
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title 大規模決定木学習のためのスケーラブルアルゴリズム

Author(s) Nguyen, Trong Dung

Citation

Issue Date 2001-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/907

Rights

Description
Supervisor:Hiroshi Shimodaira, 情報科学研究科, 博

士

Scalable Algorithms for

Learning Large Decision Trees

by

Trong Dung NGUYEN

submitted to

Japan Advanced Institute of Science and Technology

in partial ful�llment of the requirements

for the degree of

Doctor of Philosophy

Supervisor: Associate Professor Hiroshi Shimodaira

School of Information Science

Japan Advanced Institute of Science and Technology

January 12, 2001

Abstract

Decision tree learning is one of the most widely used and practical methods in ma-

chine learning. Among early and basic works on decision tree learning are Hunt's Concept

Learning System (Hunt et al. 1966), Friedman and Breiman's CART system (Fried-

man 1977; Breiman et al. 1984), and Quinlan's ID3 system (Quinlan 1986). Following

them, numerous researches continue searching for alternative approaches and algorithms

to improve the e�ectiveness (predictive accuracy) and the eÆciency of the method. The

development of decision tree learning leads to and is encouraged by a growing number

of commercial systems such as CART (Salford Systems), MineSet (SGI), and Intelligent

Miner (IBM).

Traditional research issues in decision tree learning include attribute selection, pruning,

discretization, handling missing values, and nonstandard forms of decision trees (e.g.,

oblique decision trees). When decision tree learning becomes one of the most applicable

techniques in data mining|a rapidly growing area of research and application|a new

challenge is how it can deal with very large and complex databases. For that, several new

research issues arise such as handling of relational and complex types of data, handling

noisy or incomplete data, eÆciency and scalability of learning algorithms, parallel and

distributed learning algorithms, presentation and visualization of data mining results,

etc.

The ultimate purpose of our research is to develop an integrated decision tree learning

system that can be applied e�ectively and eÆciently to data mining applications. To

that end, we try to solve several problems of decision tree learning on large and complex

datasets. These problems include attribute selection when data are incomplete or uncer-

tain, the scalability of rule post-pruning algorithms, and visualization of large decision

trees. Based on the results of our research on those problems, we develop a prototype

of a decision tree learning system to demonstrate the e�ectiveness and eÆciency of our

i

solutions.

Attribute selection is one of basic issues in decision tree learning. Most measures for

selecting attributes are either information theory-based such as information gain (Quin-

lan 1986), gain-ratio (Quinlan 1993), normalized information gain (Mantaras 1991), or

statistics-based such as gini-index (Breiman et al. 1984), �2 (Liu et al. 1994), etc. Using

an approach based on the theory of rough sets (Pawlak, 1991), a mathematical tool to

deal with uncertain and incomplete information, we have proposed a new attribute se-

lection measure (R-measure). In our experimental comparative evaluation of R-measure

and other there well-known measures, R-measure outperformed or was comparable to the

others in many cases. Especially, the experiment showed that R-measure dealt with noisy

data more e�ectively in comparing to the others.

As a rule set has advantages over a decision tree in many cases, some decision tree

learning systems use a rule post-pruning algorithm to generate rules from a decision tree.

For example, C4.5 system (Quinlan 1993) provides C4.5rules to generate rules. However,

due to the algorithm complexity (C4.5rules has a time complexity of O(n3) on the number

of input data records), the algorithm fails to deal with large databases. On the other hand,

some other rule learning algorithms such as IREP (Furnkranz, 1994) or RIPPER (Cohen,

1995) are scalable, but have a problem called over-pruning or hasty generalization that

can e�ect the accuracy. By applying the separate-and-conquer strategy and taking the

advantage of post-pruning (in contrast to pre-pruning) approach, we have proposed a new

post-pruning algorithm (CABROrule) that is scalable (the time complexity is O(nlogn))

and can avoid the problem of over-pruning. In our experiments, CABROrule produced

smaller rule sets with higher accuracy in comparing to C4.5rules on a major number of

applied datasets while running time was reduced substantially.

Data and knowledge visualization is an active research issue in data mining as it is

crucial for data mining systems. Especially, visualization probably is the best way to

understand a decision tree. Most decision tree learning systems provide a tree visualizer

such as a visualizer with a tree map in CART or 3D visualizer in MineSet. However, these

visualizers work well with average-size decision trees but have several problems to visualize

large ones. On other hand, the �elds of information visualization and graph drawing have

ii

many researches on methods to visualize large hierarchical structures, such as cone trees

(Robertson, 1991), hyperbolic trees (Lamping et al. 1997), tree-map (Johnson et al.,

1991), etc. By applying methodology of information visualization we have proposed a

new algorithm (T2.5D) for decision tree visualization. T2.5D overcomes many diÆculties

of current methods in viewing and navigating large devision trees.

Based on the results of those researches we have developed a prototype of a decision

tree learning system as a �rst step toward our ultimate purpose|an integrated decision

tree learning system for data mining. The R-measure is used for attribute selection,

CABROrule is used for generating rules, and decision trees are visualized with T2.5D.

The program has been tested successfully with several large and complex datasets.

iii

Acknowledgments

First of all, I would like to express my gratitude and thanks to my advisor Asso-

ciate Professor Hiroshi Shimodaira who has guided me through my study and research.

