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Abstract

In this thesis, we investigate a type of non-classical logics from a seman-

tical point of view. We deal with non-classical propositional logics around

orthologics, and the minimum predicate extensions of some of them.

Every propositional logic we consider here is introduced so as to be char-

acterized by a variety of algebras, and so there exists a variety of algebras

that corresponds to each propositional logic. Therefore, some properties of

a variety of algebras re
ects on some properties of its corresponding propo-

sitional logic.

One of the topics we focus on in this thesis is the admissibility of completion

of a class of algebras. There are mainly two ways of embedding an algebra

into a complete one, that is, the Dedekind-MacNeille completion technique

and the method via dual space construction. The �rst can be used when

we consider an algebraic semantics of the minimum predicate extension of

propositional logics and we establish the completeness theorem with respect

to that semantics, because the embedding map preserves all existing joins

and meets in this technique. This argument goes through for a few members

of our group of logics. Indeed, we can show that their corresponding varieties

of algebras admit completion by Dedekind-MacNeille completion technique,

which also enables us to discuss the minimum predicate extensions of these

logics. On the other hand, the second method is employed when we construct

a relational semantics of a propositional logic. In fact, for some of our logics,

we will build their relational semantics by using this completion method, and

we will show the completeness with respect to these semantics.

Furthermore, by modifying the above completion techniques a little bit,

we can prove that some members of our varieties have an algebraic property,

which implies that the propositional logics that correspond to them and their

minimum predicate extensions have the Craig's interpolation property.

The other topic in this thesis is the construction of a semantics of ortho-

modular logics. Since we can not take suitable dual spaces for orthomodular

lattices, there does not exist a set-theoretic representation theorem for them

which is convenient for semantics of orthomodular logics. Here we use a

di�erent representation theorem for orthomodular lattices, which is not set-

theoretic, to construct Kripke-style semantics for orthomodular logics. This

semantics consists of a non-empty set with some operations, instead of some

relations. We show that any orthomodular logic is complete with respect to

a semantics of this kind, and moreover, we discuss the in�nitary extension of

orthomodular logics by using this semantics.
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1 Introduction

In this thesis, we investigate a type of non-classical logics which are weaker

than the classical logic, from an algebraic point of view. Here weaker means

that some of the logical laws in the classical logic are missing in logics we

consider. One of the most important laws our logics do not have is the

distributive law. The lack of the distributive law leads to some signi�cant

di�culties in the usual methods of analyzing algebraic logics. In particu-

lar, the distributive law is needed for taking dual spaces of original algebras,

which are quite useful and tractable in analyzing the intuitionistic logic and

modal logics. Because of these problems, this area of non-classical logics re-

mains underdeveloped.

There are a few kinds of non-classical logics which do not have the dis-

tributive law. Among them, there are orthologics, orthomodular logics and

their neighbors. These we will deal with here. The origin of the study of

this area of logics is the mathematical formulation of quantum mechanics

and the discovery of algebraic structures, called orthomodular lattices. We

will begin this introduction with a story about the relation between quantum

mechanics and orthomodular lattices according to [43].

1.1 Quantum mechanics and orthomodular lattices

The mathematical foundation of quantum mechanics was laid by J. von

Neumann in 1932. In his book \Die mathematische Grundlagen der Quan-

tenmechanik" [47], von Neumann formulated physical concepts by means of

the theory of Hilbert space.

A Hilbert space H on the complex �eld C is a vector space over C which

is equipped with an inner product h ; i, and it is complete with respect to

the norm k � k that is de�ned from the inner product. Here, complete means

that every Cauchy sequence in H converges in H.

In his book, von Neumann postulated that the basic notions in quantum

mechanics are states and observables . A state of a physical system corre-

sponds to the complete knowledge of the physical system, from which we can

make predictions about its development in the future. In his formulation,

a state of a quantum mechanical system is mathematically described by a

unit vector  in a Hilbert space H. This is inspired by Max Born's prob-

abilistic interpretation of wave functions, that is, \the wave function  in

Schr�odinger's wave mechanics can be interpreted as a probability amplitude,

i.e., j j2 as the probability density of a particle in the con�guration space".

The vector  2 H with k k = 1 and the vector ei� represent the same state,

and the knowledge about a state enables us only to determine expectations

of observables.

On the other hand, observables correspond to measurable physical quanti-

ties, whose values are expressed by real numbers. In von Neumann's formu-

lation, a self-adjoint operator is attached to every observable. In a Hilbert

1



1.1 Quantum mechanics and orthomodular lattices 2

space H, the adjoint operator T � of a linear operator T is de�ned as the

linear operator satisfying h ; T'i = hT � ; 'i. An operator T is self-adjoint

if T = T �. All eigenvalues of a self-adjoint operator T are real and two

eigenvectors  , ' of T whose eigenvalues are di�erent are orthogonal to each

other, that is h ; 'i = 0. As a special self-adjoint operator, there is a kind of

projection operators. P is a projection operator if it satis�es P = P � = P 2.

To every projection operator P , there corresponds a unique closed subspace

of H, namely, fx 2 H jPx = xg. Conversely, for any closed subspace C of H,

we can consider a unique projection operator which is attached to C. Here

a subspace C of H is closed if every Cauchy sequence in C converges in C.

The following spectral resolution theorem shows the relation between ob-

servables and self-adjoint operators. The spectrum of an operator T is the

set of all complex numbers � such that the operator T � �I does not have

a bounded inverse operator. (I is the identity operator.) The spectrum of a

self-adjoint operator is a subset of real numbers R, in particular, the spec-

trum of a projection operator is a subset of f0; 1g.

Theorem 1.1 (See [43])

For every self-adjoint operator T , there exists a unique spectral resolution E

on the spectrum 
 of T such that

T =

Z



!E(d!)

where the map B 7! E(B) satis�es the following:

(a) E(B1 \ B2) = E(B1)E(B2)

(b) E(
� B) = E(B)0 = I � E(B)

(c) E(
S
i2N Bi) =

P
i2N E(Bi)

Here, if B is a Borel subset of 
 then E(B) gives a projection operator, and

fBigi2N is a sequence of mutually disjoint subsets of 
. 2

Consider a case where a quantum mechanical system is in a state  and

where we will make a measurement of an observable whose corresponding

self-adjoint operator is T . Each spectral value ! 2 
 of T is interpreted as a

possible value which may be obtained by the measurement of that observable.

Then, the probability that the measurement has as outcome a value lying in

a Borel set B � 
 is given by

� (B) = h ;E(B) i

where E is the spectral resolution of T . Furthermore, the expectation value

of the observable T can be given by

� (T ) =

Z



!� (d!)

2



1.1 Quantum mechanics and orthomodular lattices 3

The spectral resolution theorem of observables allows us to replace observ-

ables by projection operators. Von Neumann suggested considering projec-

tion operators as representing propositions. If a proposition is true (which is

determined by a measurement), then we assign the numerical value 1 to it,

and if the proposition is false, we assign the numerical value 0 to it. This is

the starting point of the development of the quantum logic.

In 1936, von Neumann and G. Birkho� published the �rst article on the logic

of quantum mechanics ([3]). Their main idea was that with each physical

system, an orthocomplemented partially ordered set L is associated, where

members of L correspond to propositions concerning the system which can

be veri�ed by experiments. The order in L corresponds to the operation of

implication, and the orthocomplementation corresponds to negation. The

operations meet \ and join [ in L correspond to conjunction (and) and

disjunction (or), respectively. For each classical mechanical system, L is a

Boolean algebra, whereas for each quantum mechanical system, L does not

always ful�ll the distributive law;

a \ (b [ c) = (a \ b) [ (a \ c):

In their article, von Neumann and G. Birkho� proposed L to be considered

as a modular lattice, in which the following modular law holds;

a � b implies (a [ c) \ b = a [ (c \ b):

However, it is proved that the lattice C(H) of all closed subspace of a Hilbert

space H (which is isomorphic to the lattice of all projection operators of H)

is modular if and only if H is �nite dimensional. Therefore their postulate

is not true for an in�nite-dimensional Hilbert space.

Much of von Neumann's subsequent works on continuous geometries and

rings of operators was motivated by his desire of constructing logical calculi

satisfying the modular law. It is K.Husimi who discovered in 1937 ([21]) the

condition that is satis�ed in the lattice C(H) for any Hilbert space H, i.e.,

a � b implies a = b \ (b0 [ a):

This condition is now called orthomodular law.

In 1955, the orthomodular law was rediscovered independently by L.Loomis

([28])and S.Maeda ([31])in connection with their e�orts to extend von Neu-

mann's dimension theory for rings of operators. Structures studied by Loomis

and Maeda are now called orthomodular lattices. The name orthomodular lat-

tice was introduced by Kaplansky ([27]) in order to distinguish it from an

orthocomplemented lattice which satis�es the modular law. The latter is now

called a modular ortholattice. After 60s, intensive studies of orthomodular

lattices have been made mainly in connection with mathematical analysis.

Before closing this section, we summarize the relation between the algebras

3



1.1 Quantum mechanics and orthomodular lattices 4

we consider and structures of all closed subspaces C(H) of a Hilbert space

H.

De�nition 1.2

(1) A = hA;\;[; 0; 0; 1i is an ortholattice if it satis�es the following condi-

tions:

(i) hA;\;[; 0; 1i is a bounded lattice with the least element 0 and the

greatest element 1.

(ii) (�)
0

is a unary operation (ortho-complement) on A which satis�es

the following: For any x; y 2 A,

(a) x00 = x.

(b) x � y implies y0 � x0.

(c) x \ x0 = 0

(2) An ortholattice A is an orthomodular lattice if the following orthomod-

ular law holds for any x; y 2 A

x � y implies x = y \ (y0 [ x).

(3) An ortholattice A is a modular ortholattice if the following modular law

holds for any x; y; z 2 A.

x � y implies (x [ z) \ y = x [ (z \ y).

It can be shown that an ortholattice A is a Boolean algebra if and only if it

satis�es the distributive law.

We can construct a complete ortholattice of an inner product space V over a

�eld K in the following standard way. First, a binary relation ? on V (called

an orthogonality relation) is de�ned as: a?b if and only if ha; bi = 0, where

ha; bi denotes the inner product of a and b. Second, for any subspace S of V ,

de�ne S? := fb 2 V j a?b for all a 2 Sg, and let R(V ) := fS � V j (S?)? =

Sg. Then it can be shown that the structure hR(V );
T
�;
S
; (�)?; f0g; V i is

a complete ortholattice, where
T
� is the intersection and

S
is de�ned byS

S� = (
T
� S�

?)?.

Note that for a Hilbert space H over the complex �eld C , R(H) and C(H)

( all closed subspaces of H ) coincide. In this case, the following theorem

holds.

Theorem 1.3 For any Hilbert space H over C , hC(H);
T
�;
S
; (�)?; f0g; Hi

is a complete orthomodular lattice. 2

In 1966, I. Amemiya and H. Araki ([1]) proved the following theorem which

characterizes the orthomodular law for Hilbert spaces.

4



1.2 Orthologic and its relational semantics 5

Theorem 1.4 Let V be an inner product space over C . Then R(V ) is

orthomodular if and only if V is complete, that is, V is a Hilbert space. 2

As already mentioned above, the following theorem on the modular law

holds.

Theorem 1.5 A Hilbert space H over C is �nite dimensional if and only

if C(H) is modular. 2

As seen above, the orthomodular law and the modular law play very impor-

tant roles in the theory of Hilbert spaces. The former characterizes Hilbert

spaces in the set of inner product spaces and the latter represents �niteness

of the dimension of the space.

So far, we have presentaed some analytical background of our research.

However, our aim in this thesis is to discuss the universal-algebraic aspects

of orthologics and orthomodular logics, so we will not go back to analysis or

Hilbert space theory any more. Nor will we go into any topics about quan-

tum logic or quantum physics as this would lead us even farther a�eld.

The fundamental work on orthologic is the construction of relational seman-

tics for this logic by R.I.Goldblatt, which is introduced in the next section.

1.2 Orthologic and its relational semantics

Goldblatt's paper in 1974 ([15]) deals with orthologics and orthomodular

logics in a similar way as in modal logics. In that paper, he de�ned orthologics

as binary logics, constructed a relational semantics for orthologics, proved

its completeness and �nite model property, and extended his semantics for

orthomodular logics. We will follow his approach in investigating our logics,

and hence, in this section, we will introduce his method brie
y, according to

the paper [15].

1.2.1 Syntax of orthologics

The language consists of (i) a denumerable collection fpi j i < !g of propo-

sitional variables, (ii) the connectives : and ^ of negation and conjunction,

(iii) parentheses ( and ). The set � of well-formed formulas is constructed

from these symbols in the usual way. The disjunction connective _ can be

introduced as an abbreviation � _ � := :(:� ^ :�). Note that there is no

implication connective in the language, because it is not possible to introduce

any suitable implication connectives in the system of orthologics in general

([25], [36]).

Usually, a logic is de�ned as a set of formulas which contains some axiom

5



1.2 Orthologic and its relational semantics 6

schemes and is closed under some inference rules. But in this case, an or-

thologic is de�ned as a set of ordered pairs of formulas, because of the lack

of implication symbol. Goldblatt called a logic which is de�ned as a set of

pairs of formulas, a binary logic . For formulas �; �, we denote � `L � to

mean that the pair h�; �i is a member of the logic L . The formal system of

orthologics is de�ned in the following way.

De�nition 1.6 (Orthologic) An orthologic L on the set � of formulas is

a subset of the product � � � which includes the following axiom schemes

and is closed under the following inference rules:

Axiom schemes:

(Ax1)

� `L �

(Ax2)

::� `L �

(Ax3)

� `L ::�

(Ax4)

� ^ � `L �

(Ax5)

� ^ � `L �

(Ax6)

� ^ :� `L �

Inference Rules:

(R1)
� `L � � `L 


� `L 


(R2)
� `L � � `L 


� `L � ^ 


(R3)
� `L �

:� `L :�

The intersection of all orthologics on �, that is, the smallest orthologic, is

denoted by O .

Of course, this formal system is formulated so as to satisfy the following

algebraic characterization theorem. A valuation v from � to an ortholattice

A is a function v : �! A, which satis�es the conditions:

(1) v(� ^ �) = v(�) \ v(�). (2) v(:�) = (v(�))0.

Theorem 1.7 (Characterization for O)

For any formulas � and �, the following two conditions are equivalent:

(1) h�; �i 2 O.

(2) v(�) � v(�) holds for any ortholattice A, and for any valuation v from

� to A. 2

6



1.2 Orthologic and its relational semantics 7

Proof is very standard. (1) implies (2) is proved by showing that (2) holds

for (Ax1),...,(Ax6) and is preserved by (R1), (R2), and (R3). Conversely, (2)

implies (1) is proved by showing that the Lindenbaum algebra for O is an

ortholattice. The Lindenbaum Algebra for an orthologic L is the quotient

algebra �= �L, where � �L � if and only if h�; �i 2 L and h�; �i 2 L.

A few more syntactical notions and notations are introduced here. Let L be

an orthologic. For a formula � and a non-empty (possibly in�nite) subset �

of formulas, � is L-derivable from � (� `L �) if there exist �1; �2; � � ��n 2 �

such that �1 ^ � � � ^ �n `L �. For a non-empty set � of formulas, � is L-full

if it ful�lls the following conditions.

(1) For some � 2 �, � `L � does not hold.

(2) If � 2 � and � `L �, then � 2 �.

(3) If �; � 2 �, then � ^ � 2 �.

The notion of L-full sets corresponds to that of proper �lters of ortholattices

in an algebraic sense. The notion will be used when the canonical model for

an orthologic L is constructed.

1.2.2 Relational semantics of orthologics

In general, there are mainly two ways of constructing semantics for logics.

One is the way of algebraic semantics, an example of which we have seen

above for the case of the smallest orthologic O, and the other is the way

of relational semantics, or Kripke-style semantics, such as a non-empty set

with some relations. The method of relational semantics has proved to be a

great success particularly in modal logics, because it is easy to visualize and

manipulate, and it is very simple to characterize models in this semantics for

almost all important modal logics.

Establishing the completeness theorem for a logic with respect to a rela-

tional semantics is equivalent to proving a representation theorem of the

algebra which corresponds to that logic, by way of taking its dual space. In

the case of modal logics, J�onsson-Tarski's representation theorem for Boolean

algebras with operators ([24]) is the foundation of relational semantics. Al-

though an ortholattice is not a Boolean algebra, there exists a representa-

tion theorem via dual space, which is the basic result for constructing rela-

tional semantics for orthologics. This representation theorem was obtained

by R.I.Goldblatt ([16]) in 1975.

An orthogonality space F = hX;?i consists of a non-empty set X and a

binary relation ? on X which is irre
exive and symmetric. For a subset

Y � X, de�ne, Y � := fa 2 X j a?b for any b 2 Y g, and Y is ?-regular if

Y = Y �� holds. The following theorem holds for orthogonality spaces and

ortholattices.

7



1.2 Orthologic and its relational semantics 8

Theorem 1.8

(1) The class R(F ) of all ?-regular subsets of F is a complete ortholattice

where the order is set inclusion, the lattice meet is set intersection, and

the orthocomplement is the operation of taking (�)�.

(2) let A = hA;\;[; (�)0; 0; 1i be an ortholattice. De�ne XA and ?A as

follows: XA is the collection of all proper �lters of A, and for x; y 2 XA,

x?Ay if and only if there exists an element a 2 A such that a 2 x and

a0 2 y. Then the pair FA = hXA;?Ai is an orthogonality space.

(3) Every ortholattice A can be embedded into a complete ortholattice

R(FA), where the embedding � : A ! R(FA) is de�ned as: �(a) :=

fx 2 XA j a 2 xg. 2

Orthogonality spaces appeared already in the paper by Foulis and Ran-

dall ([14]) and the above result (1) was well known long before Foulis and

Randall, which is stated in Birkho�'s book ([4]). Goldblatt has showed a

way to construct an orthogonality space of an ortholattice. Then he used

the orthogonality space to establish a representation of any ortholattice. To

obtain his full representation theorem, we need to restrict R(FA) by intro-

ducing a topology so as to make the map � isomorphic. But even the above

theorem is enough for proving the completeness theorem of the logic O with

respect to its relational semantics, that is, the following frames and models

for orthologics.

De�nition 1.9

(1) F = hX;?i is an orthoframe if X is a non-empty set and ? is an

irre
exive symmetric binary relation.

(2) M = hX;?; V i is an orthomodel on the frame hX;?i if V is a function

assigning to each propositional variable pi a ?-regular subset V (pi) of

X.

The truth of a formula � at a point x 2 X in M is de�ned recursively

as follows: The symbolM j=x � is read as \ a formula � is true at x in

a modelM".

(a) M j=x pi if and only if x 2 V (pi).

(b) M j=x � ^ � if and only if M j=x � and M j=x �.

(c) M j=x :� if and only if for any y 2 X, M j=y � implies x?y.

Let � be a non-empty set of formulas and � a formula. � implies � in an

orthomodel M (M : � j= � in symbol) if for any x 2 X, either there exists

a formula � such that not M j=x �, or else M j=x �. For an orthoframe F ,

8



1.2 Orthologic and its relational semantics 9

� F -implies � (F : � j= � in symbol) if M : � j= � for all orthomodel M

on F . For a class C of orthoframes, � C-implies � (C : � j= � in symbol) if

F : � j= � for all frames F in C.

Let � be the class of all orthoframes. Under these setting of orthomodels

and the notion of validity, the following holds.

Theorem 1.10 (Soundness for O) If � `O �, then � : � j= �. 2

This soundness result is essentially equivalent to (1) of Theorem 1.8. To

prove the completeness, the canonical model for an orthologic L has to be

constructed. The canonical orthomodel for L is de�ned in the following way.

De�nition 1.11 Let L be an orthologic. Then the canonical model for L

is the structure ML = hXL;?L; VLi, where

XL = fx � � j x is L-fullg.

x?Ly if and only if there exists � such that :� 2 x and � 2 y.

VL(pi) = fx 2 XL j pi 2 xg.

Clearly this construction is a translation of the dual space construction of

an ortholattice in (2) of Theorem 1.8 into logical terms. It is easily seen that

ML is indeed an orthomodel, and so, as in the theorem, the following holds.

Lemma 1.12 Let L be an orthologic, � a non-empty set of formulas, � a

formula.

(1) For all x 2 XL, ML j=x � if and only if � 2 x.

(2) � `L � if and only ifML : � j= �. 2

With the aid of the lemma above, the completeness theorem for the ortho-

logic O is proved.

Theorem 1.13 (Completeness for O) If � : � j= �, then � `O �. 2

Furthermore, Goldblatt showed the following facts about the smallest or-

thologic O by analyzing his orthomodel.

