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Abstract

In this paper we introduce an evidential reasoning based framework for weighted
combination of classifiers for word sense disambiguation (WSD). Within this frame-
work, we propose a new way of defining adaptively weights of individual classi-
fiers based on ambiguity measures associated with their decisions with respect to
each particular pattern under classification, where the ambiguity measure is defined
by Shannon’s entropy. We then apply the discounting-and-combination scheme in
Dempster-Shafer theory of evidence to derive a consensus decision for the classifica-
tion task at hand. Experimentally, we conduct two scenarios of combining classifiers
with the discussed method of weighting. In the first scenario, each individual clas-
sifier corresponds to a well-known learning algorithm and all of them use the same
representation of context regarding the target word to be disambiguated, while in
the second scenario the same learning algorithm applied to individual classifiers but
each of them uses a distinct representation of the target word. These experimental
scenarios are tested on English lexical samples of Senseval-2 and Senseval-3 resulting
in an improvement in overall accuracy.
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1 Introduction

Polysemous words that have multiple senses or meanings appear pervasively
in many natural languages. While it seems not much difficult for human be-
ings to recognize the correct meaning of a polysemous word among its possible
senses in a particular language given the context or discourse where the word
occurs, the issue of automatic disambiguation of word senses is still one of the
most challenging tasks in natural language processing (NLP) [29], though it
has received much interest and concern from the research community since
the 1950s (see [15] for an overview of WSD from then to the late 1990s).
Roughly speaking, WSD is the task of associating a given word in a text or
discourse with an appropriate sense among numerous possible senses of that
word. This is only an “intermediate task” which necessarily accomplishes most
NLP tasks such as grammatical analysis and lexicography in linguistic studies,
or machine translation, man-machine communication, message understanding
in language understanding applications [15]. Besides these directly language
oriented applications, WSD also have potential uses in other applications in-
volving knowledge engineering such as information retrieval, information ex-
traction and text mining, and particularly is recently beginning to be applied
in the topics of named-entity classification, co-reference determination, and
acronym expansion (cf. [1,4,6,10,38]).

So far, many approaches have been proposed for WSD in the literature. From
a machine learning point of view, WSD is basically a classification problem
and therefore it can directly benefit by the recent achievements from the ma-
chine learning community. As we have witnessed during the last two decades,
many machine learning techniques and algorithms have been applied for WSD,
including Naive Bayesian (NB) model, decision trees, exemplar-based model,
support vector machines (SVM), maximum entropy models (MEM), etc. [1,24].
On the other hand, as observed in studies of classification systems, the set of
patterns misclassified by different learning algorithms or techniques would
not necessarily overlap [18]. This means that different classifiers may poten-
tially offer complementary information about patterns to be classified. In other
words, features and classifiers of different types complement one another in
classification performance. This observation highly motivated the interest in
combining classifiers to build an ensemble classifier which would improve the
performance of the individual classifiers. Particularly, classifier combination
for WSD has been received considerable attention recently from the commu-
nity as well, e.g. [11,12,14,16,19–21,32,39].

Typically, there are two scenarios of combining classifiers mainly used in the
literature [18]. The first approach is to use different learning algorithms for
different classifiers operating on the same representation of the input pattern
or on the same single data set, while the second approach aims to have all
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classifiers using a single learning algorithm but operating on different repre-
sentations of the input pattern or different subsets of instances of the train-
ing data. In the context of WSD, the work by Klein et al. [19], Florian and
Yarowsky [12], and Escudero et al. [11] can be grouped into the first scenario.
Whilst the studies given in [20,21,32] can be considered as belonging to the
second scenario. Also, Wang and Matsumoto [39] used similar sets of features
as in [32] and proposed a new voting strategy based on kNN method.

In addition, an important research issue in combining classifiers is what com-
bination strategy should be used to derive an ensemble classifier. In [18], the
authors proposed a common theoretical framework for combining classifiers
which leads to many commonly used decision rules used in practice. Their
framework is essentially based on the Bayesian theory and well-known math-
ematical approximations which are appropriately used to obtain other deci-
sion rules from the two basic combination schemes. On the other hand, when
the classifier outputs are interpreted as evidence or belief values for mak-
ing the classification decision, Dempster’s combination rule in the Dempster-
Shafer theory of evidence (D-S theory, for short) offers a powerful tool for
combining evidence from multiple sources of information for decision mak-
ing [2,3,9,8,21,34,40]. Despite the differences in approach and interpretation,
almost D-S theory based methods of classifier combination assume the in-
volved individual classifiers providing fully reliable sources of information for
identifying the label of a particular input pattern. In other words, the issue of
weighting individual classifiers in D-S theory based classifier combination has
been ignored in previous studies. However, by observing that it is not always
the case that all individual classifiers involved in a combination scenario com-
pletely agree on the classification decision, each of these classifiers does not
by itself provide 100% certainty as the whole piece of evidence for identifying
the label of the input pattern, therefore it should be weighted somehow be-
fore building a consensus decision. Fortunately, this weighting process can be
modeled in D-S theory by the so-called discounting operator.