Someday I may be able to �nd words to express my gratefulness for his patience and

forgiveness.

I would like to express my gratitude and thanks to my co-advisor Professor Ho Tu Bao

who has taught me how to do research. During my years as a graduate student, I appre-

ciate very much his patience and e�ort in checking and revising methods, experiments,

referred papers, and presentations related to my research.

I would like to express my gratitude and thanks to Professor Shigeki Sagayama for

advice on my research.

I owe a debt of gratitude to Professor Masayuki Kimura, who gave me all his kindness

and forgiveness from the �rst day I came to the institute.

I would like to thank Professor Hiroshi Motoda and Professor Satoshi Tojo for many

detail comments on this thesis. I would like to thank Professor Milan Vlach for many

fruitful discussion on rough set theory.

Members of Arti�cial Intelligence Laboratory gave me many helps throughout my

study. Particularly, Associate Mitsuru Nakai and Mr. Hisao Koba patiently explained me

many questions about computer and network systems.

iv

Contents

Abstract i

Acknowledgments iv

1 Introduction 2

1.1 Motivation and Reseach Context . 2

1.1.1 The Issue of Attribute Selection . 4

1.1.2 Rule Post-Pruning of Large Decision Trees 5

1.1.3 Visualizing Large Decision Trees . 6

1.2 Main Results . 7

1.3 Thesis Structure . 8

2 Preliminaries 9

2.1 Basic Concepts . 9

2.2 Decision Tree and Rule Learning . 11

2.3 Experimental Methodology . 15

3 A Measure for Attribute Selection Based on Rough Sets 17

3.1 Introduction . 17

v

3.2 Attribute Selection Measures . 18

3.3 Rough Set Theory and Extended Models 19

3.3.1 Basic Concepts of Rough Sets . 19

3.3.2 Measure of Attribute Dependency 20

3.4 R-measure for Attribute Selection Problem 22

3.4.1 A New Measure for Attribute Dependency 22

3.4.2 Application to Attribute Selection Problem 26

3.5 Experimental Results . 28

3.6 Summary . 31

4 A Scalable Algorithm for Rule Post-Pruning of Large Decision Trees 32

4.1 Introduction . 32

4.2 General Concepts of Pruning . 35

4.2.1 Why Pruning is Required? . 35

4.2.2 Pre-pruning . 37

4.2.3 Post-pruning . 38

4.3 Related Work . 40

4.3.1 Rule Post-Pruning in C4.5 . 40

4.3.2 Other Related Rule Pruning Algorithms 40

4.3.3 The Problem of Overpruning . 41

4.4 A Scalable Algorithm for Rule Post-Pruning 42

4.4.1 Description of the Algorithm . 43

vi

4.4.2 Avoiding Overpruning . 45

4.5 Experimental Results . 46

4.6 Summary . 49

5 Visualizing Large Decision Trees 50

5.1 Introduction . 50

5.2 Related Work in Visualizing Large Trees 57

5.2.1 Tree-Maps . 57

5.2.2 Hyperbolic Browser . 58

5.3 The Tree Visualizer in CABRO . 60

5.3.1 Di�erent Modes of View . 60

5.3.2 Visualization with T2.5D Technique 64

5.4 Interactive Learning of Large Decision Trees 67

5.4.1 Support for Model Selection . 67

5.4.2 Support for Matching of Unknown Objects 68

5.5 Summary . 69

6 A Data Mining System That Supports Model Selection 74

6.1 Introduction . 74

6.2 Overview of the System and Solutions . 76

6.2.1 Overview of the System . 76

6.2.2 Model Selection . 78

6.2.3 Data and Knowledge Visualization 80

vii

6.3 Knowledge Discovery Methods in the System 85

6.3.1 A Conceptual Clustering Method 85

6.3.2 Implementation and Experiments with Model Selection 86

6.4 Summary . 89

7 Conclusion 90

References 92

Publications 102

1

Chapter 1

Introduction

1.1 Motivation and Reseach Context

Decision tree learning (DTL) is one of the most widely used and practical methods for

inductive learning. It is a method for approximating discrete-valued functions that is

robust to noisy data and capable of learning disjunctive expressions. Among early and

basic works on decision tree learning are Hunt's Concept Learning System (CLS) [40]

and Friedman and Breiman's work resulting in the CART system [26, 9]. Quinlan's ID3

system [77, 78] is the ancestor of one of the most well-known system C4.5 [83]. Other

early work on decision tree learning includes ASSISTANT [50, 14].

There are numerous researches on decision tree learning that mostly aim at improving

the e�ectiveness (e.g., the predictive accuracy of decision trees) and the eÆciency (e.g.,

the running time) of the method. Two basic issues in decision tree learning are attribute

selection [63] and pruning [64]. As decision tree learning algorithms recursively split

examples belonging to a node in order to build children nodes, the �rst issues concerns

how to make that split e�ectively. The second issues concerns a problem in machine

learning called over-�tting, that means a decision tree is too speci�c for training data and

has low predictive accuracy on new unseen data.

Other issues in decision tree learning include incorporating continuous-valued at-

tributes, handling training examples with missing attribute values, and handling attribute

with di�ering costs. Initially, most of decision tree learning algorithms only deal with

2

nominal attributes. There are many researches on discretization [22, 96, 5] or adapting

learning algorithms to handle numeric data [84]. In certain cases, the available data may

be missing values for some attributes. There are several strategies to deal with them,

such as those described in [65, 83, 9].