(1) Any theorem of the orthologicO (i.e., any pair of formulas inO) can be

translated into a theorem of the Brouwerian modal logic B (its modal-

ity 2 corresponds to a re
exive, symmetric binary relation on Kripke

frames), which is formulated as a binary logic.

9



1.2 Orthologic and its relational semantics 10

(2) Filtration method works for orthomodels in establishing that O has

the �nite model property. Therefore O is decidable, since it is �nitely

axiomatazable.

(3) A semantics for the smallest calculus of orthomodular logic can be ob-

tained by a re�nement of the semantics for orthologics.

We will discuss his approach to the smallest orthomodular logic ( (3) above)

and its limits, in the remaining part of this section.

1.2.3 Extension to orthomodular logic and its limit

De�nition 1.14 (Orthomodular logic) An orthomodular logic L is an

orthologic which also includes the following axiom scheme.

(Ax7) � ^ (:� _ (� ^ �)) `L �

The smallest orthomodular logic, or the quantum logic is denoted by Q .

The axiom scheme (Ax7) represents the orthomodular law in a system

of binary logic, and so, the algebraic characterization of Q by the class of

orthomodular lattices holds as in the case of the orthologic O in Theorem

1.7.

To construct frames and models for orthomodular logics, the notion of

?-regularity in orthofames has to be re�ned as follows: Let hX;?i be an

orthoframe. For subset Y; Z of X with Y � Z, Y is ?-regular in Z, if

Y ?? = Y , where (�)? is a unary operation that depends on Z, de�ned by:

Y ? := fz 2 Z j z?y for all y 2 Y g.

De�nition 1.15 F = hX;?; �i is a quantum frame , if hX;?i is an or-

thoframe and � is a non-empty collection of ?-regular subsets of X which

satis�es the following:

(1) � is closed under set intersection and the operation (�)� de�ned by:

Y � := fz 2 X j x?y for all y 2 Y g.

(2) For Y; Z 2 � with Y � Z, Y is ?-regular in Z.

M = hX;?; �; V i is a quantum model, if hX;?; �i is a quantum frame and

V is a function assigning to each pi a member of �. The truth conditions are

the same as in De�nition 1.9.

The restriction of the range of the valuation V to � makes the axiom scheme

(Ax7) true in quantum models. Let 
 be the class of all quantum frames,

� a non-empty subset of formulas, and � a formula. Due to our re�nement,

the following soundness theorem holds.

10



1.2 Orthologic and its relational semantics 11

Theorem 1.16 (Soundness for Q) If � `Q �, then 
 : � j= �. 2

Let L be an orthomodular logic. The canonical model for L, this time, is

de�ned as follows:

De�nition 1.17 The canonical quantum frame for L is the structure GL =

hXL;?L; �Li, where XL and ?L are the same as in De�nition 1.11, and

�L = fj�jL j � 2 �g. Here j�jL = fx 2 XL j � 2 xg. The canonical quantum

model for L is NL = hXL;?L; �L; VLi, where VL(pi) = jpij.

As in the case of orthologics, the lemma similar to Lemma 1.12 holds for

orthomodular logics, from which the completeness theorem for the logic Q

follows.

Lemma 1.18 Let L be an orthomodular logic, � a non-empty set of

formulas, � a formula.

(1) For all x 2 XL, NL j=x � if and only if � 2 x.

(2) � `L � if and only if GL : � j= �. 2

Note that Lemma 1.12 (2) holds for the canonical model for an orthologic,

whereas in the lemma above, (2) holds for the canonical frame for an ortho-

modular logic.

Theorem 1.19 (Completeness for Q) If 
 : � j= �, then � `Q �. 2

The above approach of Goldblatt is now widely known as a method of gen-

eral frames (models), which works well in modal logics quite generally. What

we should �nd is a class of orthoframes that characterizes the orthomodular

logic Q. A few years later, however, he reached a negative answer to this

problem. In [17], he showed the following theorem by demonstrating that

an inner product space is an elementary substructure of its Hilbert space

completion, with respect to orthogonality relation.

Theorem 1.20 There is no �rst-order condition on orthogonality relations

that determines a subclass of the class of orthoframes that characterizes the

orthomodular logic Q. 2

Almost all important modal logics have their frames de�ned by �rst-order

conditions on the relation R. Usually, to show that a logic is characterized

by a certain class of frames it is enough to prove that the class includes

the frame of the canonical model. If the class can be de�ned by �rst-order

language, then the question boils down to showing that the canonical frame

satis�es a certain �rst-order condition or a set of such conditions. This is a

11



1.3 Organization of this thesis 12

standard approach for modal logics.

But the above theorem implies that the standard approach breaks down in

the case of orthomodular logics. Indeed, there remains several fundamental

questions still open about orthomodular logics. In order to tame orthomod-

ular logics, we need some new idea in semantical analysis.

1.3 Organization of this thesis

This dissertation consists of 7 chapters and an appendix. In each chapter,

we discuss the following subjects.

Chapter 1 was devoted to describing the background information of this re-

search, especially the relation between the theory of quantum mechanics and

the birth of orthomodular logics, and we explained one of the fundamental

work on orthologics and orthomodular logics by Goldblatt.

In Chapter 2, we introduce propositional logics which are discussed in this

thesis, and varieties of algebras corresponding to our logics. In this chapter,

we also prepare several algebraic tools which are used in the following chap-

ters, such as �lters, complete algebras, some algebraic laws, and so forth, and

we also show some algebraic propositions there, for future use.

One of the main topics, that is, completion of algebras is discussed in Chap-

ter 3. There are two ways of completion of algebras in general. One is the

Dedekind-MacNeille completion technique and the other is the method via

dual spaces of algebras. Among our varieties of algebras, three accept both

techniques, the variety of semi-ortholattices, the variety of ortholattices, and

the variety of Boolean algebras. The application of these completion results

to logic spreads over several directions. In this chapter, �rst we construct

relational semantics for the smallest semi-orthologics.

In Chapter 4, as the second application of completion technique, we discuss

the minimum predicate extensions of the smallest orthologic and the smallest

semi-orthologic. In this case, we have to use the Dedekind-MacNeille com-

pletion technique, because all even in�nite existing meets and joins must be

preserved by the embedding map in constructing semantics for the predicate

extensions.

The third application of completion technique is discussed in Chapter 5.

We will see, by a simple observation, that for any of our varieties of algebras,

the super amalgamation property of the variety is a su�cient condition for its

corresponding logic to have the Craig's interpolation property. We can prove

that the variety of ortholattices and the variety of semi-ortholattices have the

super amalgamation property by applying the Dedekind-MacNeille comple-

tion technique in a slightly modi�ed way. Thus we can conclude that both

12



1.3 Organization of this thesis 13

the smallest orthologic and the smallest semi-orthologic have the Craig's

interpolation property. Moreover, with the help of results in the previous

chapter, we can show that their minimum predicate extensions also have the

interpolation property.

Chapter 6 is devoted to devising a Kripke-style semantics of orthomodu-

lar logics. This type of semantics is based on the representation theorem

by Foulis, which employs a certain type of semigroups. We can prove the

general completeness of any orthomodular logic with respect to this type of

semantics. We discuss the in�nitary extension of orthomodular logics using

this semantics.

We summarize the thesis in Chapter 7, and discuss a few ways to tackle

the completion problem of orthomodular lattices.

Finally, in Appendix we discuss syntactical research on the smallest or-

thologic. A Gentzen type sequent calculus for the smallest orthologic by S.

Tamura is introduced there. This is a cut-free system, so we can obtain the

Craig's interpolation property of the smallest orthologic by applying Mae-

hara's method to this calculus.

13
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2 Basic notions

In this section, we prepare some algebraic concepts and logics for our in-

vestigation. Each logic we consider here is characterized by a certain class of

algebras, that can be de�ned by a set of identities. In other words, each logic

is formalized by a set of axiom schemes and inference rules which corresponds

to its de�ning set of identities.

2.1 Classes of algebras we discuss

Every algebra we treat here has the signature hA;\;[; (�)0; 0; 1i of type

h2; 2; 1; 0; 0i. A class of algebras which can be de�ned by a set of identities

is called a variety . All our classes of algebras are varieties. The �rst is

the largest class of all we consider. This class is called the variety of semi-

ortholattices and denoted by OL(�) . To show this class forms a variety

explicitly, we give its de�nition by the set of identities.

De�nition 2.1 (Semi-ortholattice) A semi-ortholattice is an algebraic

structure A = hA;\;[; 0 ; 0:1i, which satis�es the following identities:

x \ y = y \ x

x \ (y \ z) = (x \ y) \ z

x = x \ (x [ y)

x [ y = y [ x

x [ (y [ z) = (x [ y) [ z

x = x [ (x \ y)

x [ 1 = 1

x \ x0 = 0

(x0)0 \ x = x

x0 \ (x [ y)0 = (x [ y)0

In other words, a semi-ortholattice is a bounded lattice with a unary oper-

ation (�)0 which satis�es the following: for any x; y 2 A,

(a) x � x00.

(b) x \ x0 = 0.

(c) x � y implies y0 � x0.

In comparison with De�nition 1.2, it is easily seen that the class OL of

all ortholattices can be de�ned by the identities for OL(�) together with the

double negation law .

14



2.1 Classes of algebras we discuss 15

x = x00 (double negation law)

As is stated in De�nition 1.2 and below that, the class OML of all ortho-

modular lattices, the class MOL of all modular ortholattices, and the class

BA of Boolean algebras are de�ned by adding the orthomodular law, the

modular law, and the distributive law respectively, to the identities for OL,

which can be rewritten down in forms of identity in the following way.

For OML x \ f(x \ y) [ x0g = x \ y (orthomodular law)

For MOL x \ f(x \ y) [ zg = (x \ y) [ (x \ z) (modular law)

For BA x \ (y [ z) = (x \ y) [ (x \ z) (distributive law)

It is easily seen that the orthomodular law follows from the modular law,

and that the modular law follows from the distributive law. Similarly, the

class OML(�) of semi-orthomodular lattices , the class MOL(�) of semi-

modular ortholattice , and the class BA(�) of semi-Boolean algebras are ob-

tained by adding the above each identity respectively to the identities for

OL(�).

Obviously, all the classes we mentioned above are varieties which are sub-

varieties of OL(�), and the relation among these varieties are:

BA � MOL � OML � OL
� � � �

BA(�) �MOL(�) � OML(�) � OL(�)

There are, of course, many subvarieties of OL(�), other than those given

here. The symbol V is used for a meta-variable for a variety of algebras of the

signature hA;\;[; 0 ; 0:1i, whereas the symbol C is used for a meta-variable

for an arbitrary class of algebras of the same signature in general, and an

algebra which is a member of C is sometimes called C-algebra.

The varieties of algebras we have de�ned so far are used for interpreting

formulas of propositional logics, whereas, in interpreting sentences of a pred-

icate logic algebraically, we usually employ complete algebras of a suitable

kind.

Let P = hP;�i be a partially ordered set. For a subset S � P , a 2 P is

the greatest lower bound of S if a satis�es the following:

(1) a � x for all x 2 S.

(2) For any u 2 P , u � x for all x 2 S, then u � a.

The greatest lower bound of a given subset is uniquely determined if it exists.

The least upper bound of a given subset S is de�ned as the dual of the greatest

15



2.2 Some properties of our algebras 16

lower bound of S.

De�nition 2.2 Let A = hA;\;[; 0 ; 0:1i be an algebra in a class C. A is

complete C-algebra if for any S � A, there exists the greatest lower bound of

S (
T
S in symbol) in A.

It is easily shown that, if A is a complete algebra, then there also exists

the least upper bound of S (
S
S in symbol) for any subset S of A. Complete

V-algebras may be employed when the minimum predicate extension of the

smallest propositional logic which corresponds to V is considered. But this

type of semantics for the predicate extension is successful only when the

Lindenbaum algebra of this predicate logic can be embedded into a complete

V-algebra. The problem of completion of our algebras will be discussed in

the next chapter.

2.2 Some properties of our algebras

Before introducing logics, we will give in this section a several properties of

our algebras.

Proposition 2.3 Let A = hA;\;[; 0 ; 0:1i be a semi-ortholattice. Then

the following holds. For x; y 2 A,

(1) 00 = 1 and 10 = 0.

(2) x000 = x0.

(3) x0 [ y0 � (x \ y)0.

(4) (x [ y)0 � x0 \ y0. 2

The proof will be obtained by only simple calculations. Note that De Mor-

gan's law (x0 [ y0 = (x \ y)0 and (x [ y)0 = x0 \ y0) does not hold in semi-

ortholattices in general, but only the inequalities (3) and (4) hold. On the

other hand, De Morgan's law holds in any ortholattice because of the double

negation law. Therefore, in any ortholattice, the join x[ y of x and y can be

regarded to an abbreviation as (x0 \ y0)0, and so, the variety of ortholattices

can be de�ned by equations which includes only 0; 1;\; and (�)0.

Consider the distributive law (x\(y[z) = (x\y)[(x\z)). Then it is easily

seen that the dual form of this distributive law (x[(y\z) = (x[y)\(x[z))

can be derived from the original one and visa versa. For the modular law,

which can be also expressed as:y � x implies x \ (y [ z) = y [ (x \ z), its

dual form is just the same as the original one. On the other hand, it is not

the case for the orthomodular law.

The orthomodular law can be expressed equivalently in the following form:

16



2.2 Some properties of our algebras 17

(1) x \ f(x \ y) [ x0g = x \ y.

(2) x � y implies y = x \ (x0 [ y).

(3) x � y and x0 [ y = 1 imply x = y.

The equivalence of these three forms of orthomodular law can be shown

trivially. Among these forms of orthomodular laws and their dual forms, the

following relation holds.

Proposition 2.4 Let A = hA;\;[; 0 ; 0:1i be a semi-orthomodular lattice.

Then the following are equivalent. For x; y 2 A,

(1) x [ x0 = 1.

(2) x00 = x.

(3) x � y implies y = x [ (x0 \ y).

Proof : (1) ) (2): Since we have x � x00, x = x00 \ (x000 [ x) = x00 holds.

(2) ) (3): Trivial.

(3) ) (1): Since x � 1, and we have (3), 1 = x [ (x0 \ 1) = x [ x0 holds. 2

We point out one more fact. If we have the double negation law and the

orthomodular law together, the distributive law can be expressed in a simpler

form, that is, the following equivalence holds in orthomodular lattices.

Proposition 2.5 Let A = hA;\;[; 0 ; 0:1i be an orthomodular lattice.

Then the following are equivalent. For x; y; z 2 A,

(1) x \ (y [ z) = (x \ y) [ (x \ z).

(2) x \ (x0 [ y) = x \ y.

Proof : (1))(2): Trivial. (Take x0 for z.)

(2))(1): First, note that (x \ y) [ (x \ z) � x \ (y [ z) is clear. So it

is enough to show that x \ (y [ z) is the least upper bound of x \ y and

x \ z. Take any u 2 A such that x \ y � u and x \ z � u. Then, since

we have u \ x \ (y [ z) � x \ (y [ z), by the orthomodular law we have

only to show that (x \ (y [ z)) \ fu \ x \ (y [ z)g0 = 0. By the fact that

x\y = x\y\u � x\(y[z)\u, we have fx\(y[z)\ug0 � (x\y)0 = x0[y0.

Similarly we have fx \ (y [ z) \ ug0 � x0 [ z0. Then, by (2), we have

fx\ (y [ z)\ ug0 \ (x\ (y [ z)) � (x0 [ y0)\ x\ (y [ z) = x\ y0 \ (y [ z) and

fx\ (y[ z)\ug0 \ (x\ (y [ z)) � x\ z0 \ (y[ z). Therefore we conclude that

fx\(y[z)\ug0\(x\(y[z)) � x\(y[z)\(y0\z0) = x\(y[z)\(y[z)0 = 0.

2
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2.3 Other algebraic concepts 18

We call here the law of (2) the commutative law . It will be clear in Chapter

6 why this is called so. The next proposition will be also used in Chapter 6.

Proposition 2.6 Let A be an orthomodular lattice which satis�es the

commutative law. Then for x; y; z 2 A, the following holds:

(1) x \ (x0 [ y) = y \ (y0 [ x)

(2) (((x [ y0) \ y) [ z0) \ z = (((x [ z0) \ z) [ y0) \ y 2

The proof will be given by simple calculations.

2.3 Other algebraic concepts

Several notions for subsets of an algebra are useful in semantical analysis,

especially in constructing a dual space of that algebra. Here we introduce

the notion of �lters and show a simple fact on them. Let A = hA;\;[; 0 ; 0:1i

be a semi-ortholattice.

De�nition 2.7 A subset F � A is a �lter of A if it satis�es the following

three conditions: For x; y 2 A,

(1) 1 2 F .

(2) x 2 F and x � y imply y 2 F .

(3) x; y 2 F implies x \ y 2 F .

A �lter F of A is proper if 0 62 F . A proper �lter F of A is prime if it satis�es

the following:

(4) x [ y 2 F implies either x 2 F or else y 2 F .

In general, a subset S � A, which satis�es the condition (2) above is said

to be upward-closed . A downward-closed subset is de�ned dually. As seen

easily from above, the notion of �lter can be de�ned on structures which

has an order relation and a meet operation (\). For any non-empty subset

S � A, the �lter generated by S (in symbol [S)) is de�ned by:

[S) := fy 2 A j 9x1; x2; : : : ; xn 2 S such that x1 \ � � � \ xn � yg

It is easily proved that [S) is the smallest �lter which contains S.

The notion of proper �lters is used for completion of ortholattices, as is

shown in Chapter 1, and that of prime �lters is used for Boolean algebras.
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2.4 Logics 19

2.4 Logics

In this section, we introduce formal systems of propositional logics, each

of which has algebras in the previous section as its algebraic semantics. We

adopt a framework of binary logics by Goldblatt, which appeared in Chapter

1. First, we de�ne the system for a binary logic which corresponds to the

variety OL(�), and then, we extend this system by introducing a several ax-

iom schemes.

In propositional case, our language consists of the following primitive sym-

bols: a collection of propositional variables p; q; r; p0; p1; : : : etc., a proposi-

tional constant ? (falsity), a unary connective : (negation), binary connec-

tives ^ (conjunction) and _ (disjunction), and a pair of parentheses ( , ).

The set � of all formulas of this language is de�ned by the following three

formation rules:

(1) ? is a formula, and each propositional variable pi is a formula.

(2) If � is a formula, then so is (:�).

(3) If � and � are formulas, then so are (� ^ �) and (� _ �).

As already seen in Chapter 1, a binary logic L is de�ned as a set of pairs of

formulas in the following way. For formulas �; �, we denote � `L � to mean

that the pair h�; �i is a member of the logic L.

De�nition 2.8 (Semi-orthologic) A semi-orthologic L on the set � of

formulas is a subset of the product ��� which includes the following axioms

and is closed under the following inference rules:
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2.4 Logics 20

Axiom schemes:

(Ax1)

� `L �

(Ax2)

� `L ::�

(Ax3)

� ^ � `L �

(Ax4)

� ^ � `L �

(Ax5)

� `L � _ �

(Ax6)

� `L � _ �

(Ax7)

� ^ :� `L �

(Ax8)

? `L �

Inference Rules:

(R1)
� `L � � `L 


� `L 


(R2)
� `L � � `L 


� `L � ^ 


(R3)
� `L 
 � `L 


� _ � `L 


(R4)
� `L �

:� `L :�

A semi-orthologic is sometimes called simply a logic. The intersection of all

semi-orthologics on �, that is, the smallest semi-orthologic is denoted by

OL(�) .

A propositional extension of OL(�) is accomplished by adding some axiom

schemes to the logic OL(�). Let L be a logic, and (Axs) an axiom scheme.

Then the smallest logic which contains both L and (Axs) is denoted by

L� (Axs). Examples of such axiom schemes are the following:

(Dbn): ::� ` �

(Oml): � ^ (:� _ (� ^ �)) ` �

(Mod): � ^ ((� ^ �) _ 
) ` (� ^ �) _ (� ^ 
)

(Dis): � ^ (� _ 
) ` (� ^ �) _ (� ^ 
)

After these preparations, we can formulate the smallest orthologic (OL), the

smallest orthomodular logic (OML), the smallest modular orthologic (MOL),

and the classical logic (CL) as follows:
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2.4 Logics 21

OL = OL(�) � (Dbn)

OML = OL� (Oml)

MOL = OL� (Mod)

CL = OL� (Dis)

Similarly, the family of the smallest logics which do not have the dou-

ble negation law, that is, the smallest semi-orthologic, (OL(�)) the smallest

semi-orthomodular logic, (OML(�)) the smallest semi-modular orthologic,

(MOL(�)) and the smallest semi-classical logic (CL(�)) are formulated as

follows:

OL(�)

OML(�) = OL(�) � (Oml)

MOL(�) = OL(�) � (Mod)

CL(�) = OL(�) � (Dis)

Figure 1 below shows the relation among these 8 logics with the inconsistent

logic. Each circle indicates one of these logics. If a logic includes another

logic properly, then the former is located in the upper part, whereas the lat-

ter is in the lower, and both are tied with a line.