In this paper, we present a new method of weighting individual classifiers in
which the weight associated with each classifier is defined adaptively depend-
ing on the input pattern under classification, making use of the measure of
Shannon entropy. Intuitively, the higher ambiguity the output of a classifier
is, the lower weight it is assigned and then the lesser important role it plays
in the combination. Then by considering the problem of classifier combination
as that of weighted combination of evidence for decision making, we develop a
combination algorithm based on the discounting-and-combination scheme in
D-S theory of evidence to derive a consensus decision for WSD. As for experi-
mental results, we also conduct two typical scenarios of combination as briefly
mentioned above: In the first scenario, different learning methods are used for
different classifiers operating on the same representation of the context corre-
sponding to a given polysemous word; in the second scenario all classifiers use
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the same learning algorithm, namely NB, but operating on different represen-
tations of the context as considered in [21]. These combination scenarios are
experimentally tested on English lexical samples of Senseval-2 and Senseval-3,
resulting in an improvement in overall correctness.

The rest of this paper is organized as follows. Section 2 will begin with a brief
introduction to basic notions from D-S theory of evidence and then follows by
a short review of the related studies of classifier combination using D-S theory.
Section 3 devotes to the D-S theory based framework for weighted combination
of classifiers in WSD. The experimental results are presented and analyzed in
Section 4. Finally, Section 5 presents some concluding remarks.

2 Background and Related Work

In this section we briefly review basic notions of D-S theory of evidence and
its applications in ensemble learning studied previously.

2.1 Basic of Dempster-Shafer Theory of Evidence

The Dempster-Shafer (D-S) theory of evidence, originated from the work by
Dempster [7] and then developed by Shafer [36], has appeared as one of the
most popular theories for modeling and reasoning with uncertainty and impre-
cision. In D-S theory, a problem domain is represented by a finite set Θ of mu-
tually exclusive and exhaustive hypotheses, called frame of discernment [36].
In the standard probability framework, all elements in Θ are assigned a prob-
ability, and when the degree of support for an event is known, the remainder
of the support is automatically assigned to the negation of the event. On the
other hand, in D-S theory the mass assignment representing evidence is car-
ried out for events as it knows, and committing support for an event does
not necessarily imply that the remaining support is committed to its nega-
tion. Formally, a basic probability assignment 1 (BPA, for short) is a function
m : 2Θ → [0, 1] satisfying

m(∅) = 0, and
∑

A∈2Θ

m(A) = 1

The quantity m(A) can be interpreted as a measure of the belief that is com-
mitted exactly to A, given the available evidence. A subset A ∈ 2Θ with
m(A) > 0 is called a focal element of m. A BPA m is called to be vacuous if
m(Θ) = 1 and m(A) = 0 for all A 6= Θ.

1 Also called a mass function
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A belief function on Θ is defined as a mapping Bel : 2Θ → [0, 1] which satisfies
Bel(∅) = 0, Bel(Θ) = 1 and for any finite family {Ai}n

i=1 in 2Θ, we have

Bel(
n⋃

i=1

Ai) ≥
∑

∅6=I⊆{1,...,n}
(−1)|I|+1Bel(

⋂

i∈I

Ai)

Given a belief function Bel, a plausibility function Pl is then defined by
Pl(A) = 1 − Bel(¬A). In D-S theory, belief and plausibility functions are
often derived from a given BPA m, denoted by Belm and Plm respectively,
which are defined as follows

Belm(A) =
∑

∅6=B⊆A

m(B), and Plm(A) =
∑

A∩B 6=∅
m(B)

The difference between m(A) and Belm(A) is that while m(A) is our belief
committed to the subset A excluding any of its proper subsets, Belm(A) is
our degree of belief in A as well as all of its subsets. Consequently, Plm(A)
represents the degree to which the evidence fails to refute A. Note that all the
three functions are in an one-to-one correspondence with each other. In other
words, any one of these conveys the same information as any of the other two.