When decision tree learning becomes one of the most applicable techniques in data

mining, a rapidly growing area of research and application, a new challenge is how it can

deal with very large and complex databases. For that, several new research issues arise

such as handling of relational and complex types of data, handling noisy or incomplete

data, eÆciency and scalability of learning algorithms, parallel and distributed learning

algorithms, and presentation and visualization of data mining results [37].

The ultimate purpose of our research is to develop an integrated decision tree learning

system that can be applied e�ectively and eÆciently to data mining applications. To

that end, we try to solve several problems of decision tree learning on large and complex

datasets. These problems include attribute selection when data are incomplete or uncer-

tain, the scalability of rule post-pruning algorithms, and visualization of large decision

trees.

Attribute selection is one of basic issues in decision tree learning. Most measures

for selecting attributes are either information theory-based such as information gain [79],

gain-ratio [83], normalized information gain [58], or statistics-based such as gini-index [9],

�2 [56]. Using an approach based on the theory of rough sets [73], a mathematical tool

to deal with uncertain and incomplete information, we try to proposed a new attribute

selection measure that is expected to deal better with incomplete and uncertain data.

As a rule set has advantages over a decision tree in many cases, some decision tree

learning systems such as C4.5 [83] uses a rule post-pruning algorithm (C4.5rules) to

generate rules from a decision tree. However, due to the algorithm complexity (C4.5rules

has a time complexity of O(n3) on the number of input data records [29]), it fails to deal

with large databases. In the other hand, some other rule learning algorithms such as

IREP [27] or RIPPER [16] are scalable, but have a problem called over-pruning or hasty

generalization that can e�ect the accuracy [25]. By applying the separate-and-conquer

strategy and taking the advantage of post-pruning (in contrast to pre-pruning) approach,

3

we try to proposed a scalable post-pruning algorithm that is expected to be as accurate

as C4.5rules and can avoid the problem over-pruning.

Visualization is very helpful to understand decision trees. Although visualizing large

trees attracts many researches in the �eld of information visualization [38, 53, 41, 31],

there is still no available tool or algorithm in decision tree learning that allows the user

viewing and navigating large decision trees comfortably. By analyzing characteristics of

decision trees together with techniques from the �eld of information visualization, we try

to propose a new algorithm that allows the user viewing and navigating large decision

trees comfortably.

1.1.1 The Issue of Attribute Selection

To learn decision trees, learning algorithms have to provide methods for: (1) attribute

selection, i.e. choosing the \best" attribute to split a decision node in terms of a measure

for \goodness of split", (2) pruning, i.e. cutting o� unstable leaves to avoid over�tting and

obtain statistical reliability, and (3) discretization, i.e. transforming continuous attributes

into discrete ones to deal with mixed data. As attribute selection is of key importance

to the decision tree generation, it has attracted many DTL work until recently, e.g. [50],

[43]. Most measures for selecting attributes are either information theory-based such

as information gain [79], gain-ratio [83], normalized information gain [58], or statistics-

based such as gini-index [9], �2 [56], etc. In this work we introduce alternatively a rough

set-based measure for attribute selection called R-measure. The theory of rough sets

introduced by Pawlak in early 1980s is a mathematical tool to deal with imprecise and

incomplete information [74], [68]. The limitation of the deterministic model of rough set

theory when dealing with uncertain information has been recognized and there have been

several attempts to overcome this restriction such as probabilistic model [73] and the

variable precision model [103]. However, the former cannot inherit all useful properties

of the original rough set model, and the latter raises a new problem of specifying an

appropriate threshold. R-measure, inspired by the attribute dependency measure in rough

set theory, aims at dealing with uncertain information while preserving properties of the

rough set model without requiring thresholds, and it can be used as a solution for attribute

4

selection in DTL.

1.1.2 Rule Post-Pruning of Large Decision Trees

Data mining algorithms have usually to deal with very large databases. For the prediction

data mining task, in addition to the requirements of high accurate and understandability

of discovered knowledge, the mining algorithms must be scalable, i.e., given a �xed amount

of main memory, their runtime increases linearly with the number of records in the input

database.

Decision tree learning has become a popular and practical method in data mining

because of its signi�cant advantages: the generated decision trees usually have acceptable

predictive accuracy; the hierarchical structure of generated trees makes them are quite

easy to understand if trees are not large; and especially the learning algorithms, which

employ the divide-and-conquer (or simultaneous covering) strategy to generate decision

trees, do not require complex processes of computation. However, it happens that in

certain domains the comprehensibility and predictive accuracy of decision trees decrease

considerably because of the problem known as subtree replication [72] (when the subtree

replication occurs, identical subtrees can be found at several di�erent places in the same

tree structure).

The solution to the problem of subtree replication in the most well-known decision

tree learning system C4.5 [83] is to convert a generated decision tree into a set of rules

using a post-pruning strategy [62]. The conversion of trees into rules is not only an

e�ective way to avoid the subtree replication problem but also o�ers other signi�cant

advantages: while large trees generated from large datasets are diÆcult to understand,

discovered knowledge in form of rules is much easier to understand. Also, in our practical

experience domain experts often feel more comfortable to analyze and validate rules than

trees if trees become large. Moreover, it appears that the generated rule sets usually

have equal or higher predictive accuracy than the original decision tree. However, the

C4.5rules algorithm is not scalable to large databases as the simulated annealing, which

is employed to achieve an optimal generalization, requires O(n3) time complexity where

n is the number of records in the input database [15].

