
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Constraints for Argument Filterings

Author(s) Zankl, Harald; Hirokawa, Nao; Middeldorp, Aart

Citation
Lecture Notes in Computer Science, 4362/2007:

579-590

Issue Date 2007

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/9056

Rights

This is the author-created version of Springer,

Harald Zankl, Nao Hirokawa, and Aart Middeldorp,

Lecture Notes in Computer Science, 4362/2007,

2007, 579-590. The original publication is

available at www.springerlink.com,

http://dx.doi.org/10.1007/978-3-540-69507-3_50

Description

Proceedings of the 33rd Conference on Current

Trends in Theory and Practice of Computer

Science, Harrachov, Czech Republic, January 20-

26, 2007.

Constraints for Argument Filterings?

Harald Zankl, Nao Hirokawa, and Aart Middeldorp

Institute of Computer Science, University of Innsbruck, Austria

Abstract. The dependency pair method is a powerful method for auto-
matically proving termination of rewrite systems. When used with tradi-
tional simplification orders like LPO and KBO, argument filterings play
a key role. In this paper we propose an encoding of argument filterings
in propositional logic. By incorporating propositional encodings of sim-
plification orders, the search for suitable argument filterings is turned
into a satisfiability problem. Preliminary experimental results show that
our logic-based approach is significantly faster than existing implemen-
tations.

1 Introduction

The problem of proving termination of systems, processes and programs arises
naturally in many areas of computer science. In this paper we are concerned with
termination of term rewrite systems (TRSs), a formal model of computation
that underlies functional programming and which is heavily used in symbolic
computation and theorem proving.

Termination is undecidable in general but for term rewriting many powerful
methods have been developed in the past decades. In this paper we are concerned
with the dependency pair method [1], a relatively new and very powerful method
which is used in almost every automatic termination prover. In this method ter-
mination problems are transformed into collections of ordering constraints, which
are solved recursively by traditional techniques like the lexicographic path order
(LPO), the Knuth-Bendix order (KBO), and polynomial interpretations. When
using strictly monotone simplification orders like LPO and KBO, a significant
increase in termination proving power is obtained by using argument filterings
to simplify the ordering constraints. Finding a suitable argument filtering is a
challenging search problem [9].

After recapitulating the main theorem underlying the dependency pair method
in Section 2 we propose a simple encoding of argument filterings in propositional
logic in Section 3. Propositional encodings of simplification orders [3, 11, 13, 15]
can easily be incorporated, resulting in a propositional formula with the prop-
erty that any satisfying assignment corresponds to an argument filtering and
the parameters of the encoded order which solve the constraints and vice-versa.
We describe such a combination with the embedding order in Section 4 and
? This research is supported by FWF (Austrian Science Fund) project P18763. Some

of the results in this paper were first announced in [14].

with KBO in Section 5. In order to test the effectiveness of our approach, we
implemented this combination on top of the recursive SCC algorithm of [9].
For satisfiability checking we used the state-of-the-art SAT solver MiniSat [5].
The results are compared with the divide and conquer algorithm implemented in
TTT [10] and described in Section 6. In Section 7 we recast a result concerning the
interplay of argument filterings and usable rules [12] as a propositional formula,
resulting in a free and fast implementation which adds significant power.

2 Dependency Pairs

We assume basic knowledge of term rewriting [2] and the dependency pair
method [1, 6, 8, 12]. We just state the main theorem underlying the method and,
because it plays an important role in the paper, recall the definition of argument
filterings.

An argument filtering for a signature F is a mapping π that assigns to every
n-ary function symbol f ∈ F an argument position i ∈ {1, . . . , n} or a (possibly
empty) list [i1, . . . , im] of argument positions with 1 6 i1 < · · · < im 6 n.
The signature Fπ consists of all function symbols f such that π(f) is some list
[i1, . . . , im], where in Fπ the arity of f is m. Every argument filtering π induces
a mapping from T (F ,V) to T (Fπ,V), also denoted by π: π(t) = t if t ∈ V,
π(t) = π(ti) if t = f(t1, . . . , tn) with π(f) = i, and π(t) = f(π(ti1), . . . , π(tim

))
if t = f(t1, . . . , tn) with π(f) = [i1, . . . , im].