Two useful operations that especially play an important role in the evidential
reasoning are discounting and Dempster’s rule of combination [36]. The dis-
counting operation is used when a source of information provides a BPA m,
but knowing that this source has probability α of reliability. Then one may
adopt (1− α) as one’s discount rate, resulting in a new BPA mα defined by

mα(A) = α×m(A), for any A ⊂ Θ (1)

mα(Θ) = (1− α) + α×m(Θ) (2)

Consider now two pieces of evidence on the same frame Θ represented by two
BPAs m1 and m2. Dempster’s rule of combination is then used to generate a
new BPA, denoted by (m1 ⊕m2) (also called the orthogonal sum of m1 and
m2), defined as follows

(m1 ⊕m2)(∅) = 0,

(m1 ⊕m2)(A) = 1
1−κ

∑
B∩C=A

m1(B)m2(C)
(3)

where

κ =
∑

B∩C=∅
m1(B)m2(C) (4)

Note that the orthogonal sum combination is only applicable to such two BPAs
that verify the condition κ < 1.
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2.2 D-S theory in Classifier Ensembles

Since its inception, the D-S theory has been widely used in reasoning with
uncertainty and information fusion in intelligent systems. Particularly, its ap-
plications to classifier combination has received attention since early 1990s,
e.g., [2,3,21,34,40].

In the context of single-class classification problem, the frame of discernment
is often modeled by the set of all possible classes or labels used to assign to an
input pattern, where each pattern is assumed belonging to one and only one
class. Formally, let C = {c1, c2, . . . , cM} be the set of classes, which is called
the frame of discernment of the problem. Assume that we have R classifiers,
denoted by {ψ1, . . . , ψR}, participating in the combination process. Given an
input pattern x, each classifier ψi produces an output ψi(x) defined as

ψi(x) = [si1, . . . , siM ] (5)

where sij indicates the degree of confidence or support in saying that “the
pattern x is assigned to class cj according to classifier ψi.” Note that sij can
be a binary value or a continuous numeric value and its semantic interpretation
depends on what type of learning algorithm used to build ψi. In the following
we present briefly an overview of related works in classifier combination using
D-S theory.

In [40], Xu et al. actually explored three different schemes for combining clas-
sifiers based on voting principle, Bayesian formalism and D-S theory, respec-
tively. In particularly, their method of combination using D-S formalism as-
sumes that each individual classifier produces a crisp decision on classifying
an input x, which is used as the evidence come from the corresponding classi-
fier. Then this evidence is associated with prior knowledge defined in terms of
performance indexes of the classifier to define its corresponding PBA, where
performance indexes of a classifier are defined by recognition, substitution and
rejection rates obtained by testing the classifier on a test sample set. Formally,
assume that the recognition rate and the substitution rate of ψi are εi

r and εi
s

(usually εi
r +εi

s < 1, due to the rejection action), respectively, Xu et al. defined
a BPA mi from ψi(x) as following:

(1) If ψi rejected x, i.e. ψi(x) = [0, . . . , 0], mi has only a focal element C with
mi(C) = 1.

(2) If ψi(x) = [0, . . . , 0, sij = 1, 0, . . . , 0], then mi({cj}) = εi
r, mi(¬{cj}) = εi

s,
where ¬{cj} = C \ {cj}, and mi(C) = 1− εi

r − εi
s.

In a similar way one can obtain all BPAs mi (i = 1, . . . , R) from R classifiers
ψi (i = 1, . . . , R). Then Dempster’s rule (3) is applied to combine these BPAs
to obtain a combined BPA m = m1 ⊕ . . . ⊕ mR, which is used to make the
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final decision on the classification of x.

Rogova in [34] developed a D-S theory based model for combining the results
of neural network classifiers. In general, the author used a proximity measure
between a reference vector of each class and a classifier’s output vector, where
the reference vector is the mean vector µi

j of the output set of each classifier
ψi for each class cj. Then, for any input pattern x, the proximity measures
di

j = φ(µi
j, ψi(x)) are transformed into the following PBAs:

mi({cj}) = di
j, mi(C) = 1− di

j (6)

m¬i(¬{cj}) = 1− ∏

k 6=j

(1− di
k), m¬i(C) =

∏

k 6=j

(1− di
k) (7)

which together constitute the knowledge about cj and hence are combined to
define the evidence from classifier ψi on classifying x as mi ⊕m¬i. Finally, all
evidences from all classifiers are combined using Dempster’s rule to obtain an
overall BPA for making the final decision on the classification.