5

The separate-and-conquer (or simultaneous covering) strategy is an alternative ap-

proach to learn rules directly from databases. The most well-known separate-and-conquer

algorithms include CN2 [17], REP [11], IREP [27], RIPPER [16], PART [25]. Among

them, CN2 and REP also require a computation with high complexity, and therefore can-

not be applicable to large data bases. IREP and RIPPER solve the problem of complexity

by using a scheme called incremental pruning. The result is that they can run very fast

and generate small rule sets with acceptable predictive accuracy. However, incremental

pruning may lead to the problem of overpruning (or hasty generalization) that reduces the

accuracy of the algorithms in many cases. PART [25] is an attempt to combine divide-

and-conquer and separate-and-conquer strategies, and was claimed to be e�ective and

eÆcient.

Our research concerns with scalable algorithms for rule-post pruning from large de-

cision trees. In particular it proposes a solution to the problem of high complexity in

C4.5rules by using a scheme similar to incremental pruning. The essence of the proposed

algorithm is to avoid the problem of overpruning by appropriate improvements in incre-

mental pruning. Experiments show that the proposed algorithm produces rule sets that

as accurate as those generated by C4.5 and is scalable for very large data sets.

1.1.3 Visualizing Large Decision Trees

Though decision trees are a simple notion, we can understand their content and hierar-

chical structure easily if they are small but cannot understand or understand diÆcultly

if they are large. Research on visualization of decision trees has recently received a great

attention from the KDD (knowledge discovery and data mining) community because of its

practical importance. Many works have been done, e.g., the 3D Tree Visualizer in system

MineSet [12], CAT scan (classi�cation aggregation tablet) for inducing bagged decision

trees [87], the interactive visualization in decision tree construction [4], the tree visualizer

with a tree map in system CART [9] of Salford Systems, etc. However, it is still diÆcult

to view and navigate large trees with these systems. On the other hand, new approaches

in information visualization �eld for representing large hierarchical structures, e.g., cone

trees [91], hyperbolic trees [53], have not been well considered in AI, machine learning

6

and data mining.

By applying methodology of information visualization we have proposed a new al-

gorithm (T2.5D) for decision tree visualization. T2.5D overcomes many diÆculties of

current methods in viewing and navigating large devision trees.

1.2 Main Results

In the �rst research issue, to develop the a new criterion for attribute selection, we have

proposed a variant of attribute dependency measure of the probabilistic model of rough

sets [73] in order (1) to overcome the limitations of the original model in case of noisy

data, (2) to make the model more coherent, and (3) to preserve the convenience of non-

parameter. Based on this model, R-measure is developed to measure how much the class

attribute depends on a predictive attribute. Using R-measure as an attribute selection

criterion, an experimental comparative evaluation on 32 datasets shows that it can be

considered as a good alternative criterion for attribute selection. Especially, the experi-

ment showed that R-measure dealt with noisy data more e�ectively in comparing to the

others.

In the second research issue, we have proposed a new algorithm for rule post-pruning of

decision trees. It can be considered an alternative algorithm for C4.5rules when the input

data become very large. The problem of high complexity in C4.5 is solved by adopting

an incremental pruning scheme. However the algorithm does not su�er the problem of

hasty generalization such as in the original incremental pruning approach. Experiments

have shown that the new algorithm generates rule sets as accuracy as those of C4.5 but

with far less time of computation.

In the third research issue, we have developed a new technique for visualizing large

decision trees (T2.5D). The technique has several advantages comparing to other tech-

niques: (1) it easily handles decision trees with more than 20000 nodes, and more than

1000 nodes can be displayed together on the screen, (2) it gives the user a clear view of

an active path and an image of the overall structure of the tree at the same time, (3) it

facilitates the tree navigation as only a minimum number of operations (e.g., click, scroll,

7

etc.) is needed.

Based on the results of those researches we have developed a prototype of a decision

tree learning system as a �rst step toward our ultimate purpose|an integrated decision

tree learning system for data mining. The R-measure is used for attribute selection,

CABROrule is used for generating rules, and decision trees are visualized with T2.5D.

The program has been tested successfully with several large and complex datasets.

1.3 Thesis Structure

This thesis proposes several methods and techniques related to learning large decision

trees. It is organized as following:

� Chapter 2 introduces several basic concepts that will be used in the whole thesis.

� Chapter 3 presents our research on the problem of attribute selection for decision

tree learning. It includes the introduction to the problem and rough set theory,

our solution to the problem using rough sets, the experimental results, and some

remarks about the research.

� Chapter 4 presents our research on rule post-pruning. It describes several related

works in the �eld together with their advantages and drawbacks. We will introduce

our new algorithm and explain how it can overcome the problems of current methods.

The experimental results on predictive accuracy and running time will be shown

together with some analysis.

� Chapter 5 presents our new technique for visualizing large decision trees. Several

current methods will be presented and we will explain why they are not suitable for

large decision trees. We will propose a new technique that may have advantages in

comparing with current methods in many cases.

� Chapter 6 gives an overview about the data mining system CABRO. We will explain

why model selction is important in data mining and our solution for it.