Theorem 1. A TRS R is terminating if and only if for every cycle C in the
dependency graph of R there exist an argument filtering π and a CE -compatible
reduction pair (>, >) such that π(U(C) ∪ C) ⊆ > and π(C) ∩> 6= ∅. ut

In this paper we reformulate the above theorem as a satisfiability problem
in propositional logic for specific reduction pairs. In Section 4 we address the
embedding order and in Section 5 we address KBO, but first we explain how to
represent argument filterings in propositional logic.

3 Representing Argument Filterings

Definition 2. Let F be a signature. The set of propositional variables {Xf | f ∈
F}∪{Xi

f | f ∈ F and 1 6 i 6 arity(f)} is denoted by XF . Let π be an argument
filtering for F . The induced assignment απ is defined as follows:

απ(Xf) =

{
true if π(f) = [i1, . . . , im]
false if π(f) = i

and απ(Xi
f) =

{
true if i ∈ π(f)
false if i /∈ π(f)

for all n-ary function symbols f ∈ F and i ∈ {1, . . . , n}. Here i ∈ π(f) if
π(f) = i or π(f) = [i1, . . . , im] and ik = i for some 1 6 k 6 m.

Definition 3. An assignment α for XF is said to be argument filtering consis-
tent if for every n-ary function symbol f ∈ F such that α 6� Xf there is a unique
i ∈ {1, . . . , n} such that α � Xi

f .

2

It is easy to see that απ is argument filtering consistent.

Definition 4. The propositional formula AF(F) is defined as

∧
f∈F

(
Xf ∨

arity(f)∨
i=1

(
Xi

f ∧
∧
j 6=i

¬Xj
f

))
.

Lemma 5. An assignment α for XF is argument filtering consistent if and only
if α � AF(F). ut

Definition 6. Let α be an argument filtering consistent assignment for XF . The
argument filtering πα is defined as follows:

πα(f) =

{
[i | α � Xi

f] if α � Xf ,
i if α 6� Xf and α � Xi

f

for all function symbols f ∈ F .

Example 7. Consider a signature consisting of two binary function symbols f
and g. The assignment α with α(Xf) = α(X2

f) = α(X1
g) = true and α(X1

f) =
α(Xg) = α(X2

g) = false is argument filtering consistent. The induced argument
filtering πα consists of πα(f) = [2] and πα(g) = 1.

4 Embedding

When reformulating Theorem 1 as a satisfaction problem, we have to fix a re-
duction pair, incorporate argument filterings, and encode the combination in
propositional logic. In this section we take the reduction pair (Demb,Bemb) cor-
responding to the embedding order. Because embedding has no parameters it
allows for a transparent translation of the constraints π(U(C) ∪ C) ⊆ > and
π(C)∩> 6= ∅ in Theorem 1. In Section 5 we consider KBO, which is a bit more
challenging.

Definition 8. The embedding order Demb is defined on terms as follows: s Demb

t if s = t or s = f(s1, . . . , sn) and either si Demb t for some i or t = f(t1, . . . , tn)
and si Demb ti for all i. The strict part is denoted by Bemb.

In the following we define propositional formulas ps Bπ
emb tq and ps Dπ

emb tq
which, in conjunction with AF(F), represent all argument filterings π that sat-
isfy πα(s) Bemb πα(t) and πα(s) Demb πα(t). We start with defining a formula
ps =π tq that represents all argument filterings which make s and t equal. (In
the sequel we assume that ∧ binds stronger than ∨.)

3

Definition 9. Let s and t be terms in T (F ,V). We define a propositional for-
mula ps =π tq over XF by induction on s and t. If s ∈ V then

ps =π tq =

> if s = t,
⊥ if t ∈ V and s 6= t,

¬Xg ∧
m∨

j=1

(
Xj

g ∧ ps =π tjq
)

if t = g(t1, . . . , tm).

Let s = f(s1, . . . , sn). If t ∈ V then

ps =π tq = ¬Xf ∧
n∨

i=1

(
Xi

f ∧ psi =π tq
)
.

If t = g(t1, . . . , tm) with f 6= g then

ps =π tq = ¬Xf ∧
n∨

i=1

(
Xi

f ∧ psi =π tq
)
∨ ¬Xg ∧

m∨
j=1

(
Xj

g ∧ ps =π tjq
)
.