Somewhat similar to Rogova’s method, Al-Ani and Deriche [2] recently pro-
posed a new technique for combining classifiers using D-S theory, in which
different classifiers correspond to different feature sets. In their approach, the
distance between the output classification vector provided by each single clas-
sifier and a reference vector is used to estimate BPAs. These BPAs are then
combined making use of Dempster’s rule of combination to obtain a new out-
put vector that represents the combined confidence in each class label. How-
ever, instead of defining a reference vector as the mean vector of the output
set of a classifier for a class as in Rogova’s work, it is measured such that
the mean square error (MSE) between the new output vector obtained after
combination and the target vector of a training data set is minimized. This
interestingly makes their combination algorithm trainable. Formally, given an
input x the BPA mi derived from classifier ψi is defined as follows:

mi({cj}) =
dj

i∑M
k=1 dk

i + gi

(8)

mi(C) =
gi∑M

k=1 dk
i + gi

(9)

where dj
i = exp(−‖vi

j−ψi(x)‖2), vi
j is a reference vector and gi is a coefficient.

Both of vi
j and gi will be estimated via the minimized MSE learning process,

see [2] for more details.

More recently, Bell et al. [3] have developed a new method and technique for
representing and combining outputs from different classifiers for text catego-
rization based on D-S theory. Different from all the above mentioned methods,
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the authors directly used outputs of individual classifiers to define the so-called
2-points focused mass functions which are then combined using Dempster’s
rule of combination to obtain an overall mass function for making the final
classification decision. Particularly, given an input x the output ψi(x) from
classifier ψi is normalized first to obtain a probability distribution pi over C
as follows

pi(cj) =
sij∑M

k=1 sik

, for j = 1, . . . , M (10)

Then the collection {pi(cj)}M
j=1 is arranged so that

pi(ci1) ≥ pi(ci2) ≥ . . . ≥ pi(ciM ) (11)

Finally, a BPA mi represented the evidence from ψi on the classification of x
is defined by

mi({ci1}) = pi({ci1}) (12)

mi({ci2}) = pi({ci2}) (13)

mi(C) = 1−mi({ci1})−mi({ci2}) (14)

This mass function is called the 2-points focused mass function and the set
{{ci1}, {ci2}, C} is referred to as a triplet. Basically, Bell et al. discarded classes
appearing in the list (11) from the third and the sum of their degrees of support
considered as noise are treated as ignorance, i.e. it is assigned to the frame of
discernment C.

Another recent attempt has been made in [21] to develop a method for weighted
combination of classifiers for WSD based on D-S theory. Considering various
ways of using context in WSD as distinct representations of a polysemous
word under consideration, Le et al. [21] built NB classifiers corresponding to
these distinct representations of the input and then weighted them by their
accuracies obtained by testing with a test sample set, where weighting is mod-
eled by the discounting operator in D-S theory. Finally, discounted BPAs are
combined to obtain the final BPA which is used for making the classification
decision. Formally, let fi be the i-th representation of an input x and classifier
ψi building on fi produces a posterior probability distribution P (·|fi) on C.
Assume that αi is the weight of ψi defined by its accuracy. Then the piece
of evidence represented by P (·|fi) should be discounted at a discount rate of
(1− αi), resulting in a BPA mi defined by

mi({cj}) = αi × P (cj|fi), for j = 1, . . . , M (15)

mi(C) = 1− αi (16)

This method of weighting clearly focuses on only the strength of individual
classifiers, which is defined by testing them on the designed sample data set
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and therefore does not be influenced by an input pattern under classification.
However, the information quality of soft decisions or outputs provided by indi-
vidual classifiers might vary from pattern to pattern. In the following section,
we propose a new method of adaptively weighting individual classifiers based
on ambiguity measures associated with their outputs corresponding to a par-
ticular pattern under consideration. Roughly speaking, the higher ambiguity
the output of a classifier is, the lower weight it is assigned. It is worth empha-
sizing again that both weighting and combining processes could be modeled
within the developed framework of classifier combination using evidential op-
erations.

3 Weighted Combination of Classifiers in D-S Formalism

Let us return to the classification problem with M classes C = {c1, . . . , cM}.
Also assume that we have R classifiers ψi (i = 1, . . . , R), built using different R
learning algorithms or different R representations of patterns. For each input
pattern x, let us denote by

ψi(x) = [si1(x), . . . , siM(x)]

the soft decision or output given by ψi for the task of assigning x into one
of M classes cj. If the output ψi(x) is not a posterior probability distribution
on C, it can be normalized to obtain an associated probability distribution
defined by (10) above as done in [3]. Thus, in the following we always assume
that ψi(x) is a probability distribution on C.

