�2)) � >
(Th:4:2:2 (xv);Mp):

Secondly by using above result and third hypothesis we get the following two proofs

in PCIK:

(tF(�1) ^ tF(�2)) � >

> � (tF(�1) ^ tF(�2))
(E2;Mp)

Hypothesis
...

(tF(�1) ^ tF(�2)) � (tF(�1) ^ tF(�2)) ^ tF(�)

(> � (tF(�1) ^ tF(�2))) ^ ((tF(�1) ^ tF(�2)) � (tF(�1) ^ tF(�2)) ^ tF(�))
(A5;Mp)

> � (tF(�1) ^ tF(�2)) ^ tF(�)
(E3;Mp);

and

(tF(�1) ^ tF(�2)) � >

(E1)
...

tF(�) � tF(�)

((tF(�1) ^ tF(�2)) � >) ^ (tF(�1) ^ tF(�2))
(A5;Mp)

(tF(�1) ^ tF(�2)) ^ tF(�) � > ^ tF(�)
(C2;Mp):

Hence from both results we can derive the following proof in PCIK.

> � (tF(�1) ^ tF(�2)) ^ tF(�) (tF(�1) ^ tF(�2)) ^ tF(�) � > ^ tF(�)

(> � (tF(�1) ^ tF(�2)) ^ tF(�)) ^ ((tF(�1) ^ tF(�2)) ^ tF(�) � > ^ tF(�))
(A5;Mp)

> � > ^ tF(�)
(E3;Mp)

tF(>) � tF(>) ^ tF(�)
(Def:5:2:3 (ii))

tF(>* �)
(Def:5:2:3 (vi))

tF(�)
((>* �)
 �)

Therefore, we will get tF(�) 2 PCIK.

Case2: Assume that �1 is provable in F
0, so by I.H. tF(�1) 2 PCIK. Also let �1 be any
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formula in LF0 such that tF(�1) 2 PCIK. Then we can get the following proof in PCIK.

tF(�1) tF(�1)

tF(�1) � tF(�1)
(G)

(E1)
...

tF(�1) � tF(�1)

(tF(�1) ^ tF(�1)) � (tF(�1) ^ tF(�1))
(C2;Mp)

tF(�1) � (tF(�1) ^ tF(�1))
(E3;Mp)

tF(�1 * �1)
(Def:5:2:3 (vi))

Therefore, we will get tF(�1 * �1) 2 PCIK.

Case3: (Mp) rule is almost obvious since PCIK also has (Mp) rule.

Thus the tF-translation of any formula provable in F
0 is also provable in PCIK.

�

Proposition 5.2.6 For any formula A in LS, A 2 PCIK implies tP(A) 2 F
0.

Proof. This proof is also in the same manner as modal logic in Section 4.3.

Base step: We can easily check all of the following formulas are provable in F
0.

(A1) tP(A! (B ! A)) = tP(A)! (tP(B)! tP(A))

(A2) tP((A! (B ! C))! ((A! B)! (A! C)))

= (tP(A)! (tP(B)! tP(C)))! ((tP(A)! tP(B))! (tP(A)! tP(C)))

(A3) tP(A ^ B ! A) = tP(A) ^ tP(B)! tP(A)

(A4) tP(A ^ B ! B) = tP(A) ^ tP(B)! tP(B)

(A5) tP(A! (B ! (A ^B))) = tP(A)! (tP(B)! (tP(A) ^ tP(B)))

(A6) tP(A! A _B) = tP(A)! tP(A) _ tP(B)

(A7) tP(B ! A _B) = tP(B)! tP(A) _ tP(B)

(A8) tP((A! C)! ((B ! C)! (A _B ! C)))

= (tP(A)! tP(C))! ((tP(B)! tP(C))! (tP(A) _ tP(B)! tP(C)))

(A9) tP(A! (:A! B)) = tP(A)! (:tP(A)! tP(B))

(A10) tP(::A! A) = ::tP(A)! tP(A)

(E1) tP(A � A) = tP(A)
 tP(B)

(E2) tP((A � B)! (B � A)) = (tP(A)
 tP(B))! (tP(B)
 tP(A))

(E3) tP((A � B) ^ (B � C)! (A � C))

= (tP(A)
 tP(B)) ^ (tP(B)
 tP(C))! (tP(A)
 tP(C))
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(C1) tP((A � B)! (:A � :B)) = (tP(A)
 tP(B))! (:tP(A)
 :tP(B))

(C2) tP((A � B) ^ (C � D)! ((A ^ C) � (B ^D)))

= (tP(A)
 tP(B)) ^ (tP(C)
 tP(D))! ((tP(A) ^ tP(C))
 (tP(B) ^ tP(D)))

(C3) tP((A � B) ^ (C � D)! ((A _ C) � (B _D)))

= (tP(A)
 tP(B)) ^ (tP(C)
 tP(D))! ((tP(A) _ tP(C))
 (tP(B) _ tP(D)))

(C4) tP((A � B) ^ (C � D)! ((A! C) � (B ! D)))

= (tP(A)
 tP(B)) ^ (tP(C)
 tP(D))! ((tP(A)! tP(C))
 (tP(B)! tP(D)))

(WIA1) tP(((A! B) � (B ! A))! (A � B))

= ((tP(A)! tP(B))
 (tP(B)! tP(A)))! (tP(A)
 tP(B))

(WIA2) tP(((A! B) � (B ! A))! ((A! B) � >) ^ ((B ! A) � >))

= ((tP(A)! tP(B))
 (tP(B)! tP(A)))!

((tP(A)! tP(B))
 >) ^ ((tP(B)! tP(A))
 >)

Induction step: Next we must check whether each inference rule is admissible in F
0. (Mp)

rule is clear so we only consider (G) rule. Assume that A1; B1 are provable in PCIK.

Then by I.H. tP(A1); tP(B1) hold in F
0. Here we can derive the following proof in F

0:

tP(A1)

tP(B1)* tP(A1)
(FAf)

tP(B1)

tP(A1)* tP(B1)
(FAf)

tP(A1)
 tP(B1)
(A5;Mp)

tP(A1 � B1)
(Def:5:2:4 (vii))

Hence, we will get tP(A1 � B1) 2 F
0. Thus the tP-translation of any formula provable

in PCIK is also provable in F
0.

�

Moreover, we can show the following.

Theorem 5.2.7 (i) For any formula � in LF0, tP(tF(�))$ � 2 F
0.

(ii) For any formula A in LS, tF(tP(A))$ A 2 PCIK.

Proof. The proof is carried out in the same manner as Theorem 4.3.5. Both case can be

proved by induction on the length of formulas. Moreover, it is clear that TF-connectives

hold, so we only foucs to * and � connectives.

(i): Assume that � = �1 * �1. Then in F
0 we have

tP(tF(�1 * �1))$ tP(tF(�1) � tF(�1) ^ tF(�1)) (Def.5.2.3(vi))

$ (tP(tF(�1))
 (tP(tF(�1)) ^ tP(tF(�1)))) (Def.5.2.4(vii))

$ (�1 
 (�1 ^ �1)) (I.H)

$ (�1 * (�1 ^ �1)) ^ ((�1 ^ �1) * �1) (Def.)
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$ (�1 * (�1 ^ �1)) (Th.5.2.2(vii))

$ (�1 * �1) (a3,a2)

(ii): Assume that A = A1 � B1. Then in PCIK we have

tF(tP(A1 � B1))$ tF(tP(A1)
 tP(B1)) (Def.5.2.4(vii))

$ tF((tP(A1) * tP(B1)) ^ (tP(B1) * tP(A1))) (Def.)

$ (tF(tP(A1)) � tF(tP(A1)) ^ tF(tP(B1)))^

(tF(tP(B1)) � tF(tP(B1)) ^ tF(tP(A1))) (Def.5.2.3(vi))

$ (A1 � A1 ^B1) ^ (B1 � B1 ^ A1) (I.H)

$ (A1 � A1 ^B1) ^ (A1 ^B1 � B1) (Th.4.2.2(v))

$ (A1 � B1) (Th.4.2.2(xvii))

�

Theorem 5.2.8 (i) For any formula � in LF0, � 2 F
0 if and only if tF(�) 2 PCIK.

(ii) For any formula A in LS, A 2 PCIK if and only if tP(A) 2 F
0.

Proof. (i): The only-if-part obtains from Proposition 5.2.5. Also other direction can

easily be proved as follows:

tF(�) 2 PCIK =) tP(tF(�)) 2 F
0 (Prop.5.2.6)

=) � 2 F
0 (Th.5.2.7(i))

(ii): The only-if-part obtains from Proposition 5.2.6. Also if-part is as follows:

tP(A) 2 F
0 =) tF(tP(A)) 2 PCIK (Prop.5.2.5)

=) A 2 PCIK (Th.5.2.7(ii))

�

Hence we can conclude that two logics F
0 and PCIK are syntactically equivalent by

De�nition 3.4.1, Theorem 5.2.7 and Theorem 5.2.8. Furthermore, from this result and

previous Theorem 5.2.2 (viii), we get �nally the following corollary.

Corollary 5.2.9 For any formula � in LF, � 2 F if and only if tF(�) 2 PCIK.

Proof. It is clear from Theorem 5.2.2 (viii) and above Theorem 5.2.8 (i).

�

5.3 Classical substructural logics

In this section we will review Girard's classical linear logic GL as one category of sub-

structural logic. In general, the linear logic was proposed by J.-Y. Girard, as one of the

basic logical systems which would provide a logical framework for investigating the re-

source problem occurring in computer science and its related �elds. Here, the GL system
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can be also seen a classical substructural logic lacking the weakening and contraction rules

in a classical formulation of Gentzen system (see [31] and [48]). At �rst we will brie
y

survey Girard's classical linear logic GL and its axiomatic extensions in syntactical point

of view. Next we will also brie
y explain algebraic semantices of GL.

5.3.1 Girard's classical linear logic GL and its axiomatic exten-

sions

Let LGL = hLGL;^;_; �;+;�;?; 0i be classical Girard's linear language containing of an

in�nite denumerable set VAR of propositional variables, constants; ? (false) and 0 (con-

tradict), additive connectives; ^ (conjunction) and _ (disjunction), multiplicative con-

nectives; � (conjunction) and + (disjunction), and � (linear implication). Formulas LGL

of a given GL-language LGL are de�ned in the usual way. The propositional constants

> (truth) and 1 (provable), � (linear negation) and �� (linear equivalence) are to be

constructed as the abbreviation: � � := � � 0, > :=� ? := ? � 0, 1 :=� 0 := 0 � 0 and

� �� � := (� � �) ^ (� � �). Also we will sometime omit parentheses when no confu-

sion will occur, following the assumption that the priority of each connective is weak as

�;^; �;_;+;�; �� in order.

The logical axioms and rules of inference for GL-language LGL consist of sets of

schemata from (a1) to (a18) and, modus ponens (LMp) and adjunction (LAd) as rules of

inference below (see e.g.,[72], [4] and [51]):

(a1) � � � (Identity)

(a2) (� � �) � ((� � 
) � (� � 
)) (Transitivity)

(a3) (� � (� � 
)) � (� � (� � 
)) (Exchange)

(a4) � ^ � � �

(a5) � ^ � � �

(a6) (
 � �) ^ (
 � �) � (
 � � ^ �)

(a7) � � � _ �

(a8) � � � _ �

(a9) (� � 
) ^ (� � 
) � (� _ � � 
)

(a10) � � (� � � � �) (Residuation 1)

(a11) (� � (� � 
)) � (� � � � 
) (Residuation 2)

(a12) (�+ �) � (� � � �)
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(a13) (� � � �) � (� + �)

(a14) 1

(a15) 1 � (� � �)

(a16) � � >

(a17) ? � �

(a18) �� � � � (Double negation)

(LMp)
� � � �

�

(LAd)
� �

� ^ �

Then the axiomatic deductive system GL(�) for GL = (LGL; GL) is de�ned as the

following way.

De�nition 5.3.1 (i) For any � � LGL, GL(�) is the smallest set of formulas closed

under rules of (LMp) and (LAd), which contains from (a1) to (a18) and �.

(ii) The element of GL(;) is called the logical theorem of GL.

Then it is easily veri�ed that GL is a consequence operator. The elementary extension

of GL with an additional axiom � will be denoted by GL� �. Then the following

extensions of GL are discussed in [72] and [51]:

(1) GLc = GL� ((� � (� � �)) � (� � �)) (Contraction)

(2) GLw = GL� (� � (� � �)) (Weaking)

(3) GLcw = GL� ((� � (� � �)) � (� � �))� (� � (� � �))

Next we will introduce an auxiliary system GL
0 for investigations in the next section.

To restore the balance between both GL and PCI languages, we need �rst to extend

the GL-language by adding a material implication !. Let this auxiliary language be

LGL0 = hLGL0 ;^;_; �;+;!;�;?; 0i. Then : (classical negation) is the abbreviation of

:� := �! ?. The logical axioms and rules of inference for this language LGL0 are ob-

tained from a set of schemata from (a1) to (a18) of GL and two rules of inference, modus

ponens (LMp) and adjunction (LAd), by adding the additional axiom schemata TFA,

which are same as from (A1) to (A10) in SCI for TF-connectives (^;_;!;?), (LW1),

(LW2) and the modus ponens (Mp) rule for ! below:

(LW1) ((�! �) �� (� ! �))! (� �� �),
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(LW2) ((�! �) �� (� ! �))! ((�! �) �� >) ^ ((� ! �) �� >),

(Mp)
� �! �

�
.

Then the axiomatic deductive system GL
0(�) for GL

0 = (LGL0 ; GL0) is de�ned as

follows.

De�nition 5.3.2 (i) For any � � LGL0, GL0(�) is the smallest set of formulas closed

under the rules of (LMp), (LAd) and (Mp), which contains from (a1) to (a18), and

from (A1) to (A10), (LW1), (LW2) and �.

(ii) The element of GL0(;) is called the logical theorem of GL
0.

Here we can also de�ne auxiliary extensions GL
0

c, GL
0

w and GL
0

cw of GL
0 as the same

way to GL. Then we have the following theorem.

Theorem 5.3.3 The following are derived rules and logical theorem of GL
0.

(i)
� � �

�! �
(LIm)

(ii)
� � � �

�
(LMp)

(iii)
� �

� �� �
(LG)

(iv)
�$ �

� �� �
(LQF)

(v)
� �� �
�! �

(vi)
� � (� � 
)
�! (� ! 
)

(vii) ((� � � ^ �) ^ (� ^ � � �))$ (� � �)

Proof. (i): as the same insight in the case of F
0, this is clear since every axiom and

inference rule of GL is classically valid. (ii), (v) and (vi) are straightforward by (LIm)

and (Mp). (iii): if � is a theorem of GL
0, then so is � � � by (a16). Similarly, if � is a

theorem of GL
0, then so is � � �. Hence we have � �� � by (LAd). (iv): suppose �$ �.

Then we get (�! �) �� (� ! �) by (A3), (A4) and (LG). So, we get the desired result

by (LW1) and (Mp).