Finally, if t = f(t1, . . . , tn) then

ps =π tq = ¬Xf ∧
n∨

i=1

(
Xi

f ∧ psi =π tiq
)
∨Xf ∧

n∧
i=1

(
Xi

f → psi =π tiq
)
.

Definition 10. Let s and t be terms in T (F ,V). We define propositional for-
mulas ps Bπ

emb tq and ps Dπ
emb tq = ps Bπ

emb tq∨ps =π tq over XF by induction on
s and t. If s ∈ V then ps Bπ

emb tq = ⊥. Let s = f(s1, . . . , sn). If t ∈ V then

ps Bπ
emb tq = Xf ∧

n∨
i=1

(
Xi

f ∧ psi Dπ
emb tq) ∨ ¬Xf ∧

n∨
i=1

(
Xi

f ∧ psi Bπ
emb tq

)
.

If t = g(t1, . . . , tm) with f 6= g then ps Bπ
emb tq is the disjunction of

Xf ∧
(
Xg ∧

n∨
i=1

(
Xi

f ∧ psi Dπ
emb tq

)
∨ ¬Xg ∧

m∨
j=1

(
Xj

g ∧ ps Bπ
emb tjq

))
and

¬Xf ∧
n∨

i=1

(
Xi

f ∧ psi Bπ
emb tq

)
.

Finally, if t = f(t1, . . . , tn) then

ps Bπ
emb tq = Xf ∧

(n∨
i=1

(
Xi

f ∧ psi Dπ
emb tq

)
∨

n∧
i=1

(
Xi

f → psi Dπ
emb tiq

)
∧

n∨
i=1

(
Xi

f ∧ psi Bπ
emb tiq

))
∨ ¬Xf ∧

n∨
i=1

(
Xi

f ∧ psi Bπ
emb tiq

)
.

4

The formula ps Bπ
emb tq ∧ AF(F) is satisfiable if and only if there exists an

argument filtering π such that π(s) Bemb π(t). Even stronger, ps Bπ
emb tq∧AF(F)

encodes all argument filterings π that satisfy π(s) Bemb π(t). Analogous state-
ments hold for ps =π tq ∧ AF(F) and ps Dπ

emb tq ∧ AF(F).

Lemma 11. Let s, t ∈ T (F ,V). If α is an assignment for XF such that α �
ps Bπ

emb tq ∧ AF(F) then πα(s) Bemb πα(t). If π is an argument filtering such
that π(s) Bemb π(t) then απ � ps Bπ

emb tq ∧ AF(F). ut

We conclude this section by stating the propositional formulation of the ter-
mination criterion of Theorem 1 specialized to embedding.

Theorem 12. Let R be a TRS over a signature F and let C be a cycle in the
dependency graph of R. The formula∧

l→r∈U(C)∪C

pl Dπ
emb rq ∧

∨
l→r∈C

pl Bπ
emb rq ∧ AF(F)

is satisfiable if and only if there exists an argument filtering π such that π(U(C)∪
C) ⊆ Demb and π(C) ∩Bemb 6= ∅. ut

5 Knuth-Bendix Order

Our approach extends naturally to propositional encodings of other simplifica-
tion orders [3, 11, 13, 15]. The encoding of LPO as a satisfiability problem has
been pioneered by Kurihara and Kondo [11]. A more efficient encoding is de-
scribed in [3]. An encoding of the multiset path order (MPO) is given in [13]. In
[15] we described how to encode KBO as a satisfiability problem. In this section
we integrate the encoding of KBO with argument filterings.

KBO is parameterized by two main components: a precedence and an admis-
sible weight function. A precedence is a proper order > on a signature. A weight
function for a signature F is a pair (w,w0) consisting of a mapping w : F → N
and a constant w0 > 0 such that w(c) > w0 for every constant c ∈ F . The ad-
missibility condition states that f > g for all g ∈ F \ {f} whenever f is a unary
function symbol with w(f) = 0. The weight of a term t is defined as follows:
w(t) = w0 if t is a variable and w(f) + w(t1) + · · ·+ w(tn) if t = f(t1, . . . , tm).

Definition 13. Let > be a precedence and (w,w0) a weight function. We define
the Knuth-Bendix order >kbo on terms inductively as follows: s >kbo t if |s|x >
|t|x for all variables x ∈ V and either

(a) w(s) > w(t), or
(b) w(s) = w(t) and one of the following alternatives holds:

(1) t ∈ V and s = fn(t) for a unary function symbol f and n > 0, or
(2) s = f(s1, . . . , sn), t = f(t1, . . . , tn), and there exists an i ∈ {1, . . . , n}

such that sj = tj for all 1 6 j < i and si >kbo ti, or
(3) s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f � g.

