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Abstract. We present a tool for automatically proving termination of
first-order rewrite systems. The tool is based on the dependency pair
method of Arts and Giesl. It incorporates several new ideas that make
the method more efficient. The tool produces high-quality output and
has a convenient web interface.

1 Introduction

Developing termination techniques for rewrite systems that can be automated
has become an important research topic in the past few years. The dependency
pair method of Arts and Giesl [3] is one of the most popular methods capable
of automatically proving termination of first-order term rewrite systems (TRSs)
that cannot be handled by traditional simplification orders. The dependency pair
method has been implemented by Arts [1] and is part of the termination toolbox
of CiME [5]. Tsukuba Termination Tool (TTT in the sequel) is a new tool in
which the dependency pair method takes center-stage. In the following sections
we explain the features of TTT, give some implementation details, report on some
of the experiments that we performed, and provide a brief comparison with the
tools described in [1, 5]. We conclude with some ideas for future extensions of the
tool. Familiarity with the dependency pair method will be helpful in the sequel.

2 Interface

We describe the features of TTT by means of its web interface, displayed in Fig. 1.

TRS The user inputs a TRS by typing the rules into the upper left text area
or by uploading a file via the browse button. The input syntax is obtained by
clicking the TRS link.
? http://www.score.is.tsukuba.ac.jp/ttt/

?? Partially supported by the Grant-in-Aid for Scientific Research (C)(2) 13224006 of
the Ministry of Education, Culture, Sports, Science and Technology of Japan.



Fig. 1. A screen shot of the web interface of TTT.

Comment and Bibtex Anything typed into the upper right text area will
appear as a footnote in the generated LATEX code. This is useful to identify
TRSs. LATEX commands may be included. A typical example is a line like

Example 33 (\emph{Battle of Hydra and Hercules}) in \cite{D33}.

In order for this to work correctly, a bibtex entry for D33 should be supplied. This
can be done by typing the entry into the appropriate text area or by uploading
an appropriate bibtex file via the browse button.

Base Order The current version of TTT supports the following three base
orders: LPO (lexicographic path order) with strict precedence, LPO with quasi-
precedence, and KBO (Knuth-Bendix order) with strict precedence. The imple-
mentation of KBO is based on the polynomial-time algorithm of Korovin and
Voronkov [11]. In Section 4 we comment on the implementation of LPO prece-
dence constraint solving.
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Dependency Pairs Setting the dependency pair option activates the depen-
dency pair technique of Arts and Giesl [2], which greatly enhances the termi-
nation proving power of the tool. The current version of TTT supports the ba-
sic features of the dependency pair technique (argument filtering, dependency
graph, cycle analysis) described below. Advanced features like narrowing, rewrit-
ing, and instantiation are not yet available. Also innermost termination analysis
is not yet implemented.

Argument Filtering A single function symbol f of arity n gives rise to 2n +n
different argument filterings:

– f(x1, . . . , xn) → f(xi1 , . . . , xim) for all 1 6 i1 < · · · < im 6 n,
– f(x1, . . . , xn) → xi for all 1 6 i 6 n.

A moment’s thought reveals that even for relatively small signatures, the number
of possible argument filterings is huge. TTT supports two simple heuristics to
reduce this number.

– The some option considers for a function symbol f of arity n only the ‘full’
argument filtering f(x1, . . . , xn) → f(x1, . . . , xn) and the n ‘collapsing’ ar-
gument filterings f(x1, . . . , xn) → xi (1 6 i 6 n).

– The some more option considers the argument filtering f(x1, . . . , xn) → f
(when n > 0) in addition to the ones considered by the some option.

Dependency Graph The dependency graph determines the ordering con-
straints that have to be solved in order to guarantee termination. Since the
dependency graph is in general not computable, a decidable approximation has
to be adopted. The current version of TTT supplies two such approximations:

– EDG is the original estimation of Arts and Giesl [2, latter part of Section 2.4].
– EDG∗ is an improved version of EDG described in [12, latter half of Section 6].