(vii) : 1 Put A = (� � � ^ �) ^ (� ^ � � �)

2 A! (� � � ^ �) (A3)

3 � ^ � � � (a5)

4 (� � � ^ �) � ((� ^ � � �) � (� � �)) (a2)

5 (� ^ � � �) � ((� � � ^ �) � (� � �)) (4,a3)
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6 (� � � ^ �) � (� � �) (3,5,LMp)

7 (� � � ^ �)! (� � �) (6,LIm)

8 A! (� � �) (2,7,transitivity of !)

9 � � � (a1)

10 (� � �)! (� � �) (9,A1,Mp)

11 (� � �)! (� � �)

12 (� � �)! (� � �) ^ (� � �) (10,11,A5)

13 (� � �) ^ (� � �)! (� � � ^ �) (a6,LIm)

14 (� � �)! (� � � ^ �) (12,13,trans.of !)

15 � ^ � � � (a4)

16 (� � �)! (� ^ � � �) (15,A1,Mp)

17 (� � �)! (� � � ^ �) ^ (� ^ � � �) (14,16,A5)

�

5.3.2 Algebraic semantics of GL

In this subsection we will brie
y explain algebraic semantics of GL. Here we mainly refer

to [72], [4] and [51].

De�nition 5.3.4 (i) AGL = hA;^;_; �;�;?; 0; 1i is called an GL-algebra if AGL sat-

is�es the following conditions: for every x; y; z 2 A,

(1) hA;^;_;?i is a lattice with bottom ?,

(2) hA; �; 1i is a commutative monoid with unit 1,

(3) z � (x _ y) = (z � x) _ (z � y),

(4) x � y � z if and only if x � y � z,

(5) x =�� x, where � x := x � 0.

(ii) Moreover, AGLc is called an GLc-algebra if in addition to (1)-(5), AGLc also satis�es

(6) x � x � x.

(iii) And AGLw is called an GLw-algebra if in addition to (1)-(5), AGLw also satis�es

(7) 0 = ?,

(8) x � y � x.

Here we used the same symbols for both algebraic operations and logical connectives

in GL for the sake of simplicity. The next lemma is a straightforward by the de�nition.

Lemma 5.3.5 For any GL-algebra AGL = hA;^;_; �;�;?; 0; 1i, we have the following

equations:
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(i) x � (y � z) = x � y � z,

(ii) x _ y =� (� x^ � y),

(iii) x � y =� (x� � y).

A subset F of A is called a GL-�lter of AGL if F satis�es the following conditions:

(F1) 1 2 F ,

(F2) a 2 F and a � b implies b 2 F ,

(F3) a; b 2 F implies a � b 2 F .

For any GL-algebras AGL and any GL-�lter F , M = (AGL; F ) is called a GL-model.

For any GL-algebras AGL, a formula � is valid in AGL, in symbols, AGLj=�, if h(�) 2 F

for any valuation h of AGL and any GL-�lter F . Moreover, for any valuation h of AGL,

we can de�ne the consequence operator CM relative to a GL-model M as follows.

De�nition 5.3.6 For any � [ f�g � LGL, � 2 CM(�) if and only if for every GL-model

M = (AGL; F ) and every valuation h of LGL in M, h(�) 2 F whenever h(�) � F .

Then the following strong completeness of GL can be shown by the results of [72], [4]

and [51].

Theorem 5.3.7 GL is strongly complete with respect to a GL-model, i.e., GL = CM.

Moreover, for an auxiliary system GL
0 mentioned in the previous subsection, we get

the following Proposition.

Proposition 5.3.8 For any formula � in LGL0 such that � not contains ! connective at

all, � 2 GL
0 if and only if � 2 GL.

Proof. The if-part is trivial since GL
0 is an extension of GL by the above de�nition.

To prove the converse direction we will consider the algebraic model for GL
0. Given an

algebraic modelM = (AGL; F ) for GL, we can get the algebraic modelMGL0 = (AGL0 ; F 0)

for GL
0 by adding the following de�nitions:

(A1) AGL0 = hA;^;_; �;!;�;?; 0; 1i is called an GL
0-algebra if AGL0 is a GL-algebra,

and also satis�es

(9) x ^ y �0 z if and only if x �0 y ! z,

(10) x = ::x, where :x := x! ?.

(A2) A subset F 0 of A is called a GL
0-�lter of AGL0 if F 0 is a GL-�lter, and also satis�es

(F4) > 2 F 0, where > := ? ! ?,
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(F5) a 2 F 0 and a! b implies b 2 F 0,

(F6) a; b 2 F 0 implies a ^ b 2 F 0.

Then we can easily prove the soundness of GL
0 with respect to above algebraic

model, that is for any formula � in LGL0 , � 2 GL
0 implies MGL0 j=� for any GL

0-model

MGL0 = (AGL0; F 0). Hence if we assume � 62 GL for some formula � in LGL then by the

completeness result for GL there exists a valuation h in the modelM = (AGL; F ) for GL

such that h(�) 62 F . Then by the above de�nition of GL
0-model, this valuation falsi�es �

in the modelMGL0 for GL
0, i.e., h(�) 62 F 0, so we getMGL0 6j= �. Then by the soundness

of GL
0, we have � 62 GL

0.

�

5.4 PCIGL logic with identity as linear implication

In this section we will de�ne PCIGL logic as an extension of PCI in order to interpret

the classical linear implication � by identity �. Then we need the following conditions

in PCI:

(R7)
���!
� � � 7�! �!� � �!� ^

�!
� ,

(R8)
 ����
A � B 7�! (

 �
A ��

 �
B ),

where �!� and
�!
� ,
 �
A and

 �
B denote the results of translations from GL to PCIGL,

and its converse, respectively.

In general, Girard's classical linear logic GL can be seen as a classical logic without

weakening and contraction rules. Moreover, we notice that Corsi's weak logic F, which

is a sublogic of intuitionistic logic, can translate into PCIK logic as shown in Section

5.2. Hence we will introduce Girard's classical linear logic on PCI by adding several

multiplicative connective axioms and double negation axiom to PCIK. So to satisfy

the requirement (R7), we need to add the following identity axioms (LT), (LE), (L*1),

(L*2) and (LDN), which correspond to axioms (a2), (a3), (a10), (a11) and (a18) in GL,

respectively, under the system PCIK which is also de�ned by adding identity axioms

(WIA1) and (WIA2) , and (G) rule to the original PCI logic.

(WIA1) ((A! B) � (B ! A))! (A � B)

(WIA2) ((A! B) � (B ! A))! ((A! B) � >) ^ ((B ! A) � >)

(LT) (A > B) > ((B > C) > (A > C))

(LE) (A > (B > C))! (B > (A > C))

(L*1) A > (B > A �B)
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(L*2) (A > (B > C))! (A �B > C)

(LDN) ^^ A! A

(G) A B
A � B

Here each connectives>, ^ and � are abbreviations in PCIGL as : A > B := (A � A ^B),

^ A := A > :(A � A) and A �B :=^ (A >^ B).

De�nition 5.4.1 Let PCI = (LS; C) be PCI logic, CG a G-theory of C and X � LS.

Then PCIGL = (LS; C
G
GL) is a non-elementary extension of PCI, where CG

GL is a super-

consequence of C de�ned by CG
GL(X) = CG(X; WIA1;WIA2;LT;LE;L*1;L*2;LDN).

Theorem 5.4.2 The following are derived rules and logical theorems of PCIGL.

(i) A A � B
B

(E)

(ii) A A > B
B

(LMp0)

(iii)
(A! B) � (B ! A)

A � B
(I)

(iv) A$ B
A � B

(QF)

(v) A � A

(vi) (A � B) � (B � A)

(vii) ((A! B) � (B ! A)) � (A � B)

(viii) A � B ! :A � :B

(ix) A � B $ (A � A ^B) ^ (B � B ^ A)

Proof. Since PCIGL is an extension of PCIK, everything is an obvious by Theorem

4.2.2, except for (ii) below.

A

A � A ^ B
A$ A ^ B

(Prop:3:1:3 (iii))

(A3)
...

(A$ A ^ B)! (A! A ^ B)

A! A ^B
(Mp)

A ^B
(Mp)

(A4)
...

A ^B ! B
B

(Mp):

�

Next we will introduce elementary extensions of PCIGL which are correspond to exten-

sions of classical Girard's linear logic GL. So let us �rst consider the following additional

axiom schemata.
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(LC) (A > (A > B))! (A > B)

(LW) A > (B > A)

Then we have the following extensions PCIGLc, PCIGLw and PCIGLcw of PCIGL,

which can be de�ned below.

De�nition 5.4.3 Let PCIGL = (LS; C
G
GL) and X � LS. Then the elementary extensions

of PCIGL are de�ned as follows:

(i) PCIGLc = (LS; C
G
GLc) is the elementary extension of PCIGL, where C

G
GLc is a super-

consequence of CG
GL de�ned by CG

GLc(X) = CG
GL(X; LC).

(ii) PCIGLw = (LS; C
G
GLw) is the elementary extension of PCIGL, where C

G
GLw is a su-

perconsequence of CG
GL de�ned by CG

GLw(X) = CG
GL(X; LW).

(iii) PCIGLcw = (LS; C
G
GLcw) is the elementary extension of PCIGL, where C

G
GLcw is a

superconsequence of CG
GL de�ned by CG

GLcw(X) = CG
GL(X; LC;LW).

Theorem 5.4.4 The following are logical theorems of PCIGLc.

(i) A > A � A

(ii) A ^B > A �B

Proof.

(i) : 1 A > (A > A � A) (L*1)

2 A > (A > A � A)! (A > A � A) (LC)

3 A > A � A (1,2,Mp)

(ii) : 1 A > (B > A �B) (L*1)

2 A ^B > A (A ^B � A ^ B ^ A)

3 (A ^B > A) > ((A > (B > A �B)) > (A ^B > (B > A �B))) (LT)

4 (A > (B > A �B)) > (A ^B > (B > A �B)) (2,3,LMp)

5 A ^B > (B > A �B) (1,4,LMp)

6 A ^B > (B > A �B)! B > (A ^B > A �B) (LE)

7 B > (A ^B > A �B) (5,6,Mp)

8 A ^B > B (A ^B � A ^ B ^B)

9 (A ^B > B) > ((B > (A ^B > A �B)) > (A ^B > (A ^B > A �B))) (LT)

10 (B > (A ^B > A �B)) > (A ^B > (A ^B > A � B)) (8,9,LMp)

11 A ^B > (A ^B > A �B) (7,10,LMp)

12 (A ^B > (A ^B > A �B))! (A ^ B > A �B) (LC)

13 A ^B > A �B (11,12,Mp)
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Theorem 5.4.5 The following are logical theorems of PCIGLw.

(i) A �B > A; A �B > B

(ii) A �B > A ^B

(iii) > � 1; ? � 0

Proof.

(i) : 1 A > (B > A) (LW)

2 (A > (B > A))! (A �B > A) (L*2)

3 A �B > A (1,2,Mp)

4 B > (A > B) (LW)

5 (B > (A > B))! (A > (B > B)) (LE)

6 A > (B > B) (4,5,Mp)

7 A > (B > B)! (A �B > B) (L*2)

8 A �B > B (6,7,Mp)

(ii) : 1 Put � = ((A �B) � (A �B) ^ A) ^ ((A � B) � (A �B) ^B)

2 �! (A �B) ^ (A �B) � (A �B) ^ (A �B) ^ A ^B (C4)

3 (A �B) � (A �B) ^ (A �B) (A � A ^ A)

4 �! (A �B) � (A �B) ^ (A �B) (4,A1)

5 �! ((A �B) � (A �B) ^ (A �B))^

((A � B) ^ (A �B) � (A �B) ^ (A �B) ^ A ^B) (2,4,Mp)

6 �! (A �B) � (A �B) ^ (A �B) ^ A ^B (E3,Mp)

7 �! (A �B) � (A �B) ^ (A ^B) (same way)

8 (A �B > A) ^ (A � B > B)! (A � B > A ^B) (7,def. of >)

9 A �B > A (i)

10 A �B > B (i)

11 A �B > A ^B (9,10,8,Mp)

(iii) : It is clear that > > 1. So we will show the converse.

1 A � > > A ^ > (ii)

2 A ^ > > A (> is unit of ^)

3 (A � > > A ^ >) > ((A ^ > > A) > (A � > > A)) (LT)

4 A � > > A (1,2,3,LMp)

Hence we get > > 1.

�
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Theorem 5.4.6 The following are logical theorems of PCIGLcw.

(i) A ^B � A �B

Proof. (i): It is clear from Theorem 5.4.4 (ii), 5.4.5 (ii).

�

5.5 Translation of GL into PCIGL

In this section we will give translations between GL
0 and PCIGL, and hence prove that

they are syntactically equivalent. How to show the syntactically equivalent of two logics

follows the previous discipline in Section 3.4. At �rst we will de�ne two translations tG

and tP between GL
0-language LGL0 and PCI-language LP in order to show two logics

GL
0 and PCIGL are syntactically equivalent with respect to these maps.

De�nition 5.5.1 The mapping tG : LGL0 ! LS, called a G-translation, is de�ned induc-

tively as follows:

(i) tG(p) := p; p 2 VAR,

(ii) tG(?) := ?,

(iii) tG(0) := :(tG(�) � tG(�)), for any � 2 LGL0,

(iv) tG(� ^ �) := (tG(�) ^ tG(�)),

(v) tG(� _ �) := (tG(�) _ tG(�)),

(vi) tG(�! �) := (tG(�)! tG(�)),

(vii) tG(� � �) := (tG(�) � tG(�) ^ tG(�)),

(viii) tG(� �) := tG(� � 0),

(ix) tG(� � �) := tG(� (� �� �)),

(x) tG(�+ �) := tG(� � � �).

De�nition 5.5.2 The mapping tP : LS ! LF0, called a PCI-translation, is de�ned induc-

tively as follows:

(i) tP(p) := p; p 2 VAR,

(ii) tP(?) := ?,

(iii) tP(:A) := tP(A)! ?,
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(iv) tP(A ^ B) := (tP(A) ^ tP(B)),

(v) tP(A _ B) := (tP(A) _ tP(B)),

(vi) tP(A! B) := (tP(A)! tP(B)),

(vii) tP(A � B) := (tP(A) �� tP(B)).

For two maps tF and tP, we can prove the following lemmas and propositions.

Lemma 5.5.3 All axioms of GL
0 (GL

0

c, GL
0

w, GL
0

cw) are provable in PCIGL (PCIGLc,

PCIGLw, PCIGLcw) respectively, after tG-translation. Namely, the following formulas are

theorems of PCIGL (PCIGLc, PCIGLw, PCIGLcw), where �!� ;
�!
� ;�!
 denote the result of

tG-translation.