5

Following [11], to encode the precedence the set of propositional variables
XF is extended.

Definition 14. Let F be a signature. The union of XF and {Yfg | f, g ∈ F and
f 6= g} is denoted by YF .

Our aim is to define a formula

ps >π
kbo tq ∧ AF(F) ∧ PO(F) ∧ ADMπ(F)

that is satisfiable if and only if there exist an argument filtering π, a precedence
>, and an admissible weight function (w,w0) such that π(s) >kbo π(t). The
conjunct PO(F) will ensure that the assignment for the variables in YF \ XF
corresponds to a proper order on the signature. In [11] this is done by directly
encoding transitivity and asymmetry. A more efficient encoding in which function
symbols are mapped to natural numbers in binary representation is described
in [3]. Our implementation follows the latter approach. The conjunct ADMπ(F)
takes care of the admissibility condition (Definition 19).

Below we define the conjunct ps >π
kbo tq. The basic idea is to adapt ps Bπ

emb tq
by incorporating the recursive definition of >kbo. The following definitions, taken
from [3, 15], are needed to deal with the weight function in propositional logic.

We fix the number k of bits that is available for representing natural numbers
in binary. Let a < 2k. We denote by a = 〈ak, . . . , a1〉 the binary representation
of a where ak is the most significant bit. The operations >, =, and > are defined
as follows:

pf >j gq =

{
f1 ∧ ¬g1 if j = 1,
fj ∧ ¬gj ∨ (fj ↔ gj) ∧ pf >j−1 gq if 1 < j 6 k,

pf > gq = pf >k gq,

pf = gq =
k∧

i=1

(fi ↔ gi),

pf > gq = pf > gq ∨ pf = gq.

For addition we use pairs. The first component represents the bit representa-
tion and the second component is a propositional formula which encodes the
constraints for each digit. We define p(f , ϕ) + (g, ψ)q as (s, ϕ ∧ ψ ∧ γ ∧ σ) with

γ = ¬ck ∧ ¬c0 ∧
k∧

i=1

(
ci ↔ (fi ∧ gi ∨ fi ∧ ci−1 ∨ gi ∧ ci−1)

)
and

σ =
k∧

i=1

(
si ↔ (fi ⊕ gi ⊕ ci−1)

)
where ci (0 6 i 6 k) and si (1 6 i 6 k) are fresh variables that represent the
carry and the sum of the addition and ⊕ denotes exclusive or. The condition

6

¬ck prevents a possible overflow. We define p(f , ϕ) > (g, ψ)q as pf > gq∧ϕ∧ψ.
Note that although theoretically not necessary, it is a good idea to introduce
new variables for the sum. The reason is that in consecutive additions each bit fi

and gi is duplicated (twice for the carry and once for the sum) and consequently
using fresh variables for the sum prevents an exponential blowup of the resulting
formula.

With the above definitions in mind, we now focus on the propositional en-
coding of >π

kbo. First we take care of the non-duplication check of variables.

Definition 15. The formula NDπ(s, t) is inductively defined as follows. If s ∈
V then NDπ(s, t) can safely be set to ⊥ because ps >π

kbo tq will evaluate to ⊥
anyway. If s /∈ V and t ∈ V then NDπ(s, t) = ps Dπ

emb tq. If s = f(s1, . . . , sn)
and t = g(t1, . . . , tm) then

NDπ(s, t) =
∧

x∈Var(t)

p|s,>|x > |t,>|xq

with

|s, c|x =

(〈0, . . . , 0, c〉,>) if s = x,
(0,>) if s ∈ V and s 6= x,

n∑
i=1

|si, c ∧Xi
f |x otherwise.

The idea behind the recursive definition of |s, c|x is to collect the constraints
under which a variable is preserved by the argument filtering. If those constraints
are satisfied they correspond to an occurrence of the variable. Adding the con-
straints yields the number of variables which survive the argument filtering.