We refer to [9] for some statistics related to these two approximations.

Cycle Analysis Once an approximation of the dependency graph has been
computed, some kind of cycle analysis is required to generate the actual ordering
constraints. TTT offers three different methods:

1. The method described in [7] is to treat cycles in the approximated depen-
dency graph separately. For every cycle C, the dependency pairs in C and
the rewrite rules of the given TRS must be weakly decreasing and at least
one dependency pair in C must be strictly decreasing (with respect to some
argument filtering and base order).

2. Another method, implemented in [1, 5], is to treat all strongly connected
components (SCCs) separately. For every SCC S, the dependency pairs in
S must be strictly decreasing and the rewrite rules of the given TRS must
be weakly decreasing. Treating SCCs rather than cycles separately improves
the efficiency at the expense of reduced termination proving power.
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3. The third method available in TTT combines the termination proving power
of the cycle method with the efficiency of the SCC method. It is described
in [9].

Divide and Conquer The default option to find a suitable argument filtering
that enables a group of ordering constraints to be solved by the selected base
order is enumeration, which can be very inefficient, especially for larger TRSs
where the number of suitable argument filterings is small. Setting the divide
and conquer option computes all suitable argument filterings for each constraint
separately and subsequently merges them to obtain the solutions of the full set
of constraints. This can (greatly) reduce the execution time at the expense of an
increased memory consumption. The divide and conquer option is described in
detail in [9]. At the moment of writing it is only available in combination with
LPO.

Verbose Setting the verbose option generates more proof details. In combina-
tion with the divide and conquer option described above, the total number of
argument filterings that enable the successive ordering constraints to be solved
are displayed during the termination proving process.

Timeout Every combination of options results in a finite search space for finding
termination proofs. However, since it can take days to fully explore the search
space, (the web version of) TTT puts a strong upper bound on the permitted
execution time.

3 Output

If TTT succeeds in proving termination, it outputs a proof script which explains
in considerable detail how termination was proved. This script is available in
both HTML and LATEX format. In the latter, the approximated dependency
graph is visualized using the dot tool of the Graphviz toolkit [8]. Fig. 2 shows
the generated output (with slightly readjusted vertical space to fit a single page)
on Example 17 (Egyptian Fractions) in Steinbach [15] (in [15] the binary function
symbol i is denoted by the infix operator on). Here TTT is used with the EDG
approximation of the dependency graph, the SCC approach to cycle analysis,
some more argument filterings, and without the verbose option. As can be seen
from Fig. 2, we prefer to output LPO precedences compactly like div Â h Â s as
opposed to div Â h; h Â s (or worse: div Â h; h Â s; div Â s). This is achieved by
an obvious topological sorting algorithm.

4 Implementation

TTT is written in Objective Caml [13], which is a strongly typed functional
programming language extended with object-oriented features. We make use
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Termination Proof Scripta

We prove that the TRS R consisting of the 7 rewrite rulesb

div(x, y) → h(x, y, y)

egypt(0 / y) → nil

egypt(s(x) / y) → div(y, s(x)) · egypt(i(s(x) / y, s(0) / div(y, s(x))))

h(s(0), y, z) → s(0)

h(s(s(x)), s(0), z) → s(h(s(x), z, z))

h(s(s(x)), s(s(y)), z) → h(s(x), s(y), z)

i(x / y, u / v) → ((x× v)−(y×u)) /(y× v)

is terminating. There are 6 dependency pairs:

1 : DIV(x, y) → H(x, y, y)

2 : EGYPT(s(x) / y) → DIV(y, s(x))

3 : EGYPT(s(x) / y) → EGYPT(i(s(x) / y, s(0) / div(y, s(x))))

4 : EGYPT(s(x) / y) → I(s(x) / y, s(0) / div(y, s(x)))

5 : H(s(s(x)), s(0), z) → H(s(x), z, z)

6 : H(s(s(x)), s(s(y)), z) → H(s(x), s(y), z)

The EDG approximated dependency graph

1

5

62

3

4

contains 2 SCCs: {5, 6}, {3}.
– Consider the SCC {5, 6}. By taking the AF · 7→ [ ] and LPO with precedence

div Â h Â s; egypt Â ·; i Â ×; i Â −; i Â / Â nil, the rules in R are weakly
decreasing and the rules in {5, 6} are strictly decreasing.