MOL

OML

OL

Inconsistent logic

CL

MOL

OML

OL

CL

(-)

(-)

(-)

(-)

Figure 1: The relation among logics
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Of course, there exist tremendously many logics and those 8 logics are only

a several examples. Each logic which contains the OML, for example, is

called an orthomodular logic. Such a naming is used for logics which is above

other smallest logics.

Now, we give some algebraic characterization theorems for logics. The

�rst one is for the semi-orthologic OL(�). Let A be a semi-ortholattice. A

valuation v is a function from � to A that satis�es the following conditions:

(1) v(?) = 0.

(2) v(:�) = (v(�))0.

(3) v(� ^ �) = v(�) \ v(�).

(4) v(� _ �) = v(�) [ v(�).

Then, the following characterization theorem holds for OL(�).

Theorem 2.9 (Characterization for OL(�))

For any formulas, � and �, the following two conditions are equivalent:

(1) h�; �i 2 OL(�).

(2) v(�) � v(�) holds for any A 2 OL(�), and for any valuation v from �

to A. 2

Similar characterization theorem holds for each of 8 logics which are given

above, that is, the logics OL, OML, MOL, CL, OML(�), MOL(�), and

CL(�) are characterized by the varieties OL, OML, MOL, BA, OML(�),

MOL(�), and BA(�), respectively. Moreover, a given subvariety V of OL(�),

we construct by adding certain set of axiom schemes the smallest logic L(V)

for which the following, similar characterization theorem as Theorem 2.4

holds.

Theorem 2.10 (Characterization for L(V))

For any formulas, � and �, the following two conditions are equivalent:

(1) h�; �i 2 L(V).

(2) v(�) � v(�) holds for any A 2 V, and for any valuation v from � to A.

2

Proofs of all such algebraic characterization theorem are quite similar for

the proof of Theorem 1.7.
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2.5 Note

The notions of ortholattices, orthomodular lattices, modular ortholattices,

and Boolean algebras are familiar in general, whereas the notions of their

counterpart which are missing the double negation law are the author's orig-

inal. So the terminology semi- ... lattice in this thesis is ad hoc and not so

popular.

Let A := hA;\;[; (�)0; 0; 1i be the reduct of a Heyting algebra hA;\;[;�

; 0; 1i, where the operation (�)0 is de�ned by: x \ y = 0, x � (y � 0) = y0.

Then it is easily proved that A is a semi-Boolean algebra, and moreover, it

can be shown that (x[ y)0 = x0 \ y0 holds for any x; y 2 A. This implies that

the class of such reducts of Heyting algebras is a proper subclass of the vari-

ety BA(�). In other words, the orthocomplement (�)0 in a semi-ortholattice

is surely weaker than the Heyting complement .
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3 Completion of algebras

For a class of algebras C, the completion problem of C-algebras is asking

whether any algebra A 2 C can be embedded into a complete C-algebra. In

this chapter, we will show that the varieties OL, OL(�) and BA admit com-

pletion by employing Dedekind-MacNeille completion technique ([29]) and a

completion technique using their dual spaces. These facts imply some prop-

erties of their corresponding algebraic logics. First, the completion technique

by means of dual spaces gives us a tool for constructing relational seman-

tics of propositional logics. Secondly, the completion of a variety of algebras

enables us to establish algebraic completeness theorem of its predicate logic

which is the minimum �rst-order extension of the propositional logic corre-

sponding to that variety. Thirdly, the Craig interpolation property of that

propositional logic and its �rst-order extension. The �rst one is discussed in

this chapter, and the second and the last one will be discussed in Chapter 4

and 5.

3.1 Completion techniques

In this section, we explain two techniques of completion using the example

of the variety OL(�) of semi-ortholattices, because both of them works for

this variety, and in the next section, we show that varieties OL, BA, and

BA(�) admit completion by making use of those techniques. The de�nition

of admissibility of completion of a class of algebras is the following:

De�nition 3.1 Let C be a class of algebras. C admits completion if it

satis�es that for any A 2 C, there exists a complete C-algebra C and an

embedding � : A ! C, where the embedding � is a mapping satisfying the

following:

(1) �(0) = 0 and �(1) = 1.

(2) �(x0) = (�(x))0

(3) �(x \ y) = �(x) \ �(y).

(4) �(x [ y) = �(x) [ �(y).

Dedekind-MacNeille completion technique is one of the most standard meth-

ods of completion. This is originally introduced to make a partially ordered

set complete, especially building reals from rationals. We give below the

main theorem of Dedekind-MacNeille completion technique without proof,

which we will employ in this chapter. A more detailed description is given

in [11]. Let hP;�i be a poset. We will use the following notations.
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3.1 Completion techniques 25

Notation

For a 2 P ,

"a := f b 2 P j a � b g

#a := f b 2 P j b � a g

For A � P ,

Au := f b 2 P j a � b for 8a 2 Ag

Al := f b 2 P j b � a for 8a 2 Ag

Theorem 3.2 Let DM(P ) := fA � P j Aul = Ag. Then, the following

holds.

(1) hDM (P );�i is a complete lattice, where
T
Ai =

T
� Ai, and

S
Ai =

(
S
� Ai)

ul
for fAi j i 2 Ig � DM (P ). (The symbols

T
� and

S
� are the

operations of set-theoretic intersection and union respectively.)

(2) The map � : P ! DM (P ) which is de�ned by �(x) =#x is an order-

isomorphism of P into DM(P ).

(3) For a subset fx�g�2� � P , if
T
� x� exists in P , then �(

T
� x�) =T

� ��(x�). Similarly, if
S
� x� exists in P , then �(

S
� x�) = (

S
� ��(x�))

ul.

2

The property that arbitrary existing meets and joins are preserved is impor-

tant when the predicate extension of a propositional logic which corresponds

to a variety is considered.

Now we consider the variety OL(�). Take any semi-ortholattice A =

hA;\;[; (�)0; 0; 1i 2 OL(�). For this A, we will construct a complete semi-

ortholattice into which A is embeddable.

The �rst construction is by means of the Dedekind-MacNeille completion.

Let B = hDM (A);�i. Then B is a complete lattice with the operations

speci�ed in the above theorem. So it remains to show how to introduce an

orthocomplement for B, and an embedding. De�ne a unary operation (�)?

on DM (A) by:

S? := fa 2 A j a0 2 Sug:

Then this operation has the following properties.

Proposition 3.3 For subsets S; T 2 DM(A) and an element x 2 A,

(1) (S?)ul = S?.

(2) S
T
� S? = f0g.

(3) S � T implies T? � S?.

(4) S � S??.

(5) (#x)? =#x0.

Proof : (1): It is obvious that S? � (S?)ul. For the converse, take a 2

(S?)ul. For any b 2 S? and any c 2 S, b0 2 Su and c � b0 hold, and so we

have b � b00 � c. This implies that c0 2 (S?)u, and a � c0. Thus c � c00 � a0

holds and a0 2 Su, which means that a 2 S?.
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3.1 Completion techniques 26

(2): Clearly S
T
� S? � f0g. For a 2 S

T
� S?, a 2 S and a0 2 Su hold, so

we have a � a0. This implies that a � a \ a0 = 0, and so a = 0.

(3): Suppose S � T and take a 2 T?. Then a0 2 T u � Su. Therefore a 2 S.

(4): Take a 2 S. For any b 2 S?, b0 2 Su, so we have a � b0 and then,

b � b00 � a0. This implies that a0 2 (S?)u, which means that a 2 S??.

(5): Take a 2 (# x)?. Then a0 2 (# x)u =" x, and so we have x � a0 and

a � a00 � x0. This means that a 2#x0. Conversely, take a 2#x0. This implies

that a � x0 and so, x � x00 � a0. Therefore a0 2" x = (# x)u, which means

that a 2 (#x)?. 2

This proposition shows that the structure B = hDM(A);
T
� ;
S
; (�)?; f0g; Ai

forms a complete semi-ortholattice. With the help of (5) of the above the-

orem, it is easily seen that the map � : P ! DM (P ), which is de�ned by

�(x) =# x, becomes a required embedding in De�nition 3.1. Therefore we

conclude that a semi-ortholattice can be embedded into a complete semi-

ortholattice by an embedding which preserves any existing meets and joins.

Another construction is through the dual space of a semi-ortholattice. The

basic idea is the same as in the case of an ortholattice ([16]). A slight re�ne-

ment is needed. In this case, the dual space is de�ned as follows:

A semi orthogonality space is a structure F = hX;�;\; 1;?i, which satis�es

the following conditions.

(1) hX;�;\; 1i is a meet-semilattice with the greatest element 1.

(2) ? is a binary operation on X which has the following properties: For

x; y; z 2 X,

(i) x?1 holds for all x 2 X.

(ii) x?x if and only if x = 1.

(iii) x?y implies y?x.

(iv) x?y and y � z imply x?z.

(v) x?y and x?z imply x?(y \ z).

For a subset Y � X, de�ne Y � := fx 2 X j x?y for all y 2 Y g.

For a semi orthogonality space F and a semi-ortholatticeA = hA;\;[; (�)0; 1; 0i,

the following lemma holds.

Lemma 3.4

(1) The class F(F ) of all �lters of F forms a complete semi-ortholattice

under the following operations: For fS�g�2� � F(F ) and S 2 F(F ),

(a)
T
S� =

T
� �S�.
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3.1 Completion techniques 27

(b)
S
S� = ��S� := [

S
� �S�) = fa 2 X j 9b1; b2; : : : ; bn 2

S
� �S�;

such that b1 \ b2 \ � � � \ bn � ag.

(c) S 0 = S�.

(2) For a semi-ortholattice A, the class of all �lters of A is denoted by XA,

and for x; y 2 XA, a binary relation ?A is de�ned by: x?Ay if and only

if there exists an element a 2 A, such that a 2 x and a0 2 y. Then, the

structure FA = hXA;�;
T
� ; A;?Ai is a semi orthogonal space.

Proof : (1): Obviously F(F ) is the greatest element and f1g is the least

element in F(F ). It is easily check that if fS�g�2� is a family of �lters in

F , then
T
� �S� is the �lter of the greatest lower bound, whereas ��S� is the

�lter of the least upper bound. Similarly, for a subset S � A, S� is also

a �lter by the properties of the relation ?. Thus, we only have to check

the conditions of the operation (�)� for a semi-ortholattice. The de�nition of

(�)� infers that S � S�� and that S � T imply T � � S�. For the last one,

S
T
� S� � f1g is obvious. Take a 2 S

T
� S�, then a?a holds, and so a = 1.

Therefore S
T
� S� = f1g.

(2): It is clear that hXA;�;
T
� ; A; i is a meet-semilattice with the greatest

element A. Therefore we have to check the conditions for ?A.

(i): For any �lter x in A, x?AA holds obviously.

(ii): A?AA is clear. For the converse, suppose x?Ax for a �lter x � A. Then

there exists a 2 A such that a; a0 2 x, which implies that 0 = a \ a0 2 x.

Thus x = A.

(iii): Suppose x?Ay for �lters x; y in A. Then there exists a 2 A such that

a 2 x and a0 2 y. Since a � a00, we have a00 2 x. Therefore y?Ax holds.

(iv): Suppose that x?Ay and y � z for �lters x; y; z in A. Then there exists

a 2 A such that a 2 x and a0 2 y � x. Therefore x?Az holds.

(v): Suppose x?Ay and x?Az for �lters x; y; z in A. Then there exist a; b 2 A

such that a 2 x, a0 2 y, and b 2 x, b0 2 z. Then we have a \ b 2 x and

a0 [ b0 2 y
T
� z. Since y

T
� z is a �lter and a0 [ b0 � (a \ b)0, (a \ b)0 2 y

T
� z.

Therefore x?A(y
T
� z) holds. 2

The join S1 [ S2 of S1; S2 2 F(F ) is sometimes denoted by S1 + S2, which

is the smallest �lter containing both S1 and S2. By this lemma, we can

construct a complete semi-ortholattice F(FA) of a given semi-ortholattice A.

Then, as shown below, an embedding � : A! F(FA) is turned out to be:

�(a) := fx 2 XA j a 2 xg:

Clearly � is one to one. �(1) = XA and �(0) = fAg are immediate. Next,

we will show that �(a0) = (�(a))� for an element a 2 A. Take x 2 �(a0),

the we have a0 2 x. For any y 2 �(a), a 2 y holds. Thus we have x?Ay,

which implies that x 2 (�(a))�. For the converse, take x 2 (�(a))�. As a

�lter in �(a), we can take " a, and x?A " a. Then there exists b 2 A such

that b 2 x and b0 2" a, which means a � b0. Thus, b � b00 � a0 holds,
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3.2 Completion of OL and BA 28

and so we have x 2 �(a0). For the meet operation, it is easy to show that

�(a\ b) = �(a)
T
�(b) for a; b 2 A. For the join operation, we will show that

�(a [ b) = �(a)
S
�(b) = �f�(a); �(b)g := �(a) + �(b) for elements a; b 2 A.

Take x 2 �(a [ b), then a [ b 2 x holds. Then "a 2 �(a) and " b 2 �(b), we

have "a
T
� " b � x. Thus x 2 �(a) + �(b). Conversely, take x 2 �(a) + �(b).

Then there exist y 2 �(a) and z 2 �(b), such that y
T
� z � x. Since we have

a [ b 2 y
T
� z, a [ b 2 x, which implies that x 2 �(a [ b). Therefore, we have

proved that this � is an embedding. Note that, in this case, the embedding

� does not always preserve all existing meets and joins.

Thus, we have completed the proof of the following theorem by di�erent

two methods.

Theorem 3.5 (Completion of semi-ortholattices) The variety OL(�)

admits completion. 2

3.2 Completion of OL and BA

3.2.1 The variety OL

It is already mentioned that OL admits completion in Chapter 1 (Theorem

1.8), in which the technique by means of its dual space is introduced. The

Dedekind-MacNeille completion technique also works for OL. Here we will

show this fact.

Consider an ortholattice A = hA;\;[; (�)0; 0; 1i. By the same argument as

for the variety OL(�), the structure B = hDM(A);
T
�;
S
; (�)?; f0g; Ai forms a

complete semi-ortholattice. So we have only to show that the double negation

law holds for B in this time. For any S 2 DM(A), take a 2 S??. Then

a0 2 (S?)u. Take any b 2 Su, then, since b = b00, b0 2 S?. This implies that

b0 � a0, and so a = a00 � b00 = b. Thus, a 2 Sul = S. Therefore S = S??.

Our proof is completed.

Theorem 3.6 (Completion of ortholattices) The variety OL admits

completion, in which arbitrary existing meets and joins are preserved. 2

3.2.2 The variety BA

The method of completion for Boolean algebras by means of their dual

spaces is well known as (a part of) Stone Representation theorem. Here we

will point out that the Dedekind-MacNeille completion technique also works

for the variety of Boolean algebras.

Take a Boolean algebra A = hA;\;[; (�)0; 0; 1i. Then of course, A is an

ortholattice, it is already shown that B = hDM(A);
T
�;
S
; (�)?; f0g; Ai is a

complete ortholattice and that the map � is our desired embedding. So we

have only to prove that B satis�es the distributive law. For this purpose,
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3.3 Semantics of OL(�) 29

it is enough to show that S
T
� T = S

T
� (S?

S
T ) holds for S; T 2 DM(A)

due to Proposition 2.5 in Chapter 2. S
T
� T � S

T
� (S?

S
T ) is trivial.

For the converse, take a 2 S
T
� (S?

S
T ) = S

T
� (S

T
� T?)?. Then, this

implies that a 2 S and a 2 (S
T
� T?)?, which means a0 2 (S

T
� T?)u.

Now take any b 2 T u, then b0 2 T? since b = b00. Because S and T? are

downward-closed, a \ b0 2 S
T
� T?. Then we have a \ b0 � a0, which implies

a = a00 � (a\b0)0 = a0[b. Therefore, we have a = a\a � a\(a0[b) = a\b � b,

which means that a 2 T ul = T . Thus a 2 S
T
� T and S

T
� (S?

S
T ) � S

T
� T .

Our proof is completed. Finally, the following theorem holds for the variety

BA.

Theorem 3.7 (Completion of Boolean algebras) The variety BA ad-

mits completion, in which arbitrary existing meets and joins are preserved.

2

3.3 Semantics of OL(�)

One of the applications of completion of a class of algebras is to construct

relational semantics of the logic which corresponds to the class. In this section

we will explain how to build a relational semantics for the logic OL(�) and

show completeness theorem with respect to that semantics.

The construction of semantics for OL(�) is based on Lemma 3.4. (1) of

this lemma corresponds to the soundness, whereas (2) corresponds to the

completeness. The situation is quite similar as in the case of the orthologic

OL in Chapter 1. First we de�ne relational semantics for the logic OL(�)

and prove its soundness.

De�nition 3.8

(1) F = hX;�;\; 1;?i is a semi-orthoframe if it is a semi orthogonality

space.

(2) M = hX;�;\; 1;?; V i is a semi-orthomodel on the frame hX;�;\; 1;?i

if V is a function assigning to each propositional variable pi a �lter V (pi)

of X.

The truth of a formula � at a point x 2 X in M is de�ned recursively

as follows: The symbolM j=x � is read as \ a formula � is true at x in

a modelM".

(a) M j=x ? if and only if x = 1.

(b) M j=x pi if and only if x 2 V (pi).

(c) M j=x � ^ � if and only if M j=x � and M j=x �.

(d) M j=x �_� if and only if there exist y; z 2 X such thatM j=y �

and M j=z � and y \ z � x.
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(e) M j=x :� if and only if for any y 2 X, M j=y � implies x?y.

For a formula �, we denote k�kM := fx 2 G jM j=x �g. Then we can

restate the above truth conditions in the following form:

(a) k?kM = f1g.

(b) kpik
M = V (pi).

(c) k� ^ �kM = k�kM \ k�kM.

(d) k� _ �kM = k�kM + k�kM.

(e) k:�kM = (k�kM)�.

We need the following lemma to show the soundness.

Lemma 3.9 Let M be a semi-orthomodel and � a formula. Then k�kM

is a �lter of X.

Proof : We will prove this by induction on the construction of �. The cases

� := ?; pi; � ^ 
 are trivial. For the case � := � _ 
, it is also easy to

show by rewriting the condition like (d) above. For the case � := :�, it is

straightforward by the properties of the relation ?. 2

Let � be a non-empty set of formulas and � a formula. � implies � in

an semi-orthomodel M (M : � j= �)if for any x 2 X, either there exists a

formula � such that not M j=x �, or else M j=x �. For an semi-orthoframe

F , � F -implies � (F : � j= �) if M : � j= � for all semi-orthomodel M on

F . For a class C of semi-orthoframes, � C-implies � (C : � j= �) if F : � j= �

for all frames F in C.

Let # be the class of all semi-orthoframes. Under these settings of semi-

orthomodels and the notion of validity, the following holds.

Theorem 3.10 (Soundness for OL(�)) If � `OL(�) �, then # : � j= �.

Proof : Almost trivial. We will show only a several cases of axiom schemes

and inference rules. Take any semi-orthomodelM and any point x in M.

Axiom schemes

(Ax2): � ` ::�

Suppose that M j=x �, and take any y such that M j=y :�. Then we

have x?y, which implies that M j=x ::�.

(Ax5): � ` � _ �

Suppose that M j=x �. Then, since we have M j=1 � and x \ 1 � x,

M j=x � _ � holds.
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3.3 Semantics of OL(�) 31

(Ax7): � ^ :� ` �

Suppose M j=x � ^ :�. Then this means thatM j=x � and M j=x :�,

which implies x?x. Then we have x = 1. Therefore M j=x �.

Inference Rules

(R3):
� ` 
 � ` 


� _ � ` 

Suppose M : � j= 
, M : � j= 
 and M j=x � _ �. Then there exist

y; z 2 X such that M j=y �, M j=z � and y \ z � x. The �rst implies

that M j=y 
 and the second implies that M j=z 
 by our supposition,

and so, together with the third, we have that M j=x 
.

(R4):
� ` �

:� ` :�
SupposeM : � j= � andM j=x :�. Take any y 2 X such thatM j=y �.

Then, this implies thatM j=y � and hence, x?y. Therefore M j=x :�.

2

To prove the completeness, the canonical model for a semi-orthologic is

needed. Lemma 3.4 (2) is the basic result for constructing its canonical

model. Let L be a semi-orthologic. A subset y of formulas is L-theory if it

satis�es the following:

(1) :? 2 y.

(2) �; � 2 y implies � ^ � 2 y.

(3) � 2 y and � `L � imply � 2 y.

As is easily seen, any L-theory is a �lter in �. Then, the canonical model

for the logic L is de�ned in the following way.

