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Abstract

In this paper, we look at the time complexity of two agreement problems in networks of oblivious mobile
robots, namely, at the gathering and scattering problems. Given a set of robots with arbitrary initial locations and
no initial agreement on a global coordinate system, gathering requires that all robots reach the exact same but
not predetermined location. In contrast, scattering requires that no two robots share the same location. These
two abstractions are fundamental coordination problems in cooperative mobile robotics. Oblivious solutions are
appealing for self-stabilization since they are self-stabilizing at no extra cost. As neither gathering nor scattering
can be solved deterministically under arbitrary schedulers, probabilistic solutions have been proposed recently.

The contribution of this paper is twofold. First, we propose a detailed time complexity analysis of a modified
probabilistic gathering algorithm. Using Markov chains tools and additional assumptions on the environment,
we prove that the convergence time of gathering can be reduced from O(n?) (the best-known bound) to O(1) or
O(logn - log(logn)), depending on the model of multiplicity detection. Second, using the same technique, we
prove that scattering can also be achieved in fault-free systems with the same bounds.

1 Introduction

Many future applications of mobile robotics envision groups of mobile robots self-organizing and cooperating
toward the resolution of common objectives. In many cases, such groups of robots are aimed at being deployed in
adverse environments, such as in space, in deep sea, or after disasters (natural or not). Thus, a group must be able
to self-organize in the absence of any prior infrastructure (e.g., no global positioning), and ensure coordination in
spite of the presence of faulty elements among the robots, as well as other unanticipated environmental changes.

Suzuki and Yamashita [8] proposed a formal model to analyze and prove the correctness of agreement prob-
lems in robot networks. In their model, robots are represented as points that evolve on a plane devoid of any
landmarks. At any given time, a robot can be either idle or active. When a robot becomes active, it observes
the locations of the other robots, computes a target position, and moves towards it. The time when a robot be-
comes active is governed by an activation scheduler (or daemon). Between two activations robots forget their past
computations (robots are said to be oblivious). Interestingly, any algorithm proved correct in this model is also
inherently self-stabilizing.

The gathering problem, also known as the Rendezvous problem, is fundamental for coordination in oblivious
mobile robotics. Briefly, given a set of robots with arbitrary initial locations and no initial agreement on a global
coordinate system, gathering requires that all robots, following their algorithm, reach the exact same location.
That location, not agreed upon initially, must be reached within a finite number of cycles, with all robots remaining
there afterward. The dual problem of gathering is the scattering problem. Scattering requires that, starting from
an arbitrary configuration, eventually no two robots share the same position.

It turns out that neither deterministic gathering nor scattering are possible without additional assumptions.
Most of the work done so far in order to circumvent this impossibility focuses on the additional assumptions



the system needs. Surprisingly, the use of randomization has however drawn only little attention so far. No for-
mal framework was proposed in order to analyze the correctness and the complexity of probabilistic algorithms
designed for robots networks. In a companion paper [1], we investigated some of the fundamental limits of deter-
ministic and probabilistic gathering in the face of a wide range of synchrony and fault assumptions. Probabilistic
scattering was analyzed for the first time by Dieudonné and Petit [2]. However, neither work proposed an actual
framework in which to analyze the complexity of proposed solutions.

In this paper, we advocate the use of Markov chains as a simple and efficient tool to analyze and compare
probabilistic strategies in oblivious robot networks. Note that, in oblivious robot networks, computations can
depend only on the current view of the robots, i.e., without making any reference to the past. This behavior makes
Markov chains an appealing tool for analyzing their correctness and complexity since, by definition, a Markov
chain models a system wherein the next configuration depends strictly on the current one. The only difficulty
with using Markov chains consists in associating an appropriate Markov chain to each probabilistic strategy. In
this work, we focus on the analysis of existing probabilistic strategies for scattering and gathering. We also claim
that our analysis can be easily applied to a broad class of probabilistic strategies (e.g., leader election, flocking,
constrained scattering, pattern formation).