8

Chapter 2

Preliminaries

2.1 Basic Concepts

Inductive learning algorithms take some data collected from a domain as input and pro-

duce a model of the domain's structure as output. In other words, they induce a model

of the domain from a given set of observations. The individual observations are called

instances, and a set of observations is called a dataset. Each instance contains a set of

values that measure certain properties of the instance. These properties are called at-

tributes. Each instance is described by the same set of attributes. Most implementations

of learning algorithms assume that the attributes are either nominal or numeric. Nominal

attributes consist of a set of unordered values, for example, a set of colors. Numeric at-

tributes can be either integers or real numbers. There are several other possible attribute

types [102], but it is generally straightforward to adapt existing learning algorithms to

deal with them. The space of all possible combinations of attribute values is called the

instance space.

Decision trees and rule sets belong to a group of models called classi�ers. Classi�ers

divide the instance space into disjoint regions and assign one of a �xed set of unordered

values to each region. In other words, they assume that each instance in the instance space

is labeled with an additional nominal attribute value, called the class of the instance. Each

region of instance space is assigned to exactly one class, but more than one region can

be assigned to the same class. In other words, classi�ers de�ne a function that maps

the instance space onto a set of unordered values. They di�er from methods for numeric

9

prediction|for example, linear regression [101] because the target value is nominal rather

than numeric. Thus they can be used to model domains that pose prediction problems

that have a nominal target value. These problems are called classi�cation problems.

Learning algorithms for classi�cation problems have many practical applications. Con-

sider, for example, one of the �rst applications of classi�cation learning: the diagnosis of

soybean diseases [60]. In this application, the individual instances are soybean plants

that are described by a set of attributes. Most of the attributes correspond to symptoms

of various soybean diseases and their values indicate whether a particular symptom is

present or absent. The class values are the di�erent soybean diseases that can occur. A

classi�er for this problem de�nes a function that maps a particular combination of at-

tribute values to a corresponding disease. This means that the classi�er can be used to

automatically obtain a diagnosis for a particular soybean plant, given a set of observed

attribute values.

The task of a learning algorithm is to induce a classi�er automatically from a set of

training instances. These instances have been randomly collected from the domain and

have class labels assigned to them by some other process, for example, by a human expert

for soybean diseases. The learning algorithm constructs a classi�er by partitioning the

instance space according to the class labels of the training instances. Ideally the induced

classi�er will maximize the number of correctly assigned class values for all possible in-

stances|even instances that have not occurred in the training data. In that case the

learning algorithm has correctly identi�ed the structure of the domain. If an instance is

assigned to the wrong class, we say that it is misclassi�ed. The predictive performance

of a classi�er is measured by its error rate: the expected percentage of misclassi�cations

on independent instances randomly sampled from the domain. Given that the structure

of the domain is unknown, an in�nite number of instances is required to obtain the true

value of the error rate. In practice, in�nite amounts of labeled data are not available, and

the error rate must be estimated using an independent set of labeled instances that are

unavailable to the learning algorithm when it generates the classi�er. This set of instances

is called the test data. Unlike the error rate on the training data, the observed error on

the test data is an unbiased estimate of the classi�er's error rate on future instances.

10

In many practical classi�cation problems no learning algorithm can achieve an error

rate of zero, even given an in�nite amount of training data. This is because most domains

contain a certain amount of noise. If noise is present, there is a non-zero probability that

di�erent class labels will be observed if the same instance is sampled multiple times from

the domain. There are several possible reasons for the occurrence of noise, for example,

errors in measuring the attribute and class values of an instance. There can also be a

degree of uncertainty inherent in the domain|for example, uncertainty due to the fact

that not all relevant properties of an instance are known.

Apart from a�ecting the minimum error rate that can be achieved a consequence that

cannot be avoided by improving the learning algorithm, noise also has a detrimental e�ect

because it potentially misleads the learning algorithm when the classi�er is induced. This

phenomenon can further decrease the classi�er's performance. The learning algorithm can

be misled by noise because training instances may have an incorrect class label assigned

to them a class label di�erent from the the one that is most likely to be assigned to

the same instance in the test data. This is a problem because the learning algorithm

constructs a classi�er according to the class labels from the training data. Consequently

it is important to detect instances that are labeled incorrectly and prevent them from

a�ecting the structure of the classi�er. If the classi�er �ts the training instances too

closely, it may �t noisy instances, and that reduces its usefulness. This phenomenon is

called over�tting, and various heuristics have been developed to deal with it. In decision

trees and lists, a common strategy is to eliminate those parts of a classi�er that are likely

to over�t the training data. This process is called pruning, and can increase both the

accuracy and the comprehensibility of the resulting classi�er. The success of a pruning

mechanism depends on its ability to distinguish noisy instances from predictive patterns

in the training data.

2.2 Decision Tree and Rule Learning

1.2 Decision Trees and Lists Decision trees [79] and rule sets [90] are two closely re-

lated types of classi�er. In contrast to most other classi�cation paradigms, for example,

instance-based learning [1], neural networks [92], Bayesian networks [42], and logistic re-

11

gression [6], they embody an explicit representation of all the knowledge that has been

induced from the training data. Given a standard decision tree or a rule set, a user

can determine manually how a particular prediction is derived, and which attributes are

relevant in the derivation without performing any numeric operations (other than com-

parison). This makes it very easy to explain how these classi�ers are to be interpreted,

and how they generate a prediction. To derive a prediction, a test instance is �ltered

down the tree, starting from the root node, until it reaches a leaf. At each node one of the

instance's attributes is tested, and the instance is propagated to the branch that corre-

sponds to the outcome of the test. The prediction is the class label that is attached to the

leaf. Multivariate decision trees can test for higher-order relationships that involve more

than one attribute, for example, linear combinations of attribute values [10]. This makes

them potentially more powerful predictors. However, they are also harder to interpret

and computationally more expensive to generate.