De�nition 3.11 The canonical model for L is the structure ML = hXL;�

;
T
� ;�;?L; VLi, where

XL = fx � � j x is an L-theoryg.

x?Ly if and only if there exists � such that :� 2 x and � 2 y.

VL(pi) = fx 2 XL j pi 2 xg.

Here we want to make sure the following facts on L-theories.

Proposition 3.12

(1) For a formula �, y := f
 2 � j � `L 
g is an L-theory.
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(2) Let � be a formula, and z an L-theory such that :� 62 z. Let y := f
 2

� j � `L 
g. Then, for any formula �, either :� 62 z or � 62 y.

Proof : (1): It is obvious by some simple calculations.

(2): Take any formula � and suppose that :� 2 z and � 2 y. The latter

means that � `L �, which implies :� `L :�. Since we suppose that :� 2 z,

we deduce that :� 2 z, which leads a contradiction. 2

Now we will proceed to prove the completeness theorem. First, we have

to check that the canonical model for a semi-orthologic L is indeed a semi-

orthomodel.

Lemma 3.13 ML is a semi-orthomodel.

Proof : Clearly hXL;�;
T
�;�i is a meet-semilattice with the greatest element

�. So we have to check the conditions for ?L for a semi orthogonality space

and that VL(pi) is a �lter of XL. For x; y; z 2 XL,

(i): x?L� is obvious.

(ii):�?L� is obvious. Suppose x?Lx, then there exists a formula � such that

� 2 x and :� 2 x. This imply that �^:� 2 x, and so � 2 x for any formula

�. Thus we have x = �.

(iii): Suppose x?Ly. Then there exists a formula � such that � 2 x and

:� 2 y. By (Ax2), the former implies that ::� 2 x, and so we have y?Lx.

(iv): It is trivial that x?Ly and y � z imply x?Lz.

(v): Suppose x?Ly and x?Lz. Then there exist formulas �; � such that

� 2 x, :� 2 y and � 2 x, :� 2 z. These imply � ^ � 2 x and � _ � 2 y
T
�z,

and the latter implies :(� ^ �) 2 x
T
� y. Thus we have x?L(y

T
� z).

On conditions for VL(pi), clearly � 2 VL(pi). Suppose x 2 VL(pi) and x � y.

Then pi 2 x � y, and so, pi 2 y. Thus y 2 VL(pi). Finally, suppose x; y 2

VL(pi). Then pi 2 x, pi 2 y, which imply that pi 2 x
T
�y. Thus x

T
�y 2 VL(pi).

Therefore, VL(pi) is a �lter of XL and ML is a semi-orthomodel. 2

Next is the key theorem for the completeness result.

Theorem 3.14 (Fundamental theorem for semi-orthologic) For a

semi-orthologic L, let x 2 XL and � a formula. Then ML j=x � if and only

if � 2 x.

Proof : We prove it by induction on the construction of �. The cases

� := ?; pi; � ^ 
 are trivial. We will show the cases � := � _ 
 and � := :�.

Take any x 2 XL
Case � := �_
: Suppose thatML j=x �_
. Then there exist y; z 2 XL such

that ML j=y � and ML j=z 
 and y
T
� z � x. Then by induction hypothesis,

we have � 2 Y and 
 2 z, which imply � _ 
 2 y and � _ 
 2 z, and so,

� _ 
 2 x. Conversely, suppose � _ 
 2 x. Put y := f� 2 � j � `L �g

and x := f� 2 � j 
 `L �g. Then obviously � 2 y and 
 2 z, which means

ML j=y � and ML j=z 
. On the other hand, If � 2 y
T
� z, then we deduce
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� _ 
 `L �, and so � 2 x, that is, y
T
� z � x. Therefore ML j=x � _ 
.

Case � := :�: Suppose :� 2 x. Take y 2 XL such thatML j=y �. Then by

induction hypothesis, � 2 y, and so we have x?Ly. Therefore ML j=x :�.

Conversely, suppose :� 62 x. Put y := f
 2 � j � `L 
g, then of course,

� 2 y. By Proposition 3.12 (2), for any formula �, either :� 62 x or � 62 y

holds. Then, for this y, ML j=y � and x6?Ly. Thus we have ML 6j=x �. 2

Corollary 3.15 Let L be a semi-orthologic, � a non-empty set of formulas,

and � a formula. Then � `L � if and only ifML : � j= �.

Proof : Suppose � `L �. Then there exist formulas �1; �2; : : : �n such that

�1 ^ � � � ^ �n `L �. Take any x in ML and suppose that ML j=x 
 for any


 2 �. In particular, ML j=x �i for i = 1; : : : n. Then by the previous

theorem, we have �1; �2; : : : �n 2 x and so, �1 ^ � � � ^ �n 2 x. because of our

supposition, � 2 x, which means that ML j=x �. Thus we have shown that

ML : � j= �. Conversely, suppose that � 6̀ L �. Put y := f
 2 � j � `L 
g.

Then � 62 y. Thus, for any � 2 �, � 2 y but � 62 y, which means that

ML j=y � for any � 2 �, but ML 6j=y �. Therefore ML : � 6j= �. 2

We have come to show the completeness theorem for the semi-orthologic

OL(�) at last.

Theorem 3.16 (Completeness for OL(�)) Let # be the class of all semi-

orthomodel. If # : � j= �, then � `OL(�) �.

Proof : ConsiderMOL(�) . Then this is indeed a semi-orthomodel. Therefore

the theorem follows immediately from the previous corollary. 2

3.4 Note

The fact that the variety of ortholattices admits Dedekind-MacNeille com-

pletion is well known result, and this can be strengthen by replacing ortho-

lattices by orthoposets, which are bounded posets with the orthocomplement

([4], [6]). On the other hand, the completion by means of the dual space of

ortholattices is used for the representation theorem of ortholattices, where a

topology is introduced in order to restrict the range of the embedding � and

make the map onto ([16]). The technique of restricting the range of the em-

bedding by introducing a topology is a common way of representation of this

kind. The most famous example is the representation of Boolean algebras by

M.H. Stone [45].

For the variety of modular ortholattices, any kind of completion fails ([20]).

The proof of this result is not so easy. The basic fact, which was shown by I.

Kaplansky [27], is that every complete modular ortholattice is a continuous

geometry.

The completion problem of the variety of orthomodular lattices is still open,

though there are several partial results on that problem. ([7], [19], [44]).
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There is an orthomodular lattice which do not admit Dedekind-MacNeille

completion ([18]). The author found that any orthomodular lattice can be

embedded into a complete semi-orthomodular lattice by introducing the dual

space like a semi-orthogonality space. The completion problem of the variety

of orthomodular lattices will be discussed in Chapter 7.
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4 Predicate extensions of the orthologic OL

and the semi-orthologic OL(�)

As seen in the previous chapter, the varieties OL(�), OL and BA admit

the Dedekind-MacNeille completion. One of the important features of this

technique is that the embedding map preserves all existing meets and joins

in the original structure, which brings us the possibility of extending these

propositional logics that correspond to the varieties to predicate logics. In

this chapter, we discuss the predicate extensions of the logics OL(�) and OL,

especially, we explain the former predicate calculus precisely. The minimum

predicate extension P(OL(�)) of the smallest semi-orthologic OL(�) is ob-

tained syntactically by adding the axioms and rules for quanti�cation to the

propositional system. We adopt the style of predicate logic with the equality

symbol. Several syntactical tools are needed to deal with quanti�cation, as

usual. The algebraic semantics of the minimum predicate semi-orthologic is

based on the complete semi-ortholattices.

4.1 Syntax of the predicate semi-orthologic with equal-

ity

The �rst order language L consists of the following symbols:

� a denumerable set V of variable symbols: x; y; z; x1; x2; :::

� a denumerable set of predicate symbols: P;Q;R; :::

� the equality symbol:
:
=

� connectives: ^;_;:;?; 8; 9

� parentheses: (; )

Since L has no function symbols, the set Term(L) of all terms of L is just

the set V. The set Form(L) of all formulas on the language L is de�ned by

the following formation rules:

(1) ? is a formula.

(2) For any terms t1; t2; : : : ; tn; t; s, and any predicate symbol P of arity n,

P (t1; t2; : : : ; tn) and (t
:
= s) are formulas.

(3) If � and � are formulas and x a variable, then so are (:�), (8x�),

(9x�), (� ^ �), and (� _ �).

For a formula �, FV(�) denotes the set of all free variables which occur in

�. A formula �, in which free variables x; y; z occur, for example, is some-

times denoted by �(x; y; z). For a non-empty setM, let LM be the extended
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4.1 Syntax of the predicate semi-orthologic with equality 36

language obtained from L by adding all names of elements inM. In this case,

Form(LM) is obtained by the same formation rules above, where Term(LM)

consists of all variables and all names of elements in M. SentM denotes the

set of all sentences on LM, where a sentence means a formula which has no

free variables.

Before introducing the notion of substitution, we mention a simple technical-

ity here: Since all variables can be enumerated, and the number of variables

which occur in a formula is �nite, it is possible to choose a fresh variable

for a formula uniquely, i.e., to take the smallest-numbered variable of all the

fresh ones for the formula.

Substitution operation [x=t], in a formula �, of a term t for a variable x is

de�ned as follows:

If x does not occur free in �, then �[x=t] is � itself.

If x occurs free in �, then

� if t is a name a of an element inM, then �[x=a] is a formula which

is obtained by substituting a for each free occurrence of x in �.

� if t is a variable y, and x does not occur in a scope of 8y in �,

then �[x=y] is obtained by substituting y for each free occurrence

of x in �.

� if t is a variable y, and x occurs in a scope of 8y in �, then �[x=y]

is obtained, �rst replacing each bound occurrence of y by a fresh

variable for �, and then substituting y for each free occurrence of

x.

De�nition 4.1 (Minimum predicate semi-orthologic with equality)

The minimum predicate orthologic (with equality) P(OL(�)) on L is the

smallest subset of the product Form(L) � Form(L) (we write � ` � to mean

the pair h�; �i 2 P(OL(�))) which includes the following axioms and is closed

under the following inference rules:

Axioms:

(Ax1),...(Ax8) are the same as in De�nition 2.8.

(Ax9)

� ` x
:
= x

(Ax10)

x
:
= y ` y

:
= x

(Ax11)

P ^ (x
:
= y) ` P [x=y]

(Ax12)

8x�(x) ` �(x)[x=y]

(Ax13)

�(x)[x=y] ` 9x�(x)
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4.2 Semantics for P(OL(�)) and completeness 37

Inference Rules:

(R1), (R2), (R3) and (R4) are the same as in De�nition 2.8.

(R5)
� ` �(x)

� ` 8x�(x)

(R6)
�(x) ` �

9x�(x) ` �

where x is not free in � in both rules.

In the above axioms and rules, �; � denote any formulas, P any atomic

formula, and �(x); �(x) any formulas such that x occurs free in � and �.

4.2 Semantics for P(OL(�)) and completeness

As a semantical model for the minimumpredicate semi-orthologicP(OL(�)),

here is introduced a structure, consisting of a complete semi-ortholattice and

an assignment of formulas to elements in this lattice.

De�nition 4.2 (Model for P(OL(�))) A model (for L) is a structure

M = hL;M; [[�]]
M
i, where

� L = hL;
T
;
S
; 0; 0; 1i is a complete semi-ortholattice.

� M is a non-empty set. Let M be the set of names of all elements inM.

� [[�]]
M

is a map from atomic sentences of LM to elements in L which

satis�es the following conditions: for any a; b; a1; :::; an; b1; :::; bn 2 M,

and for any atomic formula P (x1; :::; xn),

(1) [[a
:
= a]]M = 1

(2) [[a
:
= b]]M = [[b

:
= a]]M

(3) [[P (a1; :::; an)]]M \ [[a1
:
= b1]]M \ � � � \ [[an

:
= bn]]M � [[P (b1; :::; bn)]]M

(4) [[?]]M = 0

The domain of [[�]] is extended to SentM in the following inductive way:

[[� ^ �]]M = [[�]]M \ [[�]]M

[[� _ �]]M = [[�]]M [ [[�]]M

[[:�]]M = ([[�]]M)
0

[[8x�]]M =
T
a2M[[�[x=a]]]M

[[9x�]]M =
S
a2M[[�[x=a]]]M
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4.2 Semantics for P(OL(�)) and completeness 38

De�nition 4.3 (Validity) LetM be a model. For �; � 2 Form(L), suppose

FV(�)
S
� FV(�) = fx1; x2; :::; xng.

(1) � implies � in M (� j=M �) if for any a1; :::; a2 2M;

[[�[x1=a1] � � � [xn=an]]]M � [[�[x1=a1] � � � [xn=an]]]M holds.

(2) � implies � (� j= �) if � j=M � for any modelM.

Theorem 4.4 (The soundness theorem for P(OL(�))) For any �; � 2

Form(L), if h�; �i 2 P(OL(�)), then � j= �.

Proof : We will proceed by usual induction on the height of derivation. Let

M = hL;M; [[�]]Mi be an arbitrary model.

1. For axioms: We will give the whole proofs only for the cases of (Ax3),

(Ax11) and (Ax12). Other axioms can be treated similarly.

(Ax3): � ^ � ` �.

Let FV(�) [ FV(�) = fx1; :::; xng. For any a1; :::; an 2M,

[[(� ^ �)[x1=a1] � � � [xn=an]]]M

= [[�[x1=a1] � � � [xn=an]]]M \ [[�[x1=a1] � � � [xn=an]]]M

� [[�[x1=a1] � � � [xn=an]]]M

Thus � ^ � j=M � holds.

(Ax11): P ^ (x
:
= y) ` P [x=y]. (P is an atomic formula.)

If x does not occur free in P , this axiom is a special case of (Ax4), then

we have just shown above. Suppose FV(P ) = fx; z1; :::; zng. For any

a; b; c1; :::; cn 2M, the substitution results of both handsides are,

(P ^ (x
:
= y))[x=a][y=b][z1=c1] � � � [zn=cn]

� P [x=a][z1=c1] � � � [zn=cn] ^ (a
:
= b)

(P [x=y])[x=a][y=b][z1=c1] � � � [zn=cn]

� P [x=b][z1=c1] � � � [zn=cn]

Because of the condition (3) on [[�]]M, we have,

[[P [x=a][z1=c1] � � � [zn=cn]]]M \ [[a
:
= b]]M

� [[P [x=b][z1=c1] � � � [zn=cn]]]M

Therefore P ^ (x
:
= y) j=M P [x=y] holds.

(Ax12): 8x�(x) ` �(x)[x=y].

By the assumption, x occurs free in �. Let FV(�) = fx; z1; :::; zng.
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Then FV(8x�) = fz1; :::; zng and FV(�[x=y]) = fy; z1; :::; zng. For any

a; b; c1; :::; cn 2M, the substitution results of both handsides are,

(8x�)[x=a][y=b][z1=c1] � � � [zn=cn]

� (8x�)[z1=c1] � � � [zn=cn]

(�[x=y])[x=a][y=b][z1=c1] � � � [zn=cn]

� �[x=b][z1=c1] � � � [zn=cn]

Therefore,

[[(8x�)[z1=c1] � � � [zn=cn]]]M

=
\
d2M

[[�[x=d][z1=c1] � � � [zn=cn]]]M

� [[�[x=b][z1=c1] � � � [zn=cn]]]M

Thus 8x�(x) j=M �(x)[x=y] holds.

2. For inference rules: We give a proof only for the case of (R5). A similar

argument works for other cases.

(R5):

� ` �

� ` 8x�
x is not free in �, but x occurs free in �.

Let FV(�) = fy1; :::; yng 63 x and FV(�) = fx; z1; :::; zmg. Then FV(8x�)

= fz1; :::; zmg. For any a; b1; :::; bn; c1; :::; cm 2M,

[[�[x=a][y1=b1] � � � [zm=cm]]]M = [[�[y1=b1] � � � [yn=bn]]]M

[[8x�[x=a][y1=b1] � � � [zm=cm]]]M =
\
d2M

[[�[x=d][z1=c1] � � � [zm=cm]]]M

By induction hypothesis, we have

[[�[y1=b1] � � � [yn=bn]]]M � [[�[x=a][z1=c1] � � � [zm=cm]]]M

Thus,

[[�[y1=b1] � � � [yn=bn]]]M �
\
d2M

[[�[x=d][z1=c1] � � � [zm=cm]]]M

Therefore � j=M 8x� holds.

2

Theorem 4.5 (The completeness theorem for P(OL(�))) For any

�; � 2 Form(L), if � j= �, then h�; �i 2 P(OL(�)).
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Proof : We will show this by applying the Lindenbaum construction of the

canonical model for our logic P(OL(�)).

De�ne a relation � on Form(L) as follows: for �; � 2 Form(L), � � �

if and only if h�; �i 2 P(OL(�)) and h�; �i 2 P(OL(�)). Then, since the

relation � is indeed a congruence relation, the equivalence class k�k := f� 2

Form(L) j � � �g and the operations \ as: k�k \ k�k := k� ^ �k, and (�)?

as: k�k
?

:= k:�k are well de�ned on the quotient set kLk := fk�k j � 2

Form(L)g. Further, an order on kLk can be de�ned as: k�k � k�k if and

only if h�; �i 2 P(OL(�)).

In this construction, the structure L0 = hkLk;\; ([); ?; k:?k; k?ki turns

out to be a semi-ortholattice, in which k8x�(x)k is the greatest lower bound

of the set f�(x)[x=y] j y 2 Vg. It is clear that k8x�(x)k is a lower bound,

for we have the axiom 8x�(x) ` �(x)[x=y]. To show it is the greatest lower

bound, suppose � ` �(x)[x=y] for all y 2 V. If x 62 FV(�), then take x for

y. As �(x)[x=x] � �(x), we can deduce,

� ` �(x)

� ` 8x�(x)

Therefore we have � ` 8x�(x). If x 2 FV(�), then take, for y, z which

does not occur free in � and �, and does not occur bound in �. For

�(x)[x=z][z=x] � �(x), we can deduce,

� ` �(x)[x=z]

� ` 8z(�(x)[x=z])

8z(�(x)[x=z]) ` �(x)

8z(�(x)[x=z]) ` 8x�(x)

� ` 8x�(x)

Thus we have � ` 8x�(x).

By Theorem 3.5, L0 can be embedded into a complete semi-ortholattice L1,

in which all the operations in L0, including in�nite meet and in�nite join,

are preserved. Consider a model N = hL1;V; k � ki. Note that every formula

is a sentence in this model N and that we may identify the set of all names

of variables V with the set of variables V. We claim that this is indeed a

model, i.e., it will be shown by induction that we can put [[�]]N := k�k for

any formula �.

� If � is atomic, we can easily check that k � k satis�es the conditions

(1),(2), (3) and (4) in De�nition 4.2.

� If � is not atomic, we can show the following by simple calculation:

[[� ^ �]]N = [[�]]N \ [[�]]N = k�k \ k�k = k� ^ �k

[[:�]]N = [[�]]N
?

= (k�k)? = k:�k

[[8x�]]N =
\
y2V

[[�[x=y]]]N =
\
y2V

k�[x=y]k = k8x�k
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Therefore, k�k satis�es the conditions on [[�]]N, and so N is a (canonical)

model for the logic P(OL(�)).

Now we are in a position to prove the completeness result. Suppose � j= �.

Then for any model M; � j=M �. Take N for M, then we have k�k � k�k,

which means h�; �i 2 P(OL(�)). 2

4.3 The minimum predicate extension of OL

Since we have Theorem 3.6, we can construct an algebraic semantics for

the minimum predicate extension P(OL) of the smallest orthologic OL in

the same manner. Of course in this case, some of the axiom schemes and

some of the inference rules are derivable due to the double negation law. As

a model of this logic, we may take a complete ortholattice for L in De�nition

4.2. Then we can show the soundness and the completeness of the predicate

logic P(OL) quite the same as Theorem 4.4 and 4.5.

4.4 Note

The formulation of the predicate calculus in this chapter and the construc-

tion of its models are based on a work by J.L.Bell [2]. It is only for simplicity

and not essential that we adopt the formal system with the equality symbol

and without function symbols.
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5 Amalgamation and interpolation

Craig's interpolation property is a syntactical property of propositional and

predicate logics. But there are sometimes semantic criteria to decide whether

a given logic has this property or not. The most famous example is the amal-

gamation property of a class of Heyting algebras. By using this criterion, it

can be proved that there are only 7 logics that have the Craig's interpolation

property among the intermediate propositional logics, that is, logics between

the classical logic and the intuitionistic logic ([34]).

For our propositional logics, however, the situation is a bit di�erent, be-

cause our language do not have an implication symbol. Therefore Craig's

interpolation property must be formulated by the deducibility symbol (`L)

instead of the implication symbol, and we have obtained, so far, only a su�-

cient algebraic condition for a logic to have the interpolation property. That

is the super amalgamation property of a variety of algebras. To show that a

variety of algebras have this property, the techniques for completion of vari-

eties of algebras in Chapter 3 can be modi�es and applied.