Contribution. We show that the time complexity of probabilistic gathering in a fault-free environment can be
improved from O(n?) to as little as O(1) rounds' when the algorithms rely on additional information related to
the environment (e.g., strong multiplicity knowledge). And, even when information on multiplicity is incomplete
(weak multiplicity), we still show a convergence of O(logn - log(logn)). We also show the exact same bounds
for the scattering problem.

Structure. The paper is structured as follows. Section 2 describes the robot network and system model. Section 3
formally defines the gathering and scattering problems. Section 4 presents the analysis framework. We then
analyze the convergence of gathering and scattering both under strong multiplicity (Sect. 5) and under weak
multiplicity (Sect. 6). Section 7 concludes the paper and discusses some open problems.

2 Model

We now present the system model considered throughout the paper. The model of robots, and most of the defini-
tions, are due to Suzuki and Yamashita [8] and Prencipe [6].

Robot networks. The system consists of a finite set of robots modeled as dimensionless points moving on a
two-dimensional plane. The robots have arbitrary initial locations. They are capable of sensing the environment,
computing a position, and moving toward a destination. When sensing, a robot can determine the position of other
robots relative to its own local coordinate system.

In this paper, robots are said to have unlimited visibility, in the sense that they are always able to sense the
position of all other robots, regardless of their proximity.

Multiplicity detection. When several robots share the same location, this location is called a point of multiplicity.
Robots are said to have strong multiplicity knowledge when they are aware of the number of robots located at
each point of multiplicity. In contrast, when robots have weak multiplicity knowledge, they know which points are
points of multiplicity, but are unable to count how many robots are located there.
Section 5 assumes strong multiplicity knowledge, while Section 6 assumes weak multiplicity.

System model. We consider the model first introduced by Suzuki and Yamashita [8], called SYm, in which
robots are repeatedly active and inactive. When a robot becomes active, it performs an atomic computational
cycle composed of the following three actions: observation, computation, and motion.

e Observation. An observation returns a snapshot of the positions of all robots.
e Computation. Using the observed environment, a robot executes its algorithm to compute a destination.

e Motion. The robot moves to this destination (by a non-zero distance but without always reaching it).

The model considers discrete time at irregular intervals. At each time, some subset of the robots become
active and complete an entire computation cycle. Robots can be active either simultaneously or sequentially. Two

I'A round is the shortest fragment of execution where all robots are activated at least once.



robots that are active simultaneously observe the exact same environment (according to their respective coordinate
systems).

Moreover, robots are assumed to be oblivious (i.e., stateless), in the sense that a robot does not keep any
information between two different computational cycles.

The algorithm of robots is expressed with an I/O automaton [3, 4]. The local state of a robot at time ¢ is the
state of its input/output variables and the state of its local variables and registers. A network of robots is modeled
by the parallel composition of the individual automaton of each robot. A configuration of the system at time ¢ is
the union of the local states of the robots in the system at time ¢. An execution e = (co, ..., ¢t, . . .) of the system
is an infinite sequence of configurations, where cy is the initial configuration,> and every transition ¢; — c;41 is
associated to the execution of a subset of the previously defined computational cycles.

Schedulers. A scheduler decides at each configuration the set of robots allowed to perform their actions. A
scheduler is said to be fair if, in an infinite execution, a robot is activated infinitely often. A scheduler is centralized,
if it ensures that at most one single robot is active at any given time, otherwise it is distributed.

3 Gathering and Scattering

A network of robots is in a legitimate configuration with respect to the requirements of gathering if all robots in
the system share the same position on the plane. Let us denote by Pggtnering this predicate. An algorithm solves
the gathering problem in an oblivious system if the following two properties are verified:

e Convergence. Any execution of the system starting in an arbitrary configuration reaches in a finite number
of cycles a configuration that satisfies Pgathering-

e Closure. Any execution starting in a legitimate configuration with respect to Pgqthering contains only
legitimate configurations.

Gathering is difficult to achieve in most environments. Therefore, weaker forms of gathering have also been
studied. One interesting variant requires robots to converge asymptotically toward a single location, rather than
reach such a location in finite time. The convergence is however considerably easier to deal with. For instance,
with unlimited visibility, convergence can be achieved trivially by having robots move to the barycenter of the
network [8].