S1. Select the \best" attribute at the node being considered by a selection measure.

S2. Extend the tree by adding a new branch for each value of the selected attribute.

S3. Sort instances of the node to new leaf nodes.

S4. If instances unambiguously classi�ed then Stop else repeat steps 1-4 for leaf nodes.

S5. Prune the induced tree to obtain a more reliable tree.

Figure 2.1: General scheme of decision tree induction

Standard learning algorithms for decision trees, for example, C4.5 [83] and CART [9],

generate a tree structure by splitting the training data into smaller and smaller subsets

in a recursive top-down fashion. Starting with all the training data at the root node, at

each node they choose a split and divide the training data into subsets accordingly. They

proceed recursively by partitioning each of the subsets further. Splitting continues until

all subsets are pure, or until their purity cannot be increased any further. A subset is

pure if it contains instances of only one class. The aim is to achieve this using as few

splits as possible so that the resulting decision tree is small and the number of instances

supporting each subset is large. To this end, various split selection criteria have been

designed, for example the information gain [79], the Gini index [9], and the gain ratio

[83]. They all provide ways of measuring the purity of a split. Some also consider the

12

resulting support in each subset. At each node, the learning algorithm selects the split

that corresponds to the best value for the splitting criterion.

Straightforward purity-based tree induction cannot deal successfully with noisy data

because the strategy of creating pure subsets will isolate incorrectly labeled instances

and use them for prediction. Consequently most decision tree inducers incorporate a

pruning facility to deal with noisy data by eliminating unreliable branches or subtrees.

Two di�erent regimes for pruning are used: post-pruning and pre-pruning. Post-pruning

is invoked after the full tree has been created, and deletes those parts of the classi�er

that do not improve its predictive performance. Algorithms for performing post-pruning

will be discussed in more detail in Chapter 3. Pre-pruning, on the other hand, attempts

to avoid the problem of noise by terminating the splitting process if further splits are

likely to over�t the training data. This class of pruning methods will be investigated in

Chapter 4.

Rule sets are similar to decision trees in that a sequence of decisions is required to

derive a prediction. The di�erence is that all decisions have a binary outcome, true or

false, and further tests on an instance are only required if the outcome of all previous

decisions was negative. Individual decisions are made according to a rule that consists of

combinations of attribute-value tests and a class label. A rule set is a list of rules that are

evaluated in sequence. A rule �res if a test instance passes each attribute-value test that

the rule contains. In that case the classi�cation process stops and the rule's class label is

assigned to the test instance. Otherwise, the next rule in the list is evaluated.

The last rule in the list is called the default rule and �res for every instance that reaches

it. The default rule is required so that no instances are left unclassi�ed. Compared to a

decision tree, this rule-based classi�er has the advantage that it can impose an ordering

on the knowledge that is acquired: rules that are frequently used and reliable can be

presented at the start of the list, and that are less important and not very accurate

deferred until the end. In some domains rule sets can represent the underlying structure

of the domain much more succinctly than decision trees. The reason for this phenomenon

is discussed in Chapter 4.

The way in which rule sets are generally created is quite similar to the standard

13

learning procedure for decision trees. The top-down induction of decision trees proceeds

according to a divide-and-conquer strategy where the training data is partitioned into

subsets and the algorithm is applied recursively to each subset. Similarly, inducers for

rule sets employ a separate-and-conquer procedure where one rule is built for a subset

of the instances and further rules are generated recursively for the remaining data. Rule

generation is guided by a criterion similar to the split selection measure for decision trees.

Tests are added to a rule by optimizing this criterion. The aim is to �nd rules that cover

large, pure subsets of instances in order to maximize the empirical support for each rule.

Like the basic divide-and-conquer algorithm, the standard separate-and-conquer pro-

cedure cannot deal successfully with noisy data because it aims at identifying pure subsets

of instances. To make rule learning useful in real-world domains, some kind of pruning

mechanism is essential. There are two main pruning strategies for separate-and-conquer

rule learners. The �rst builds a full unpruned rule set and then simpli�es the classi�er

by eliminating tests from rules or by deleting individual rules. This is done by globally

optimizing the rule set according to a pruning criterion. Global pruning of rule sets is

related to post-pruning methods for decision trees because a full, unpruned classi�er is

generated before pruning begins. However, there are some important di�erences and they

will be discussed in Chapter 5.

The second strategy adopts a simpler approach where each rule is simpli�ed imme-

diately after it has been generated. This simpli�cation strategy is called incremental

pruning, and it turns out that it has several conceptual advantages over the global opti-

mization approach. Considering the rule set as a whole, incremental pruning is similar

to pre-pruning in decision trees because rules are pruned before the structure of the full,

unpruned rule set is known. However, at the rule level, incremental pruning more closely

resembles post-pruning because rules are pruned after they have been fully expanded.