Each probability distribution ψi(x) is now considered as the belief quantified
from the information source provided by classifier ψi for classifying x. How-
ever, this information does not by itself provide 100% certainty as a complete
evidence sufficiently for making the classification decision. Therefore, it may
be helpful to quantify somehow the quality of information offering from ψi

regarding the classification of x and to take this measure into account when
combining classifiers. Intuitively, if the uncertainty associated with ψi(x) is
high, it would make us more ambiguous in the decision made solely using
ψi(x) and then, the role it plays in the combination should be less important.
This intuition suggests us a way of defining weights associated with classifiers
using the measure of Shannon entropy as following.

For the sake of clarity, let us denote mi(·|x) the probability distribution ψi(x)
on C, i.e. mi(cj|x) = sij(x). Then the weight associated with ψi regarding the
classification of x is defined by

wi(x) = 1− H(mi(·|x))

log(M)
(17)
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where H is Shannon entropy expression of the probability distribution mi(·|x),
i.e.,

H(mi(·|x)) = −
M∑

j=1

mi(cj|x) log(mi(cj|x))

Note that the definition of a classifier weight by (17) essentially depends on
the input x under consideration, then the weight of an individual classifier
can vary differently from pattern to pattern depending on how ambiguity
associated with its decision on the classification of a particular pattern.

Now our aim is to combine all pieces of evidence mi(·|x)’s from individual
classifiers ψi’s on the classification of input x, taking into account their weights
wi(x)’s respectively, to obtain an overall mass function m(·|x) on C for making
the final classification decision. Formally, such an overall mass function m(·|x)
can be formulated in the general form of the following:

m(·|x) =
R⊕

i=1

(wi(x)⊗mi(·|x)) (18)

where ⊗ is the discounting operator and ⊕ is a combination operator in gen-
eral. Under such a general formulation, using two different combination op-
erators in D-S theory we can obtain the following two decision rules for the
classification of x.

As mentioned in [36], an obvious way to use discounting with Dempster’s rule
of combination is to discount all mass functions mi(·|x) (i = 1, . . . , R) at
corresponding rates (1 − wi(x)) (i = 1, . . . , R) before combining them. This
discounting-and-orthogonal sum combination strategy is carried out as follows.

First, from each mass function mi(·|x)) and its associated weight wi(x), we
obtain the corresponding discounted mass function, denoted by mw

i (·|x), as
follows:

mw
i ({cj}|x) = wi(x)×mi(cj|x)), for j = 1, . . . , M (19)

mw
i (C|x) = (1− wi(x)) (20)

Then, Dempster’s rule of combination allows us to combine all mw
i (·|x) (i =

1, . . . , R) under the independent assumption of information sources for gener-
ating the overall mass function m(·|x). Note that, by definition, focal elements
of each mw

i (·|x) are either singleton sets 2 or the whole frame of discernment
C. It is easy to see that m(·|x) also verifies this property if applicable. Inter-
estingly, the commutative and associative properties of the orthogonal sum
operation with respect to a combinable collection of mw

i (·|x)’s (i = 1, . . . , R)

2 So, we write mw
i (cj |x) instead of mw

i ({cj}|x), without any danger of confusion.
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and the mentioned property essentially form the basis for developing an ef-
ficient algorithm for calculation of the m(·|x) as described in the following
algorithm.

Algorithm 1 The Combination Algorithm Using Dempster’s Rule

Input: mi(·|x) (i = 1, . . . , R)
Output: m(·|x) – the combined mass function

1: Initialize m(·|x) by m(C|x) = 1, m(cj|x) = 0 for any j = 1, . . . ,M
2: for i = 1 to R do
3: Calculate wi(x) via (17)
4: Calculate mw

i (·|x) via (19) and (20)
5: Compute the combination m⊕mw

i (·|x) via (21) and (22)
6: Put m(·|x) := m⊕mw

i (·|x)
7: end for
8: return m(·|x)

m⊕mw
i (cj|x) =

1

κi

[m(cj|x)×mw
i (cj|x) + m(cj|x)×mw

i (C|x)