– Consider the SCC {3}. By taking the AF ×, i 7→ [ ] and LPO with precedence
egypt Â ·; egypt Â div Â h Â s Â i Â ×; egypt Â nil; i Â −; i Â /, the rules in R
are weakly decreasing and the rules in {3} are strictly decreasing.

References

1. J. Steinbach. Automatic termination proofs with transformation orderings. In
Proc. 6th RTA, volume 914 of LNCS, pages 11–25, 1995.

a http://www.score.is.tsukuba.ac.jp/ttt
b Example 17 (Egyptian Fractions) in [1].

Fig. 2. Output.

5



of the latter for the enumeration of argument filterings, but most of the code is
written in a purely functional style. For instance, to compute SCCs and cycles in
the approximated dependency graph the depth-first search algorithm described
in [10] is used. Below we comment on the implementation of LPO precedence
constraint solving.

The definition of LPO with strict precedence can be rendered as follows:

s >lpo t = s >1
lpo t ∨ s >2

lpo t

x >1
lpo t = x >2

lpo t = ⊥
f(s1, . . . , sn) >1

lpo t = ∃ i (si = t ∨ si >lpo t)

f(s1, . . . , sn) >2
lpo f(t1, . . . , tn) =

(∀i f(s1, . . . , sn) >lpo ti) ∧ (s1, . . . , sn) >lex
lpo (t1, . . . , tn)

f(s1, . . . , sn) >2
lpo g(t1, . . . , tm) = (∀i f(s1, . . . , sn) >lpo ti) ∧ (f > g)

with () Âlex () = ⊥ and (s1, . . . , sn) Âlex (t1, . . . , tn) = s1 Â t1 ∨ (s1 = t1 ∧
(s2, . . . , sn) Âlex (t2, . . . , tn)) for n > 0. Finding a precedence > such that s >lpo

t for concrete terms s and t is tantamount to solving the constraint that is
obtained by unfolding the definition of s >lpo t. The constraint involves the
boolean connectives ∧ and ∨, ⊥, and atomic statements of the forms f > g for
function symbols f , g and s = t for terms s, t. These symbols are interpreted as
sets of precedences, as follows:

[[C ∨D ]] = mins ([[C ]]∪ [[D ]]) [[⊥ ]] = ∅
[[C ∧D ]] = mins ([[C ]]⊗ [[ D ]]) [[ f > g ]] = {(f, g)}

[[ s = t ]] =

{
{∅} if s and t are the same term
∅ otherwise

Here O1 ⊗O2 denotes the set of all strict orders (>1 ∪ >2)+ with >1 ∈ O1 and
>2 ∈ O2. The purpose of the operator mins, which removes non-minimal prece-
dences from its argument, is to avoid the computation of redundant precedences.
For instance, one readily verifies that [[ f(c) >lpo c ]] = {∅} whereas without mins
we would get [[ f(c) >lpo c ]] = {∅, {(f, c)}}.

Now, by encoding the above definitions one almost immediately obtains an
implementation of LPO precedence constraint solving. For instance, TTT con-
tains (a slightly optimized version of) the following OCaml code fragment:

let bottom = empty
let disj c d = minimal (union c d)
let conj c d = minimal (combine c d)

let rec lex rel ss ts =
match ss, ts with
| s :: ss’, t :: ts’ when s = t -> lex rel ss’ ts’
| s :: ss’, t :: ts’ -> rel s t
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let rec lpo s t = disj (lpo1 s t) (lpo2 s t)
and lpo1 s t =
match s with
| V _ -> bottom
| F (f, ss) -> exists (fun s’ -> disj (equal s’ t) (lpo s’ t)) ss

and lpo2 s t =
match s, t with
| F (f, ss), F (g, ts) when f = g

-> conj ((for_all (fun t’ -> lpo s t’)) ts) (lex lpo ss ts)
| F (f, ss), F (g, ts)

-> conj ((for_all (fun t’ -> lpo s t’)) ts) (prec f g)
| _ -> bottom

The point we want to emphasize is that other precedence-based syntactic order-
ings follow the same scenario and can thus be added very easily to TTT.