In this chapter, we will prove that the varieties OL and OL(�) have the su-

per amalgamation property, and hence, each logic which correspond to them

respectively, has the Craig's interpolation property.

Then we will also show the Craig's interpolation property of the minimum

predicate extension of the semi-orthologic P(OL(�)) and that of the ortho-

logic P(OL) by using quite similar argument.

5.1 Interpolation property and super amalgamation

property

First, we introduce the notion of interpolation property of our propositional

logics.

De�nition 5.1 (Interpolation property) Let L be a semi-orthologic. L

has the interpolation property (IP for short) if for any formulas � and �,

h�; �i 2 L implies that there exists a formula 
 which satis�es the following

conditions:

(1) h�; 
i 2 L, and h
; �i 2 L.

(2) Only these propositional variables which are common to � and �, or

the constant ?, occur in the formula 
.

Any formula 
 satisfying the above conditions (1) and (2) is sometimes

called a interpolant of � and �. Next, we de�ne a property of a class of

algebras which will be shown to be a su�cient condition for a logic to have
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the interpolation property.

De�nition 5.2 (Super amalgamation property) ([10])

A class of algebras C has the amalgamation property (AP for short), if for

any A0;A1;A2 2 C (let their universes be A0; A1; A2 respectively), and any

embeddings f1, f2 such that f1 : A0 ! A1 and f2 : A0 ! A2, there exist a

A 2 C and embeddings g1, g2 such that g1 : A1 ! A and g2 : A2 ! A, and

g1(f1(a)) = g2(f2(a)) holds for any a 2 A0. A class of algebras C has the super

amalgamation property (SAP for short), if it has the AP and satis�es the

following additional condition: For any b 2 Ai and c 2 Aj (fi; jg = f1; 2g),

if gi(b) � gj(c) in A, then there exists d 2 A0 such that b � fi(d) in Ai and

fj(d) � c in Aj hold.

In the above de�nition, embeddings mean the same as in De�nition 3.1, and

the algebra A, into which both algebras A1 and A2 are embedded, is called

a target algebra. Remind that for any subvariety V of OL(�), the smallest

logic that corresponds to V is denoted by L(V). It can be shown that the

super-amalgamation property of V is a su�cient condition for the logic L(V)

to have the interpolation property. That is, the following lemma holds.

Lemma 5.3 If V has the SAP, then L(V) has the IP.

Proof : Consider formulas ' = '(p1; � � � ; pl; r1; � � � ; rn) constructed only

from variables in fp1; � � � ; pl; r1; � � � ; rng, and  =  (q1; � � � ; qm; r1; � � � ; rn)

constructed only from variables in fq1; � � � ; qm; r1; � � � ; rng. Suppose there

exists no formula � = �(r1; � � � rn) such that h'; �i 2 L(V) and h�;  i 2

L(V). Then it is enough to show h';  i 62 L(V). Let A0;A1 and A2 be

free V-algebras generated by the sets fc1; � � � ; cng, fa1; � � � ; al; c1; � � � ; cng and

fb1; � � � ; bm; c1; � � � ; cng respectively. Then, A0 is embedded into both A1 and

A2 by identity maps. So, by the SAP of V, there exist an algebra A 2 V

and embeddings g1 : A1 ! A, g2 : A2 ! A such that, g1(a) = g2(a) for any

a 2 A0 and that for any b 2 Ai and for any c 2 Aj (i 6= j), if gi(b) � gj(c),

then there exists d 2 A0 such that b � d in Ai and d � c in Aj. Therefore by

the assumption about the formulas ' and  , g1('(a1; � � � ; al; c1; � � � ; cn)) 6�

gj( (b1; � � � ; bm; c1; � � � cn)) in A. De�ne a valuation v into A as:

v(pi) = g1(ai) for i = 1; � � � ; l

v(qj) = g2(bj) for j = 1; � � � ; m

v(rk) = g1(ck) = g2(ck) for k = 1; � � � ; n.

Then, because g1 and g2 are homomorphisms, v(') 6� v( ) in A. Therefore,

h';  i 62 L(V). 2

This lemma is fundamental for the rest of this chapter. Below, we will

give some examples of logics having the Craig's interpolation property, by
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applying this lemma. In fact, we will show that the four subvarieties of OL(�)

have the super-amalgamation property.

5.2 Super amalgamation property of some varieties

To show that a class C of algebras has the super amalgamation property,

here we take the following way: Take arbitrary A0;A1;A2 2 C (with their

universes A0; A1; A2, respectively), and suppose that there are embeddings

f1 : A0 ! A1 and f2 : A0 ! A2. Without loss of generality, we can suppose

A0 is a subalgebra of A1 and A2, i.e., f1 and f2 may be taken to be identity

functions: for any x 2 A0, f1(x) = f2(x) = x.

Put B := A1

S
� A2 and de�ne an order � on B as follows: for x; y 2 B,

x � y ( def)

8<
:

x � y in Ai if x; y 2 Ai:

9z 2 A0 s.t. x � z in Ai; z � y inAj if x 2 Ai and y 2 Aj;

where fi; jg = f1; 2g:

It is easily checked that this � is an order on B. A unary operation (�)
0

on

B is inherited from each (�)
0

on Ai. Finally let B := hB;�; 0i. This algebraic

structure is not always a lattice, because it is not guaranteed that there

exists the greatest lower bound(x \ y), and the least upper bound (x [ y) in

B for any given x; y 2 B. This is a kind of partially ordered set with some

properties which depends on the original class C. We call this B a C-poset.

If this C-poset can be embedded into a C-algebra, then we have that the

class C has the super-amalgamation property.

5.2.1 The variety OL(�)

First, we consider the case of semi-ortholattices. Let B := hB;�; 0i be

a OL(�)-poset. It is easily seen that the following holds for this B. For

x; y 2 B,

(a) x � x00.

(b) The in�mum of x and x0 (i.e. x \ x0) exists in B and it equals 0.

(c) x � y implies y0 � x0.

Now, consider the Dedekind-MacNeille completion of B and take C =

hDM(B);
T
�;
S
; (�)?; f0g; Bi. Then for this algebra, quite the same proposi-

tion holds as Proposition 3.3, that is,

Proposition 5.4 For subsets S; T 2 DM(B) and an element x 2 A,
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(1) (S?)ul = S?.

(2) S
T
� S? = f0g.

(3) S � T implies T? � S?.

(4) S � S??.

(5) (#x)? =#x0.

Therefore, this C turns out to be a complete semi-ortholattice, and we take

this C for our target algebra A. The desired embeddings �i : Ai ! A (i = 1; 2)

are given by:

�i(x) =#x for x 2 Ai

It is obvious that this map satis�es the conditions for the SAP. Thus, we

have proved the following theorem for the variety OL(�).

Theorem 5.5 The variety OL(�) has the super-amalgamation property.

2

5.2.2 The variety OL

To prove the SAP for the variety OL, it is enough to notice that a OL-poset

B satis�es the same assumptions as OL(�)-posets together with x00 � x, by

which we can show that the Dedekind-MacNeille completion DM(B) has the

property S = S??. Of course, other part of the proof for OL(�)-posets can

go through also for OL-poset. Therefore the following theorem holds.

Theorem 5.6 The variety OL has the super-amalgamation property. 2

5.3 Interpolation property of the P(OL(�)) and P(OL)

As well as the propositional logics OL(�) and OL, the interpolation prop-

erty for the minimum predicate extension of these two logics, which are

introduced in Chapter 4, can be shown by the quite similar argument.

Theorem 5.7 (The interpolation property of P(OL(�))) Let �; � 2

Form(L). If h�; �i 2 P(OL(�)), then there exists 
 2 Form(L) which satis�es

the following conditions:

(1) h�; 
i 2 P(OL(�)) and h
; �i 2 P(OL(�)).

(2) Only these predicate symbols which are common to � and �, or ?,

occur in the formula 
.

Proof : Consider two formulas � � �(P1; :::; Pm; R1; :::; R`;?) and

� � �(Q1; :::; Qn; R1; :::; R`;?), which are constructed from (atomic) predi-

cate symbols fP1; :::; Pm; R1; :::; R`;?g and fQ1; :::; Qn; R1; :::; R`;?g respec-

tively. Note that all the symbols Pi; Qj; Rk are distinct from each other.

Although each predicate symbol has its own arity, and some �nite number
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(possibly 0) of variables occur in it, here we omit them, to avoid an over-

loaded notation. Suppose that there exists no formula 
 � 
(R1; :::; R`;?),

such that h�; 
i 2 P(OL(�)) and h
; �i 2 P(OL(�)). We have only to prove

that h�; �i 62 P(OL(�)). Construct three subalgebras of the Lindenbaum

algebra as follows:

L0 which is generated from fR1; :::; R`;?g.

L1 which is generated from fP1; :::; Pm; R1; :::; R`;?g.

L2 which is generated from fQ1; :::; Qn; R1; :::; R`;?g.

For each generating subset, we take all the substitution instances of the

relevant variables. Then L0, L1, and L2 are semi-ortholattices, and L0 is em-

bedded into both L1 and L2. By the SAP of the variety of semi-ortholattices,

there exist a complete semi-ortholattice L and embeddings g1 : L1 ! L and

g2 : L2 ! L, and these satisfy some required conditions. With those con-

ditions, we have g1(k�k) 6� g2(k�k). Take a model for the predicate logic

P(OL(�)) M = hL;V; [[�]]Mi, where [[�]]M maps every substitution instance

of each atomic sentence P1; :::; R` of LV to an element in L in the following

way.

[[Pi]]M = g1(kPik) for i = 1; :::; m.

[[Qj]]M = g2(kQjk) for j = 1; :::; n.

[[Rk]]M = g1(kRkk) = g2(kRkk) for k = 1; :::; `.

Then, this M is indeed a model for P(OL(�)) and because g1 and g2 are

homomorphisms, [[�]]M 6� [[�]]M. Thus h�; �i 62 P(OL
(�)). 2

The quite the same proof also works for the predicate logic P(OL) and

it can be shown that the predicate logic P(OL) also has the interpolation

property of the following form.

Theorem 5.8 (The interpolation property of P(OL)) Let �; � 2

Form(L). If h�; �i 2 P(OL), then there exists 
 2 Form(L) which satis-

�es the following conditions:

(1) h�; 
i 2 P(OL) and h
; �i 2 P(OL).

(2) Only these predicate symbols which are common to � and �, or ?,

occur in the formula 
. 2

5.4 Note

Algebraic equivalent conditions for a propositioanl logic to have the Craig's

interpolation property have been intensively studied for some classes of non-

classical logics ([42],[30],[35]). Amalgamation property and super amalgama-

tion property are typical as such conditions. In our case, the situation is a bit

di�erent, because Craig's interpolation property must be formulated without

an implication symbol. But it may be possible that the super amalgamation

property is an equivalent condition for a semi-orthologics to have the Craig's
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interpolation property. The question is how to prove the necessity. If it would

be shown, then we could decide completely which logics between OL(�) and

CL have the Craig's interpolation property, like in the case of intermediate

logics.

For a subvariety V of the variety of Heyting algebras, the Craig's interpo-

lation property of the logic L(V) is equivalent to the amalgamation property

of the variety V, and moreover, the super amalgamation property follows

from the amalgamation property in the case of a subvariety of the variety

of Heyting algebras. This fact is fundamental in deciding 7 logics between

the classical logic and the intuitionistic logic which have the interpolation

property ([34]).

Completion technique is not always necessary for showing that a class C

of algebras has the super amalgamation property, in other words, the target

C-algebra is not necessary to be a complete C-algebra. However, for a variety

V of algebras, if a completion technique works well for V-poset as well as V-

algebra, then we can utilize the fact for proving that the minimum predicate

extension of the logic L(V) also has the Craig's interpolation property, as

seen in this Chapter.

The classical logic CL and its predicate extension have the Craig's inter-

polation property. But our proof method does not work well for the case

of the variety BA. It seems di�cult to show that the Dedekind-MacNeille

completion of a BA-poset has the distributive law, since the proof of Theo-

rem 3.7 depends highly on the fact that BA is a distributive lattice. Craig's

interpolation property of CL and P(CL) is proved in a completely di�erent

way, for example, by a syntactical method.
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6 Kripke-style semantics of orthomodular log-

ics

In this chapter, we discuss Kripke-style semantics of orthomodular logics.

For the smallest orthomodular logic OML, Goldblatt built a relational se-

mantics (quantum models) and showed the completeness theorem for OML

with respect to this semantics ([15]), as we have seen in Chapter 1. His

method to construct quantum models is restricting the range of the valuation

V of orthomodels in order to make the resulting models satisfy the ortho-

modular law.

Our approach is completely di�erent. The construction of our semantics for

orthomodular logics is based on a di�erent type of representation theorem,

in which non-empty set with two operations is employed, instead of some

relations.

Here we will give a Kripke-style semantics of orthomodular logics and show

the completeness theorem for any orthomodular logic which corresponds to

a subvariety of OML with respect to this semantics. Furthermore, we will

extend this semantics to one for in�nitary orthomodular logics.

6.1 Semantics of orthomodular logics

6.1.1 Frames and models

Kripke-style semantics for propositional logics like the intuitionistic logic

and modal logics has a close connection to a set-theoretic (Stone-like) rep-

resentation theorem of algebras which correspond to these logics. There is

a representation theorem also for orthomodular lattices by D.J.Foulis ([13]),

although it is not set-theoretic. His representation technique is by using

particular semigroups, called Rickart * semigroups ([12]). Here we adopt

his method in order to characterize orthomodular logics in a universal form.

First, we only introduce our several semantical tools, and their properties

will be discussed in the following section.

De�nition 6.1 (Orthomodular frame) F = hG; �; �; 0i is an orthomod-

ular frame, if it satis�es the following conditions from (1) to (4).

(1) hG; �i is a semigroup.

(2) The element 0 2 G satis�es that x � 0 = 0 � x = 0 for any x 2 G. We

call this 0 the zero element.

(3) � is a unary operation which satis�es the following: for any x; y 2 G,

(x � y)� = y� � x� and (x�)� = x.

Before giving the condition (4), we introduce some notions. An element

e 2 G is a projection if e = e� = e � e. The set of all projections in G is
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6.1 Semantics of orthomodular logics 49

denoted by P (G), i.e.

P (G) := fe 2 G j e = e� = e � eg

For a non-empty subset M of G, the set M (r) of right annihilators of M and

the set M (`) of left annihilators of M are de�ned by:

M (r) := fy 2 G j x � y = 0 for any x 2Mg

M (`) := fy 2 G j y � x = 0 for any x 2Mg

Then the condition (4) is given as follows:

(4) For any x 2 G, there exists a projection e 2 P (G) such that the right

annihilator of the singleton set fxg can be expressed as:

fxg(r) = e �G ( := fe � y j y 2 Gg )

The above condition (4) will play one of the central roles in the characteriza-

tion of propositional orthomodular logics and when we extend our semantics

to in�nitary logics, we generalize this condition somehow to �t our purpose.

We need one more technical notion. The condition (4) says that for any

x 2 G, there exists e 2 P (G) such that fxg(r) = e � G. But, we cannot

assume, in general, that any e 2 P (G) can be represented as fxg(r) = e � G

for some x 2 G. Now we say that e in P (G) is closed if for this e, there exists

an element x 2 G such that e �G = fxg(r). The set of all closed projections

is denoted by Pc(G), i.e.,

Pc(G) := fe 2 P (G) j 9x 2 G; e �G = fxg(r)g

We de�ne models on the basis of orthomodular frames.

De�nition 6.2 (Orthomodular model) M = hF ; ui = hG; �; �; 0; ui is a

orthomodular model on a frame F , if F is an orthomodular frame and u is a

function which assigns to each propositional variable pi a closed projection

u(pi) of G. The notion of truth in an orthomodular model is de�ned induc-

tively as follows: the symbol 'M j=x �' is read as \ a formula � is true at a

point x in a modelM".

(0) M j=x ? if and only if x = 0

(1) M j=x pi if and only if x 2 u(pi) �G

(2) M j=x � ^ � if and only ifM j=x � and M j=x �

(3) M j=x :� if and only if for any y 2 G, M j=y � implies y� � x = 0
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6.1 Semantics of orthomodular logics 50

We denote M 6j=x � ifM j=x � does not hold.

For a formula �, we denote k�kM := fx 2 G jM j=x �g. Then we can

restate the above truth conditions in the following form:

(0) k?kM = f0g

(1) kpik
M = u(pi) �G

(2) k� ^ �kM = k�kM \ k�kM

(3) k:�kM = fx 2 G j y� � x = 0 for any y 2 k�kMg

Next we de�ne the notion of validity in our orthomodular models. Let � be

a non-empty set of formulas and � a formula. For an orthomodular model

M, we say \� implies � at x inM" ( in symbol,M : � j=x � ) if and only if

M j=x �1^�2^� � �^�n for some formulas �1; �2; � � � ; �n 2 � impliesM j=x �.

We say \� implies � in M" ( M : � j= � ) if and only if M : � j=x � holds

at any x in the modelM. For an orthomodular frame F , we say \� implies

� in F" ( F : � j= � )if and only if M : � j= � holds for any model M on

the frame F . For a class C of orthomodular frames, we say \� implies � in

C" (C : � j= �) if and only if F : � j= � holds for any member F in C.

Now the relation between the provability of a logic and the validity in a

class of frames are de�ned in the following way.

De�nition 6.3 Let L be an orthomodular logic and let � be the set of all

formulas. Let C be a class of orthomodular frames.

(1) C characterizes L if any formulas �; �, � `L � is equivalent to C : � j= �.

(2) C strongly characterizes L if for any non-empty subset � � � and any

formula �, � `L � is equivalent to C : � j= �.

In Section 6.1 and 6.2, we will show that the smallest orthomodular logic

OML has the strong characterization theorem of type (2) above, with respect

to the class of all orthomodular frames.

6.1.2 Properties of orthomodular frames

In order to prove that our semantics is sound for the minimum orthomodular

logic OML, we have to make use of some algebraic properties of orthomod-

ular frames. We give some results on orthomodular frames in this section,

according to Maeda's book [32]. Let F = hG; �; �; 0i be a �xed orthomodular

frame throughout this section. First, we show that a unary operation (�)
?
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and a partially order relation � can be naturally introduced in any ortho-

modular frame.

Proposition 6.4 For e1; e2 2 P (G), if e1 �G = e2 �G, then e1 = e2, where

e �G := fe � x j x 2 Gg

Proof : Since e1 2 e2 �G, there exists an element s 2 G such that e1 = e2 � s.

Therefore e2 � e1 = e2 � e2 � s = e2 � s = e1. Similarly we have that e1 � e2 = e2.

Thus we have e1 = e1
� = (e2 � e1)

�

= e1
� � e2

� = e1 � e2 = e2. 2

The next corollary follows from this proposition.

Corollary 6.5 For any x 2 G, there exists the unique projection e 2 P (G)

such that fxg(r) = e �G. 2

This corollary enables us to get a correspondence between x and the unique

projection e for x such that fxg(r) = e �G as a function from G to P (G). We

denote this e by x?. Note that the next two equations hold obviously. For

any x 2 G, we have x? 2 P (G), and

fxg(r) = x? �G

x � x? = x? � x� = 0

Proposition 6.6 For any e; f 2 P (G), the following three conditions are

equivalent: (1) e � f = e (2) f � e = e (3) e �G � f �G

Proof : e � f = e if and only if (e � f)
�

= e� if and only if f � � e� = e� if

and only if f � e = e. Thus (1) and (2) are equivalent. To show (2) implies

(3), take p 2 e � G. Then there exists s 2 G such that p = e � s. Therefore

p 2 f �e �G � f �G. Then, (3) implies (2), because e 2 e �G � f �G, and thus,

there exists t 2 G such that e = f � t. Therefore f � e = f � f � t = f � t = e. 2

By Propositions 6.4 and 6.6, we can de�ne a partially order relation � on

P (G) as follows: e; f 2 P (G),

e � f if and only if e � f = e

The elements 0 and 0? have a special role in an orthomodular frame. The

next proposition shows this.

Proposition 6.7

(1) Both 0 and 0? are projections.

(2) In P (G), 0 is the least element, whereas 0? is the greatest element with

respect to the order �.

Proof : (1): By the de�nition, it is clear that 0? is a projection. Also by the

de�nition, 0 � 0 = 0. Thus we have only to show that 0� = 0. By operating
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� to both sides of 0 � 0� = 0, we have 0 = 0� � 0 = 0�.

(2): By the de�nition, 0 � x = x � 0 = 0 holds for any x 2 G. This implies

that 0 is the least element among all projections. As for the element 0?,

we can prove that x � 0? = 0? � x = x for any x 2 G. Indeed, note that

f0g(r) = 0? � G = G. So, for any x 2 G, there exists s 2 G such that

x = 0? � s. Therefore 0? � x = 0? � 0? � s = 0? � s = x holds for any x 2 G.