The scattering problem was first introduced by Suzuki and Yamashita [7]. The problem aims at arranging a set
of robots such that eventually no two robots share the same position. Let us denote by Pscattering this predicate.
In the sequel, we rely on the following definition proposed by Dieudonné and Petit [2]:

e Convergence. Any execution of the system starting in an arbitrary configuration reaches in a finite number
of cycles a configuration that satisfies Pgcattering-

e Closure. Any execution starting in a legitimate configuration with respect t0 Pscattering contains only
legitimate configurations.

4 Analysis framework

In this section, we introduce further definitions needed to analyze the convergence time of probabilistic gathering
and scattering. A detailed description of these notions can be found in the literature [5].

Random variables We denote by X, a random variable. For instance, in our case this could represent the
number of groups of size x after n cycles of the algorithm. We will study a discrete-time stochastic process, that
is, a sequence { X, } ,>0 of random variables.

In the sequel, we use the following notation:

e P[X,, = z] is the probability of the event {X,, = z}.
e E[X,,]is the expectation of X,.

e X : k+— P[X = k] denotes the probability distribution of a random variable X.

2Unless stated otherwise, we make no specific assumption regarding the respective positions of robots in initial configurations.



e P[A | B] is the conditional probability that reads: “the probability of A, given B”.

Markov chains Markov chains form a specific class of stochastic processes, with the following fundamental
property: the probabilistic dependence on the past is only related to the previous state.

Definition 1 Let (X,,),, oy be a discrete time stochastic process with countable state space E. A stochastic process
is called a Markov chain if, for all integers n > 0 and all states i, i1, .. .,%n—1,1%,]J, we have:

]P)[Xn+1 :] | Xn :i»anl :infla“'vXO :ZO] = P[XnJrl :] | Xn :Z}

In this paper, we advocate that Markov chains constitute a simple verification tool, well-adapted to the analysis
of distributed strategies in oblivious robot networks since, in such networks, the next move of a robot depends only
on its current position.

Asynchronous rounds and moving distance. An asynchronous round is defined as the shortest fragment of an
execution in which each process in the system executes its actions at least once. Throughout this paper, we adopt
the number of asynchronous rounds as the unit to evaluate the time complexity of algorithms, which is a standard
criterion for asynchronous distributed systems. Although the maximal distance that a robot can reach in a single
round is fixed by the model, note that the probability of two robots being at moving distance of each other does
not depend on the number of robots. So, in order to simplify the discussion for the gathering analysis, we build
our argument on the case where all robots are initially within moving distance of each other.

S The Case of Strong Multiplicity Knowledge

In this section, we assume that robots have strong multiplicity knowledge.

To achieve scattering, we want robots located at the same point x( to move randomly to different destinations.
If we are able to generate a sufficiently large number of “possible destinations”, it is more likely that the robots will
move to distinct locations. Therefore, to be efficient, it is desirable that the number of these “possible destinations”
increases according to the multiplicity of zy. Since robots have strong multiplicity knowledge, they are aware of
the number of robots located at each multiplicity point.

In gathering, we require all robots to gather at a single location. Since robots have strong multiplicity knowl-
edge, they are able to determine the best location to gather, i.e, the point of maximal multiplicity.

5.1 Probabilistic scattering

Dieudonné and Petit [2] proved that deterministic scattering is impossible in the SYm model without additional
assumptions, and proposed an original probabilistic solution based on the use of Voronoi diagrams, described and
analysed in Section 6.1.

Definition 2 Let P = {p1,p2,...,pn} be a set of points in the Cartesian 2-dimensional plane. The Voronoi
diagram of P is a subdivision of the plane into n cells, one for each point in ‘P. The cells have the property
that an arbitrary point q belongs to the Voronoi cell of point p; if and only if, for any other point p; € P,
dist(q,p;) < dist(q,p;) where dist(p,q) is the Euclidean distance between p and q. In particular, the strict
inequality means that points located on the boundary of the Voronoi diagram belong to no Voronoi cell.