(a1) ���!� � � = �!� � �!� ^�!�

(a2)
����������������������!
(� � �) � ((� � 
) � (� � 
))

= (�!� � �!� ^
�!
� ) � (�!� � �!� ^

�!
� )

^((
�!
� �

�!
� ^�!
 ) � (

�!
� �

�!
� ^�!
 ) ^ (�!� � �!� ^ �!
 ))

(a3)
����������������������!
(� � (� � 
)) � (� � (� � 
))

= (�!� � �!� ^ (
�!
� �

�!
� ^ �!
 )) � (�!� � �!� ^ (

�!
� �

�!
� ^�!
 ))

^(
�!
� �

�!
� ^ (�!� � �!� ^ �!
 ))

(a4)
������!
� ^ � � � = �!� ^

�!
� � �!� ^

�!
� ^�!�

(a5)
������!
� ^ � � � = �!� ^

�!
� � �!� ^

�!
� ^
�!
�

(a6)
������������������������!
(
 � �) ^ (
 � �) � (
 � � ^ �)

= (�!
 � �!
 ^ �!� ) ^ (�!
 � �!
 ^
�!
� ) � (�!
 � �!
 ^ �!� ) ^ (�!
 � �!
 ^

�!
� )

^(�!
 � �!
 ^ (�!� ^
�!
� ))

(a7)
������!
� � � _ � = �!� � �!� ^ (�!� _

�!
� )

(a8)
������!
� � � _ � =

�!
� �

�!
� ^ (�!� _

�!
� )

(a9)
������������������������!
(� � 
) ^ (� � 
) � (� _ � � 
)

= (�!� � �!� ^�!
 ) ^ (
�!
� �

�!
� ^�!
 ) � (�!� � �!� ^ �!
 ) ^ (

�!
� �

�!
� ^ �!
 )

^(�!� _
�!
� � (�!� _

�!
� ) ^ �!
 )

(a10)
�����������!
� � (� � � � �) = �!� � �!� ^ (

�!
� �

�!
� ^ (�!� �

�!
� ))

(a11)
��������������������!
(� � (� � 
)) � (� � � � 
)

= (�!� � �!� ^ (
�!
� �

�!
� ^ �!
 )) � (�!� � �!� ^ (

�!
� �

�!
� ^�!
 ))

^((�!� �
�!
� ) � (�!� �

�!
� ) ^ �!
 )
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(a12)
���������������!
(� + �) � (� � � �)

= (�!� +
�!
� ) � (�!� +

�!
� ) ^ ((�!� � �!� ^

�!
0 ) � (�!� � �!� ^

�!
0 ) ^

�!
� )

(a13)
���������������!
(� � � �) � (� + �)

= ((�!� � �!� ^
�!
0 ) � (�!� � �!� ^

�!
0 ) ^

�!
� )

� ((�!� � �!� ^
�!
0 ) � (�!� � �!� ^

�!
0 ) ^

�!
� ) ^ (�!� +

�!
� )

(a14)
�!
1 = �!� � �!�

(a15)
��������!
1 � (� � �) = (�!� � �!� ) � (�!� � �!� ) ^ (�!� � �!� ^�!� )

(a16)
���!
� � > = �!� � �!� ^ >

(a17)
���!
? � � = ? � ? ^�!�

(a18) ������!�� � � �

= ((�!� � �!� ^
�!
0 ) � (�!� � �!� ^

�!
0 ) ^

�!
0 )

� ((�!� � �!� ^
�!
0 ) � (�!� � �!� ^

�!
0 ) ^

�!
0 ) ^

�!
0

(LW1)
���������������������������!
(((�! �) �� (� ! �))! (� �� �))

= ((�!� !
�!
� ) � (

�!
� ! �!� ))! (�!� �

�!
� )

(LW2)
������������������������������������������������!
(((�! �) �� (� ! �))! ((�! �) �� >) ^ ((� ! �) �� >))

= ((�!� !
�!
� ) � (

�!
� ! �!� ))! ((�!� !

�!
� ) � >) ^ ((

�!
� ! �!� ) � >)

(C)
������������������!
(� � (� � �)) � (� � �)

= (�!� � �!� ^ (�!� � �!� ^
�!
� )) � (�!� � �!� ^ (�!� � �!� ^

�!
� )) ^ (�!� � �!� ^

�!
� )

(W)
��������!
� � (� � �) = �!� � �!� ^ (

�!
� �

�!
� ^�!� )

Proof. We will only show the following three cases.

(a9) : 1 A = (�!� � �!� ^�!
 ) ^ (
�!
� �

�!
� ^ �!
 )

and B = �!� _
�!
� � (�!� _

�!
� ) ^ �!
 (assume)

2 A ^B ! A (A3)

3 A! A

4 A! �!� _
�!
� � (�!� ^�!
 ) _ (

�!
� ^�!
 ) (C3)

5 (�!� ^�!
 ) _ (
�!
� ^�!
 )$ (�!� _

�!
� ) ^�!


6 (�!� ^�!
 ) _ (
�!
� ^�!
 ) � (�!� _

�!
� ) ^�!
 (5,QF)

7 A! (�!� ^ �!
 ) _ (
�!
� ^�!
 ) � (�!� _

�!
� ) ^�!
 (6,A1)

8 A! �!� _
�!
� � (�!� _

�!
� ) ^ �!
 (4,7,E3,Mp)

9 A! B (def. of B)

10 A! A ^B (3,9,A5,Mp)

11 A$ A ^B (2,10,A5,Mp)

12 A � A ^B (11,QF)
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(C) : 1 A = �!� � �!� ^ (�!� � �!� ^
�!
� ). (assume)

2 A ^ (�!� � �!� ^
�!
� )! A (A3)

3 A! A

4 A! �!� � �!� ^
�!
� (LC)

5 A! A ^ (�!� � �!� ^
�!
� ) (3,4,A5,Mp)

6 A$ A ^ (�!� � �!� ^
�!
� ) (2,5,a5,Mp)

7 A � A ^ (�!� � �!� ^
�!
� ) (6,QF)

(W) : By (LW) of PCIGLw.

�

Lemma 5.5.4 All axioms and inference rules of PCIGL (PCIGLc, PCIGLw, PCIGLcw)
are provable in GL

0 (GL
0

c, GL
0

w, GL
0

cw) respectively, after tP-translation. Namely, the

following formulas are theorems of GL
0 (GL

0

c, GL
0

w, GL
0

cw), where
 �
A ;
 �
B ;
 �
C ;
 �
D denote

the result of tP-translation.

(E1)
 ����
A � A = (

 �
A �

 �
A ) ^ (

 �
A �

 �
A )

(E2)
 ���������������

(A � B)! (B � A)

= (
 �
A �

 �
B ) ^ (

 �
B �

 �
A )! (

 �
B �

 �
A ) ^ (

 �
A �

 �
B )

(E3)
 �����������������������

(A � B) ^ (B � C)! (A � C)

= (
 �
A �

 �
B ) ^ (

 �
B �

 �
A ) ^ (

 �
B �

 �
C ) ^ (

 �
C �

 �
B )! (

 �
A �

 �
C ) ^ (

 �
C �

 �
A )

(C1)
 �����������������

(A � B)! (:A � :B)

= (
 �
A �

 �
B ) ^ (

 �
B �

 �
A )! (:

 �
A � :

 �
B ) ^ (:

 �
B � :

 �
A )

(C2)
 ��������������������������������

(A � B) ^ (C � D)! (A ^ C) � (B ^D)
= (
 �
A �

 �
B ) ^ (

 �
B �

 �
A ) ^ (

 �
C �

 �
D ) ^ (

 �
D �

 �
C )

! (
 �
A ^

 �
C �

 �
B ^

 �
D ) ^ (

 �
B ^

 �
D �

 �
A ^

 �
C )

(C3)
 ��������������������������������

(A � B) ^ (C � D)! (A _ C) � (B _D)

= (
 �
A �

 �
B ) ^ (

 �
B �

 �
A ) ^ (

 �
C �

 �
D ) ^ (

 �
D �

 �
C )

! (
 �
A _

 �
C �

 �
B _

 �
D ) ^ (

 �
B _

 �
D �

 �
A _

 �
C )

(C4)
 ���������������������������������

(A � B) ^ (C � D)! (A! C) � (B ! D)

= (
 �
A �

 �
B ) ^ (

 �
B �

 �
A ) ^ (

 �
C �

 �
D ) ^ (

 �
D �

 �
C )

! ((
 �
A !

 �
C ) � (

 �
B !

 �
D )) ^ ((

 �
B !

 �
D ) � (

 �
A !

 �
C ))

(WIA1)
 ��������������������������

((A! B) � (B ! A))! (A � B)

= ((
 �
A !

 �
B ) � (

 �
B !

 �
A )) ^ ((

 �
B !

 �
A ) � (

 �
A !

 �
B ))! (

 �
A �

 �
B ) ^ (

 �
B �

 �
A )

(WIA2)
 ����������������������������������������������

((A! B) � (B ! A))! ((A! B) � >) ^ ((B ! A) � >)

= ((
 �
A !

 �
B ) � (

 �
B !

 �
A )) ^ ((

 �
B !

 �
A ) � (

 �
A !

 �
B ))!

((
 �
A !

 �
B ) � >) ^ (> � (

 �
A !

 �
B )) ^ ((

 �
B !

 �
A ) � >) ^ (> � (

 �
B !

 �
A ))

(LT)
 �������������������������

(A � B) � ((B � C) � (A � C))

= (
 �
A �

 �
A ^

 �
B ) ^ (

 �
A ^

 �
B �

 �
A )

� ((
 �
B �

 �
B ^

 �
C ) ^ (

 �
B ^

 �
C �

 �
B ) � (

 �
A �

 �
A ^

 �
C ) ^ (

 �
A ^

 �
C �

 �
A ))
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(LE)
 �������������������������

(A � (B � C))! (B � (A � C))

= (
 �
A �

 �
A ^ (

 �
B �

 �
B ^

 �
C ) ^ (

 �
B ^

 �
C �

 �
B )) ^ (

 �
A ^ (

 �
B �

 �
B ^

 �
C )

^(
 �
B ^

 �
C �

 �
B ) �

 �
A )! (

 �
B �

 �
B ^ (

 �
A �

 �
A ^

 �
C ) ^ (

 �
A ^

 �
C �

 �
A ))

^(
 �
B ^ (

 �
A �

 �
A ^

 �
C ) ^ (

 �
A ^

 �
C �

 �
A ) �

 �
B )

(L � 1)
 ������������

A � (B � A �B)

=
 �
A � (

 �
B � (

 �
A �

 �
A ^ (

 �
B �

 �
B ^

 �
0 ) ^ (

 �
B ^

 �
0 �

 �
B ))

^(
 �
A ^ (

 �
B �

 �
B ^

 �
0 ) ^ (

 �
B ^

 �
0 �

 �
B ) �

 �
A ) �

 �
0 ))

(L � 2)
 �����������������������

(A � (B � C))! (A �B � C)
= (
 �
A �

 �
A ^ (

 �
B �

 �
B ^

 �
C ) ^ (

 �
B ^

 �
C �

 �
B )) ^ (

 �
A ^ (

 �
B �

 �
B ^

 �
C )

^(
 �
B ^

 �
C �

 �
B ) �

 �
A )! ((

 �
A �
 �
B ) � (

 �
A �
 �
B ) ^

 �
C ) ^ ((

 �
A �
 �
B ) ^

 �
C � (

 �
A �
 �
B ))

(LDN)
 �������
�� A! A

= ((
 �
A �

 �
A ^

 �
0 ) ^ (

 �
A ^

 �
0 �

 �
A ) � (

 �
A �

 �
A ^

 �
0 ) ^ (

 �
A ^

 �
0 �

 �
A ) ^

 �
0 )^

((
 �
A �

 �
A ^

 �
0 ) ^ (

 �
A ^

 �
0 �

 �
A ) ^

 �
0 � (

 �
A �

 �
A ^

 �
0 ) ^ (

 �
A ^

 �
0 �

 �
A ))!

 �
A

(LC)
 ��������������������

(A � (A � B))! (A � B)

= (
 �
A �

 �
A ^ (

 �
A �

 �
A ^

 �
B ) ^ (

 �
A ^

 �
B �

 �
A )) ^ (

 �
A ^ (

 �
A �

 �
A ^

 �
B )

^(
 �
A ^

 �
B �

 �
A ) �

 �
A )! (

 �
A �

 �
A ^

 �
B ) ^ (

 �
A ^

 �
B �

 �
A )

(LW)
 ���������

A � (B � A)

= (
 �
A �

 �
A ^ (

 �
B �

 �
B ^

 �
A ) ^ (

 �
B ^

 �
A �

 �
B )) ^ (

 �
A ^ (

 �
B �

 �
B ^

 �
A )

^(
 �
B ^

 �
A �

 �
B ) �

 �
A )

(G) (
 �
A ;
 �
B )

 ����
A � B) =) (

 �
A ;
 �
B ) (

 �
A �

 �
B ) ^ (

 �
B �

 �
A ))

Proof. We will only show the following �ve cases.

(C4) : 1 � = (
 �
A �

 �
B ) ^ (

 �
B �

 �
A ) and � = (

 �
C �

 �
D ) ^ (

 �
D �

 �
C ) (assume)

2 (
 �
B �

 �
A ) � ((

 �
A �

 �
C ) � (

 �
B �

 �
C )) (a2)

3 (
 �
A �

 �
C ) � ((

 �
B �

 �
A ) � (

 �
B �

 �
C )) (2,a3,LMp)

4 (
 �
B �

 �
C ) � ((

 �
C �

 �
D ) � (

 �
B �

 �
D )) (a2)

5 ((
 �
B �

 �
A ) � (

 �
B �

 �
C )) � (((

 �
B �

 �
C ) � ((

 �
C �

 �
D ) � (

 �
B �

 �
D )))

� ((
 �
B �

 �
A ) � ((

 �
C �

 �
D ) � (

 �
B �

 �
D )))) (a2)

6 (
 �
A �

 �
C ) � (((

 �
B �

 �
C ) � ((

 �
C �

 �
D ) � (

 �
B �

 �
D )))

� ((
 �
B �

 �
A ) � ((

 �
C �

 �
D ) � (

 �
B �

 �
D )))) (3,5,a2,LMp)

7 ((
 �
B �

 �
C ) � ((

 �
C �

 �
D ) � (

 �
B �

 �
D ))) � ((

 �
A �

 �
C )

� ((
 �
B �

 �
A ) � ((

 �
C �

 �
D ) � (

 �
B �

 �
D )))) (5,a3,LMp)

8 (
 �
A �

 �
C ) � ((

 �
B �

 �
A ) � ((

 �
C �

 �
D ) � (

 �
B �

 �
D ))) (4,7,LMp)

9 (
 �
B �

 �
A ) � ((

 �
A �

 �
C ) � ((

 �
C �

 �
D ) � (

 �
B �

 �
D ))) (8,a3,LMp)

10 (
 �
B �

 �
A ) � ((

 �
C �

 �
D ) � ((

 �
A �

 �
C ) � (

 �
B �

 �
D ))) (9,a3,LMp)

11 � � (
 �
B �

 �
A ) (a5)

12 � � (
 �
C �

 �
D ) (a4)

13 � � ((
 �
C �

 �
D ) � ((

 �
A �

 �
C ) � (

 �
B �

 �
D ))) (11,10,a2,LMp)

14 (
 �
C �

 �
D ) � (� � ((

 �
A �

 �
C ) � (

 �
B �

 �
D ))) (13,a3,LMp)

15 � � (� � ((
 �
A �

 �
C ) � (

 �
B �

 �
D ))) (12,13,a2,LMp)

16 � � (� � ((
 �
A �

 �
C ) � (

 �
B �

 �
D ))) (15,a3,LMp)
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17 � � (� � ((
 �
B �

 �
D ) � (

 �
A �

 �
C ))) (same way)

18 � � (� � ((
 �
A �

 �
C ) � (

 �
B �

 �
D )) ^ ((

 �
B �

 �
D ) � (

 �
A �

 �
C ))) (16,17,a6,LMp)

19 �! (� ! ((
 �
A !