5 Experimental Results

We tested the various options of TTT on numerous examples. Here we consider
14 examples from the literature. Our findings are summarized in Tables 1 and 2.
All experiments were performed on a notebook PC with an 800 MHz Pentium
III CPU and 128 MB memory. The numbers in the two tables denote execution
time in seconds. Italics indicate that TTT could not prove termination while
fully exploring the search space implied by the options within the given time.
Question marks denote a timeout of one hour. For the experiments in Table 1
we used LPO with strict precedence as base order, EDG as dependency graph
approximation, and enumeration of argument filterings.

The three question marks for [6, Example 11] are explained by the fact that
the dependency graph admits 4095 cycles (but only 1 strongly connected com-
ponent, consisting of all 12 dependency pairs). The largest example in the collec-
tion, Example 3.11 (Quicksort) in [3], clearly reveals the benefits of the argument
filtering heuristics as well as the new approach to cycle analysis.

From columns (1), (2), and (3) in Table 2 we infer that the divide and conquer
option has an even bigger impact on this example, especially if one keeps in
mind that all suitable argument filterings are computed. Here we used the new
algorithm for cycle analysis, LPO with strict precedence as base order, EDG as
dependency graph approximation, and some (1), some more (2), and all (3)
argument filterings. The question marks in column (3) are largely explained by
the large memory demands of the divide and conquer option. We will address
this issue in the near future. Note that [6, Example 11] is the only example in
the collection which can be directly handled by LPO.

In columns (4) and (5) we used KBO as base order and some respectively
some more argument filterings (as well as the new algorithm for cycle analysis
and EDG as dependency graph approximation). According to column (5) TTT
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Table 1. Argument filtering heuristics in combination with cycle analysis methods.

argument filterings some some more all
cycle analysis cycle scc new cycle scc new cycle scc new

[3, Example 3.3] 0.02 0.08 0.02 0.14 0.81 0.13 5.72 5.68 5.78
[3, Example 3.4] 0.01 0.01 0.01 0.02 0.02 0.02 0.09 0.06 0.08
[3, Example 3.9] 0.28 0.23 0.13 1.94 2.32 0.86 9.79 4.38 4.48
[3, Example 3.11] 14.29 9.35 5.79 152.45 209.10 57.51 ? ? ?
[3, Example 3.15] 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01
[3, Example 3.38] 0.01 0.02 0.01 0.05 0.05 0.05 4.38 0.87 0.91
[3, Example 3.44] 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.01
[4, Example 6] 0.06 0.05 0.05 0.89 0.60 0.26 0.82 2.97 0.24
[6, Example 11] ? 0.08 0.08 ? 0.08 0.08 ? 16.46 15.21
[6, Example 33] 0.05 0.05 0.05 0.13 0.13 0.12 0.48 0.44 0.48
[15, Example 17] 1.77 1.75 1.63 4.41 4.39 4.19 1904.79 805.92 1045.75
[16, Example 4.27] 0.00 0.01 0.01 0.01 0.01 0.01 0.03 0.04 0.03
[16, Example 4.60] 0.17 0.17 0.16 0.23 0.13 0.14 41.19 21.50 21.42
[17, Example 58] 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01

requires 593.26 seconds to prove the termination of Example 33 (Battle of Hy-
dra and Hercules) in [6]. This example nicely illustrates that the termination
proving power of KBO, which is considered not to be very large, is increased sig-
nificantly in combination with dependency pairs. The ARTS and CiME columns
are described in the next section.