Moreover, for any y 2 G, y � 0? = (y � 0?)�� = (0?
�

� y�)� = (y�)� = y.

Consequently, we have that x � 0? = 0? � x = x for any x 2 G. This implies

that 0? is the greatest element among all projections. 2

The above proof shows that 0? is the unit element of a given orthomodular

frame. The following are properties of the unary operation (�)?.

Lemma 6.8 Let x; y be elements in G, and e; f projections. The operation

(�)? on G has the following properties.

(1) If x � e = 0, then e � x?.

(3) If e � f , then f? � e?.

(5) x? = x???.

(2) x? � (y � x)?.

(4) x = x � x??, e � e??.

(6) If e � x = x � e, then e? � x =

x � e?.

Proof : (1): Suppose x � e = 0. Take p 2 e �G, then there exists s 2 G such

that p = e�s. Therefore x�p = x�e�s = 0. This means that p 2 fxg(r) = x?�G.

Hence e �G � x? �G, and so e � x?.

(2): Take p 2 x? �G, then there exists s 2 G such that p = x? � s. Therefore

(y � x) � p = y � x � x? � s = 0, which implies that p 2 fy � xg(r) = (y � x)? �G.

Hence x? �G � (y � x)? �G and so x? � (y � x)?.

(3): Suppose e � f , which is equivalent to e � f = e. For p 2 f? � G, there

exists s 2 G such that p = f? � s. Then, e � p = e � f � f? � s = 0. Therefore

p 2 feg(r) = e? �G. This means that f? �G � e? �G. Hence f? � e?.

(4): By de�nition, fxg(r) = x? �G and fx?g(r) = x?? �G hold. From the fact

that x? �x� = (x �x?)� = 0� = 0, we have that x� 2 x?? �G. Therefore there

exists s 2 G such that x� = x?? � s. Thus x = x�� = (x?? � s)� = s� � x??.

Hence we have x � x?? = s� � x?? � x?? = s� � x?? = x. Take x = e in

particular, this means that e � e??.

(5): By (4), x? � x??? holds. Conversely, take p 2 fx??g(r) = x??? � G.

Then x?? � p = 0. By this, together with (4), we have x � p = x � x?? � p = 0,

which means p 2 fxg(r) = x? �G. Hence x??? � x?.

(6): Suppose e � x = x � e. Then e � (x � e?) = x � e � e? holds. Thus

x � e? 2 feg(r) = e? �G. Therefore there exists s 2 G such that x � e? = e? � s.

Hence we have e? �x � e? = e? � e? � s = e? � s = x � e?. On the other hand, by

our assumption, x� � e = e � x� holds. Thus e � (x� � e?) = x� � e � e? = 0. Thus

x� �e? 2 feg(r) = e? �G. Therefore there exists t 2 G such that x� �e? = e? �t.

Hence we have e? � x� � e? = e? � e? � t = e? � t = x� � e?. By operating � to
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both sides, we have e? � x � e? = e? � x. Therefore x � e? = e? � x. 2

For closed projections, the following characterization lemma holds.

Lemma 6.9 For any e 2 P (G), e 2 Pc(G) if and only if e?? = e.

Proof : If e 2 Pc(G), then there exists x 2 G such that e = x?. Therefore,

by (4) of the previous lemma, we have e?? = x??? = x? = e. Conversely,

suppose e?? = e. Then fe?g(r) = e?? �G = e �G holds. Thus e 2 Pc(G). 2

Corollary 6.10 Both 0 and 0? are closed projections.

Proof : By Lemma 6.8 (5) and Lemma 6.9, it is obvious that 0? is closed.

As for the projection 0, it su�ces to show that 0?? = 0. To show this, we

will prove that 0?? � G = f0g. For any x 2 0?? � G = f0?g(r), 0? � x = 0

holds. But by Proposition 6.7 (2), we have 0? � x = x, and hence x = 0.

Thus, 0?? �G = f0g = 0 �G. By Proposition 6.4, 0?? = 0. 2

So far, we have discussed some operations in an orthomodular frame, i.e.,

the unary operation (�)
?

and the 0-ary operations (constants) 0 and 0?. The

rest of this section is devoted to explain about a binary operation u. Our

purpose below is to prove the following theorem.

Theorem 6.11 For a �nite subsetH � G, there exists an element e 2 P (G)

such that H(r) = e �G. 2

Let H = fx1; x2; : : : ; xng. By the frame condition, for each xi, there exists

ei 2 G such that fxig
(r) = ei � G. Then it is easy to show that H(r) =Tn

i=1fxig
(r) =

Tn

i=1 ei �G. In order to show the above theorem, it is enough

to consider only the case thatH is a two-element subset in order to prove this

theorem. It is likely that the condition (4) of De�nition 6.1 is properly weaker

than the above theorem, but the theorem shows that they are equivalent,

that is, if we assume only the one-element version, then we can obtain the

�nitely-many-element version of that kind of condition. This is the point of

orthomodular frames. On the other hand, there is a real gap between the

�nite version and the in�nite version, the latter will appear in the semantics

of in�nitary orthomodular logics. For the proof of Theorem 6.11, we must

prepare some propositions and lemmas �rst.

Proposition 6.12 For any x 2 G, there exists a projection f 2 P (G)

such that fxg(`) = G � f (:= fy � f j y 2 Gg).

Proof : By the frame condition, for x�, there exists f 2 P (G) such that

fx�g(r) = f �G. We show that this f satis�es the condition of this proposition.

Take p 2 G � f , then there exists s 2 G such that p = s � f . Since we have

x� � f = 0, f � x = 0 holds, and so p � x = s � f � x = 0. Hence p 2 fxg(`).

Conversely, take q 2 fxg(`), then q � x = 0, and so x� � q� = 0. Therefore
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q� 2 f �G, which means that there exists t 2 G such that q� = f � t. Hence

q = t� � f 2 G � f . Consequently fxg(`) = G � f . 2

We can show by the similar argument as for Proposition 6.4 that the element

f in the above proposition is uniquely determined. It is also clear that the

above f can be written also in the following form, that is: f = (x�)?. For a

subset M � G, we abbreviate M (`)(r) for (M (`))(r), and M (r)(`) for (M (r))(`).

Proposition 6.13

(1) For any e 2 Pc(G), e �G = feg(`)(r) holds.

(2) For any x 2 G, there exists z 2 P (G) such that fxg(`)(r) = fzg(r) holds.

Proof : (1): By Lemma 6.9, fe?g(r) = e � G holds for e 2 Pc(G). For

p 2 feg(`)(r), q � p = 0 for any q 2 feg(`). We have e? 2 feg(`) because

e? � e = (e � e?)� = 0. Then we can take e? for q, hence we have e? � p = 0.

This means that p 2 fe?g(r) = e �G. For the converse, take s 2 e �G, then

there exists t 2 G such that s = e � t. Since for any u 2 feg(`), u �e = 0 holds,

we have u � s = u � e � t = 0. Therefore s 2 feg(`)(r).

(2): By the previous proposition, for x 2 G, there exists f 2 P (G) such that

fxg(`) = G � f . Then, fxg(`)(r) = (G � f)(r) = ffg(r). Thus we can take this f

for z. 2

The following lemma is crucial to prove Theorem 6.11.

Lemma 6.14 For any e1; e2 2 Pc(G), there exists the element x 2 Pc(G)

uniquely such that e1 �G \ e2 �G = x �G holds.

Proof : We will show by three steps that it is enough to put x = e1�(e2
?�e1)

?.

(1): e1 � (e2
? � e1)

? �G � e1 �G \ e2 �G

It is trivial that e1 � (e2
? � e1)

? �G � e1 �G. By Proposition 6.13 (1), e2 �G =

fe2g
(`)(r) holds. Take p 2 e1 � (e2

? � e1)
? � G, then there exists s 2 G such

that p = e1 � (e2
? � e1)

? � s. On the other hand, we have fe2g
(`) = G � e2

? by

Proposition 6.12. So, for any q 2 fe2g
(`), there exists t 2 G such that q =

t�e2
?. Therefore q �p = (t�e2

?)�e1 �(e2
? �e1)

? �s = t�(e2
? �e1)�(e2

? �e1)
? �s = 0.

Thus we have p 2 fe2g
(`)(r) = e2 �G, and so e1 � (e2

? � e1)
? �G � e2 �G. Hence

e1 � (e2
? � e1)

? �G � e1 �G \ e2 �G holds.

(2): e1 �G \ e2 �G � e1 � (e2
? � e1)

? �G

We have e2 �G = fe2g
(`)(r) = fe2

?g(r) �G by Propositions 6.12 and 6.13. Take

p 2 e1 �G\ e2 �G, then e2
? � p = 0 and there exists s 2 G such that p = e1 � s.

Therefore e2
? � e1 � p = e2

? � e1 � e1 � s = e2
? � e1 � s = e2

? � p = 0. Thus p 2

fe2
? �e1g

(r) = (e2
? �e1)

? �G holds. Moreover, since e1 �p = e1 �e1 �s = e1 �s = p,

we have p = e1 �p 2 e1 � (e2
? �e1)

? �G. Hence e1 �G\e2 �G � e1 � (e2
? �e1)

? �G.

So far, we have shown that e1 �G\ e2 �G = e1 � (e2
? � e1)

? �G. Last, we have

only to show that x is a closed projection.

(3): e1 � (e2
? � e1)

? 2 Pc(G)
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For x := e1 � (e2
? � e1)

?, we will prove that fxg(`)(r) = x �G. Take p 2 x �G,

then there exists s 2 G such that p = x �s. For any q 2 fxg(`), since q �x = 0,

we have q � p = q �x � s = 0, which means p 2 fxg(`)(r). Thus x �G � fxg(`)(r).

To the converse, it is obvious that fe1g
(`) � fxg(`), and so we have fxg(`)(r) �

fe1g
(`)(r). Also, by similar argument as in the proof of (1), fe2g

(`) � fxg(`),

and so fxg(`)(r) � fe2g
(`)(r). Therefore fxg(`)(r) � fe1g

(`)(r)\fe2g
(`)(r). Hence

we have that fxg(`)(r) = fe1g
(`)(r)\fe2g

(`)(r) = e1 �G\e2 �G = x �G. Then, by

Proposition 6.13 (2), there exists z 2 G such that x �G = fxg(`)(r) = fzg(r).

Thus we conclude that x 2 Pc(G). 2

We denote e1 u e2 := e1 � (e2
? � e1)

?. By the previous lemma, e1 u e2 turns

out to be the greatest lower bound of fe1; e2g with respect to the order �

on P (G). Now we are in a position to show Theorem 6.11. Let the �nite

subset H � G be fx1; x2; : : : xng. Then e := x1 u x2 u � � � u xn satis�es

the requirement of the theorem, and hence our proof is completed. De�ne

e1 t e2 := (e1
? u e2

?)? for e1; e2 2 Pc(G). Because of Lemma 6.8 (3), it is

easily seen that e1 t e2 is the least upper bound of fe1; e2g. For the binary

operation u, the following lemma holds.

Lemma 6.15 Let e; f 2 Pc(G).

(1) If e � f = f � e, then e � f 2 Pc(G) and e u f = e � f .

(2) In general, e u f = e u (f? � e)? = e � (f? � e)?.

Proof : (1): (e � f)� = f � � e� = f � e � e � f = e � f and (e � f) � (e � f) =

e � (e � f) � f = e � f . Thus e � f 2 P (G). Obviously e � f � (e � f)?? by Lemma

6.8 (4). Conversely, we have e? � (e � f)? by Lemma 6.8 (2), then by (3),

(e � f)?? � e?? = e, which means that e � (e � f)?? = (e � f)??. Similar

argument implies that f � (e � f)?? = (e � f)??. Therefore (e � f) � (e � f)?? =

e � (e � f)?? = (e � f)??. This means that (e � f)?? � e � f and so, we have

(e�f)?? = e�f . Hence e�f 2 Pc(G). Now we will show that e�f is the greatest

lower bound of fe; fg. It is trivial that e � f � e and that e � f � f . Take any

g 2 Pc(G) such that e � g = g and that f � g = g. Then (e � f) � g = e � g = g,

which means that g � e � f . Thus we have that e u f = e � f .

(2): We have e u f = e � (f? � e)? by Lemma 6.14. Put u := f? � e, then

e? � (f? � e)? = u? by Lemma 6.8 (2). So, e? � u? = u? � e?. This implies

e � u? = u? � e by Lemma 6.8 (6). Therefore by (1) we have eu u? = e � u? =

e � (f? � e)? = e u f . 2

6.1.3 The soundness theorem

We have prepared some basic properties of orthomodular frames for proving

the soundness theorem in the previous section. We need one more lemma on
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orthomodular models. We will establish it �rst and then show the soundness.

Lemma 6.16 LetM = hF ; ui = hG; �; �; 0; ui be an orthomodular model.

Then, for any formula �, there exists the unique closed projection e 2 Pc(G)

such that

k�kM := fx 2 G jM j=x �g = e �G

Proof : Uniqueness follows clearly from Proposition 6.4, once existence will

be proved. So we will de�ne e(�) for a formula � inductively as follows and

it really ful�lls the condition.

(0) e(?) := 0.

(1) e(pi) := u(pi).

(2) e(� ^ �) := e(�) u e(�).

(3) e(:�) := (e(�))?.

Taking account of the de�nition of truth condition and Lemma 6.14, it is

trivial that e(�) de�ned above satis�es the condition of this lemma in the

cases (0), (1), and (2). For the case (3), we will show that k:�kM := fx 2

G j y� � x = 0 for any y 2 k�kMg = e(�)
?

� G = fe(�)g(r). Take p 2

k:�kM, then for any q 2 k�kM, q� � p = 0 holds. By induction hypothesis,

e(�) 2 e(�) � G = k�kM, and so e(�) � p = e(�)
�

� p = 0. Thus we have

p 2 fe(�)g(r) = e(�)
?

�G. Conversely, take p 2 fe(�)g(r), e(�) � p = 0 holds.

For any q 2 k�kM, by induction hypothesis, there exists s 2 G such that

q = e(�) � s. Then q� � p = s� � e(�) � p = 0. Thus p 2 k:�kM. We can

conclude that k:�kM = e(�)
?

�G.

2

Theorem 6.17 Let � be a non-empty set of formulas and � a formula and

C be the class of all orthomodular frames. Then � `OML � implies C : � j= �.

Proof : Take an arbitrary model M 2 C. By Lemma 6.16 there exists a

map e : �! Pc(G) such that for any formula �, k�kM = e(�) �G. Therefore

we haveM : � j= � if and only if e(�) �G � e(�) �G if and only if e(�) � e(�)

for any formulas � and �. Thus, we have only to prove that for all the axiom

schemes and inference rules of Q, � `Q � implies e(�) � e(�). This is almost

trivial. We mention here only the case of (Ax8):� ^ (:� _ (� ^ �)) ` �.

For this case, it is enough to show that e u (e? t (e u f)) � f holds for any

e; f 2 Pc(G). Since e u f � e, we have e � (e u f) = (e u f) � e, then by

Lemma 6.8 (6), e � (eu f)? = (eu f)? � e holds. By Lemma 6.15 (1), we have

f � euf = eu(euf) = eu((euf)?�e)? = eu((euf)?ue)? = eu((euf)te?).

2
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6.2 Canonical model and completeness theorem

To show that an orthomodular logic is complete with respect to our seman-

tics, we will introduce how to construct the canonical model of a logic L.

Our construction is carried out via Lindenbaum construction. Let L be an

orthomodular logic which has been �xed through this chapter, and � the set

of all formulas of our propositional language. A congruence relation �L on

� is de�ned as:

��L� if and only if � `L � and � `L �

It is easily seen that �L is indeed a congruence relation. The equivalence

class of each formula � is denoted by [�], that is, [�] := f� 2 � j � �L �g,

and the quotient set f[�] j� 2 �g is denoted by [�]. Since �L is a congruence

relation, an order �L and operations ^ and : on � can be de�ned as follows:

[�] �L [�] if and only if � `L �

[�] ^ [�] := [� ^ �] and :[�] := [:�]

Note that we use the same symbols also for operation on [�].

6.2.1 Canonical model construction

De�nition 6.18 (Canonical frame and canonical model) The canoni-

cal frame FL for an orthomodular logicL is a structure of quadruple hG(L); �;

�; �i where:

(1) G(L) is the set of monotone maps ' from [�] to [�] having the residual

map '] for each ' 2 G(L). Here, monotonicity means that for any

formulas �; �, [�] �L [�] implies '([�]) �L '([�]), and the residual

map '] for ' means a monotone map that satis�es ' � ']([�]) �L [�]

and '] � '([�]) �L [�] for any [�] 2 [�], where � is the composition

operator for maps.

(2) � is a unary operation on G(L) de�ned as: '�([�]) := :('](:[�])) for

any ' 2 G(L), where [�] is a variable for an element in [�] as an input

of map '.

(3) � is the zero map, that is �([�]) = [?] holds for all [�] 2 [�].

Clearly � 2 G(L). The canonical model for L is a structure ML = hFL; uLi,

where FL is the canonical frame de�ned above and uL is a map from the set of

all propositional variables toG(L) de�ned by: uL(pi)([�]) := ([�]_:[pi])^[pi]

for each [�] 2 [�] and for each propositional variable pi.

We will prove in the following thatML is an orthomodular model, according

to Maeda's book [32]. We have to show,
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(a) hG(L); �i is a semigroup.

(b) � 2 G(L) and for any ' 2 G(L), � � ' = ' � � = � holds.

(c) For ';  2 G(L), '�� = ' and (' �  )� =  � � '� holds .

(d) For any ' 2 G(L), there exists " 2 P (G(L)) such that f'g(r) = "�G(L).

(e) uL(pi) 2 Pc(G(L)), that is, uL(pi) 2 P (G(L)) and (uL(pi))
?? = uL(pi).

Notice that we use �; �; 
; � and � as meta-variables for formulas, and

especially, the last one is for an input variable of maps. On the other hand,

we use ';  ; �; �; �; � as meta-variables for maps from [�] to [�], and � for

the zero map.

Proposition 6.19 Let ';  2 G(L).

(1) The residual map '] for ' is uniquely determined.

(2) '] =  ] implies ' =  .

(3) (' �  )] =  ] � '].

Proof : (1): Suppose '1; '2 are residual maps of '. Then we have:

(a) : '1 � '([�]) �L [�] (b) : ' � '1([�]) �L [�]

(c) : '2 � '([�]) �L [�] (d) : ' � '2([�]) �L [�]

By (a), we deduce '1 �'�'2([�]) �L '2([�]), and by (d), '1 �' �'2([�]) �L
'1([�]). Thus we have '2([�]) �L '1([�]). Similarly, we have '1([�]) �L
'2([�]) by (b) and (c). Hence '1([�]) = '2([�]) holds for any [�] 2 [�].

Therefore we conclude that '1 = '2.

(2): Suppose that ']([�]) =  ]([�]) for all [�] 2 [�]. Then, since we have

 � ]�'([�]) �L '([�]) and  �'
]�'([�]) �L  ([�]),  ([�]) �L '([�]) holds.

Similarly, the converse inequality can be shown. Thus we have '([�]) =

 ([�]) for any [�] 2 [�]. Therefore ' =  .

(3): We have ( ]�'])�('� )([�]) =  ]�(']�'( ([�]))) �L  
]� ([�]) �L [�]

and ('� )� ( ] �'])([�]) = '� ( � ](']([�]))) �L '�'
]([�]) �L [�]. Thus

by the uniqueness of the residual map, we have (' �  )] =  ] � ']. 2

(1) and (2) of the above proposition show that (�)] is an injective operator.

It is clear that  ] � '] satis�es monotonicity, therefore, by (3), ';  2 G(L)

implies ' �  2 G(L). This, together with properties of the composition of

maps, guarantees that hG(L); �i is a semigroup.

Proposition 6.20 For ';  2 G(L), the following holds.

(1) '� 2 G(L).

58



6.2 Canonical model and completeness theorem 59

(2) '�� = '.

(3) (' �  )� =  � � '�.

Proof : (1): Suppose [�] �L [�] for �; � 2 �. Then :[�] �L :[�] holds,

and so '](:[�]) �L '](:[�]). Therefore we have '�([�]) = :'](:[�]) �L
:'](:[�]) = '�([�]). This means that '� is a monotone map. Let �([�]) :=

:'(:[�]). Then � can be proved to be monotone by similar argument as

above and we have � � '�([�]) = :'(::'](:[�])) = :'('](:[�]) �L [�],

and '� ��([�]) = :'](::'(:[�])) = :']('(:[�])) �L [�]. Therefore, by the

uniqueness of a residual map, � = ('�)], which implies that '� 2 G(L).