Example 16. Consider the rule l = f(x, g(y)) → f(x, y) = r. Using two bits to
represent numbers, the formula NDπ(l, r) evaluates to

p(〈0, X1
f 〉,>) > (〈0, X1

f 〉,>)q ∧ p(〈0, X2
f ∧X1

g 〉,>) > (〈0, X2
f 〉,>)q

which says that for x there are more or less no constraints but for y we know
that whenever the second argument of f is not deleted then also g must retain
its argument.

Next we give a formula that computes the weight of a term after an argument
filtering has been applied.

Definition 17. We define wπ(t) as w′π(t,>) with

w′π(t, c) =

(c ·w0,>) if t ∈ V,

p((Xf ∧ c) · f ,>) +
n∑

i=1

w′π(ti, Xi
f ∧ c)q if t = f(t1, . . . , tn).

Here d · g stands for 〈d ∧ gk, . . . , d ∧ g1〉.

7

Definition 18. Let s and t be terms. We define propositional formulas

ps >π
kbo tq = NDπ(s, t) ∧ (pwπ(s) > wπ(t)q ∨ pwπ(s) = wπ(t)q ∧ ps >π

kbo′ tq)

and ps >π
kbo tq = ps >π

kbo tq ∨ ps =π tq over YF , with ps >π
kbo′ tq inductively de-

fined as follows. If s ∈ V then ps >π
kbo′ tq = ⊥. Let s = f(s1, . . . , sn). If t ∈ V

then ps >π
kbo′ tq = ps Bπ

emb tq. If t = g(t1, . . . , tm) with f 6= g then

ps >π
kbo′ tq = Xf ∧Xg ∧ Yfg ∨ ¬Xg ∧

m∨
j=1

(Xj
g ∧ ps >π

kbo tjq) ∨

¬Xf ∧
n∨

i=1

(Xi
f ∧ psi >

π
kbo tq).

Finally, if t = f(t1, . . . , tn) then

ps >π
kbo′ tq = Xf ∧〈s1, . . . , sn〉 >lex,π,f

kbo 〈t1, . . . , tn〉∨¬Xf ∧
n∨

i=1

(Xi
f ∧psi >

π
kbo tiq).

Here 〈s1, . . . , sn〉 >lex,π,f
kbo 〈t1, . . . , tn〉 is defined as ⊥ if n = 0 and as

X1
f ∧ ps1 >

π
kbo t1q ∨ (X1

f → ps1 =π t1q) ∧ 〈s2, . . . sn〉 >lex,π,f
kbo 〈t2, . . . , tn〉

if n > 0.

Note that ps >π
kbo′ tq corresponds to the definition of >kbo in the case of equal

weights (Definition 13). The peculiar looking equation ps >π
kbo′ tq = ps Bπ

emb tq
for t ∈ V can be explained by the admissibility condition (encoded below) and
the fact that π(s) and π(t) = t are assumed to have equal weight.

Definition 19. The formula ADMπ(F) defined below is satisfiable if and only
if the weight function is admissible in the presence of an argument filtering.

pw0 > 0q ∧
∧

f∈F

(
constant(f) → pf > w0q

)
∧

∧
f∈F

(
pf = 0q ∧ unary(f) →

∧
g∈F,f 6=g

(Xg → Yfg)
)

with

constant(f) = Xf ∧
arity(f)∧

i=1

¬Xi
f

and

unary(f) = Xf ∧
arity(f)∨

i=1

(Xi
f ∧

∧
i 6=j

¬Xj
f

)
.

8

We are now ready to state the propositional encoding of the termination
criterion of Theorem 1 specialized to KBO.

Theorem 20. Let R be a TRS over a signature F and let C be a cycle in the
dependency graph of R. If the formula∧

l→r∈U(C)∪C

pl >π
kbo rq ∧

∨
l→r∈C

pl >π
kbo rq ∧ ADMπ(F) ∧ AF(F) ∧ PO(F)

is satisfiable then there are an argument filtering π, a precedence >, and an
admissible weight function (w,w0) such that π(U(C) ∪ C) ⊆ >kbo and π(C) ∩
>kbo 6= ∅. ut

From a satisfying assignment one can read off the argument filtering, the
precedence, and the weight function. We omit the straightforward details. The
converse of Theorem 20 holds if we don’t put a bound on the number k of bits
used for the representation of the weights. Of course, to get a finite formula we
fix k in advance, which makes the approach incomplete. This is however not a
serious problem in practice (cf. [15]).