+m(C|x)×mw
i (cj|x)], for j = 1, . . . , M (21)

m⊕mw
i (C|x) =

1

κi

(m(C|x)×mw
i (C|x)) (22)

where κi is a normalizing factor defined by

κi =


1−

M∑

j=1

M∑

k=1
k 6=j

m(cj|x)×mw
i (ck|x)


 (23)

Finally, the mass function m(·|x) is used to make the final classification deci-
sion according to the following decision rule:

x is assigned to the class ck∗ , where k∗ = arg max
j

m(cj|x) (24)

It would be interesting to note that an issue may arise with the orthogonal
sum operation is in using the total probability mass κ associated with con-
flict as defined in the normalization factor. Consequently, applying it in an
aggregation process may yield counterintuitive results in the face of signifi-
cant conflict in certain situations as pointed out in [42]. Fortunately, in the
context of the weighted combination of classifiers, by discounting all mi(·|x)
(i = 1, . . . , R) at corresponding rates (1 − wi(x)) (i = 1, . . . , R), we actually
reduce conflict between the individual classifiers before combining them.
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Now, instead of using Dempster’s rule of combination after discounting mi(·|x)
as above, we apply the averaging operation 3 over discounted mass functions
mw

i (·|x) (i = 1, . . . , R) to obtain the mass function m(·|x) defined by

m(cj|x) =
1

R

R∑

i=1

wi(x)×mi(cj|x), for j = 1, . . . ,M (25)

m(C|x) = 1−
∑R

i=1 wi(x)

R
, 1− w(x) (26)

Note that the probability mass unassigned to individual classes but the whole
frame of discernment C, m(C|x), is the average of discount rates. Therefore, if
instead of allocating the average discount rate (1−w(x)) to m(C|x) as above,
we use 1−m(C|x) = w(x) as a normalization factor and then easily obtain

m(cj|x) =
1

R∑
i=1

wi(x)

R∑

i=1

wi(x)×mi(cj|x), for j = 1, . . . , M (27)

which interestingly turns out to be the weighted mixture of individual classi-
fiers corresponding to the weighted sum decision rule.

In the following section we will conduct several experiments for WSD to test
the proposed method of weighting classifiers with two typical scenarios of
combination as mentioned previously.

4 An Experimental Study for WSD

4.1 Individual Classifiers in Combination

In the first scenario of combination, we used three well-known statistical
learning methods including the Naive Bayes (NB), Maximum Entropy Model
(MEM), and Support Vector Machines (SVM). The selection of individual clas-
sifiers in this scenario is basically guided by the direct use of output results
for defining mass functions in the present work. Clearly, the first two classi-
fiers produce classified outputs which are probabilistic in nature. Although a
standard SVM classifier does not provide such probabilistic outputs, the issue
of mapping SVM outputs into probabilities has been studied [33] and recently
become popular for applications requiring posterior class probabilities [3,26].

3 Note that this averaging operation was also mentioned briefly by Shafer [36] for
combining belief functions.
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We have used the library implemented for maximum entropy classification
available at [37] for building the MEM classifier. Whilst the SVM classifier is
built based upon LIBSVM implemented by Chang and Lin [5], which has the
ability to deal with the multiclass classification problem and output classified
results as posterior class probabilities.

In the second scenario of combination, we used the same NB learning algo-
rithm for individual classifiers, however, each of which has been built using a
distinct set of features corresponding to a distinct representation of a polyse-
mous word to be disambiguated. It is of interest noting that NB is commonly
accepted as one of learning methods represents state-of-the-art accuracy on
supervised WSD [11]. In particularly, given a polysemous word w, which may
have M possible senses (classes): c1, c2,. . . , cM , in a context C, the task is to
determine the most appropriate sense of w. Generally, context C can be used
in two ways [15]: in the bag-of-words approach, the context is considered as
words in some window surrounding the target word w; in the relational in-
formation based approach, the context is considered in terms of some relation
to the target such as distance from the target, syntactic relations, selectional
preferences, phrasal collocation, semantic categories, etc. As such, different
views of context may provide different ways of representing context C. As-
sume we have such R representations of C, say f1, . . . , fR, serving for the aim
of identifying the right sense of the target w. Then we can build R individ-
ual classifiers, where each representation fi is used by the corresponding i-th
classifier. In our experiments, six different representations of context explored
in [21] are used for this purpose.