In this section, we modify the scattering algorithm of [2] in order to improve the complexity. The idea of
our algorithm referred in the following Algorithm 5.1 is as follows. Robots choose uniformly at random a point
within 2n? different positions in their Voronoi cell. Note that Algorithm 5.1 uses implicitly the strong multiplicity
knowledge in the computation of the set of possible choice positions, i.e. n. If we assume n known or the
knowledge of an upper bound of n then Algorithm 5.1 works under a weak multiplicity model.

Theorem 1 The expected convergence time of Algorithm 5.1 is O(1).

Proof: Let [tg, t1] be the shortest fragment in which each robot is activated at least once. Let P = {p1,p2, - , Dw }
be the set of points occupied by two or more robots at ¢y, where w = |P|. We define the indicator random variable
Z; as follows: Z; = 1 if all robots located at the same point p; are located on different points at time ¢;, and



Algorithm 5.1 Probabilistic Scattering executed by robot r; with strong multiplicity knowledge.
Compute the Voronoi diagram;

Cell; := Voronoi cell where r; is located;

Current_Pos := position where 7; is located;

Let Pos be a set of 2n? positions in Cell;:
Move toward a position in Pos chosen uniformly at random,

Z; = 0 otherwise. Notice that{Z;, Zs, - - - } are mutually independent because we use Voronoi diagrams and thus
any two robots from different points never reach the same position.

Let m; be the multiplicity of p; at t. To prove the theorem, we show that the probability P[A}”, Z; = 1] is
bounded by a constant. Since two robots moving at different time necessarily have different destinations, the worst
case scenario is when m; robots are activated simultaneously during the interval [tg,t1]. Thus, the probability
P[Z; = 1] is bounded as follows:

2n? —1 2n% —2 2n? —m;

Pz, =1 > N )
z-1 > (%) (5) - ()
mg \ M m?
1 ) > (1o M
( 2n? - ( 2n2)

The random variables being independent, we get:

w w 2 w -
Therefore, we can write :
w w w
log(lP’[A Zi=1)) > ;log (1- gin) >-3 o

The fact that ). ; m; < nleads to:

w w i 1
o sz (50) e )

=1

The theorem follows. u

5.2 Probabilistic Gathering

In this section, we analyze the complexity of probabilistic gathering in a fault-free environment. The algorithm
presented in this section extends one analyzed in earlier work [1].

We prove that additional information on the environment can significantly improve the convergence time of
gathering. Using strong multiplicity knowledge, for example, we obtain a tighter bound of O(1) which signifi-
cantly improves the best known bound of O(n?).

In earlier work [1], we proposed a probabilistic algorithm that solves the fault-free gathering in the SYm
model, under a specific class of schedulers, known as k-bounded schedulers.?

Briefly, the algorithm works as follows. A robot, when chosen by the scheduler, randomly selects one of its
neighbors and moves towards its position with probability %, where 9 is the size of the robot’s view. In the model
considered, robots have unlimited visibility, and hence the value of ¢ is n.

We proved that this strategy probabilistically solves 2-gathering in the SYm model under an arbitrary scheduler
and converges in 2 rounds in expectation. We also proved that it solves the n-gathering problem (n > 3), under
a fair k-bounded scheduler without multiplicity knowledge and converges under fair bounded schedulers in n?
rounds in expectation.

3In short, a k-bounded scheduler is one ensuring that, during any two consecutive activations of any robot, no other robot is activated more
than k times.



We now show that the complexity bound of O(n?) can be decreased to O(1) when robots use strong multi-
plicity knowledge. It turns out that the algorithm described above can be modified to meet the latter bound.

Briefly, the modified algorithm (Algorithm 5.2) is based on the following idea. Instead of selecting a desti-
nation randomly, a robot p activated by the scheduler moves to the group of robots with maximal multiplicity.
When several such groups exist, the robot p tosses a coin and moves only with probability ﬁ If it moves, then p
arbitrarily selects a point of maximal multiplicity to which it does not belong, and moves toward it.

Algorithm 5.2 Probabilistic gathering executed by robot p with strong multiplicity knowledge.