 �
C ) � (

 �
B !

 �
D )) ^ ((

 �
B !

 �
D ) � (

 �
A !

 �
C )))

(18,Th.5.3.3 (vi),LIm,LMp)

(L � 1) : 1 � = (
 �
A �

 �
A ^ (

 �
B �

 �
B ^

 �
0 ) ^ (

 �
B ^

 �
0 �

 �
B ))

^(
 �
A ^ (

 �
B �

 �
B ^

 �
0 ) ^ (

 �
B ^

 �
0 �

 �
B ) �

 �
A ) (assume)

2 � � (
 �
A �

 �
A ^ (

 �
B �

 �
B ^

 �
0 ) ^ (

 �
B ^

 �
0 �

 �
B )) (a4)

3
 �
A ^ (

 �
B �

 �
B ^

 �
0 ) ^ (

 �
B ^

 �
0 �

 �
B ) � (

 �
B �

 �
B ^

 �
0 ) (a4,a5)

4
 �
B ^

 �
0 �

 �
0 (a5)

5 � � (
 �
A � (

 �
B �

 �
0 )) (2,3,4,a2,LMp)

6
 �
A � (� � (

 �
B �

 �
0 )) (5,a3,LMp)

7
 �
A � (

 �
B � (� �

 �
0 )) (6,a3,LMp)

(L � 2) : 1 � = (
 �
A �

 �
A ^ (

 �
B �

 �
B ^

 �
C ) ^ (

 �
B ^

 �
C �

 �
B ))

^(
 �
A ^ (

 �
B �

 �
B ^

 �
C ) ^ (

 �
B ^

 �
C �

 �
B ) �

 �
A ) (assume)

2 � � (
 �
A �

 �
A ^ (

 �
B �

 �
B ^

 �
C ) ^ (

 �
B ^

 �
C �

 �
B )) (a4)

3
 �
A ^ (

 �
B �

 �
B ^

 �
C ) ^ (

 �
B ^

 �
C �

 �
B ) � (

 �
B �

 �
B ^

 �
C ) (a4,a5)

4
 �
B ^

 �
C �

 �
C (a5)

5 � � (
 �
A � (

 �
B �

 �
C )) (2,3,4,a2,LMp)

6 (
 �
A � (

 �
B �

 �
C )) � (

 �
A �
 �
B �

 �
C ) (a11)

7 � � (
 �
A �
 �
B �

 �
C ) (5,6,a2,LMp)

8
 �
A �
 �
B �

 �
A �
 �
B

9 � � (
 �
A �
 �
B �

 �
A �
 �
B ) (8,a16)

10 � � (
 �
A �
 �
B � (

 �
A �
 �
B ) ^

 �
C ) (7,9,a6,LMp)

11 (
 �
A �
 �
B ) ^

 �
C �

 �
A �
 �
B (a4)

12 � � ((
 �
A �
 �
B ) ^

 �
C �

 �
A �
 �
B ) (11,a16)

13 � � (
 �
A �
 �
B � (

 �
A �
 �
B ) ^

 �
C ) ^ ((

 �
A �
 �
B ) ^

 �
C �

 �
A �
 �
B ) (10,12,a6,LMp)

14 �! (
 �
A �
 �
B � (

 �
A �
 �
B ) ^

 �
C ) ^ ((

 �
A �
 �
B ) ^

 �
C �

 �
A �
 �
B ) (13,LIm,Mp)

(LC) : 1 � = (
 �
A �

 �
A ^ (

 �
A �

 �
A ^

 �
B ) ^ (

 �
A ^

 �
B �

 �
A ))

^(
 �
A ^ (

 �
A �

 �
A ^

 �
B ) ^ (

 �
A ^

 �
B �

 �
A ) �

 �
A ) (assume)

2 � � (
 �
A �

 �
A ^ (

 �
A �

 �
A ^

 �
B ) ^ (

 �
A ^

 �
B �

 �
A )) (a4)

3
 �
A ^ (

 �
A �

 �
A ^

 �
B ) ^ (

 �
A ^

 �
B �

 �
A ) � (

 �
A �

 �
A ^

 �
B ) (a4,a5)

4
 �
A ^

 �
B �

 �
B (a5)

5 � � (
 �
A � (

 �
A �

 �
B )) (2,3,4,a2,LMp)

6 (
 �
A � (

 �
A �

 �
B )) � (

 �
A � (

 �
A �

 �
B )) (a3)

7 � � (
 �
A � (

 �
A �

 �
B )) (5,6,a2,LMp)

8
 �
A �

 �
A

9 � � (
 �
A � (

 �
A �

 �
A )) (8,a16)

10 � � (
 �
A � (

 �
A �

 �
A ^

 �
B )) (7,9,a6,LMp)

11 (
 �
A � (

 �
A �

 �
A ^

 �
B )) � (

 �
A �

 �
A ^

 �
B ) (C)
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12 � � (
 �
A �

 �
A ^

 �
B ) (10,11,a2,LMp)

13
 �
A ^

 �
B �

 �
A (a4)

14 � � (
 �
A ^

 �
B �

 �
A ) (13,a16)

15 � � (
 �
A �

 �
A ^

 �
B ) ^ (

 �
A ^

 �
B �

 �
A ) (12,15,a6,LMp)

16 �! (
 �
A �

 �
A ^

 �
B ) ^ (

 �
A ^

 �
B �

 �
A ) (15,LIm,LMp)

(G) : 1
 �
A (assume)

2
 �
B �

 �
A (1,a16)

3
 �
B (assume)

4
 �
A �

 �
B (3,a16)

5 (
 �
A �

 �
B ) ^ (

 �
B �

 �
A ) (2,4,LAd)

�

Proposition 5.5.5 For any formula � in LGL0, � 2 GL
0 implies tG(�) 2 PCIGL.

Proof. By induction on the length of derivation in GL
0.

(1) Base step: We have to check the provability of each axioms of GL
0 in PCIGL after

a tG-translation. The case of TFA is trivial since every tG-translation preserves

the structure of TF-connectives and also PCIGL has TFA axioms. Also by Lemma

5.5.3 all linear axioms (a1)-(a18), (LW1) and (LW2) are provable in PCIGL after a

tG-translation.

(2) Induction step: Assume that we have established the theorem for some step, and

consider a new derivation from these by applying inference rules (LMp), (LAd) and

(Mp) of GL
0. Here (LMp) and (LAd) are easily conclusions from Theorem 5.4.2 (ii)

and (A5), respectively. Also (Mp) is trivial since every tG-translation preserves the

structure of TF-connectives and PCIGL also has (Mp) rule.

Thus the tG-translation of any formula provable in GL
0 is also provable in PCIGL.

�

Proposition 5.5.6 For any formula A in LP, A 2 PCIGL implies tP(A) 2 GL
0.

Proof. By induction on the length of derivation in PCIGL.

(1) Base step: We have to check the provability of each axioms of PCIGL in GL
0 after

a tP-translation. The case of TFA is trivial because of the similar reason in the

above Proposition 5.5.5. Also by Lemma 5.5.4 all IDA are provable in GL
0 after a

tP-translation.
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(2) Induction step: Assume that we have established the theorem for some step, and

consider a new derivation from these by applying inference rules of PCIGL.

(Mp): This case is trivial because of the similar reason in the above Proposition

5.5.5. (G): Assume that both tP(A1) and tP(B1) are theorem of GL
0 by I.H. Then,

it is possible to derive the following proof in GL
0:

tP(A1)

tP(B1) � tP(A1)

tP(B1)

tP(A1) � tP(B1)
(a16)

(tP(A1) � tP(B1)) ^ (tP(B1) � tP(A1))
(LAd)

Hence, by the de�nition we get (tP(A1) � tP(B1)) ^ (tP(B1) � tP(A1)) 2 GL
0. But

tP(A) = tP(A1 � B1) = (tP(A1) � tP(B1)) ^ (tP(B1) � tP(A1)), so tP(A) 2 GL
0.

Thus the tP-translation of any formula provable in PCIGL is also provable in GL
0.

�

Moreover, we can show the following.

Theorem 5.5.7 (i) For any formula � in LGL0, tP(tG(�))$ � 2 GL
0.

(ii) For any formula A in LP, tG(tP(A))$ A 2 PCIGL.

Proof. (i): By induction on the length of the formula �.

Base step: It is clear for � = p(2 VAR) or ?. For � = 0 we in GL
0 have

tP(tG(0))$ tP(0) (Def.5.5.1(iii))

$ tP(:(tG(�1) � tG(�1))) (Def. of 0)

$ tP(tG(�1) � tG(�1)! ?) (Def. of :)

$ tP(tG(�1) � tG(�1))! tP(?) (Def.5.5.2 (vi))

$ (tP(tG(�1)) � tP(tg(�1))) ^ (tP(tG(�1)) � tP(tG(�1)))! ? (Def.5.5.2 (ii),(vii))

$ (�1 � �1) ^ (�1 � �1)! ? (tP(tG(�1))$ �1:H.I.)

$ :1 ((�1 � �1) ^ (�1 � �1) = (�1 � �1) = 1)

$ 0 (0 = :1)

Induction step: It is clear that TF connectives (:;^;_;!) hold. So we have only to

check the � connective. Assume that for any �1; �1 2 LGL0 , tP(tG(�1))$ �1 2 GL
0 and

tP(tG(�1))$ �1 2 GL
0. Then we in GL

0 have

tP(tG(�1 � �1))$ tP(tG(�1) � tG(�1) ^ tG(�1)) (Def.5.5.1 (vii))

$ (tP(tG(�1)) � tP(tG(�1) ^ tG(�1)))

^(tP(tG(�1) ^ tG(�1)) � tP(tG(�1))) (Def.5.5.2 (vii))

$ (tP(tG(�1)) � tP(tG(�1)) ^ tP(tG(�1)))

^(tP(tG(�1)) ^ tP(tG(�1)) � tP(tG(�1))) (Def.5.5.2 (iv))

$ tP(tG(�1)) � tP(tG(�1)) (Th.5.3.3 (vii))

$ �1 � �1 (I.H)

(ii): By induction on the length of the formula A. For the same reasons of (i) we will only
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attention to identity connective. Assume that for any A1; B1 2 LP, tG(tP(A1))$ A1

2 PCIGL and tG(tP(B1))$ B1 2 PCIGL. Then we in PCIGL have

tG(tP(A1 � B1))

$ tG((tP(A1) � tP(B1)) ^ (tP(B1) � tP(A1))) (Def.5.5.2 (vii))

$ tG(tP(A1) � tP(B1)) ^ tG(tP(B1) � tP(A1)) (Def.5.5.2 (iv))

$ (tG(tP(A1)) � tG(tP(A1)) ^ tG(tP(B1)))

^(tG(tP(B1)) � tG(tP(B1)) ^ tG(tP(A1))) (Def.5.5.1 (vii))

$ tG(tP(A1)) � tG(tP(B1)) (Th.5.4.2 (ix))

$ A1 � B1 (I.H)

�

Theorem 5.5.8 (i) For any formula � in LGL0, � 2 GL
0 if and only if tG(�) 2 PCIGL.

(ii) For any formula A in LP, A 2 PCIGL if and only if tP(A) 2 GL
0.

Proof. (i): The only if part obtains from Proposition 5.5.5. Also other direction can

easily be proved as follows:

tG(�) 2 PCIGL =) tP(tG(�)) 2 GL
0 (Prop.5.5.6)

=) � 2 GL
0 (Th.5.5.7 (i))

(ii): The only if part obtains from from Proposition 5.5.6. Also other direction is as

follows:

tP(A) 2 GL
0 =) tG(tP(A)) 2 PCIGL (Prop.5.5.5)

=) A 2 PCIGL (Th.5.5.7 (ii))

�

Hence we may conclude that two logics GL
0 and PCIGL are syntactically equivalent

by De�nition 3.4.1, Theorem 5.5.7 and Theorem 5.5.8. Furthermore, from this result and

previous Proposition 5.3.8, we get �nally the following corollary.

Corollary 5.5.9 For any formula � in LGL, � 2 GL if and only if tG(�) 2 PCIGL.

5.6 Notes

In this chapter we discussed how two types of weak logics, e.g., F with strict implication

and GL with linear implication, are simulated on PCI logic. As another example of such

a weak logic, we can consider basic propositional logic BPL in [70]. BPL was �rstly

introduced by A. Visser as an embeddable system into K4, and extensively studied by Y.

Suzuki from a point of transitive frames. Although we have not checked precisely yet, it

is conjectured that BPL can be simulated on PCIK4 extension.
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Chapter 6

Algebraic properties of PCI logics

In this chapter we will investigate algebraic properties of PCI logics. In Section 1, we

will �rst survey broad informations of various methods for the algebraization of deductive

systems. The most famous method to algebraize a logic is to construct a Lindenbaum-

Tarski algebra by factoring the algebras of formulas by the congruence relative to theories

of the logic. Furthermore, we will explain equivalential algebras and congruence operators,

which also contribute to algebraize a logic. At the end of this section, we will consider

the case of PCI logics introduced so far. In Section 2, we will show that the class of

PCI-algebras, de�ned by the above algebraization, forms a variety. In fact, we only

consider a class of PCIK-algebas whether this class forms a variety or not. In Section 3,

we will check a variety of PCIK-algebras to have EDPC property, and show a necessary

and su�cient condition to have EDPC property. Finally, in Section 4, we will also give

further information on related results shown in this chapter.

6.1 Algebraization of deductive systems

In this section we will explain various methods for the algebraization of deductive systems.

If a deductive system L = (L; C) has the equivalence connective $, then this connective

expresses in the material sense the fact that two formulas have the same logical value,

while it also expresses in the strict sense the fact that two formulas are interderivable on

the basis of the deductive system L. The process of identi�cation of equivalent formulas

relative to theories of C de�nes a class of abstract algebras, in which each member is

called Lindenbaum-Tarski algebra. The above abstraction from a deductive system to its

Lindenbaum-Tarski algebra enable to investigate the deductive system by using various

powerful methods of contemporary algebra in metalogic. From this direction the concept

of an algebraizable deductive system is clari�ed by Blok and Pigozzi (see [8]). Roughly

speaking, a deductive system is called algebraizable if a certain class of algebas can be as-

sociated with this deductive system and moreover, the properties of this deductive system

are fully reducible to the algebraic properties of the associated class of algebras. But the

Lindenbaum-Tarski algebra itself is in general not su�cient for covering of all deductive
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systems. Indeed, there exist numerous deductive systems to which the Lindenbaum-Tarski

algebra cannot be directly applied since there will not exist a connective $ in the lan-

guage of the deductive system which de�nes a congruence on the language. In order to

overcome this problem, Prucnal and Wro�nski (see [56]) have proposed a generalization of

the Lindenbaum-Tarski algebra by replacing the equivalence connective with a set of sen-

tential formulas which has many properties of the equivalence connective. Any deductive

system having such a set is called equivalential. Roughly speaking, a deductive system

is equivalential if and only if the greatest matrix congruences in its matrics (models) are

determined by polynomials. In [8], Blok and Pigozzi have proposed the approach based

on the concept of the Leibniz operator 
 for characterizing their concept of an algebraiz-

able deductive system. The Leibniz operator 
 is a function which assigns to each theory

T � L a congruence on L, denoted by 
T . This de�nition is independent from various

kinds of deductive systems admitting in the language L. If we restrict the domain of the

Leibniz operator 
 to the family of all theories of a given deductive system C, then it

assigns the congruence 
T to each closed theory T 2 Th(C). So the Leibniz operator

give us the possibility of building a certain natural hierarchy of deductive systems based

on properties of the operator 
 (see [20] and [33]). A variety of algebras has equation-

ally de�nable principal congruences (EDPC for short) if the principal congruence relation

c � d (mod �(a; b)) is de�nable in each member of the variety by the conjunction of a

�xed, �nite set of polynomial equations pi(a; b; c; d) = qi(a; b; c; d). Since for the varieties

arising in algebraic deductive system the EDPC is closely connected with the deduction

theorem, it seems to be their most characteristic property (see [39] and [5]).