6 Experimental Results

We implemented the encodings of the previous sections on top of the recursive
SCC algorithm with the divide and conquer approach described in [9] for com-
bining constraints in the termination prover TTT. The generated propositional
formulas are tested for satisfiability with the state-of-the-art SAT solver MiniSat
after applying Tseitin’s translation to obtain a CNF. The propositional formulas
in Sections 4 and 5 are written in a way to make them easily understandable for
humans. Concerning efficiency however there are quite some useful optimizations
which result in a large speedup. Consider e.g. the case of equal function symbols
in Definition 9. The original formula

ps =π tq = ¬Xf ∧
n∨

i=1

(
Xi

f ∧ psi =π tiq
)
∨Xf ∧

n∧
i=1

(
Xi

f → psi =π tiq
)

can be expressed more concisely as

ps =π tq =
n∧

i=1

(
Xi

f → psi =π tiq
)

since we know that AF(F) must hold anyway. Also the rules of commutativity,
distributivity, etc. can considerably decrease the size of the generated formulas.

The results of our experiments are summarized in the tables below. We used
a timeout of 60 seconds for each of the 865 TRSs in the 2006 edition of the
Termination Problem Data Base. All tests were performed on a server equipped
with an Intel R© XeonTM processor running at a CPU rate of 2.40GHz and 512MB

9

Table 1. Embedding and KBO.

embedding KBO
AProVE TTT sat TTT sat(2) sat(3) sat(4)

solved 194 194 194 279 271 317 322
timeout 12 6 0 135 2 3 8
time (in seconds) 735 417 150 8786 1172 1636 2181

of system memory. In Table 1 we compare our implementation of Theorems 12
and 20 with the divide and conquer algorithm of TTT described in [9]. For the
embedding order we also tested AProVE [7].1 The integers given as argument to
sat denote the number of bits used to represent natural numbers in binary.

We implemented also an LPO version of Theorems 12 and 20. We refrain
from describing it here as it has been (independently) done in [4]. We anticipate
that by incorporating the advanced optimizations to minimize the size of the
generated formulas sketched in the long version of the latter paper, the times in
the sat columns can be reduced further.

An interesting possibility of the logic-based approach is that one can try
different reduction pairs without having to worry about a strategy to control the
order and time spent on each pair; just add the encoding of a different reduction
pair with or without argument filterings as a new disjunct at the appropriate
place in the overall formula. For instance, when using both KBO and LPO in TTT
for a cycle in the dependency graph, one must specify the order in which they are
tried. That this can make a difference can be seen from the data in Table 2. Here
TTT(LK) (TTT(KL)) means that LPO is tried before (after) KBO, for each cycle
that is generated during the recursive SCC algorithm. The numbers in italics in
the sat columns are explained in the next section.

Table 2. KBO and LPO in parallel.

TTT(LK) TTT(KL) sat(2) sat(3) sat(4)

solved 310 295 305 337 338 369 343 377
timeout 121 136 6 9 9 11 14 16
time 7025 9025 1664 1940 2076 2351 2623 2898

1 Since AProVE crashes when a stack overflow occurs, which happens frequently with
KBO, we didn’t manage to obtain data for the KBO columns.

10

7 Extensions

Allowing quasi-precedences in the encoding of KBO with argument filterings
is an easy task (cf. [15]). Other precedence-based orders like the multiset path
order are also easily handled (cf. [13]).

The propositional framework is perfectly suited to recast existing termination
criteria in order to eliminate the often considerable effort to implement these
criteria. Consider e.g. the following reformulation of a technique due to [12] for
computing a restricted set of usable rules based on a given argument filtering.

Theorem 21. A TRS R is terminating if and only if for every cycle C in the
dependency graph of R there exist an argument filtering π and a CE -compatible
reduction pair (>, >) such that π(U(C, π) ∪ C) ⊆ > and π(C) ∩> 6= ∅. ut

Rather than giving an explicit definition of the set U(C, π) we encode the
constraint π(U(C, π) ∪ C) ⊆ > as the conjunction of2∧

l→r∈C

(
Uroot(l) ∧ pl >π rq

)
∧

∧
l→r∈R

(
Uroot(l) → pl >π rq

)
and ∧

l→r∈R∪C

(
Uroot(l) →

∧
p∈PosF (r)

root(r|p) is defined

(∧
q, i : qi 6 p

Xi
root(r|q) → Uroot(r|p)

))

Here Uf is a new propositional variable for every defined and every dependency
pair symbol f .