The di�erences between global and incremental pruning will be discussed in more detail

in Chapter 5.

14

2.3 Experimental Methodology

All methods investigated in this thesis are evaluated empirically on benchmark problems

from the UCI repository of machine learning datasets [67]. They contain a wide range

of practical problems. About half of the datasets have binary class labels and the other

half represent multi-class domains. Most problems contain a mix of nominal and numeric

attributes, some are purely numeric, and a few are purely nominal. A signi�cant fraction

also contain missing values.

As mentioned above, accuracy on the training data is not a good indicator of a classi-

�er's future performance. Instead, an independent sample of test instances must be used

to obtain an unbiased estimate. One way of evaluating a learning algorithm is to split

the original dataset randomly into two portions and use one portion for training and the

other for testing. However, the resulting estimate depends on the exact split that is used

and can vary signi�cantly for di�erent splits, especially if the original dataset is small.

A more reliable procedure is to repeat the process several times with di�erent random

number seeds and average the results. Cross-validation is a slightly more sophisticated

version of this basic method for performance evaluation. In a k-fold cross-validation, the

training data is split into k approximately equal parts. The �rst of these k subsets is used

for testing and the remainder for training. Then the second subset is used for testing

and all other k - 1 subsets are used for training. This is repeated for all k subsets and

the results are averaged to obtain the �nal estimate. Compared to the naive procedure,

cross-validation has the advantage that each instance is used for testing exactly once.

Usually the parameter k is set to ten. It has been found empirically that this choice

produces the most reliable estimates of the classi�er's true performance on average [48],

and there is also a theoretical result that supports this �nding [45]. The variance of the

estimate can be further reduced by taking the average of a repeated number of cross-

validation runs, each time randomizing the original dataset with a di�erent random num-

ber seed before it is split into k parts [47]. Ideally the cross-validation is performed for

all possible permutations of the original dataset. However, this kind of complete cross-

validation is computationally infeasible for all but very small datasets [47], and must be

approximated by a limited number of cross-validation runs. All performance estimates

15

presented in this thesis are derived by repeating ten-fold cross-validation ten times and

averaging the results.

When comparing two learning algorithms, the di�erence in performance is important.

The same ten cross-validation runs, using the same ten randomizations of the dataset,

can be used to obtain estimates for both schemes being compared. However, to make

maximum use of the data we would like to use estimates from a complete cross-validation

for the comparison. Fortunately the ten given estimates for the two schemes can be used

to get some information on the outcome that would be obtained if they were compared

using complete cross-validation, because the mean of a limited number of cross-validation

estimates is approximately normally distributed around the true mean the result of a

complete cross-validation. Consequently a two-tailed paired t-test [101] on the outcome

of the ten cross-validation runs can be used to test whether the result of a complete cross-

validation would be likely to show a di�erence between the two schemes. In this thesis a

di�erence in performance is called signi�cant according to a t-test at the 5% signi�cance

level applied in this fashion.

16

Chapter 3

A Measure for Attribute Selection

Based on Rough Sets

3.1 Introduction

There are three problems of decision tree learning which have been intensively investigated

in the machine learning: (1) attribute selection, i.e. choosing the \best" attribute to split

a decision node in terms of a measure for \goodness of split", (2) pruning, i.e. cutting o�

unstable leaves to avoid over�tting and obtain statistical reliability, and (3) discretization,

i.e. transforming continuous attributes into discrete ones to deal with mixed data. The

performance of a DTL system principally depends on methods to solve these problems.

As attribute selection is of key importance to the decision tree generation, it has attracted

many DTL work until recently, e.g. [50, 43]. Most measures for selecting attributes are

either information theory-based such as information gain [79], gain-ratio [83], normalized

information gain [58], or statistics-based such as gini-index [9], �2 [56], etc. In this work

we introduce alternatively a rough set-based measure for attribute selection called R-

measure. The theory of rough sets introduced by Pawlak in early 1980s is a mathematical

tool to deal with imprecise and incomplete information [74, 68]. The limitation of the

deterministic model of rough set theory when dealing with uncertain information has

been recognized and there have been several attempts to overcome this restriction such

as probabilistic model [73] and the variable precision model [103]. However, the former

cannot inherit all useful properties of the original rough set model, and the latter raises a

new problem of specifying an appropriate threshold. R-measure, inspired by the attribute

17

dependency measure in rough set theory, aims at dealing with uncertain information while

preserving properties of the rough set model without requiring thresholds, and it can be

used as a solution for attribute selection in DTL.

3.2 Attribute Selection Measures

In order to facilitate a common understanding of di�erent attribute selection measures,

we use the statistic notations presented in [56, 50]. Suppose that we are dealing with a

problem of learning a classi�er with k classes Ci (i = 1; k) from a set of training instances

described by a set of attributes. We assume that all attributes are discrete each of which

is with a �nite number of possible values. Let n:: denotes the total number of training

instances, ni: the number of instances from class Ci, n:j the number of instances with the

j-th value of the given attribute A, and nij the number of instances from class Ci and

with the j-th value of A. Let further

pij =
nij
n::
; pi: =

ni:
n::
; p:j =

n:j
n::
; pijj =

nij
n:j

(3.1)

denote the approximation of the probabilities from the training set. Let

HC = �
X

i

pi:logpi:; HA = �
X

j

p:jlogp:j; (3.2)

HCA = �
X

i

X

j

pijlogpij; HCjA = HCA �HA (3.3)

be the entropy of the classes, of the values of the given attribute, of the joint example

class{attribute value, and of the class given the value of the attribute, respectively (all

logarithms introduced here are of the base two).