In this section we assume that L is some �xed but arbitrary sentential language and

L is the set of all L formulas. We write 
[�=p] as the result of simultaneously replacing

the variable p in 
 by the formula �.

6.1.1 Lindenbaum-Tarski algebra and its equational theory

The Lindenbaum-Tarski algebra is a powerful method to study various kind of an alge-

braizable deductive system. If L = (L; C) is the classical deductive system, then it is

well-known that the relation �T :

(�) � �T � if and only if �$ � 2 C(T )

de�nes a congruence of the algebra of formulas L. Then quotient algebras obtained by fac-

toring the algebra of formulas by the congruence (�) form the class of Lindenbaum-Tarski

algebras, and coincide with the class of Boolean algebras. Indeed, many important logics,

e.g., the intuitionistic logics of Heyting, the many-valued logics of Post and  Lukasiewicz,

and the modal logics S4, S5 of Lewis were algebraized in this way. In the result, the pro-

cess of algebraization of deductive systems can be reduced to the study of the equational

theory of the Lindenbaum-Tarski algebra, and more precisely, to the quasi-equational

theory of a certain quasivariety to which it belongs (see [8] and [20]).
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By an L-equation, or simply an equation, we mean a formal expression � � � for any

�; � 2 L. We denote the set of all L-equations by Eq(L). For any class K of L-algebras,

any subset X[f� � �g of Eq(L), we will de�ne the operator EK between a set X of equa-

tions and a single equation � � �, in symbols � � � 2 EK(X), by for every A 2 K and ev-

ery homomorphism h : Eq(L)! A, h(�) = h(�) whenever h(�) = h(�) for any � � � 2 X.

Then EK is called the semantic equational consequence operator determined by K. We

say that EK is �nitary if � � � 2 EK(X) implies � � � 2 EK(X 0) for some �nite X 0 � X,

and moreover, if X = f�0 � �0; : : : ; �n�1 � �n�1g , then � � � 2 EK(X) if and only if K

satis�es the quasi-identities: �0 � �0 ^ � � � ^ �n�1 � �n�1 ! � � �. Thus if EK is �nitary,

then EK = EKQ where KQ is the quasivariety generated by K. Conversely, if K is a quasi-

variety, then it is easy to show that EK is �nitary. Therefore for any class K of L-algebras,

EK is �nitary if and only if EK = EKQ .

De�nition 6.1.1 Let L = (L; C) be a deductive system and K a class of algebras.

(i) Then K is called an algebraic semantics for L if C can be interpreted in EK in the

following way: there exists a �nite system f�i(p) � �i(p); i < ng � Eq(L) of equa-

tions with a single variable p such that for all X [ f�g � L and each j < n,

� 2 C(X) if and only if �j[�=p] � �j [�=p] 2 EK(f�i[�=p] � �i[�=p] : i < n; � 2 Xg).

(ii) Moreover, the system f�i(p) � �i(p); i < ng is called de�ning equations for L and

K.

In order to simplify notation we will use �(p) � �(p), � � � 2 X and �(�) � �(�) 2 EK(X)

as abbreviations for �i(p) � �i(p), i < n, f�i � �i : i < ng � X and �i[�=p] � �i[�=p] 2 EK(X)

for all i < n, respectively. Since C is always assumed to be �nitary, we can also assume

that the set X in de�nition 6.1.1 (i) is always �nite. As previously observed, the oper-

ator EK on the right hand side in de�nition 6.1.1 (i) holds if and only if K satis�es the

quasi-identities:
V
�2X �(�) � �(�)! �(�) � �(�). Hence if K is an algebraic sematics for

a deductive system L, then so is the quasivariety KQ.

Let K be an algebraic semantics for L with de�ning equations �(p) � �(p). For any

A 2 K and any h : Eq(L)! A, let F ���

A
= fa 2 A : h(�(a)) = h(�(a))g. Then it is easy

to see that (A; F ���

A
) is the logical matrix for L as follows.

Theorem 6.1.2 Let L = (L; C) be a deductive system, K a quasivariety, and �(p) � �(p)

a system of single variable equations. Then the following are equivalent:

(i) K is an algebraic semantics of L with de�ning equations �(p) � �(p).

(ii) The class M = f(A; F ���

A
) : A 2 Kg is a matrix semantics for L.

De�nition 6.1.3 Let L = (L; C) be a deductive system and K an algebraic semantics for

L with de�ning equations �i � �i, for i < n.

92



(i) Then K is said to be equivalent to L if there exists a �nite system �j(p; q), for

j < m, of formulas with two distinct variables such that for every � � � 2 Eq(L),

EK(� � �) = EK(f�i(�j(�; �)) � �i(�j(�; �)); i < n; j < mg).

(ii) Moreover, the system �j, j < m, satisfying the above condition is called a system

of equivalence formulas for L and K.

Corollary 6.1.4 Let K be an algebraic semantics for a deductive system L. Then K is

equivalent to L if and only if so is the quasivariety KQ.

Corollary 6.1.5 Let L = (L; C) be a deductive system and K an algebraic semantics for

L with de�ning equations � � �. If K is equivalent to L with equivalence formulas �, then

we have:

(i) for all X [ f� � �g � Eq(L),

� � � 2 EK(X) if and only if �(�; �) 2 C(f�(�; �) : � � � 2 Xg),

(ii) C(#) = C(�(�(#); �(#))).

Conversely, if there exists a system of formulas � satisfying conditions (i) and (ii),

then K is equivalent to L with equivalence formulas �.

Thus if K is an equivalent algebraic semantics for L, then above de�nition 6.1.3 and

corollary 6.1.4 guarantee that C and EK are mutually interpretable.

De�nition 6.1.6 A deductive system L is said to be algebraizable if it has an equivalent

algebraic semantics.

The class of algebraizable logic contain many of traditionally considered logics, e.g., the

classical and intutionistic propositional logics, the intermediate logics, the normal modal

logics, many valued logics and quantum logics. But there exist also important logics that

fail to be algebraizable, e.g., the non-normal modal logics (S1;S2;S3). Nevertheless,

most of these systems follow the methods of universal algebra when applied to the matrix

models of the system. This class is clari�ed as protoalgebraic logics by Blok and Pigozzi

(see [7]). Let L = (L; C) be a deductive system and X [ f�; �g � L. Two formulas �

and � are said to be X-equivalent relative to L if for every 
 2 L, and every variable

p occurring in 
, 
[�=p] 2 C(X) if and only if 
[�=p] 2 C(X). Moreover, � and � are

X-interderivable relative to L if � 2 C(X;�) if and only if � 2 C(X; �).

De�nition 6.1.7 A deductive system L = (L; C) is called protoalgebraic if for every

X � L, any two formulas that are X-equivalent relative to L are X-interderivable relative

to L.
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First of all noticed that it follows immediately from the de�nition that � and � are X-

equivalent relative to L if and only if � � � (mod �T ) where T is the C-theory generated

by X and �T is the greatest congruence on L compatible with T . And they are X-

interderivable if and only if, whenever one of them is contained in a theory including X,

so is the other. Thus L is protoalgebraic if and only if, for every pair of theories T and

S, T � S implies that �T is compatible with S, i.e., �T � �S.

6.1.2 Equivalential algebra

Let L = (L; C) be a deductive system. If �(p; q) � L and �, � are formulas of L, then we

write �(�; �) to denote the set of formulas which result by the simultaneous substitution

of � for p and � for q in all formulas from �(p; q) (see [18], [8] and [32]).

De�nition 6.1.8 A deductive system L = (L; C) is said to be equivalential if there exists

a set �(p; q) of formulas with two distinct variables such that for any �; �; 
 2 L the

following conditions are satis�ed:

(i) �(�; �) � C(;),

(ii) �(�; �) � C(�(�; �)),

(iii) �(�; 
) � C(�(�; �) [�(�; 
)),

(iv) for every natural n � 0, every n-ary connective x of L and any formulas �i; �i;

1 � i � n, �(x(�1; : : : ; �n); x(�1; : : : ; �n)) � C(�(�1; �1) [ � � � [�(�n; �n)),

(v) � 2 C(�(�; �);�).

If L = (L; C) is equivalential with respect to a set �(p; q), then �(p; q) can be seen as

a C-equivalence. Therefore for each theory T 2 Th(C), the relation �T :

(��) � �T � if and only if �(�; �) � C(T )

de�nes a congruence on the language L compatible with T . Given a matrix M = (A; D)

for L we will de�ne the polynomial relation �M in M as a�Mb if and only if 
M(a; b) 2 D

for every 
 2 �, where 
M is the polynomial over A corresponding to a formula 
. Then

we have the following proposition.

Proposition 6.1.9 Let M = (A; D) be a matrix for L and �M the polynomial relation

in M. Then we have:

(i) if �M is re
exive then �M � �M,

(ii) if �M is a matrix congruence of M, then it is the greatest matrix congruence of M,

i.e., �M = �M.
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Theorem 6.1.10 A deductive system L = (L; C) is equivalential relative to a set �(p; q)

of formulas if and only if for any matrix M 2 Matr(C), �M = �M.

A deductive system L = (L; C) is called 1-equivalential if it is equivalential and so it

has a set �(p; q) of formulas, and p; q=�(p; q) (called G-rule) is a set of rules of C for

any �(p; q). In other word, 1-equivalential systems are equivalential systems in which

the members of an arbitrary theory T are all identi�ed under the congruence relation

generated by T .

6.1.3 Congruence operators

The congruence 
T being assigned by the Leibniz operator 
 for any theory T � L, is

the synonymy relation on L relative to T . Thus

� � � (mod 
T ) if and only if
^


2L

^

p2V ar(
)

(
[�=p] 2 T , 
[�=p] 2 T );

where V ar(
) is the set of variables occurring in 
. Here 
T is the greatest congruence on

L compatible with T . The de�nition of 
T is related to the well-known method of de�ning

the equality relation in second order logic that goes back to Leibniz. For this reason 
T

is called the Leibniz congruence associated with T , and the operator 
, assigning the

congruence 
T to each theory T in L, is called the Leibniz operator. In metalogic, the

format of the operator 
 is restricted by admitting that the domain of 
 is the family

of all theories of a given system C, and this restricted Leibniz operator thus assigns the

congruence 
T to each closed theory T 2 Th(C). The hierarchy of deductive systems

outlined below directly refers to the following list of properties of the Leibniz operator


. Here C is assumed to be a �xed sentential system and T; T1; T2; Ti(i 2 I) range over

arbitrary theories of C (see [20] and [33]).

(1) T1 � T2 implies 
T1 � 
T2 (monotonicity)

(2) 
T1 = 
T2 implies T1 = T2 (injectivity)

(3) For all directed system Ti(i 2 I) such that the union
S
fTi : i 2 Ig is a theory of C,



S
fTi : i 2 Ig =

S
f
Ti : i 2 Ig (continuity)

(4) 

T
fTi : i 2 Ig =

T
f
Ti : i 2 Ig (meet-continuity)

(5) For every substitution e,


e�1T = e�1
T (commutativity with inverse substitutions)

Then we have the following characteristic theorems for protoalgebraic, equivalential

and algebraizable logics which are mentioned so far (see [20] and [33]). The class hierarchy

of degrees of algebraization is also shown in Fig 6.1. A system is located above another

one if it is stronger than the other. In this �gure implicative deductive systems were �rstly
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introduced by Rasiowa in [57]. Every implicative system can be seen equivalential relative

to �(�; �) = fa! �; � ! �g, where ! is a material implication, but the converse does

not hold in general.

Theorem 6.1.11 For any system L = (L; C) the following conditions are equivalent:

(i) C is protoalgebraic,

(ii) for all T 2 Th(C), �; � 2 L, � � � (mod 
C(T )) implies C(T; �) = C(T; �),

(iii) the Leibniz operator 
 is meet-continuous on Th(C),

(iv) there exists a set �(p; q) of formulas with two distinct variables such that for any

�; � 2 L, �(�; �) � C(;) and � 2 C(�(�; �);�).

Theorem 6.1.12 For any system L = (L; C) the following conditions are equivalent:

(i) C is equivalential,

(ii) the Leibniz operator 
 is monotonic and commutes with inverse substitutions on

Th(C), i.e., e�1
T � 
e�1T for any substitution e in L and any T 2 Th(C),

(iii) 
 is monotonic and e
T � 
C(eT ) for all substitutions e and all T 2 Th(C).

Theorem 6.1.13 For any system L = (L; C) the following conditions are equivalent:

(i) C is �nitely equivalential,

(ii) the Leibniz operator 
 is continuous on Th(C).

Theorem 6.1.14 For any system L = (L; C) the following conditions are equivalent:

(i) C is algebraizable,

(ii) the Leibniz operator 
 is injective, monotonic and commutes with inverse substitu-

tions on Th(C),

(iii) C is equivalential and 
 is injective on Th(C).

Theorem 6.1.15 For any system L = (L; C) the following conditions are equivalent:

(i) C is �nitely algebraizable,

(ii) the Leibniz operator 
 is injective and continuity.
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1-equivalential
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equivalential

protoalgebraic

�nitely eq.

�nitely alg.

�nitely 1-eq.

implicative

Figure 6.1: The class hierarchy of degrees of algebraization

The Fregean axiom (FA) being mentioned in Section 2.2, leads to distinguishing the

class of Fregean deductive system. Formally, a protoalgebraic system C is called Fregean

if C is not almost inconsistent, i.e., C(;) 6= ; and C(X) 6= L for any nonempty X � L,

and the Leibniz operator 
 satis�es the following condition: for any T [ f�; �g � L,

� � � (mod 
C(T )) if and only if C(T ;�) = C(T ;�). For example, classical and intu-

itionistic logics are Fregean since the above condition reduces to the well-known Tarski's

condition: for any T [ f�; �g � L, �$ � 2 C(T ) if and only if C(T ;�) = C(T ;�) (see

[55] and [20]).

The class of protoalgebraic system is too restrictive because there exists at least a

variety which can not be characterized by the class of protoalgebraic, e.g., the conjunction-

disjunction fragment of classical logic. As the alternation of Leibniz operator which

overcome this restriction, we can consider the general notion of an operator from [20], in

particular, the Suszko operator $ which maps a theory of C to the greatest congruence

on L that has a certain interderivability property. For every theory T � L we de�ne the

binary relation $T on L by means of the condition:

� � � (mod $T ) if and only if
^


2L

^

p2V ar(
)

C(T ; 
[�=p]) = C(T ; 
[�=p]);

where C(T ; 
[�=p]) = C(T ; 
[�=p]) if and only if 
[�=p] 2 C(T ; 
[�=p]) and 
[�=p] 2

C(T ; 
[�=p]). So as previous mentioned, 
[�=p] and 
[�=p] are T -interderivable relative
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to a system C. A congruence � on L is said to have the T-interderivability property

relative to a system C if � � � (mod �) implies C(T ;�) = C(T ; �) for any �; � 2 L.