Functions: observe_neighbors :: returns the set of robots in the system
maximal_multiplicity :: returns the set of points with maximal multiplicity
local _position :: returns the local position of the robot p
(i.e., the locations shared by the largest number of robots as returned by the observe function);
Actions: N, = observe_neighbors();
if |mazimal_multiplicity (N,)| > 1 then
with probability i
let ¢ be a point chosen arbitrarily from mazimal_multiplicity (N,) \ Ip();
move towards ¢q;
with probability 1 — 5~
do not move;
if [mazimal_multiplicity (N,,)| = 1 then
let ¢ be the point given by mazimal_multiplicity(N,);
move towards ¢;

As we show below, Algorithm 5.2 converges in O(1) rounds in expectation. Interestingly, this means that
multiplicity knowledge—used so far in order to break the symmetry of the system—can also considerably help in
speeding up the convergence of gathering.

Lemma 1 Given an arbitrary configuration and only one single robot being activated, the probability to reach a
configuration with a unique point of maximal multiplicity is at least i

Proof: This lemma is an obvious consequence of Algorithm 5.2. Briefly, when there are several points of max-
imal multiplicity, the activated robot moves with probability % and selects one of the points of maximal multi-
plicity as its destination. That point’s multiplicity then increases by one. ]

We are now able to prove the convergence.
Theorem 2 Algorithm 5.2 achieves convergence in O(1) expected rounds at worst.

Proof: The analysis can be decomposed into two phases. First, the algorithm must reach a configuration with one
single point of maximal multiplicity. Second, the remaining robots must join that point of maximal multiplicity.
The second part being obvious, we focus on the first one.

Consider a situation in which, at time ¢y, there are at least two different points of maximal multiplicity. We
want to obtain an upper bound on the time needed to reach a configuration with only one single point of maximal
multiplicity. According to Lemma 1, it is enough to ensure that only one robot changes its position.

Let the period [to, to + k] be the shortest fragment where at least n activations occurs. For any j(0 < j < k),
a; denotes the number of robots activated at time ¢ + j. We define X to be the random variable such that ¢y + X
is the first time after ¢y when exactly one robot changes its position. We also define Y} as the indicator random
variable of the event that no robot moves during the period [to, o + j — 1] (for simplicity of the argument, let
P[Y7 = 1] = 1). Then, we can obtain the following bound

, a; I\Y 1\ 2o 1\
wesmin = ()04 @) -3
h=1
() (o )Y )
1 2n 2n 2n
i—1
L1 (g) DY ST N}
2n 2n 2n - 8n




We use the fact that a; < n and Zfl;ll ap < n (notice that fewer than n robots can be activated by j —1(< k)).
The above inequality implies the existence of a lower bound for P[X = j] as follows: P[X = j] > P[X =
JANY; =1]> g—jl Thus, we can bound the probability that the system reaches a configuration with a single point
of maximum multiplicity by to + k:

a

|

L >
n

co| —

k
PIX <k > Y
h=1

o

Consequently, we can conclude that exactly one point with maximal multiplicity appears with constant probability
(more than %) in a single round. Now, let us consider the two-states variable:

e 7, = 1 when “there is only one maximal multiplicity point at time ¢.”
e Z; = 0 when “there are several maximal multiplicity points at time ¢.”

(Z1)ten+ is a Markov chain and we need the expectation of the time needed for this stochastic process to reach
state 1 starting from state 0. Formally,

T, = E [min{t such that Z; = 1 knowing Z, = 0}]

We obtain 7} = 8. This is enough to prove that a unique point of maximal multiplicity can be created in O(1)
expected rounds. Indeed, this stems from 73 = 8 and the fact that as soon as a unique point is created, any
activated robot will join it. This also gives that the gathering is achieved in a contant number of rounds. ]

6 The Case of Weak Multiplicity Knowledge

In this section, we assume that robots have weak multiplicity knowledge. The algorithms proposed in Sect. 5, based
heavily on strong multiplicity knowledge, do not work under weak multiplicity. For the scattering algorithm the
multiplicity knowledge is implicitly used in the computation of the number of directions while for the gathering
algorithm uses explicitly in the code the strong multiplicity knowledge.