6 Comparison

TTT is not the first tool that implements the dependency pair method. The
implementation of Arts [1] offers more refinements (like narrowing and termi-
nation via innermost termination) of the dependency pair method and, via its
graphical user interface, allows the user to choose a particular argument filter-
ing (separately for each group of ordering constraints). In contrast to the latter,
TTT offers improved algorithms for the automatic search for suitable argument
filterings. For the ARTS column in Table 2 we used the only available automatic
strategy in the distribution, which is (partly) described in [1, Section 3], and not
guaranteed to terminate. Most of the successful termination proofs it generates
use the refinements mentioned above.

The implementation of the dependency pair method in CiME [5] uses weakly
monotone polynomial interpretations as base order (which removes the need for
argument filterings) and the SCC method for cycle analysis in the EDG approx-
imated dependency graph. The search for a suitable polynomial interpretation
can be restricted by specifying a certain class of simple polynomials as well as
indicating a restricted range for the coefficients. Needless to say, the use of poly-
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Table 2. Divide and conquer, KBO, and other tools.

(1) (2) (3) (4) (5) LPO KBO ARTS CiME

[3, Example 3.3] 0.10 3.30 492.76 269.03 ? 0.00 0.00 58.92 ?
[3, Example 3.4] 0.01 0.02 0.08 3.13 25.51 0.00 0.00 2.76 0.19
[3, Example 3.9] 0.25 3.43 340.99 1183.73 ? 0.00 0.00 391.18 ?
[3, Example 3.11] 0.47 4.42 430.72 2.25 33.42 0.00 0.01 ? ?
[3, Example 3.15] 0.01 0.00 0.01 0.24 0.24 0.00 0.03 ? 0.08
[3, Example 3.38] 0.01 0.05 4.50 0.02 ? 0.00 0.00 613.32 0.19
[3, Example 3.44] 0.00 0.04 0.04 6.55 10.16 0.00 0.87 0.60 0.02
[4, Example 6] 0.02 3.08 80.65 0.09 1783.14 0.00 0.00 ? 440.39
[6, Example 11] 2.08 92.92 ? 0.39 5.52 0.00 0.00 4.43 61.36
[6, Example 33] 0.02 0.12 0.89 0.18 593.26 0.00 0.00 ? 0.78
[15, Example 17] 0.66 57.85 ? 67.36 ? 0.00 0.00 ? 15.80
[16, Example 4.27] 0.01 0.05 0.29 202.65 396.36 0.00 5.17 ? 1485.27
[16, Example 4.60] 0.04 0.36 23.14 0.28 387.01 0.00 0.00 6.44 1.74
[17, Example 58] 0.00 0.00 0.02 0.43 0.45 0.00 0.06 1.35 0.06

nomial interpretations considerably restricts the class of terminating TRSs that
can be proved terminating (automatically or otherwise). On the other hand,
CiME admits AC operators and supports powerful modularity criteria based
on the dependency pair method (described in [18, 19]), two extensions which
are not (yet) available in TTT. The data in the CiME column was obtained by
using the default options to restrict the search for polynomial interpretations:
simple-mixed polynomials with coefficients in the range 0–6.

7 Future Extensions

In the near future we plan to add an option that makes TTT search for a ter-
mination proof using everything in its arsenal. The challenge here is to develop
a strategy that finds proofs quickly without compromising the ability to find
proofs at all.

Other future extensions include adding more base orders, incorporating the
refinements of the dependency pair method mentioned in the first paragraph of
Section 6, and implementing the powerful modularity criteria based on the de-
pendency pair method described in [14] and [19]. We also plan to add techniques
for AC-termination. In Section 5 we already mentioned the reduction of the large
memory requirements of the divide and conquer option as an important topic
for future research.

Another interesting idea is to generate output that allows for an indepen-
dent check of the termination proof. We plan to develop some kind of formal
language in which all kinds of termination proofs can be conveniently expressed.
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This development may lead to cooperating rather than competing termination
provers.
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