The de�nition of $T is strictly relativised to the logic C and, unlike the de�nition

of the Leibniz congruence, it does not have the absolute character. $T can be shown

to be a congruence on L compatible with T . Therefore $T � 
T for all T 2 Th(C) and

this inclusion may be proper unless C is protoalgebraic. The congruence $T is called

the Suszko congruence corresponding the theory T . The operator $ which to each theory

T 2 Th(C) assigns the congruence $T is called the Suszko operator. The condition on the

right hand side of the above de�nition was used by Suszko to de�ne the identity connective

in SCI. It follows from the de�nition of $ that, for any deductive system, not necessarily

protoalgebraic, the operator $ is monotonic on Th(C), i.e., $T1 � $T2 whenever T1 � T2.

Theorem 6.1.16 For any system L = (L; C) the following conditions are equivalent:

(i) C is protoalgebraic,

(ii) For all T 2 Th(C), $T = 
T .

A deductive system C is said to have the strong congruence property if for all �; � 2 L,

all T 2 Th(C) the T -interderivable relation C(T ;�) = C(T ; �) is not only an equiva-

lence relation but also a congruence relation, namely � � � (mod $T ) if and only if

C(T ;�) = C(T ; �).

Theorem 6.1.17 For any system L = (L; C) the following conditions are equivalent:

(i) C is Fregean,

(ii) C is protoalgebraic and has the strong congruence property.

6.1.4 The case of PCI logics

In this subsection we will consider the algebraization of PCI logics. The deductive system

SCI, which was introduced in Section 2.2, is equivalential relative to a set �(p; q) := fp � qg

since identity axioms IDA of SCI satisfy the conditions from (i) to (v) in De�nition 6.1.8.

This fact is also con�rmed by Theorem 6.1.12. But SCI is not algebraizable in the sense

of De�nition 6.1.6 since the Leibniz operator is not injective on all theories of SCI. Next

we will consider the algebraization of PCI and PCIK. At �rst we have the following

conjecture, which make a contrast with the fact that SCI is protoalgebraic.

Conjecture 6.1.18 The deductive system PCI = (LP; C) is not protoalgebraic.

Theorem 6.1.19 The deductive system PCIK = (LP; C
G
K) is 1-equivalential.
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Proof. Let �(p; q) := fp$ qg. Then at �rst we will show that PCIK is equivalential

relative to �(p; q). In De�nition 6.1.8, conditions (i)-(iii) and (v) are obviously satis�ed

in PCIK relative to �(p; q). For the condition (iv) in De�nition 6.1.8, we have only

to show that $ is also congruence relation. As PCIK is a conservative extension of

the classical logic CL, this is almost obvious except that (A$ B) ^ (C $ D) 2 PCIK

implies (A � C)$ (B � D) 2 PCIK. But we have the following derivations:

(A$ B) ^ (C $ D) 2 PCIK

=) (A$ B)$ (C $ D) 2 PCIK,

=) (A$ C)$ (B $ D) 2 PCIK,

=) ((A$ C)$ (B $ D)) � > 2 PCIK, (G rule in Section 4.2)

=) ((A$ C) � >)$ ((B $ D) � >) 2 PCIK, (Lemma 4.2.2 (xiv))

=) (A � C)$ (B � D) 2 PCIK. (Lemma 4.2.2 (xvi))

Thus $ is a congruence relation on PCIK. So the condition (iv) in de�nition 6.1.8 also

holds in PCIK, and we conclude that PCIK is equivalential. Here we have also that

A ^B 2 PCIK implies A$ B 2 PCIK. Hence PCIK is 1-equivalential.

�

6.2 Varieties of PCI algebras

In this section we will show that the class of PCIK-algebras forms a variety. In general,

the class of all algebras of the same similarity type is called a variety of algebras of this

type if all identities in a given set X are valid in this class, and denoted by Va(X). Here

if X is a set of PCIK formulas then Va(X) means the variety of PCIK-algebras generated

by the identities A = t such that for all A 2 X.

Theorem 6.2.1 The deductive system PCIK = (LP; C
G
K) forms a variety.

Proof. At �rst we recall that AK = hA;�;\;[;�;�; f; ti is a PCIK-algebra introduced

in 4.5. Let VK be the class of all PCIK-algebras. Then since the Representation Theo-

rem 4.5.8 of PCIK-algebras and Theorem 4.5.10, there exists a 1-1 correspondence be-

tween PCIK Kripke model M = (W;R; V ) and PCIK matrix model MK = (AK; ftg).

Furthermore, as we know in Theorem 4.4.3 that PCIK logic is complete with respect

to PCIK Kripke model, so by composing the above results we conclude that for any

X [ fBg � LP and every valuation v : LP ! A, B 2 CG
K (X) if and only if for anyAK 2 VK

such that AK j= fv(D) = t;8D 2 Xg implies AK j= v(B) = t. Here we de�ne the class

X� = fAK 2 VK;AK j= v(D) = t for all D 2 Xg. Then this class forms clearly a variety,

and characterizes the logic CG
K (X). Moreover, the function LP 7! LP

�, which assigns

each extension of PCIK to a variety of PCIK-algebras, is 1-1. On the other hand, if

K � Va(VK), then K+ = fB 2 LP;8AK 2 K;AK j= v(B) = tg can be seen an extension of

PCIK logic, in which satis�es K+� = K because every equation v(B) = v(D) in K+ can be
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written (�v(B) [ v(D)) \ (v(B) [ �v(D)) = t. Thus there exists a 1-1 correspondence

between the family of extensions of PCIK logic and that of subvarieties of Va(VK).

�

6.3 Equationally de�nable principal congruences

6.3.1 General theory of EDPC

The algebraization of a deductive system is usually accomplished by transforming each

well-formed formulas into terms of an appropriate functional language. Then logical con-

nectives and atomic formulas in the deductive system are replaced by operator symbols

and individual constants in the corresponding algebra, respectively. Furthermore, the

transfornations determine which pairs of terms are to be identi�ed in the correspond-

ing algebras. Namely, by means of their equivalence connective the axioms and rules of

inference of the deductive system take the form of equations. In this way various meta-

logical properties of the deductive system translate into algebraic and metamathematical

properties of its associated variety. The algebraic analogue of the deduction process is

congruence generation, and the algebraic analogue for a variety of the deduction theorem

is the ability to represent congruence generation by means of equations (see [39], [5] and

[6]).

De�nition 6.3.1 A variety V is said to have EDPC if there exist 4-ary terms pi(x; y; z; w),

qi(x; y; z; w), i = 0; : : : ; n� 1 for some natural number n, such that for every algebra

A 2 V , and all a; b; c; d 2 A,

c � d (mod �(a; b)) if and only if A j= pi(a; b; c; d) = qi(a; b; c; d) 0 � i < n;

where �(a; b) is the principal congruence generated by the pair a and b, and also c � d

(mod �(a; b)) means that c and d are congruent under the relation �(a; b).

A Brouwerian semilattice is an algebra hA; �;!; 1i such that hA; �; 1i is a meet semilat-

tice with greatest element 1, and a! b is a pseudo-complement of a relative to b, i.e., for

all c 2 A, c � a! b if and only if a � c � b. A semilattice hA; �; 1i is called a semilattice

with relative pseudo-complementation if a! b exists for all a; b 2 A. By a dual Brouwerian

semilattice we mean an algebra hA;+; �; Ii such that hA;+; Ii is a join semilattice with

least element I and a � b is a dual relative pseudo-complement, i.e., for all c 2 A, a � b � c

if and only if b � a+ c. If we write Cp(A) as the set of all �nitely generated congruences

(called compact congruences) of an algebra A, then it is well-known the following results

(see [5] and [55]).

Theorem 6.3.2 A variety V has EDPC if and only if for every A 2 V, hCp(A);+; Ii is

dual Brouwerian semilattice.
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Let V be any class of algebras with distinguished constant 1, andA 2 V . Then a subset

F of A is called a 1-�lter of A if F = 1=� (:= fa; a � 1 (mod �)g) for some � 2 Co(A).

The 1-�lter generated by a subset X of A is the intersection of all 1-�lters including X,

denoted by Fi(X). Moreover, if the set X is �nite, then it is called a compact 1-�lter and

denoted by Fp(X). Then for any class V of algebras with distinguished constant 1, we

can introduce the class of matrices MV = f(A;F );A 2 V;F is a 1-�lter of Ag which con-

structs the deductive system A = (A; CM
V

) by the following way: for any X [ fag � A,

a 2 CM
V

(X) if and only if for any matrix M = (A; F ) 2 MV , a 2 F whenever X � F .

De�nition 6.3.3 Let V be any variety with distinguished constant 1, A 2 V and

A = (A; CM
V

) its deductive system. Then a binary term ! in A is called conditional for

A = (A; CM
V

) if the following conditions hold:

(i) for all x; y 2 A, y 2 CM
V

(x; x! y), (Modus ponens)

(ii) for all X [ fx; yg � A, y 2 CM
V

(X;x) implies x! y 2 CM
V

(X).

(Deduction theorem)

Then we have the following relationship between a conditional and EDPC in the

deductive system A (see [55]).

Theorem 6.3.4 Assume that V is a variety in which each compact 1-�lter is principal.

Then for any A 2 V, A = (A; CM
V

) has a conditional if and only if V has EDPC.

We will show some typical examples of varieties occurring in the literature that are

known to have EDPC.

Example 6.3.5 Hilbert algebras hA;!; 1i are de�ned by the following equations:

(i) a! (b! a) = 1,

(ii) (a! (b! c))! ((a! b)! (a! c)) = 1,

(iii) if a! b = 1 and b! a = 1 then a = b,

(iv) a! 1 = 1.

This algebra is also called positive implication algebras. Let p(x; y; z) = (x! y)!

((y ! x)! z). Then for any Hilbert algebra A, a; b; c; d 2 A, we have c � d (mod �(a; b))

if and only if p(a; b; c) = p(a; b; d). Thus the variety of Hilbert algebras has EDPC.

Example 6.3.6 Heyting algebras hA;+; �;!; 0; 1i where hA;+; �; 0; 1i is a bounded dis-

tributive lattice and ! is relative pseudo-complementation. This algebra is also called

pseudo-Boolean algebras. We can get the same result as the previous example, i.e., for

p(x; y; z) within example 6.3.5, a; b; c; d 2 A, we have c � d (mod �(a; b)) if and only if

p(a; b; c) = p(a; b; d). Thus the variety of Heyting algebras has EDPC.
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Example 6.3.7 Modal algebras hA;+; �;�;2; 0; 1i where hA;+; �;�; 0; 1i is a Boolean

algebras and 2 a modal operator satisfying

(i) 2(x � y) = 2x � 2y,

(ii) 21 = 1.

Let Vn be the variety of modal algebras satisfying the equation 2 � � �2| {z }
n

x � 2(2 � � �2| {z }
n

)x,

where 2 � � �2| {z }
0

x = x, 2 � � �2| {z }
n

x = x � 2(2 � � �2| {z }
n�1

x), n = 1; 2; : : :. Then for any A 2 Vn,

a; b; c; d 2 A, we have c � d (mod �(a; b)) i� 2 � � �2| {z }
n

(a�b) � c = 2 � � �2| {z }
n

(a�b) � d. Here

a�b is the dual di�erence (�a + b) � (�b+ a). Thus Vn has EDPC.

6.3.2 EDPC property of PCI varieties

In this subsection we will formulate a necessary and su�cient condition for a variety of

PCIK-algebras to have EDPC property (see [36]). To show this property we will �rst

introduce a unary operator r on a PCIK-algebra de�ned by

r(x) = (x�t) \ x:

Moreover, let :

r
0(x) = x;

r
n+1(x) = r(rn(x)):

De�nition 6.3.8 A nonempty subset F of a PCIK-algebra AK is a congruence �lter if

(1) F is a Boolean �lter and,

(2) F is closed under r, i.e., x 2 F implies r(x) 2 F .

By the above de�nition, x 2 F implies x�t 2 F for any congruence �lter F of a PCIK-

algebra. Moreover, we can show that F is closed under �, i.e., x; y 2 F implies x�y 2 F ,

by using the symmetry and the transitivity of �. We notice that the above congruence

�lter of a PCIK-algebra is clearly identical to a PCIK-�lter de�ned in Section 4.5.

Proposition 6.3.9 Let AK be a PCIK-algebra. Then, there exists an isomorphism be-

tween the lattice of congruence �lters of AK and the lattice of congruences on AK. Namely,

let � be a congruence on AK. Then

F(�) = fa �� b; ha; bi 2 �g

is a congruence �lter of AK, where a �� b means (a � b) \ (b � a). Conversely, if F is

a congruence �lter of AK, then

�(F ) = fha; bi; a �� b 2 Fg

is a congruence on AK. Moreover, F(�(F )) = F and �(F(�)) = �.
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Proof. Let � be a congruence on an PCIK-algebra AK. Then, we have to check whether

F(�) = fa �� b; ha; bi 2 �g is a congruence �lter of AK. So, there are four things to check

as follows:

(1) t 2 F(�),

(2) x; y 2 F(�) implies x \ y 2 F(�),

(3) x 2 F(�); x � y implies y 2 F(�),

(4) x 2 F(�) implies x�t 2 F(�).

(1) : Notice that a �� a = (a � a) \ (a � a) = t \ t = t. So, by re
exivity of � we get

a �� a 2 F(�), i.e., t 2 F(�).

(2) : Assume x; y 2 F(�), then x = a �� b and y = c �� d for some ha; bi; hc; di 2 �. We

have to show x \ y = e �� f for some he; fi 2 �. First notice that (i) ha; bi 2 � i�

ha \ b; a [ bi 2 �, and moreover (ii) a �� b = a [ b � a \ b. To prove the former, if

ha; bi 2 � then from ha; ai 2 � and the de�nition of congruence relation, ha [ a; a [ bi

2 � and ha \ a; a \ bi 2 �. By a [ a = a = a \ a and using the aboves, we get

ha; a [ bi 2 � and ha; a \ bi 2 �. So

ha; a [ bi; ha; a \ bi 2 �

=) ha \ b; ai; ha; a [ bi 2 � (symmetry)

=) ha \ b; a [ bi 2 �. (transitivity)

Conversely, assume ha \ b; a [ bi 2 �. Then, we have a \ b � a � a [ b, so ha \ b; ai

2 � and similarly ha \ b; bi 2 �. Thus

ha \ b; ai; ha \ b; bi 2 �

=) ha; a \ bi; ha \ b; bi 2 � (symmetry)

=) ha; bi 2 �. (transitivity)

Next we will show the latter:

a �� b = (a � b) \ (b � a) = (�a [ b) \ (�b [ a)

= ((�a [ b) \ �b) [ ((�a [ b) \ a)

= ((�a \ �b) [ (b \ �b)) [ ((�a \ a) [ (a \ b))

= (�a \ �b) [ (a \ b) = �(a [ b) [ (a \ b)

= a [ b � a \ b.