(2): We have '��([�]) = :'�](:[�]) = ::'(::[�]) = '([�]).

(3):By Proposition 6.19 (3), we have (' �  )�([�]) = :(' �  )](:[�]) =

: ]('](:[�])) = : ](::'](:[�])) = : ](:'�([�])) =  � � '�([�]). 2

By the above proposition, the operation � is really an operation on G(L)

and satis�es the conditions for orthomodular frames.

Proposition 6.21 For a formula �, the map �� : [�]! [�] is de�ned by:

for any [�] 2 [�],

��([�]) := ([�] _ :[�]) ^ [�]

Then, (1): �� 2 G(L), and (2): �� 2 P (G(L)).

Proof : Note that �� depends on [�], not on the formula � itself. Since

L is an orthomodular logic, (a) : � ^ (:� _ (� ^ �)) `L � and (b) : � `L
:� _ (� ^ (:� _ �)) hold.

(1): Obviously �� satis�es monotonicity. Let ��([�]) := ([�] ^ [�]) _ :[�]

and we will show that ��
] = ��. By (a), we have �� � ��([�]) = ��(([�] ^

[�])_:[�]) = (([�]^ [�])_:[�])^ [�] �L [�]. By (b), we have �� ���([�]) =

��(([�] _ :[�]) ^ [�]) = (([�] _ :[�]) ^ [�]) _ :[�] �L [�]. Thus �� = ��
]. Of

course, �� also satis�es monotonicity, we conclude that �� 2 G(L).

(2): We will show that ��
� = �� and that �� ��� = ��. We have ��

�([�]) =

:��
](:[�]) = :((:[�] ^ [�]) _ :[�]) = ([�] _ :[�]) ^ [�] = ��([�]). On the

other hand, �rst we have �� � ��([�]) = ��(([�] _ :[�]) ^ [�]) = ((([�] _

:[�]) ^ [�]) _ :[�]) ^ [�]. By (b), we have (([�] _ :[�]) ^ [�]) _ :[�] �L [�],

then (([�]_:[�])^ [�])_:[�] �L [�]_:[�], and so �� � ��([�]) �L ��([�]).

Conversely, clearly we have that ([�]_:[�])^ [�] �L [�]_:[�], then (([�]_

:[�]) ^ [�]) _ :[�] �L [�] _ :[�], and so �� � ��([�]) �L ��([�]). Therefore

we have �� � �� = ��. Hence �� 2 P (G(L)). 2

In particular, � = �
?
2 P (G(L)) and uL(pi) = �pi 2 P (G(L)) hold.

Proposition 6.22 Let ';  2 G(L).

(1) For any [�] 2 [�], '([�]) = [?] if and only if ']([?]) �L [�].

(2) � � ' = ' � � = �.
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(3) ' �  = � if and only if  (:[?]) �L '
]([?]).

Proof : (1): Since ']�'([�]) �L [�], if '([�]) = [?], then we have ']([?]) �L
[�]. If ']([?]) �L [�], then [?] �L '�'

]([?]) �L '([�]). Thus, '([�]) = [?].

(2): Obviously � � '([�]) = �('([�])) = [?] = �([�]). By replacing [�] for

�([�]) in (1), we have '(�([�])) = [?] = �([�]) since ']([?]) �L �([�]) = [?]

holds. Thus we have � � ' = ' � � = �.

(3): Suppose '� ([�]) = �([�]) = [?]. Take [:?] for [�], then '� ([:?]) =

[?] holds. Therefore ']([?]) = '] � '( (:[?])) �L  (:[?]). Conversely,

suppose  (:[?]) �L ']([?]). Then ' �  (:[?]) �L ' � ']([?]) �L [?],

and so we have ' �  (:[?]) = [?]. Therefore, for any [�] 2 [�], since

we have [�] �L :[?], ' �  ([�]) �L ' �  (:[?]) = [?]. This means that

' �  ([�]) = [?] = �([?]), that is, ' �  = �. 2

Trivially the above proposition guarantees that � = �
?
2 P (G(L)) ful�lls

the condition for 0 of an orthomodular frame.

Lemma 6.23 For any ' 2 G(L), let [�] := ']([?]). Then,

f'g(r) := f� 2 G(L) j ' � � = �g = �� �G(L)

Proof : For [�] 2 [�], since ��([�]) = ([�]_:[�])^ [�] �L [�] = ']([?]), we

have '���([�]) �L '�'
]([?]) �L [?]. Thus, '���([�]) = [?] = �([�]). This

implies that �� �G(L) � f'g(r). Conversely, take � 2 f'g(r), then ' � � = �

holds. By Proposition 6.22 (3), �(:[?]) �L '
]([?]) = [�], and so �([�]) �L

�(:[?]) �L [�]. Thus, we have ((�([�] ^ [�]) _ :[�]) ^ [�] �L �([�]). Also,

from �([�]) �L [�], we have �([�]) = �([�])^[�] �L (�([�])_:[�])^[�]. Then

�� � �([�]) = (�([�]) _ :[�]) ^ [�] = �([�]), which means that � 2 �� �G(L).

Therefore f'g(r) = �� �G(L). 2

In the above lemma, since, of course �� is in P (G(L)), we have proved so

far all the conditions of orthomodular frames, that is, the following theorem

holds.

Theorem 6.24 The canonical frame FL = hG(L); �; �; �i for L is an or-

thomodular frame. 2

We prepare two more lemmas on closed projections in G(L) for establishing

the completeness theorem in the next section.

Lemma 6.25 Pc(G(L)) = f�� j � 2 �g.

Proof : Suppose � 2 Pc(G(L)), then there exists ' 2 G(L) such that

f'g(r) = � � G(L) holds. By Lemma 6.23, if we put [�] := ']([?]), then

� = �� due to the uniqueness of the right annihilator. On the other hand,

consider �� for an arbitrary formula �, and by Lemma 6.9, we have only to
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show that ��
?? = ��. Lemma 6.23 shows how to �nd '? for ' 2 G(L), that

is, put [�] := ']([?]), and '? = ��. It is shown in Proposition 6.21 how to

build '] from '. So, since ��
]([?]) = :[�], we have that ��

? = �
:�. Also

since �
:�

]([?]) = [�], we have �
:�

? = ��
?? = ��. 2

Of course, we can take pi for � above, so uL(pi) = �pi 2 Pc(G(L)). This

shows that the canonical model ML = hFL; uLi is indeed an orthomodular

model.

Lemma 6.26 For �; � 2 �. Then � `L � if and only if �� � ��, that is,

�� � �� = ��.

Proof : Suppose � `L �. Because ([�] _ :[�]) ^ [�] �L [�] �L [�], we have

�� ���([�]) = ((([�]_:[�])^ [�])_:[�])^ [�] = ([�]_:[�])^ [�] = ��([�]).

Thus �� � ��. Conversely, if �� = �� � ��, then [�] = ��(:[?]) = �� �

��(:[?]) �L ��(:[?]) = [�]. So we have � `L �. 2

6.2.2 The completeness theorem

Theorem 6.27 (Fundamental theorem for orthomodular logic) Let

L be an orthomodular logic. For any formula � and for any ' 2 G(L),

ML j=' � if and only if ' 2 �� �G(L).

Proof : Induction on the construction of formula �.

(1): Case � := pi. By de�nition of truth for model ML, ML j=' pi if and

only if ' 2 �pi �G(L).

(2): Case � := � ^ 
. We show �rst that �� u �
 = ��^
. By Lemma 6.26,

it is obvious that ��^
 � �� u �
. Take �� such that �� � �� and �� � �
 .

Then, it is also clear that �� � ��^
. Thus we have ��^
 = �� u �
. Hence

by Lemma 6.16,ML j=' � ^ 
 if and only if ' 2 (�� u �
) �G(L) if and only

if ' 2 ��^
 �G(L).

(3): Case � := :�. Since we have ��
? = �

:�, by Lemma 6.16, we can

conclude that ML j=' :� if and only if ' 2 ��
? � G(L) if and only if

' 2 �
:� �G(L). 2

Corollary 6.28 Let � be a non-empty set of formulas and � a formula.

Then � `L � impliesML : � j= �.

Proof : Suppose � `L�, then there exist �nite number of formulas �1; �2;

: : : ; �n such that �1 ^ �2 ^ � � � ^ �n `L �. Take any ' 2 G(L) and suppose

ML j=' �1 ^ � � � ^ �n. Then by Theorem 6.27, we have ' 2 ��1^���^�n �G(L).

Moreover, since �1 ^ �2 ^ � � � ^ �n `L �, by Lemma 6.26, ��1^���^�n �G(L) �

�� � G(L) Thus ' 2 �� �G(L), and so ML j=' � holds. Therefore we have

ML : � j= �. 2

Corollary 6.29 Let � be a non-empty set of formulas and � a formula.

Then ML : � j= � implies � `L �.
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Proof : Suppose � 6`L �. Take any �nite number of formulas �1; �2; : : : ; �n 2

�. Then �1 ^ � � � ^ �n 6`L � holds. By Lemma 6.26, we have that ��1^���^�n �

G(L) 6� �� � G(L), which means that there exists ' 2 G(L) such that

' 2 ��1^���^�n � G(L) but ' 62 �� � G(L). Then by Theorem 6.27, ML j='

�1 ^ � � � ^ �n but ML 6j=' �. Therefore we conclude that ML : � 6j= �. 2

Theorem 6.30 (Strong completeness theorem for OML) Let � be

a non-empty subset of formulas, � a formula, and C the class of all ortho-

modular frames. Then for the smallest orthomodular logic OML, C : � j= �

implies � `OML �.

Proof : Suppose C : � j= �. Take the canonical frame FOML for the logic

OML, then especially FOML : � j= �. This implies, in particular, for the

canonical modelMOML,MOML : � j= �. Thus by the previous corollary, we

have that � `OML �. 2

Theorem 6.16 and Theorem 6.30 show that the class of all orthomofular

frames can strongly characterizes the quantum logic OML.

6.3 General completeness

As for the orthomodular logic OML, we will show the completeness the-

orem of any orthomodular logic, which corresponds to a subvariety of the

variety OML. First, we introduce the notion of terms to describe a formal

system of our logics in a general way.

Let X be a non-empty set of distinct variables. The set T (X) of terms over

X of the same type as orthomodular lattices is de�ned inductively as follows:

(1) X [ f0; 1g � T (X).

(2) If t 2 T (X), then t0 2 T (X).

(3) If t; s 2 T (X), then (t \ s) 2 T (X).

We denote a term in which some of variables in fx1; : : : ; xng will appear, by

t(x1; : : : ; xn). As is easily seen, we can associate any term with a formula

of our propositional language, that is, we write t(�1; : : : ; �n) to express the

formula which is obtained by substituting each �i for xi, ^ for \, and : for
0, where each �i is a formula.

Let V be a subvariety of OML and the �nite set of its additional de�ning

identities relative to those of OML be the following:

t1(x1; : : : ; xn) = s1(x1; : : : ; xn);

t2(x1; : : : ; xn) = s2(x1; : : : ; xn);

...

tk(x1; : : : ; xn) = sk(x1; : : : ; xn)
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Let L(V) the orthomodular logic which corresponds to V. Clearly, it is

su�cient to consider the following set Z of axiom schemes and we may put

L(V) = OML� (Z).

t1(�1; : : : ; �n) ` s1(�1; : : : ; �n); s1(�1; : : : ; �n) ` t1(�1; : : : ; �n)

t2(�1; : : : ; �n) ` s2(�1; : : : ; �n); s2(�1; : : : ; �n) ` t2(�1; : : : ; �n)

...

tn(�1; : : : ; �n) ` sn(�1; : : : ; �n); sn(�1; : : : ; �n) ` tn(�1; : : : ; �n)

Here, each �i is a meta-variable of formulas. It may sometimes happen that

some axiom schemes above are redundant. Above list can be taken account

of the most general case.

As the class of orthomodular frames which corresponds to the subvariety

V, we de�ne C
V
by:

C
V
:= fF : orthomodular frame j Pc(G) is a member of Vg

For any orthomodular frame F = hG; �; �; 0i, Pc(G) has operations u, (�)
?,

and 0 which are discussed in 6.1.2, and they correspond to \, (�)0, and 0 in

an orthomodular lattice respectively. So \Pc(G) is a member of V" means

that all the additional de�ning identities of V hold for any elements in Pc(G).

The orthomodular logic L
V
can be strongly characterized by the class C

V
,

i.e. the following theorem holds.

Theorem 6.31 (Strong characterization of L
V
) Let � be a non-empty

set of formulas and � a formula. Then, � `L
V

� if and only if C
V
: � j= �.

Proof : Quite similar argument to those of Theorem 6.17 and Theorem

6.30 works for this theorem. 2

Note that we can de�ne \F 2 C
V
" by �rst-order statement of the language

in F for any subvariety V in the following way. A translation function E

from T (X) to G is de�ned:

(1) E(0) = 0, E(1) = 0?, and E(xi) = ei.

(2) E(t0) = E(t)
?

.

(3) E(t \ s) = E(t) u E(s) = E(t) � (E(s)? � E(t))?.

Then, if V has k additional de�ning identities as in the previous argument,

we can de�ne \a frame F is a member of C
V
" as follows: for any elements

e1; : : : ; en 2 G,

n^
i=1

(ei
?? = ei) =)

k^
j=1

fE(tj(x1; : : : ; xn)) = E(sj(x1; : : : ; xn))g
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6.4 The classical logic and commutativity of its frame 64

6.4 The classical logic and commutativity of its frame

As is seen in Chapter 2, the classical logic CL can be formulated by: CL =

OL � (Dis), where (Dis) represents the distributive law. Since OML =

OL � (Oml) and the orthomodular law follows from the distributive law,

the classical logic is also formulated as CL = OML � (Dis), that is, we

can say that the classical logic is an orthomodular logic which satis�es the

distributive law.

Furthermore, Proposition 2.5 guarantees that the distributive law can be

rewritten in the following simpler form in orthomodular lattices:

x \ (x0 [ y) = x \ y � � � � � � � � � (commutative law)

Therefore, here we introduce a new axiom scheme (Com) below, and we will

treat the classical logic as: CL = OML� (Com).

(Com) : � ^ (:� _ �) ` �

From this point of view, we can provide a simpler model for the classical logic

than for usual orthomodular logics. The reason why we call that identity the

commutative law will be clear in the subsection below.

6.4.1 Commutative orthomodular frames

The orthomodular frames which can characterize the logic OML� (Com)

is introduced here. An orthomodular frame F = hG; �; �; 0i is commutative if

x � y = y � x holds for any x; y 2 G. For commutative orthomodular frames,

the following lemma holds.

Lemma 6.32 Let F = hG; �; �; 0i be a commutative orthomodular frame.

Then F 0 = hP (G); �; �; 0i is also a frame.

Proof : Let G0 be P (G). The operations � and � in F 0 are the same as those

in F . We must check the conditions in De�nition 6.1.

(1): Take x; y 2 G0 = P (G). Then we have (x � y) � (x � y) = (x � y) � (y � x) =

x � y � x = x � x � y = x � y, and (x � y)� = y� � x� = y � x = x � y. Therefore

(x � y) 2 P (G) = G0 and so, hG0; �i is a semigroup.

(2): Since P (G0) = P (G) = G0, we have 0 2 P (G0).

(3): Of course � in F also satis�es the condition (3) for F 0. Indeed, for

x 2 G0, x� = x holds.

(4):Take any x 2 G0 � G, and there exists e 2 P (G) = G0 such that

fxg(r) = e � G. Put S = fz 2 G0 j x � z = 0g. Then S � fxg(r). Thus,

for any z 2 S, there exists t 2 G such that z = e � t. Therefore we have

e � z = e � e � t = e � t = z, and so z 2 e � G0. Conversely, since we have

e �G0 � e �G, for y 2 e �G0 � G0, we have x � y = 0. Thus y 2 S. We have

shown that S = e �G0. 2
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6.4 The classical logic and commutativity of its frame 65

In the proof of the condition (4) above, it is easily seen that the operation

(�)? in F 0 is the same as that in F . So we conclude that Pc(G
0) = Pc(G). It is

also clear that in a commutative frame, fxg(r) = fxg(`). By Lemma 6.14, we

have that e; f 2 Pc(G) in a commutative frame, euf = e �f . A commutative

orthomodular model is de�ned in a similar way as usual orthomodular model.

The class of all commutative orthomodular frames characterizes the logic

CL. For the soundness, the following theorem holds.

Theorem 6.33 Let � be a non-empty set of formulas and � a formula.

For the class of all commutative frames D, � `CL � implies D : � j= �.

Proof : Almost the same argument goes through as for Theorem 6.16. We

have only to show for the case of the axiom scheme Com. In order to show

this, it is enough to show that for any commutative orthmodular frame F ,

we have e � (e � f?)? � f for any e; f 2 P (G). But by Lemma 6.14, we have

e u f = e � (f? � e)?. Since our frame is commutative, we have also that

e u f = e � f , and so e � (f? � e)? = e � f � f . 2

6.4.2 Completeness for CL

The canonical frame FCL = hG(CL); �; �; �i for the logic CL is constructed

in the same way as for usual orthomodular logics (De�nition 6.18), except

for the underlying set. In this case G(CL) = f�� j� 2 �g, where the map is

��([�]) = ([�] _ :[�]) ^ [�] for [�] 2 [�]. The canonical model MCL is also

de�ned in the same way as in De�nition 6.18.

Lemma 6.34 FCL is a commutative orthomodular frame.

Proof : We must check the conditions in De�nition 6.1 and commutative-

ness.

(1): By the axiom scheme (Com) and Proposition 2.6, for ��; �� 2 G(CL),

we have �� � ��([�]) = ((([�] _ :[�]) ^ [�]) _ :[�]) ^ [�] = [�] ^ ([�] ^ [�]) =

([�] _ :([�] ^ [�])) ^ ([�] ^ [�]). Therefore �� � ��([�]) 2 G(CL) and

�� � �� = �� � ��. Of course each �� has ��
]([�]) = ([�] ^ [�]) _ :[�]

as its residual map which is monotone.

(2): It is clear because �([�]) = �
?
.

(3): It is also obvious because ��
� = �� holds and we have the commuta-

tiveness.

(4): Since G(CL) = Pc(G(CL)), similar argument in Lemma 6.32 also works

for this case. 2

The presence of the previous lemma ensures that the similar argument in

Subsection 6.2.2 goes through and we can reach the following completeness

theorem for the logic CL.
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Theorem 6.35 (Strong completeness for CL) Let � be a non-empty

set of formulas and � a formula. For the class of all commutative frames D,

D : � j= � implies � `CL �. 2

6.5 In�nitary orthomodular logics

In�nitary logics are logics in which connectives whose arity is in�nite are

allowed to build up formulas. In this section, we will concentrate on the

in�nitary extension of the smallest orthomodular logic OMLinf , in which an

in�nitary conjunction (
V
) appears. General in�nitary orthomodular logics

can be treated similarly as in Section 6.3.

6.5.1 Syntax of in�nitary orthomodular logics

This time, our language consists of a collection of uncountably many propo-

sitional symbols fp� j� 2 �g, a propositional constant ?, a unary connective

:, an in�nitary conjunction
V
, and a pair of parentheses (; ).

The set 	 of all formulas of this language is de�ned by the three formation

rules:

(1) ?, and each propositional variable p� are formulas.

(2) If � is a formula, then so is (:�).

(3) If � is a non-empty set of formulas, then is (
V
�) is a formula.

Since we have the double negation law, the in�nitary disjunction connec-

tive
W

can be introduced by the de�nitional abbreviation, i.e., (
W
�) is the

abbreviation for :(
V
f:� j � 2 �g).

De�nition 6.36 (In�nitary orthomodular logics) An in�nitary ortho-

modular logic L on the set 	 of formulas is a subset of the product 	 � 	

(we write � `L � to mean that the pair of formulas h�; �i is a member of L)

which includes the following axiom schemes and closed under the following

inference rules:

Axiom schemes:

Comparing with the axiom schemes in De�nition 2.8, the double negation

law and the orthomodular law are needed. (Ax3) and (Ax4) are uni�ed to

the following form. Others are the same as those in De�nition 2.8.

(Dbn): ::� `L �

(Oml): � ^ (:� _ (� ^ �)) `L �

(Ax3+4):

(
^

�) `L �; where � 2 �
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Inference Rules:

(R1) and (R4) are the same as those of De�nition 2.8. (R2) is changed into

the following form.

(R2+):
� `L � (for all � 2 �)

� `L
V
�

Since we have the double negation law, the Axiom schemes (Ax5) and (Ax6),

and the Inference Rules (R3) are derivable.

The intersection of all in�nitary orthomodular logics on 	, that is called

the smallest in�nitary orthomodular logic is denoted by OMLinf .