In this section we analyse Algorithm 6.1 (originally presented in [2]) that achieves scattering in a polylogarith-
mic convergence time with weak multiplicity. For gathering, since it is now impossible for robots to distinguish
which point is the point of maximal multiplicity, we instead rely on scattering as an initial step.

6.1 Probabilistic scattering

The algorithm works as follows (Algorithm 6.1). Each robot uses a function Random() that returns a value
probabilistically chosen in the set {0, 1}: 0 with probability %, and 1 with probability i. When a robot r; becomes
active at time ¢, it first computes the Voronoi diagram of the set of points occupied by the robots. Then, r; moves
toward an arbitrary location inside its Voronoi cell Cell; if Random() returns 0. We now look at the convergence
time of Algorithm 6.1.

Algorithm 6.1 Probabilistic Scattering executed by robot r; with weak multiplicity knowledge.

Compute the Voronoi diagram;
Cell; := Voronoi cell where r; is located;
Current_Pos := position where r; is located,;

if Random() = 0 then
Move toward an arbitrary position in Cell;, different from Current_Pos;
else Do not move;

Lemma 2 Let a period [to, t1] be the shortest fragment in which all robots are activated at least once and execute
Algorithm 6.1. We define R as the set of robots located on a multiplicity point xq at time to, and Q) as the set of
points on which at least one robot of R stays at time t1. Then, with probability at least 1 — 36’%, all points in Q

have multiplicity less than 3 | R|.



Proof: We define the random variable Z as the maximal multiplicity of all points in (). Therefore, we want to
show that P[Z > 2 |R|] < —r. To do so, we introduce the following two random variables:

e 11

e 7 is “the multiplicity of point x( at time ¢;”
e 75 is “the maximal multiplicity of all points in @ \ {zo} at time ¢,”
The reader may easily observe that P[Z; > 2 |R| A Z, > 2 |R[] = 0. Thus, we have
P(Z > }|R] = PlZ123|RIVZ:> 3R] = P[Z1 > }|R]+P[Z > ] |R]

We now study P[Z; > 2 |R[] and P[Z, > 2 |R|] separately.
3 _IR|
Casel P[Z; > J R[] <e =
Since no point occupied by some robot can become the destination of another robot, no robot moves to x
during [to, t1]. Thus, if Z; > 3 |R| holds, at most 2 | R| robots in R keep their position during [to, ¢1]. From
the fact that each robot is activated at least once during that period, the probability that some robot on x at
to remains on xq at t1 is at most % Thus, using the random variable Bz 1 following binomial distribution

with parameter | R| and ,* we obtain the upper bound for P[Z; > 2 |R]]:

[R|

P(Zy =2 §|R|) < PBig, =3IR] < e
where we use Chernoff’s bound® for the binomial distribution B, R|,L- This proves the case.

Case2 P[Z, > 3 |R|] < 2¢~ w7
To have a point z € Q \ {zo} with multiplicity higher than 2 |R| at ¢1, at least 3 | R| robots must leave x
by time ¢;. In addition, those robots must leave zy simultaneously because two robots in R leaving xg at
different times necessarily have distinct destinations. Thus, there exists a time when more than % | R| robots
at the same position are activated (if such time does not exist during [to, t1], clearly P[Zy > 2 |R|] = 0).
Let ¢’ be the first time after ¢, when at least % |R| robots on xz( are activated. We define y to be the
number of robots on z activated at ¢, and Y to be the random variable representing the number of robots
leaving z at t’. Notice that if the event of 2 |[R| > Y > I |R| occurs, the multiplicity of any point in Q
becomes less than 2 |R|, and thus there is no chance that more than 2 |R| robots located at the same point
are simultaneously activated after ¢/, that is, P[{ Zo > 3 |R||} | {2 |R| > Y > 1 |R|}] = 0. Thus, it results
that P[Z, > 2 |R|] <P[{3 |R| <Y}V {i|R| > Y}] holds. Since Y is equivalent to the binomial random
variable By’%, using the same method as in the previous case, we obtain the following bound, which proves

the case:
3 3 1
PlZ, > |Rl] < P Z|R|§Y v Z|R|ZY ]
3 1 ¥ - IR
C . 3 _1B| — 2 |R| _1El

onsequently, we obtain P[Z > £ |R[] < e™ 5 +2e7 31" <3e™ 11, [
Lemma 3 Let a time interval [to,t1] be a period containing k rounds, and let m be the maximal multiplicity at
time to. Then, the maximal multiplicity at time t, is less than 3;" with probability (1 — —47_).