4.2 Representations of Context for WSD

The context representation plays an essentially important role in WSD. For
predicting senses of a word, information usually used in previous studies is
the topic context which is represented as bag of words. In [31], Ng and Lee
proposed to use more linguistic knowledge resources that then became popular
for determining word sense in many studies later on. The knowledge resources
used in their paper included topic context, collocation of words, and a syn-
tactic relationship verb-object. In [23], the authors use another information
type, which is words or part-of-speech and each is assigned with its position
in relation with the target word. In classifier combination for WSD, topical
context with different sizes of context windows is usually used for creating
different representations of a polysemous word, such as in Pedersen [32] and
Wang and Matsumoto [39].

As observed in [21], two of the most important information sources for deter-
mining the sense of a polysemous word are the topic of context and relational
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information representing the structural relations between the target word and
the surrounding words in a local context. Under such an observation, the
authors have experimentally designed four kinds of representation with six
feature sets defined as follows: f1 is a set of collocations of words; f2 is a set
of words assigned with their positions in the local context; f3 is a set of part-
of-speech tags assigned with their positions in the local context; f4, f5 and f6
are sets of unordered words in the large context with different windows: small,
median and large respectively. Symbolically, we have

f1 = {w−l · · ·w−1ww1 · · ·wr|l + r ≤ n1}
f2 = {(w−n2 ,−n2), . . . , (w−1,−1), (w1, 1), . . . , (wn2 , n2)}
f3 = {(p−n3 ,−n3), . . . , (p−1,−1), (p1, 1), . . . , (pn3 , n3)}
fi = {w−ni

, . . . ,w−2,w−1,w1,w2, . . . ,wni
} for i = 4, 5, 6

where wi is the word at position i in the context of the ambiguous word w and
pi be the part-of-speech tag of wi, with the convention that the target word w
appears precisely at position 0 and i will be negative (positive) if wi appears
on the left (right) of w. Here, we set n1 = 3 (maximum of collocations), n2 = 5,
n3 = 5 (windows size for local context), and for topic context, three different
window sizes are used: n4 = 5 (small), n5 = 10 (median), and n6 = 100 (large).
Topical context is represented by a set of content words that includes nouns,
verbs and adjectives in a certain window size. Note that after these words being
extracted, they will be converted into their root morphology forms for use. It
has been shown that these representations for the individual classifiers are
richer than the representation that just used the words in context because the
feature containing richer information about structural relations is also utilized.
Even the unordered words in a local context may contain structure information
as well, collocations and words as well as part-of-speech tags assigned with
their positions may bring richer information.

4.3 Test Data

Concerning evaluation exercises in automatic WSD, three corpora so-called
Senseval-1, Senseval-2 and Senseval-3 have been built on the occasion of three
corresponding workshops held in 1998, 2001, and 2004 respectively. There are
different tasks in these workshops with respect to different languages and/or
the objectives of disambiguating single-word or all-words in the input. In this
paper, the investigated combination rules will be tested on English lexical
samples of Senseval-2 and Senseval-3. These two datasets are more precise
than the one in Senseval-1 and widely used in current WSD studies.

A total of 73 nouns, adjectives, and verbs are chosen in Senseval-2 with the
sense inventory is taken from WordNet 1.7. The data came primarily from
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the Penn Treebank II corpus, but was supplemented with data from the
British National Corpus whenever there was an insufficient number of Tree-
bank instances (see [17] for more detail). Examples in English lexical sample
of Senseval-3 are extracted from the British National Corpus. The sense in-
ventory used for nouns and adjectives is taken from WordNet 1.7.1, which
is consistent with the annotations done for the same task during Senseval-
2. Verbs are instead annotated with senses from Wordsmyth 4 . There are 57
nouns, adjectives, and verbs in this data (see [28] for more detail).

In these datasets, each polysemous word is associated with its corresponding
training dataset and test dataset. The training dataset contains sense-tagged
examples, i.e. in each example the polysemous word is assigned with the right
sense. The test dataset contains sense-untagged examples, and the evaluation
is based on a key-file, i.e. the right senses of these test examples are listed in
this file. The evaluation used here follows the proposal in [27], which provides
a scoring method for exact matches to fine-grained senses as well as one for
partial matches at a more coarse-grained level. Note that, like most related
studies, the fine-grained score is computed in the following experiments.