OML is characterized by the variety of all orthomodular lattices, whereas

OMLinf can be characterized by the class of all complete orthomodular lat-

tices. This observation means that we need to extend our orthomodular

frames for the in�nitary quantum logic to be complete with respect to ortho-

modular frames. This extension will be done in the following section.

6.5.2 An extension of orthomodular frames and soundness theo-

rem

De�nition 6.37 (Complete orthomodular model) An orthomodular

frame F = hG; �; �; 0i is complete if it satis�es also the following condition

(4+).

(4+) For any non-empty subset M � G, there exists a projection e 2 P (G)

such that the right annihilator of M can be expressed as:

M (r) = e �G ( := fe � y j y 2 Gg )

An orthomodular model M = hF ; ui is complete if its frame F is com-

plete. The truth condition with respect to a complete orthomodular model

is de�ned as follows:

(0) M j=x ? if and only if x = 0

(1) M j=x pi if and only if x 2 u(pi) �G

(2) M j=x

V
� if and only ifM j=x � for all � 2 �, where � is a non-empty

set of formulas.

(3) M j=x :� if and only if for any y 2 G, M j=y � implies y� � x = 0

Let M := fx� j � 2 �g be a non-empty subset of G. The condition (4+)

guarantees that there exists e 2 P (G) such that M (r) = e � G. Then by

the similar argument as for the proof of Theorem 6.10, we can prove that
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M (r) = e�G =
T
�2� x�

? �G. From this fact, quite the same lemma as Lemma

6.15 also holds for complete orthomodular models.

Lemma 6.38 LetM = hF ; ui = hG; �; �; 0; ui be a complete orthomodular

model. Then, for any formula �, there exists the unique closed projection

e 2 Pc(G) such that

k�kM := fx 2 G jM j=x �g = e �G

2

In particular, e(
V
f�� j � 2 �g) = u�2�e(��) holds. With the help of

Lemma 6.38, the following soundness theorem holds.

Theorem 6.39 Let �; � be formulas and let E be the class of all complete

orthomodular frames. Then � `OMLinf � implies E : � j= �. 2

6.5.3 Completeness for the logic OMLinf

Canonical model construction for the logic OMLinf is quite the same as in

De�nition 6.18. Before showing the completeness theorem, we have to check

that the canonical model is indeed a complete orthomodular model.

Lemma 6.40 The canonical frame FOMLinf = hG(OMLinf); �; �; �i is a

complete orthomodular frame.

Proof : It is enough to focus only on the condition (4+). Take any non-

empty subset K � G(OMLinf). Put K := f'� j � 2 �g. Since we have

already the condition (4), for each '�, f'�g
(r) = ��� � G(OMLinf) holds,

where �� = '�
]([?]). Put � :=

V
�2� ��. Then, the similar argument as in

the proof of Theorem 6.27 ensures that �� = u�2����. Thus we can prove

that K(r) = �� �G(OMLinf). The proof is completed. 2

Now we are in a position to prove the completeness ofOMLinf with respect

to our complete orthomodular frames. Since we have the above lemma, its

proof is quite similar to that of Theorem 6.30.

Theorem 6.41 (Completeness theorem for OMLinf) Let �; � be for-

mulas, E the class of all complete orthomodular frames. Then E : � j= �

implies � `OMLinf �. 2

6.6 Note

The completeness result for orthomodular logics in the present paper is

based on residuation theory. This is explained intensively in [5] and for ortho-

modularlattices in particular, [32] is also very helpful. Our canonical model

construction depends heavily on the following facts. Let A = hA;\;[; 0; 0; 1i
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be an orthomodular lattice. De�ne a binary operation ) on A as a) x :=

(x [ a0) \ a. This operation ) is called Sasaki projection ([26]). Then, the

operation has the following properties. For a; b; x 2 A,

(1) (a) (a) x)) = (a) x)

(2) The following conditions are equivalent.

(i) a � b (ii) (a) (b) x)) = (b) (a) x)) = (a) x).

Due to these two properties, we can de�ne an order relation on the set

f�a j a 2 Ag by (2), where �a is the map, that is, �a(x) := a ) x. These

properties enable us to consider semigroup frames and to construct the canon-

ical frames of the set of maps from A to A, in which the semigroup operation

is the map composition. On the other hand, in a Heyting algebra, the Heyt-

ing implication � ( it is de�ned by: x \ y � z if and only if x � y � z.) has

the above properties (1), (2). Therefore we can construct a similar semantics

for intuitionistic logics.

In chapter 6, we have seen that the classical logic is characterized by the

class of orthomodular frames that are commutative. This fact reminds us

an analogous proposition in quantum mechanics that between two observ-

ables whose corresponding operators Â; B̂ commutes with each other, i.e., the

commutator [Â; B̂] := ÂB̂ � B̂Â = 0, the uncertainty phenomena would not

occur, that is, these two observables behave in a classical mechanical way. In

other words, the classical observables are embedded into the set of quantum

observables as the set of observables which mutually commute. This relation

between the classical observables and the quantum observables are quite sim-

ilar to the relation between the class of orthomodular frames and the class

of commutative orthomodular frames. In this sense, our model construction

re
ects very well the situation in quantum physics into mathematical logic.

Of course, our model for the classical logic can be made much simpler. In-

deed we need only two-point orthomodular frame to characterize the classical

logic.
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7 Summary and future works

At the end of this thesis, we summarize our results of this research, open

questions, and propose an attempt to do with the completion problem of

orthomodular lattices.

7.1 Summary

Among eight varieties of algebras which we introduced in Chapter 2, we

show that the following three varieties admit completion.

OL; OL(�); BA

The above all three varieties admit both the Dedekind-MacNeille completion

and the completion by means of dual spaces.

Since the completion technique via dual space works for all three varieties

above, every propositional logic which corresponds to each of them has a

relational semantics. In Chapter 3, we construct semantics for the logics

OL(�) in particular, and show the completeness theorems with respect to

these semantics.

The Dedekind-MacNeille completions of OL;OL(�);BA imply that we can

show the algebraic completeness theorems of the minimum predicate exten-

sions of the logics OL;OL(�), and CL. Indeed, we give the completeness

theorems of P(OL) and P(OL(�)) in Chapter 4.

Craig's interpolation property is one of the marvelous syntactical properties

in logics. Semantically, it can be shown immediately that the super amalga-

mation property of a subvariety of the variety OL(�) is a su�cient condition

for its corresponding logic to have the Craig's interpolation property. The

Dedekind-MacNeille completion technique works also well to show the super

amalgamation property of some varieties of algebras, though some re�ne-

ment is needed, and so we can show that the propositional logic OL;OL(�)

and their predicate extensions P(OL) and P(OL(�)) have the Craig's in-

terpolation property. The classical propositional logic CL and the classical

predicate logic have the interpolation property, but it seems di�cult to show

their Craig's interpolation property by applying our argument.

It is still unknown whether every orthomodular lattice can be embedded

into a complete orthomodular lattice. About this problem, we will provide

as much information as possible in the next section, and we will introduce

an attempt to attack this problem. If this problem will be solved in the af-

�rmative, we can expect a relational semantics for orthomodular logics and

algebraic completeness theorem of the minimum predicate extension of the

orthomodular logic OML.

In Chapter 6, we give Kripke-style semantics for orthomodular logics. This

semantics is based on a representation theorem for orthomodular lattices,

but the representation method is not a kind of usual set-theoretic ones. By
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using this semantics, we discuss orthomodular logics in a general way. In

particular, we clarify the relation of the classical logic among orthomodu-

lar logics, which is analogous to the relation between the classical physics

and the quantum physics. Finally, we extend our semantics to that for the

in�nitary orthomodular logics and show its completeness theorem.

7.2 The completion problem of orthomodular lattices

Here we pay our attention to a particular relation between ortholattices

and orthomodular lattices, and give a new perspective of this problem, using

the �xpoint theory.

As seen in Chapter 1, the algebraic structure of orthomodular lattices is an

abstraction of some algebraic properties of Hilbert space. Indeed, all closed

subspaces of a Hilbert space forms a complete orthomodular lattice (Theo-

rem 1.3). Here, a subspace means a non-empty subset which is closed under

additive operation and scalar multiplication, whereas closed means that any

Cauchy sequence in it converges in that subspace. Therefore, each closed

subspace turns out to be again a Hilbert space. Similar proposition also

holds for an orthomodular lattice (Theorem 7.2), and this yields us a new

characterization for an orthomodular lattice in an ortholattice (Lemma 2.1).

As is already seen in Chapter 3, the variety of ortholattices admits comple-

tion (Theorem 3.5), which means precisely the following theorem.

Theorem 7.1 For any ortholattice A, there exists a complete ortholattice

L and a map f : A! L, such that A can be embedded into L by f . 2

The construction of the complete ortholattice L is given, either by the

Dedekind-MacNeille completion ([6]), or by a completion by way of the dual

space of the ortholattice, i.e., a non-empty set with an irre
exive and sym-

metric binary relation ([16]). Our work is based on the above theorem.

Another basic fact in our approach is on a property for orthomodular lat-

tices, which is shown below. (See [26])

Theorem 7.2 Let A = hA;\;[; 0; 0; 1i be an orthomodular lattice. Then,

for any a; b 2 A with a � b, the interval [a; b] := fx 2 A j a � x �

bg, which is a sublattice of A forms an orthomodular lattice, in which the

orthocomplement (�)� is de�ned as: x� := (x0 [ a) \ b for x 2 [a; b]. 2

We will not discuss the detail of the proof. This theorem seems to re
ect the

fact in a Hilbert space that each closed subspace of a Hilbert space is again a

Hilbert space. We use a part of this theorem, to characterize orthomodular

lattices in ortholattices, given below.

The following observation is the key fact in our argument.
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Lemma 7.3 Let A = hA;\;[; 0; 0; 1i be an ortholattice. Then, the fol-

lowing two conditions are equivalent.

(1) A is an orthomodular lattice.

(2) For any a 2 A, the sublattice [0; a] := fx 2 A j 0 � x � ag forms an

ortholattice, whose orthocomplement (�)� is de�ned as: x� := x0 \ a.

Proof : (1))(2): Take any a 2 A, and consider the interval [0; a]. Then, it is

trivial that [0; a] is closed under meet, join and (�)�, and hence, it is a bounded

lattice. Therefore to show (2), it is enough to check that the operation

(�)� satis�es the conditions in De�nition 1.2. First, x�� = (x0 \ a)0 \ a =

(x [ a0) \ a = x because x � a. Next, x \ x� = x \ x0 \ a = 0. For the last,

if x � y, then y0 � x0, and so, y0 \ a � x0 \ a. Thus we have y� � x�.

(2))(1): We have only to show that A satis�es the orthomodular law. Take

x; y 2 A with x � y. Then, since [0; y] is an ortholattice, we have y =

x [ x� = x [ (x0 \ y).

2

If we assume (1), we can say moreover that [0; a] is an orthomodular lat-

tice, as is easily guessed from Theorem 7.2. Similarly, we can show that the

same relation holds between complete ortholattices and complete orthomod-

ular lattice.

Corollary 7.4 Let L = hL;
T
;
S
; 0; 0; 1i be a complete ortholattice. Then,

the following two conditions are equivalent.

(1) L is a complete orthomodular lattice.

(2) For any a 2 L, the sublattice [0; a] := fx 2 L j 0 � x � ag is a complete

ortholattice, whose orthocomplement (�)� is de�ned as: x� := x0 \ a.

2

Let L = hL;
T
;
S
; (�)0; 0; 1i be a complete ortholattice. For any subset

X � L and any element a 2 L, Pa(X) denotes the following property:

1) 0; 1 2 X.

2) A := [0; a]
T
� X forms an ortholattice, where

x \A y := x \L y; x [A y := x [L y, and x
� := x0 \A a for x; y 2 A.

In the above condition, the meet (join) in A, for example, is denoted by \A
([A). We de�ne an operator 	 : P(L)! P(L) as:

	(X) := fa 2 X j Pa(X) holdsg

Note that 	 is a decreasing operator, that is, 	(X) � X holds for any

subset X � L. A subset Y of L is a �xpoint of 	 if 	(Y ) = Y . Is is easy to
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see that any �nite Boolean subalgera of L is a �xpoint of 	. On the �xpoints

of this operator 	, the following holds.

Theorem 7.5 A subset Y � L is a �xpoint of 	, if and only if Y is a

suborthomodular lattice in L.

Proof : Suppose Y is a suborthomodular lattice in L. Take any a 2 Y , then

[0; a]
T
� Y is an ortholattice by Lemma 7.3, and so a 2 	(Y ). It is obvious

that 	(Y ) � Y . Thus Y is a �xpoint of the operator 	. Conversely, Y is

a �xpoint of 	. Take any a 2 Y = 	(Y ). Then, Pa(Y ) holds, which means

that [0; a]
T
�Y forms an ortholattice. Thus, by Lemma 7.3, we conclude that

Y is a suborthomodular lattice in L. 2

Consider the case where there is a suborthomodular latticeB = hB;\;[; (�)0;

0; 1i in L. Then the following holds.

Theorem 7.6 There is a maximal �xpoint among �xpoints that include

the suborthomodular lattice B.

Proof : We employ Zorn's lemma. Put F := fY � L jB � Y; Y = 	(Y )g.

Then F is not empty. Take any chain fC�g�2� � F , and put W :=
S
� �2�C�.

We show that W 2 F . Of course B � W . So we have to show that W

is a �xpoint of 	, in other words, that W is a suborthomodular lattice of

L. It is obvious that each C� contains 0; 1, and that the operations \; [,

and (�)0 in each C� are just the same as those in L, and hence, W forms

a sublattice of L with the same orthocomplementation. Take any x 2 W .

Then, since fC�g�2� is a chain, there exists a suborthomodular lattice C�
(� 2 �), such that x 2 C�. Therefore x \ x

0 = 0 and x00 = x hold. Similarly,

take x; y 2 W , then there exists a suborthomodular lattice C� (� 2 �), such

that x; y 2 C�. Therefore, we have that x � y implies y0 � x0 and that x � y

implies y = x [ (x0 \ y). Hence W forms a suborthomodular lattice, which

means that W 2 F . Thus, by Zorn's lemma, we can conclude that F has a

maximal element. 2

On the other hand, we can de�ne another operation on P(L), whose �x-

points, this time, form complete orthomodular lattices. For any subset

X � L and any element a 2 L, Qa(X) denotes the following property:

1) 0; 1 2 X.

2) A := [0; a]
T
� X forms a complete ortholattice, whereT

A S :=
T
L S;

S
A S :=

S
L S, and x

� := x0 \A a for S � A; x 2 A.

The subscripts of
T

and
S

have the same meaning as in the de�nition of the

condition Pa(X). We de�ne an operator � : P(L)! P(L) as:

�(X) := fa 2 X jQa(X) holdsg
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Trivially, � is also a decreasing operator. Similar characterization theorem

holds also for the �xpoints of this operator �.

Theorem 7.7 A subset Y � L is a �xpoint of �, i.e., �(Y ) = Y , if and

only if Y is a complete suborthomodular lattice in L 2

The proof is almost the same as that of Theorem 7.5. This time, Corollary

7.4 is essential to it.

Note that the argument using Zorn's lemma does not work for this operator

� because we have to deal with in�nitary elements.

For a subset X � L such that 0; 1 2 X, de�ne

�0(X) := X

�n(X) := �(�n�1(X)) (n � 1)

Z :=
\
� 1

n=0�
n(X)

Then, the following holds.

Theorem 7.8 For any X � L such that 0; 1 2 X, Z is a �xpoint of �.

Proof : We have only to show that Z � �(Z). Take any a 2 Z, then for

any natural number i � 0, a 2 �i+1(X), which means that [0; a]
T
� �i(X)

forms a complete ortholattice. Put Yi := [0; a]
T
� �i(X) for each i. Take any

subset S � [0; a]
T
� Z, then because S is also a subset of Yi for each i, bothT

Yi
S and

S
Yi
S exist in Yi for all i, and the former equals

T
L S for all i, and

the latter equals
S
L S for all i. Therefore [0; a]

T
� Z is a complete lattice. It

is not di�cult to show that [0; a]
T
� Z is an ortholattice, since each Yi is so.

Thus [0; a]
T
� Z is a complete ortholattice, and so a 2 �(Z). 2

The completion problem of an orthomodular lattice is asking whether a

given orthomodular lattice can be embedded into a complete orthomodular

lattice or not. We formulate this problem by our �xpoints 	 and �. Con-

sider an arbitrary orthomodular lattice A = hA;\;[; (�)0; 0; 1i. This is of

course an ortholattice, and hence by Theorem 7.1, there are a complete or-

tholattice L and a map f such that A can be embedded into L by this f .

Then, f(A) is a suborthomodular lattice of L, and by Theorem 7.6, we can

say that there exists a maximal �xpoint W of the operator 	 on L, which

includes f(A) and is an orthomodular lattice.

Question 1: Does W form a complete orthomodular lattice?

If we could answer this question in the a�rmative, we solved the problem.

However, the author feels that there is a certain gap between the maximality

and the completeness of W .

Another approach is by the operator �. Put Z :=
T
� 1

n=0�
n(L). Then by

Theorem 7.8, Z forms a complete orthomodular lattice.
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Question 2: Does this Z include f(A) ?

One of the di�cult points to show that f(A) � Z, is the lack of monotonic-

ity of the operator �, and it may happen that � destroys the structure of an

orthomodular lattice which is included in a subset X � L.

Anyway, some new point of view is needed to solve the problem even if the

answer is positive. If the answer of this problem is negative, then we have to

face a new question, asking how can we obtain a semantic structure for the

minimum predicate extension of the orthomodular logic OML.
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Appendix

S.Tamura ([46]) introduced the Gentzen-type formal system GOL for the

smallest orthologic OL, and showed the cut-elimination theorem for OL.

Here his systems GOL� and GOL are introduced and a few theorems are

presented according to his work.

Applying Maehara method to Tamura's cut-free system, we can reach a

syntactical proof of the Craig's interpolation property for the logic OL.

First, GOL� is obtained from following axiom and rules:

In the following, � and � are formulas and �;�;� and � are �nite sequences

of formulas.

Axiom:

�! �

Rules:

�! �
�! �; �

(! w)

�! �; �; �

�! �; �
(! c)

�! �; �; �;�

�! �; �; �;�
(! e)

�! �
�;�! �

(w !)

�; �;�! �

�;�! �
(c !)

�; �; �;�! �

�; �; �;�! �
(e !)

(! _) (^ !)

�! �; �

�! �; � _ �

�! �; �

�! �; � _ �

�;�! �

� ^ �;�! �

�;�! �

� ^ �;�! �

�! � �! �

�! � ^ �
(! ^)

�! �
! �;:�

(! :)

�! �
�! ::�

(! ::)

�! � � ! �

� _ � ! �
(_ !)

�! �
:�;�!

(: !)

�! �
::�! �

(:: !)

�! �

:� ! :�
(: ! :)
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(! :^) (:_ !)

�! :�
�! :(� ^ �)

�! :�
�! :(� ^ �)

:�! �
:(� _ �)! �

:�! �
:(� _ �)! �

�! :� �! :�

�! :(� _ �)
(! :_)

:�! � :� ! �

! �; � ^ �
(: ! ^)

:�! � :� ! �

:(� ^ �)! �
(:^ !)

�! :� �! :�

� _ �;�!
(_ ! :)

The system GOL is obtained from GOL� by adding the following cut rule.

�! � �! �
�;�� ! ��;�

[�](cut)

where both � and � should contain at least one occurrence of � and ��
denotes the sequence that lacks all the occurrences of � in the previous

sequence �, and this cut rule can apply only when either �� or �� must be

empty.

The next three theorems hold for GOL and GOL�. Below we denote, for

example, GOL ` � ! � to mean that the sequent � ! � is provable in

the system GOL. Note that, in these systems, there is not the constant ?.

Theorem A.1 (The completeness theorem)

For any formulas � and �, the following two conditions are equivalent:

(a) h�; �i 2 OL.

(b) GOL ` �! �.

2

Theorem A.2 (The cut-elimination theorem for GOL)

For any sequence of formulas � and �, the following two conditions are

equivalent:

(a) GOL ` �! �.

(b) GOL� ` �! �

2

Theorem A.3 (The Craig's interpolation property for GOL)

For any sequence of formulas �;�, suppose GOL ` � ! �. If there are

propositional variables which are common to � and �, then there exists a

formula 
 which satis�es the following:
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(1) Both GOL ` �! 
 and GOL ` 
 ! � hold.

(2) Only these propositional variables which are common to � and � appear

in 
.

If there is no propositional variable which is common to � and �, either

GOL ` �! or GOL `! � (possibly both) holds. 2

In order to prove Theorem A.3, we have only to apply Maehara's method

([33]) to the system GOL�. Note that, in this case, we do not need the no-

tion of partition of sequences of formulas, that is usually essential in proving

Craig's interpolation property for systems which have an implication connec-

tives.
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