me 11

Proof: LetP = {p1,pa,- -+ ,pw} be the set of points occupied by more than 377” robots at g, where w = |P|. We
define the indicator random variable Z; such that Z; = 1 if p; is divided into two or more points with multiplicity
less than 3Tm, and Z; = 0 otherwise. Again, thanks to Voronoi diagrams, {Z;, Zs, - - - } are mutually independent.

“That is, the probability distribution of B; , is2deﬁned asP[B; 4 = k] = (]lc)qk(l —q)!=F forany k(0 < k < 1).
SForany § > 0,P[B; , > (1+9)lg] < e %714,



From Lemma 2, the probability that the respective multiplicity of each point in W decreases to less than % is
bounded:

w w
P /\(Zi = 1)] = H]P’[Zi =1 > (1-3e )
i=1 i=1
4
> (1—3wefkll ) > <1— T:m>
me 1t
where we use the fact that w - 377” < n. This completes the proof. ]

We deduce from Lemma 3 the following two corollaries.
Corollary 1 The maximal multiplicity decreases to less than 11 log 4n within O(logn) rounds in expectation.

Corollary 2 Starting from the configuration with maximal multiplicity 111og 4n or less, the scattering is achieved
within O(log nlog(logn)) rounds in expectation.

The first corollary follows from Lemma 3 with & = 1 for the case of m > 11log4n, and the second one
follows from the lemma with £ = 11log4n for m < 11log4n. By combining both corollaries, we obtain the
convergence of Algorithm 6.1.

Theorem 3 The convergence time of Algorithm 6.1 is O(log nlog(logn)).

6.2 Probabilistic gathering

We now present an algorithm for probabilistic gathering under weak multiplicity knowledge. Algorithm 6.2, is
built similarly to the one presented in Section 5.2 for strong multiplicity, except that it now relies on scattering
(Algorithm 6.1) as an initial step.

Algorithm 6.2 Probabilistic gathering executed by robot p with weak multiplicity knowledge.

Actions: N, = observe_neighbors();
if V,, includes two or more multiplicity points then
Execute Algorithm 6.1;
else if \V,, includes a single multiple point ¢ then
Move towards ¢;
else
let g be a point chosen arbitrarily from A,;
With probability %
move towards ¢;
With probability 1 — 5~
do not move;

Lemma 4 Starting from any scattered configuration, a configuration with exactly one multiplicity point is reached
in one round with constant probability.

The proof is identical to that of Theorem 2.

Since scattering is achieved within O(logn log(logn)) rounds in expectation, the above lemma implies that
the system can have exactly one multiplicity point within O(logn log(logn)) rounds, starting from an arbitrary
configuration. Thus, the convergence time of Algorithm 6.2 directly follows.

Theorem 4 The convergence time of Algorithm 6.2 is O(lognlog(logn)).



7 Conclusion and Discussions

The contribution of this paper is twofold. First, we proposed a detailed complexity analysis of existing prob-
abilistic agreement algorithms (gathering and scattering). Second, using Markov chains tools and multiplicity
knowledge, we proved that the convergence time of gathering can be reduced from O(n?) (the best-known bound
so far) to O(1) or O(logn - log(logn)), depending on the model of multiplicity. We have also shown the same
bounds for the scattering problem, thus closing the complexity gap between the two problems (gathering and
scattering are two important agreement problems in robots networks).

Our work also confirms that the analysis based on Markov chains fits well with the oblivious robot networks
model. Therefore, we intend to apply this approach to analyze other algorithms for oblivious robot networks, such
as, leader election or flocking.
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