Example 22. Consider the TRS consisting of the four rules

sum(x, []) → x 0 + y → y

sum(x, y :: z) → sum(x+ y, z) s(x) + y → s(x+ y)

For the dependency pair SUM(x, y :: z) → SUM(x+y, z) none of the rewrite rules
is usable under an argument filtering π with π(SUM) = [2] and the dependency
pair simplifies to SUM(y :: z) → SUM(z) which can be oriented by Bemb from
left to right. Exactly this observation is mirrored in the last conjunction of
the advanced usable rules formula that suggests that if a rule is used (Uroot(l)

evaluates to true) then a defined symbol f occurring in the right hand side of the
rule gives rise to further usable rules if this symbol f “remains” after applying the
argument filtering. In the example we have the subformula USUM → (X1

SUM →
U+) which says that if the first argument of SUM is not deleted by the argument
filtering then U+ is set to true and + gives rise to usable rules.

So by simply adding to the above constraint the encodings of the other (side)
conditions we get essentially for free an implementation of a more powerful usable
rule criterion than the one currently available in TTT (which amounts to the
condition π(U(C) ∪ C) ⊆ > in Theorem 1). Doing this for the KBO and LPO
combination produces the numbers in italics in Table 2.
2 Independently, in [4] a similar encoding is presented.

11

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133–178, 2000.

2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

3. M. Codish, V. Lagoon, and P. Stuckey. Solving partial order constraints for LPO
termination. In Proc. of the 17th International Conference on Rewriting Techniques
and Applications, volume 4098 of LNCS, pages 4–18, 2006.

4. M. Codish, P. Schneider-Kamp, V. Lagoon, R. Thiemann, and J. Giesl. Automating
dependency pairs using SAT solvers. In Proc. of the 8th International Workshop
on Termination, pages 60–63, 2006. Extended version to appear in Proc. of the
13th International Conference on Logic for Programming, Artificial Intelligence
and Reasoning, LNCS, 2006.

5. N. Eén and N. Sörensson. An extensible SAT-solver. In Proc. of the 6th Inter-
national Conference on Theory and Applications of Satisfiability Testing, volume
2919 of LNCS, pages 502–518, 2004.

6. J. Giesl, T. Arts, and E. Ohlebusch. Modular termination proofs for rewriting
using dependency pairs. Journal of Symbolic Computation, 34(1):21–58, 2002.

7. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termi-
nation proofs in the dependency pair framework. In Proc. of the 3rd International
Joint Conference on Automated Reasoning, LNAI, pages 281–286, 2006.

8. N. Hirokawa and A. Middeldorp. Dependency pairs revisited. In Proc. of the 15th
International Conference on Rewriting Techniques and Applications, volume 3091
of LNCS, pages 249–268, 2004.

9. N. Hirokawa and A. Middeldorp. Automating the dependency pair method. In-
formation and Computation, 199(1,2):172–199, 2005.

10. N. Hirokawa and A. Middeldorp. Tyrolean termination tool. In Proc. of the 16th
International Conference on Rewriting Techniques and Applications, volume 3467
of LNCS, pages 175–184, 2005.

11. M. Kurihara and H. Kondo. Efficient BDD encodings for partial order constraints
with application to expert systems in software verification. In Proc. of the 17th
International Conference on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems, volume 3029 of LNCS, pages 827–837, 2004.

12. R. Thiemann, J. Giesl, and P. Schneider-Kamp. Improved modular termination
proofs using dependency pairs. In Proc. of the 2nd International Joint Conference
on Automated Reasoning, volume 3097 of LNAI, pages 75–90, 2004.

13. H. Zankl. BDD and SAT techniques for precedence based orders. Master’s thesis,
University of Innsbruck, 2006. Available at http://cl-informatik.uibk.ac.at/

HZ.pdf.
14. H. Zankl, N. Hirokawa, and A. Middeldorp. Constraints for argument filterings.

In Proc. of the 8th International Workshop on Termination, pages 50–54, 2006.
15. H. Zankl and A. Middeldorp. KBO as a satisfaction problem. In Proc. of the 8th

International Workshop on Termination, pages 55–59, 2006. Full version available
at http://arxiv.org/abs/cs.SC/0608032.

12