To continue the proof of case (2), take the element e as

e = (a [ b) \ x \ (c [ d) \ y

= (a [ b) \ (a [ b � a \ b) \ (c [ d) \ (c [ d � c \ d).

Then, we have (a \ b)�(a [ b) and (a \ b)�(a \ b). Thus (a \ b � a \ b)�(a [ b � a \ b),

i.e., t�(a [ b � a \ b). Similarly, we get t�(c [ d � c \ d). From t�(a [ b � a \ b)

and (a [ b)� (a [ b), we get ((a [ b) \ t)�((a [ b) \ (a [ b � a \ b)), i.e., (a [ b)�((a [ b)

\(a [ b � a \ b)). And similarly (c [ d)�((c [ d) \ (c [ d � c \ d)). Thus ((a [ b)\
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(c [ d))�((a [ b) \ (a [ b � a \ b) \ (c [ d) \ (c [ d � c \ d)), i.e., ((a [ b) \ (c [ d))�e.

Moreover, we have (a \ b)�(a [ b) and (c \ d)�(c [ d). Thus ((a \ b) \ (c \ d))�((a [ b)

\(c [ d)). From the aboves we have ((a \ b) \ (c \ d))�((a [ b) \ (c [ d))�e. Also we

have (a [ b) \ (c [ b) \ (x \ y) = e i� x \ y = (a [ b) \ (c [ d) � e. Hence x \ y =

(a [ b) \ (c [ d) � e and we are done.

(3) : Assume x 2 F(�) and x � y. Then x = a �� b for some ha; bi 2 �. We have to

show that y = c �� d for some hc; di 2 �. First notice that x = a �� b = a [ b � a \ b.

Also x � a \ b because x = a [ b � a \ b = �(a [ b) [ (a \ b) � (a \ b). And

x [ (a [ b) = t because x [ (a [ b) = (a [ b � a \ b) [ (a [ b) = �(a [ b) [ (a \ b)[

(a [ b) = t. Now, because y is being between x and t, take the element e = (a [ b) \ y.

Then clearly e � a [ b because e = (a [ b) \ y � (a [ b) by the assumption x � y.

Also from a \ b � a � a [ b and a \ b � x � y we get a \ b � (a [ b) \ y = e. Thus

a \ b � e � a [ b. Also we have (a [ b) \ y = e i� y = a \ b � e. Hence y = a \ b �� e

and we are done.

(4) : Assume x 2 F(�) then x = a �� b = a [ b � a \ b for some ha; bi 2 �. By the def-

inition of r(x), r(x) = (x�t) \ x = ((a [ b � a \ b)�t) \ (a [ b � a \ b). Then, we

have to show r(x) = c �� d for some hc; di 2 �. Notice that r(x) � x and de�ne

e = a \ b \ r(x). We will show e�(a \ b). First, we know a�b i� (a \ b)�(a [ b).

So, e = a \ b \ r(x) = (a \ b) \ ((a [ b � a \ b)�t) \ (a [ b � a \ b). Notice that

we have easily:

(a \ b) \ (a [ b � a \ b) = (a \ b) \ (�(a [ b) [ (a \ b))

= (a \ b) \ ((�a \ �b) [ (a \ b))

= ((a \ b) \ (�a \ �b)) [ (a \ b) = (a \ b),

so e = (a \ b) \ ((a [ b � a \ b)�t). Now, because we have (a \ b)�(a [ b) and (a \ b)

�(a \ b), we get (a \ b � a \ b)�(a [ b � a \ b), i.e., t�(a [ b � a \ b). And obvi-

ously t�t, so also t�t�(a [ b � a \ b)�t, i.e., t�(a [ b � a \ b)�t. From (a \ b)�(a \ b)

and the above we get ((a \ b) \ t)�((a \ b) \ ((a [ b � a \ b)�t)), i.e., (a \ b)�((a \ b)

\((a [ b � a \ b)�t)). So (a \ b)�e. Also we have (a \ b) \ r(x) = e i� r(x) = a \ b �

e. Hence r(x) = a \ b �� e and we are done.

Conversely, let F be a congruence �lter of AK. Then we have to check whether

�(F ) = fha; bi; a �� b 2 Fg is a congruence on AK. As AK is a Boolean algebra, this

is almost obvious, except that ha; bi; hc; di 2 �(F ) implies ha�c; b�di 2 �(F ). Assume

ha; bi; hc; di 2 �(F ). Then we have,

ha; bi; hc; di 2 �(F ) =) a �� b; c �� d 2 F (de�nition of �(F ))

=) (a �� b) �� (c �� d) 2 F

=) (a �� c) �� (b �� d) 2 F

=) ((a �� c) �� (b �� d))�t 2 F (F is closed under r)

=) ((a �� c)�t) �� ((b �� d)�t) 2 F (Lemma 4.5.1 (i))

=) (a�c) �� (b�d) 2 F . (Lemma 4.5.1 (iii))
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Thus �(F ) is a congruence relation on AK. Moreover,

a 2 F(�(F )) i� a �� t 2 F(�(F ))

i� ha; ti 2 �(F )

i� a �� t 2 F

i� a 2 F .

Hence F(�(F )) = F . Also,

ha; bi 2 �(F(�)) i� a �� b 2 F(�)

i� ha; bi 2 �.

So �(F(�)) = �. It is also straightforward to check that the above map preserves joins

and meets of �lters and congruences.

�

As a result of Proposition 6.3.9, we can discuss EDPC property of PCIK-algebras by

using not a congruence relation but a congruence �lter.

De�nition 6.3.10 (i) A congruence �lter F of a PCIK-algebra AK is principal if it is

generated by a single element a 2 A. The principal �lter generated by a is denoted

by F (fag) or F (a).

(ii) A principal congruence �lter is equationally de�nable if there is a �nite set E(x; y)

of equations in two distinct variables such that for every a; b 2 A it satis�es

a 2 F (b) i� AK j= E(a; b):

Proposition 6.3.11 A variety VK of PCIK-algebras has EDPC if and only if principal

congruence �lters of PCIK-algebras in VK are equationally de�nable.

Proof. To show the only-if-part, assume VK has EDPC. Let �(x; y; z; w) be a principal

congruence formula of a given type. Then we can show that E(x; y) = f�(x; t; y; t)g

de�nes a principal congruence �lter as the following way:

a 2 F (b)() �(a; t) � �(b; t) (Prop. 6.3.9)

() a � t(mod �(b; t))

() AK j= �(a; t; b; t) (VK has EDPC by hypothesis)

() AK j= E(a; b).

Conversely, assume that 8AK 2 VK; a; b 2 A a 2 F (b) i� AK j= E(a; b). Then we can

show that the principal congruence formula �(x; y; z; w) 2 E(x �� y; z �� w) de�nes

EDPC :

c � d(mod �(a; b))() �(c; d) � �(a; b)

() �(c �� d; t) � �(a �� b; t)

() c �� d 2 F (a �� b) (Prop. 6.3.9)

()AK j= E(a �� b; c �� d) (hypothesis)

()AK j= �(a; b; c; d).
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�

Proposition 6.3.12 For every PCIK-algebra AK and all a; b 2 A a 2 F (b) holds if and

only if there exists some m 2 N such that AK j= rm(b) � a.

b

b�t

b�t�t

b�t� � � ��t

r1(b)

r2(b)

rm(b)

a

Figure 6.2: The situation of AK j= rm(b) � a in Proposition 6.3.12

Proof. Recall �rst that F (b) is the smallest congruence �lter containing b. Then we

claim that

F (b) =
[

n2N

[rn(b));

where [z) = fx; z � xg is the Boolean �lter generated by z. Now we de�ne F1 as
S
n2N[rn(b)) and we will show F (b) = F1. By the de�nition of F1, it is clear that

F (b) � F1 and that F1 is a congruence �lter.

Conversely, let F be any congruence �lter of AK such that b 2 F . Assume that x 2 F1,

i.e., rm(b) � x for some m 2 N. Then, since b 2 F and F is closed under r, we have

rm(b) 2 F . So x 2 F by the hypothesis rm(b) � x. Thus F1 � F . Thus F1 is the

smallest congruence �lter containing b. This means F (b) = F1 =
S
n2N[rn(b)). Hence the

following equivalences hold:

a 2 F (b) i� a 2
S
n2N[rn(b)) (above claim)

i� a 2 [rm(b)) for some m 2 N

i� AK j= rm(b) � a for some m 2 N.

�
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Fact 6.3.13 There exists an PCIK-algebra AK such that for any positive integer m 2 N

AK j= rm+1(x) 6= rm(x) holds.

Proof. We will show this fact by actually constructing an PCIK-algebra. Let Nfc be a

set of all �nite or co-�nite subset of N, i.e., Nfc = fA � N; either A or N n A is �niteg.

Then it is well known that B = hNfc;+; �;!;�; 0; 1i such that for any a; b 2 Nfc (i)

a+ b = a [ b, (ii) a � b = a \ b, (iii) a � b = a � b, (iv) �a = N n a and (v) 1 = N; 0 = ;

is a set theoretical Boolean algebra on N. Now let us consider a Boolean algebra

A = hNfc;+; �;!;�;�; 0; 1i with additional connective � that satis�es the following con-

ditions :

(1) for any co-atom cn 2 Nfc (n 2 N), that is cn = N n fng,

c0�1 = c0 � c1

(c0 � c1)�1 = c0 � c1 � c2
...

(c0 � c1 � � � � � cn)�1 = c0 � c1 � � � � � cn � cn+1
...

(c0 � c1 � c2 � � � � )�1 = c0 � c1 � c2 � � � �

(2) for any atom an 2 Nfc (n 2 N), that is an = fng,

a0�1 = 0

a1�1 = 0
...

an�1 = 0
...

Then we claim that A is an PCIK-algebra such that for any positive integer m 2 N

A j= rm+1(x) 6= rm(x) holds. So, at �rst we have to chech this algebra A satis�es condi-

tions (1)-(7) in Section 4.5. By Lemma 4.5.1, for every a; b; c; d 2 A we have the following

equalities :

(1) : a�a = (a$ a)�1 (Lemma 4.5.1 (iii))

= 1�1 = 1

(2) : a�b = (a$ b)�1 (Lemma 4.5.1 (iii))

= ((a! b)�1) � ((b! a)�1) (Lemma 4.5.1 (ii))

� ((b! a)�1) � ((a! b)�1)

= (b$ a)�1 (Lemma 4.5.1 (ii))

= b�a (Lemma 4.5.1 (iii))

(3) : (a�b) � (b�c) = ((a$ b)�1) � ((b$ c)�1) (Lemma 4.5.1 (iii))

= ((a$ b) � (b$ c))�1 (Lemma 4.5.1 (ii))

� (a$ c)�1

= a�c (Lemma 4.5.1 (iii))

(4) : a�b = (a$ b)�1 (Lemma 4.5.1 (iii))
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� (�a$ �b)�1

= �a�� b (Lemma 4.5.1 (iii))

(5) : (a�b) � (c�d) = ((a$ b)�1) � ((c$ d)�1) (Lemma 4.5.1 (iii))

= ((a$ b) � (c$ d))�1 (Lemma 4.5.1 (ii))

� ((a � c)$ (b � d))�1

= (a � c)�(b � d) (Lemma 4.5.1 (iii))

(6) : (a! b)�(b! a) = ((a! b)$ (b! a))�1 (Lemma 4.5.1 (iii))

� ((a! b) � (b! a))�1

= ((a! b)�1) � ((b! a)�1) (Lemma 4.5.1 (ii))

Thus A is an PCIK-algebra.

Next we will show this algebra A satis�es 8m 2 N; 8x 2 Nfc A j= rm+1(x) 6= rm(x).

Notice that we should only consider co-atoms as elements of algebra by the above construc-

tion of an algebraA. From the condition (1) of �, it is easy to see that cn�1 = cn+1 (n 2 N).

So for every ci 2 Nfc (i 2 N), we get the following sequences :

r0(ci) = ci

r1(ci) = (ci�1) � ci

= ci+1 � ci

= ci+1 � r
0(ci) 6= r0(ci)

r2(ci) = ((ci+1 � ci)�1) � ci+1 � ci

= (ci+1�1) � (ci�1) � ci+1 � ci

= ci+2 � ci+1 � ci+1 � ci

= ci+2 � ci+1 � ci

= ci+2 � r
1(ci) 6= r1(ci)

...

rm+1(ci) = (rm(ci)�1) � rm(ci)

= ci+m+1 � r
m(ci) 6= rm(ci)

...

Since the set of all co-atoms is a in�nite set, there exists a in�nite descending chain

of rm(ci) not including 0 by the above fact. Hence we have rm+1(ci) 6= rm(ci) for any

positive integer i;m 2 N.

�

From the above fact, we can show that the whole variety of PCIK-algebras does not

have EDPC by Propositions 6.3.11 and 6.3.12. However, we have the following.

Theorem 6.3.14 A subvariety VK of PCIK-algebras has EDPC if and only if there exists

some m 2 N such that for every AK 2 VK AK j= rm+1(x) = rm(x).

Proof. To show the only-if-part, assume VK is a variety of PCIK-algebra such that there

exists some m 2 N with 8AK 2 VK; AK j= rm+1(x) = rm(x). For any b 2 A, let F (b) be

a principal congruence �lter generated by b, and take any a 2 F (b).
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Then, we have AK j= rm+1(b) = rm(b). Also, by the hypothesis a 2 F (b) and applying

Proposition 6.3.12 to this, we get that there exists some k 2 N such that AK j= rk(b) � a.

Since the equality rm+1(b) = rm(b) holds in AK, we can take m for k. Thus by Proposition

6.3.12, we have: x 2 F (y) i�AK j= rm(y) � x i�AK j= �r
m(y) [ x = t. Hence, let us take

E(x; y) = f�rm(y) [ x = tg, then we conclude that VK has EDPC by Proposition 6.3.11.

Conversely, assume that VK has EDPC, but for any m 2 N, there exists an algebra

BK 2 VK such that BK 6j= rm+1(x) = rm(x). Then by Proposition 6.3.11, there exists a

�nite set E(x; y) of equations in two variables, which de�nes principal congruence �lters

. Let us take a sequence of algebras An (n 2 N) such that An 6j= rn+1(x) = rn(x), i.e.,

there exists an element an 2 An with An j= rn+1(an) < rn(an). De�ne AK =
Q

n2NAn and

a = han;n 2 Ni 2 A, and consider a principal congruence �lter F (a) generated by a. Since

VK is a variety, we have AK 2 VK. Moreover, it is easily noticed that F (a) is nontrivial

and proper, since we have rn+1(t) = rn(t) and rn+1(f) = rn(f) in An, respectively.

Now take c = hrn(an);n 2 Ni 2 A. Then by the hypothesis of An, we have

An j= rn+1(an) < rn(an) = cn for any n 2 N. So by applying Proposition 6.3.12 to this, we

get cn = rn(an) 2 F (an), i.e., the n-th projection of c belongs to the �lter F (an) on the n-th

coordinate. Hence, by the hypothesis of VK having EDPC and Proposition 6.3.11, we have

An j= E(cn; an) (n 2 N). Thus, in the product AK =
Q

n2NAn, we get AK j= E(c; a),

where a = han;n 2 Ni, c = hrn(an);n 2 Ni 2 A. Again, by the hypothesis of VK having

EDPC and Proposition 6.3.11, this means c 2 F (a), and by applying Proposition 6.3.12

to this, we get that there exists some m 2 N such that AK j= rm(a) � c.