4.4 Experimental Results

Firstly, Table 1 and Table 2 provide the experimental results obtained by us-
ing the entropy-based method of weighting classifiers and two strategies of
weighted combination as discussed in Section 3 for two scenarios of combina-
tion. In these tables, WDS1 and WDS2 stand for two combination methods
which apply the discounting-and-orthogonal sum combination strategy and
the discounting-and-averaging combination strategy, respectively. In Table 2,
Ci (i = 1, . . . , 6) respectively represent six individual classifiers correspond-
ing to the six feature sets fi (i = 1, . . . , 6). The obtained results show that in
both cases combined classifiers always outperform individual classifiers partic-
ipating in the corresponding combination. Especially, in the second scenario
of combination both combined classifiers WDS1 and WDS2 strongly domi-
nate all individual classifiers. Note that all representations of context used to
build individual classifiers in the second scenario have been utilized jointly
for defining a unique representation of context commonly used for individual
classifiers in the first scenario. This would interpret why individual classifiers
in the first scenario also provide results much better than individual classifiers
in the second scenario and slightly inferior to corresponding WDS1 and WDS2.

It is also interesting to see that in both scenarios of combination, the results
yielded by the discounting-and-averaging combination strategy (i.e., WDS2)
are comparable or even better than that given by the discounting-and-orthogonal

4 http://www.wordsmyth.net/
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sum combination strategy (i.e., WDS1), while the former is computational
more simple than the latter. Although the averaging operation was actually
mentioned briefly by Shafer [36] for combining belief functions, it has been
almost completely ignored in the studies of information fusion and particu-
larly classifier combination with D-S theory. Interestingly also, Shafer [36] did
show that discounting in fact turns combination into averaging when all the
information sources being combined are highly conflicting and have been suf-
ficiently discounted. This might, intuitively, provide an interpretation for a
good performance of WDS2.

Table 1
Experimental results for the first scenario of combination

%
Individual classifiers Combined classifiers

NB MEM SVM WDS1 WDS2

Senseval-2 65.6 65.5 63.5 66.3 66.5

Senseval-3 72.9 72.0 72.5 73.3 73.3

Table 2
Experimental results for the second scenario of combination

%
Individual classifiers Combined classifiers

C1 C2 C3 C4 C5 C6 WDS1 WDS2

Senseval-2 56.7 54.6 54.7 56.8 56.8 52.5 64.4 65.0

Senseval-3 62.4 62.3 64.1 61.9 63.9 59.5 71.0 72.3

Secondly, to have a comparative view of obtained results, Table 3 provides an
experimental comparison of overall performances of the developed framework
of weighted combination of classifier for WSD with the best systems in the
contests for the English lexical sample tasks of Senseval-2 [17] and Senseval-
3 [28], respectively. Here, DS1 is the method of weighted combination using
Dempster’s rule in which weights of individual classifiers are defined using
their accuracies obtained by testing on a test sample set as proposed in [21].
The best system of Senseval-2 contest also used a combination technique: the
output of subsystems (classifiers) which were built based on different machine
learning algorithms were merged by using weighted and threshold-based voting
and score combination (see [41] for the detail). The best system of Senseval-3
contest used the Regularized Least Square Classification (RLSC) algorithm
with a correction of the a priori frequencies (refer to [13] for more details).
Note that the methods using in these systems are also corpus-based methods.
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Table 3
A comparison with the best systems in the contests of Senseval-2 and Senseval-3

% The best system
Accuracy-based weighting Adaptively weighting

DS1 WDS2

Senseval-2 64.2 64.7 66.3

Senseval-3 72.9 72.4 73.3

5 Conclusions

In this paper the Dempster-Shafer theory based framework for weighted com-
bination of classifiers for WSD has been introduced. Within this framework, we
have proposed a new method for defining adaptively weights of individual clas-
sifiers using entropy measures considered as ambiguity associated with their
classified outputs. We have also discussed two combination strategies using
evidential operations in Dempster-Shafer theory, which consequently resulted
in two corresponding rules for deriving a consensus classification decision.

Experimentally, we have conducted two typical scenarios of classifier com-
bination with the proposed weighting method and two developed combina-
tion methods, which were tested on English lexical samples of Senseval-2 and
Senseval-3. The experimental result has shown that the discussed framework
of weighted combination of classifiers using Dempster-Shafer theory have pro-
vided several decision combination methods for WSD that outperform the best
systems in the contests of Senseval-2 and Senseval-3.

It seems that the entropy-based weighting method proposed in this paper along
with the discussed framework of weighted combination of classifiers would be
best appropriate to apply for integrating semi-supervised learning with clas-
sifier combination for WSD as studied recently in [22]. In the context of semi-
supervised learning, the insufficiency of labeled data may influence the output
quality of individual classifiers and then discounting them by their weights
defined by the entropy-based weighting method would effectively contribute
in improving the quality of combined classifiers. This, however, is left for the
future work.
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