However, since c = hrn(an);n 2 Ni by our de�nition, we have rk(an) > rn(an) = cn on

every coordinate n > k. Thus, we conclude that there exists no �xed k 2 N such that

AK j= rk(a) � c, where rk(a) = hrk(an);n 2 Ni. This contradicts AK j= rm(a) � c.

�

Example 6.3.15 (The case of PCIK4) This logic is de�ned by

PCIK4 = PCIK � ((A � B) ^ (C � D)! (A � C) � (B � D)):

So, in PCIK4-algebras AK4 = hA0;�i, � have to satisfy the following condition besides

from (1) to (7) in Section 4.5:

(8) (x�y) \ (r�z) � (x�r)�(y�z).

Then we have the following calculations:

r0(x) = x,

r1(x) = x \ (x�t),

r2(x) = x \ (x�t) \ (x \ (x�t))�t

= x \ (x�t) \ (x�t) \ (x�t)�t

= x \ (x�t) (?)
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= r1(x).

Here the above (?) can be calculate because that both (x�t) \ (t�t) � (x�t)�(t�t) by

(8), and (t�t)�t imply (x�t) � (x�t)�t. Hence a subvariety of PCIK4-algebras have

EDPC property.

6.4 Notes

In this chatper, we explained Lindenbaum-Tarski algebra, equivalential algebra and con-

gruence operators as various methods for the algebraization of deductive system. Besides

these methods, we can give one more method of such an aim, namely abstract logics. The

theory of abstract logics was initiated in 1970's under the inspiration of R. Suszko and the

elaboration of his collaborators, S. L. Bloom and D. J. Brown (see [12] and [13]). After

that, this approach was continued mainly by the Barcelona Group in Algebraic Logic (see

[28]). In general, abstract logics are couples L = (A; C) where A is an algebra and C is a

closure operator de�ned on the pwoer set of its underlying set. Then by the duality, we

can also express abstract logics by L = (A; C) where C is the closure system associated

with the closure operator C. Here abstract logics can be viewed as a generalization of

both concepts of formal deductive system (i.e., syntactical formalism) and logical matrix

(i.e., semantic matrices). If we view A in L as an algebra of sentential formulas, then

abstract logics L = (A; C) just correspond to the deductive system mentioned in Section

2.1. Moreover, if we view them from the semantical standpoint, then abstract logics cor-

respond to a family of logical matrices. This approach is useful in the study of deductive

systems that are not protoalgebraic, e.g., the conjunction-disjunction fragment of classical

logic mentioned in Section 6.1 (see also [26]). As other examples of this approach, we can

�nd modal logics (see [24] and [37]), and relevance logics (see [25] and [27]).
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Chapter 7

Conclusions

In this chapter, we will summerize our achievements in this thesis (Section 1), and also

discuss some remaining problems and several further subjects in our research �eld (Section

2). Our main interest in this thesis is making a contribution to understanding a logic as

a uni�ed form. So as to do, we �rst observed that some kinds of nonclassical logic can

be reconstructed, commonly based on identity connective, as theories of non-Fregean

logic, i.e., SCI, created by R. Suszko, when we gave an appropriate interpretation to

identity connective in SCI. We called them the simulation property of SCI. If we assume

that two notions of identity and distinction (that is a dual notion of the former) are the

fundamentals of the knowledge acquisition and/or the construction of logic, then we can

view Suszko' formalization as that based on the former notion (i.e., identity). Then, our

main achievements in this thesis are concerned with a generalization of Suszko's SCI, and

hence these are also viewed as a formalization of logic by the former notion. Furthermore,

we also touch upon the latter notion (i.e., distinction) brie
y as one of the further subjects

in Section 2.

7.1 Achievements

In this section we will summerize our achievements in this thesis. We have formalized

a logical system PCI, based on the notion of identity, as a generalization of Suszko's

SCI. Roughly speaking, our results can be classi�ed two subjects, namely syntactical

translations between various kinds of nonclassical logics and PCI logics, and algebraic

characterizations of a speci�c PCIK extension. We will summerize each result in the

following subsections.

7.1.1 Syntactical translations

In general, we can classify nonclassical logics, according to its construction, into two types,

namely (i): classical logics with additional operators and (ii): weak logics with various

kinds of weak implication, e.g., strict/relevance/linear implication. Since SCI logic is a

bit strong to simulate a weak modal logic like K on it, so we have �rst introduced more
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weak system, which is obtained from SCI by deleting two identity axioms of re
exivity

and transitivity, and we called it PCI logic. Then, by de�ning the simulation property

precisely as the syntactical equivalence of two logics, we gave the following simulation

properties of PCI on each types of nonclassical logics. Here two logics are called syn-

tacticall equivalent if there exist two translations between two langauges such that both

translations preserve the logical relationships of two logics.

(i) Classical logics with additional operators

In fact, we have considered as this case the classical modal logics with necessary

operator 2. At �rst, we de�ned two translations between K and PCI languages by

imposing the equality A � B i� 2(A$ B) to hold. As a result we have introduced

the PCIK extension, which is obtained from PCI by adding two identity axioms

(WIA1) and (WIA2), and one inference rule (G). Then, for above two translations

and PCIK extension, we showed that K and PCIK are syntactically equivalent

in a sense of De�nition 3.4.1, and hence we also showed that modal logic K is a

simulationable on PCIK logic. Furthermore, we showed that the same situation

holds for various extensions of K. Here of cource, if we consider modal extensions

KT4 and KT5 (which are also called S4 and S5, respectively), then our system

PCIS4 and PCIS5 are identical to the original extensions WT and WH of SCI,

respectively, which are �rst introduced by R. Suszko in [65] and [67]. In this sense,

our results of PCI can be seen as a generalization of Suszko's SCI, while PCI

logic is no longer non-Fregean logic in a sense of Suszko's intention. Finally, as a

semantical investigation of PCIK logic, we have introduced Kripke type semantics

for PCIK logic by exchanging the validity of modal formulas in modal Kripke type

semantics with new validity of identity formulas. Then, we showed that PCIK and

K are also semantically equivalent relative to the same Kripke frame. So by invoking

the completeness of modal logic, we gave a completeness theorem of PCIK relative

to Kripke type semantics.

(ii) Weak logics with various kinds of weak implication

As this case, we have considered three types of weak logic, namely (1): weak

logic with relevance implication ; (concretely, Angell's analytic containment logic

AC), (2): weak logic with strict implication * (concretely, Corsi's weak logic

F) and (3): weak logic with linear implication � (concretely, Girard's classical

linear logic GL). At �rst, since AC has a synonymity connective � de�ned by

� � � i� (�; �) ^ (� ; �), we de�ned two translations between AC and PCI

languages by imposing the equality A � B i� A � B to hold. Then, the PCIW

extension obtained from PCI by adding two identity axioms of re
exivity and tran-

sitivity, is known as nothing but non-Fregean logic SCI. Furthermore, we showed

that AC and PCIW are syntactically equivalent in a sense of De�nition 3.4.1, under

the restriction of no nestings of identity. Secondly, since F has a strict implication, if
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we de�ne two translations between F and PCI languages by imposing the equality

A � B i� (A
 B) to hold, then we got the same extension PCIK in the sight

of both Kripke models between K and F. Then, we showed that every formulas

in F-language can be translated into PCIK with keeping logical validity by intro-

ducing an auxiliary language with an extra material implication ! to restore the

balance of both F and PCI languages. Finally, GL can be seen as a logic, in which

each of conjunction, disjunction and constant is splitted into additive and multi-

plicative parts, namely (^;_;?) and (�;+; 0), respectively, and moreover, linear

implication � depends not on additive part but on multiplicative part. So if we

de�ne two translations between GL and PCI languages by imposing the equal-

ity A � B i� (A � B) ^ (B � A) to hold, then we got the PCIGL extension from

PCI by adding the identity axioms (LT), (LE), (L*1), (L*2) and (LDN), which

corresponded to the axioms of multiplicative part in GL, under the weak system

PCIK in the above case of (i). Then, for above two translations and PCIGL ex-

tension, we showed that every formulas in GL-language can be translated into

PCIGL with keeping logical validity by applying the similar discussion as the case

of F. In PCIGL, there exist the extra connectives >, ^ and �, which correspond

to multiplicative part in GL, abbreviated in PCIGL as: A > B := (A � A ^B),

^ A := A > :(A � A) and A �B :=^ (A >^ B).

7.1.2 Algebraic characterizations

We have investigated the algebraic characterizations of a speci�c PCIK extension men-

tioned in the above (i). At �rst, as a semantical counterpart of PCIK logic, we have

introduced a PCIK-algebras AK = hA0;�i, which is a Boolean algebra A0 with an addi-

tional binary operation �. Then, we gave the representation theorem of this algebras in

the similar way to the case of modal algebras by using the de�nitions of duality of frame

and algebra. Moreover, we gave an alternative completeness result of PCIK logic by us-

ing the above representation theorem. Next, since it is easily shown that PCIK-algebras

form a variety, we have investigated a necessary and su�cient condition for a subvariety

of PCIK-algebras to have equationally de�nable principal congruences (EDPC for short)

property, which is closely connected with the deduction theorem of a logic. At �rst, by

invoking an isomorphism between the lattice of �lters of PCIK-algebras and the lattice

of congruences of PCIK-algebras, we can restate equivalently the EDPC property as that

principal �lters of PCIK-algebras are equationally de�nable. As a result, by introducing

an extra unary operator r on PCIK-algebra such that r(x) = (x�t) \ x, r0(x) = x and

rn+1(x) = r(rn(x)), we gave a desired condition that a subvariety of PCIK-algebras to

have EDPC is equivalent to the equation rm+1(x) = rm(x) for some m in N.
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7.2 Further researches

In this section we will discuss some remaining problems and several further subjects. At

this point in time, these are listed as the following subsections.

7.2.1 Develop the semantics of PCI logic

In this thesis, we have introduced a system PCI, that is weaker than the original SCI,

because of lacking the re
exivity (SI) and transitivity (C5) axioms for identity below:

(C5) (A � B) ^ (C � D)! (A � C) � (B � D),

(SI) (A � B)! (A! B).

At �rst, we would like to construct a logical matrix model of PCI logics, as the similar

manner to the case of SCI matrix model. In SCI matrix model, the identity connective �

is typically interpreted as the arithmetic equality = of Boolean algebras. In PCI matrix

model, however, we need more weak interpretation of identity because that the re
exivity

and transitivity of identity are generally not assumed in PCI logic. To de�ne such a

interpretation of identity, now we are investigating the q-matrix model, proposed by G.

Malinowski to �t his many-valued matrix semantics, which has a form of M = (A; D;D),

where D and D denote to accepted and rejected designated elements of M, respectively.

Secondly, we want to consider the Kripke type semantics of both SCI and PCI logics.

Since both are a kind of situation theory, so we think worth developing the relational

semantics of these. Lastly, we also would like to develop the semantics of PCI by using

the discussion of the abstract logic, because that we have conjectured PCI as being not

protoalgebraic.

7.2.2 Expand the target of simulations by PCI logic

All nonclassical logics investigated in this thesis are classical base. There exist, however,

a considerable number of known nonclassical logic based on the intutionistic logic, for

instance, intuitionistic modal logic, intuitionistic linear logic and so on. Hence our next

target of simulations by PCI logic are those of intuitionistic base. Then, since P.  Lukowski

studied the intuitionistic version of SCI (he called ISCI for short) in the semantical point

of view, we can refer to his results when we will construct the above simulations. The

next candidate of simulations by PCI logic is a predicate logic. At the beginning of the

development of non-Fregean logic, Suszko constructed his situation theory on the two

sorted languages, namely sentential and nominal languages which are devoted to express

the ontology of situations and objects, respectively. After that, his main interest, however,

moved to SCI system for the sake of simplicity. So if we want to investigate totally the

Suszko's or Wittgenstein's situation theory, then we also need to consider the case of

predicate logics. Furthermore, we would like to investigate the Gentzen type formalization
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of PCI system based on the natural deduction. In SCI, Gentzen type formalization was

already introduced in proceeding of the Cut-elemination. Hence as the similar manner to

SCI, we would like to construct the Gentzen type formalization of PCI, and moreover,

to consider the connection with computer science.

7.2.3 Consider PCI logic as a uniform framework

At present, there exist many kinds of logic which were born from their individual back-

ground or object, for instance, intuitionistic logic has the epistemic motivation, while

classical logic has the ontological basis. So if we want to understand them uniformly,

then we need some kinds of metalogic. As such a kind of metalogic, we can consider the

FL proposed by H. Ono in [51]. In FL, various kinds of logic are lined up as some ex-

tensions of FL in view of substructural rules, i.e., weakening/contraction/exchange rules.

Why it is possible is that FL was constructed to express the common property among

logics, that is a structural rule in Gentzen formalization. Similarly, our system PCI has

been constructed to express the sameness situation of individual logic by identity connec-

tive. In this thesis, we have demonstrated the typical cases by the simulation property of

PCI logic. However, in order to make up our system PCI to suit the real cases, we have

to re�ne it more and more.

7.2.4 Expect another logical framework based on distinction

Finally in this subsection, we will discuss another direction based on the notion of dis-

tinction, which is a dual notion of identity. In fact, we can �nd the similar notion in

some literatures. For example, D. Van Dalen proposed the theory of apartness for the

purpose of proceeding the intuitionistic mathematics (see [21]). In this theory, it was

employed the positive inequality relation, which was �rst introduced by L. E. J. Brouwer

and axiomatized by A. Heyting, below.

De�nition 7.2.1 A binary relation # is called an apartness relation if for any x, y and

z, it satis�es the following conditions:

(i) x = y $ :(x#y),

(ii) x#y $ y#x,

(iii) x#y ! (x#z) _ (y#z).

Secondly, P.  Lukowski used the new connective of nonidentity 6� to de�ne the intuitionistic

possibility in [42], which has the following properties:

(B1) :(� 6� �),

(B2) (� � 6�� �)! (� 6� �),
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(B3) ((� ? 
) 6� (� ? �))! ((� 6� �) _ (
 6� �)), where ? 2 f^;_;);
; 6�g,

(B4) (� ) �)! (� 6� �).

Here, � and ) are weak negation and coimplication, respectively (for detail, refer to [42]).

Thirdly, G. Spencer-Brown published his book Laws of Form [62] in 1969, which was an-

other formalization of Wittgenstein's Tractatus. In this book, he constructed the primary

arithmetic by cross operation based on the primary action of distinction. There were a

few followers, e.g., F. Varela and L. Kau�man to re�ne his theory, but unfortunately,

there has been almost nothing of in
uences to the logical �eld until now. Lastly, from

the philosophical site, G. Deleuze emphasized in [23] that both di�erence and repetition

were the most primary acts for everything, through studying of Leibniz's in�nitesimal

analysis. From the above several pieces of approach, we are fully convinced that it is

worth developing the another theory based on the dual notion of identity, i.e., distinction.
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