The well-known decision tree algorithm C4.5 use the gain-ratio [83]

GainR =
HC +HA �HCA

HA

(3.4)

Gini-index used in decision tree learning algorithm CART [9] can be rewritten as

Gini =
X

j

p:j
X

i

p2ijj �
X

i

p2i: (3.5)

18

Another statistics-based measure of interest is �2 and it has been tested with high

performance [63]

�2 =
X

i

X

j

(eij � nij)2

eij
; eij =

n:jni:
n::

(3.6)

3.3 Rough Set Theory and Extended Models

Rough set theory, introduced by Zdzislaw Pawlak in the early 1980s, is a mathematical

tool to deal with vagueness and uncertainty.

3.3.1 Basic Concepts of Rough Sets

The theory of rough sets was recognized as a fruitful theory for discovering relationship

in data. Though closely related to statistics, its approach is entirely di�erent: rough sets

are based on equivalence relations describing partitions made of classes of indiscernible

objects instead of employing probability to express data vagueness. In the rough set

theory a subset of a universe is approximated by a pair of ordinary sets called lower and

upper approximations. The starting point of the rough set theory is the assumption that

our \view" on elements of the object set O depends on indiscernibility relations among

them, that mean equivalence relations E � O�O. Two objects o1; o2 2 O are called to be

indiscernible regarding E if o1Eo2. The lower and upper approximations of any X � O,

regarding an equivalence relation E, are de�ned as

E�(X) = fo 2 O : [o]E � Xg (3.7)

E�(X) = fo 2 O : [o]E \X 6= ;g (3.8)

where [o]E denotes the equivalence class of objects which are indiscernible with o with

respect to the equivalence relation E. Thus, these approximations consist of all objects

which surely and possibly belong to X regarding E, respectively. A subset P of the set of

attributes used to describe objects of O determines an equivalence relation that divides

O into equivalence classes each contains objects with the same values on all attributes of

P .

19

indistinguishableequivalence relationdata set O

[o]

equivalence class

o

o
o

o

o
o

E
1

2

3

1

3
2

distinguishable

Figure 3.1: Indiscernibility relation

o5 o8

o7 o6

o2 o3

o4

o1

Upper
Approximation

Lower
Approximation

Set X

Figure 3.2: Basis concepts of rough sets

3.3.2 Measure of Attribute Dependency

A key concept in the rough set theory is the degree of dependency of a set of attributes Q

on a set of attributes P , denoted by �P (Q) (0 � �P (Q) � 1), de�ned as

�P (Q) =
card(

S
[o]Q P�([o]Q))

card(O)
=
card(fo 2 O : [o]P � [o]Qg)

card(O)
(3.9)

If �P (Q) = 1 then Q totally depends on P ; if 0 < �P (Q) < 1 then Q partially depends on

P ; if �P (Q) = 0 then Q is independent of P . The measure of dependency is fundamental

in the rough set theory as based on it many other basic notions are de�ned, such as

reducts and minimal sets of attributes, signi�cance of attributes, etc.

We give an illustration and analyze of the formula (3.9) through a Pawlak's small infor-

mation table (Table 3.1) consisting of eight objects described by two descriptive attributes

Temperature, Headache, and the class attribute Flu. From the formula (3.9) we can cal-

20

culate �fTemperature;Headacheg(F lu) = 1, �Temperature(F lu) = 5=8 and �Headache(F lu) = 0.

That means, according to this measure, F lu totally depends on fTemperature;Headacheg,

partially depends on Temperature and is independent of Headache.

Table 3.1: Information table

Temperature (T) Headache (H) Flu (F)
e1 normal yes no
e2 high yes yes
e3 very high yes yes
e4 normal no no
e5 high no no
e6 very high no yes
e7 high no no
e8 very high yes yes

An interpretation of (3.9) can be obtained by expressing the causal relation between

attributes in the form of usual rules. For example, consider how the attribute Flu depends

on the attribute Temperature. It can be easily veri�ed that

If Temperature = normal then Flu = no

If Temperature = very high then Flu = yes

P Q positive area

µ
[e]

h
P [e]Q

Figure 3.3: The measure of attribute dependency

The number of objects that satisfy these rules is 5 out of 8. In the other words, the

proportion of objects whose values on Flu are correctly predicted by values of Temperature

is 5/8. This argument is analogous with the de�nition of the degree of dependency, where

each rule corresponds to an equivalent class with respect to P which is included in an

equivalent class w.r.t Q.

21

3.4 R-measure for Attribute Selection Problem

In this chapter we propose a new measure for attribute dependency which overcomes

some drawbacks of the one used in rough sets. An application of the new measure to the

attribute selection problem in DTL is also introduced.

3.4.1 A New Measure for Attribute Dependency

The attribute dependency measure (3.9) in the deterministic model of rough sets deliber-

ately ignores the available probabilistic information in it formalism, and deals poorly with

noisy data. Among approaches to overcome this restriction, the variable precision model

[103] extends rough sets by employing relations named majority inclusion relations. A

majority inclusion relation considers that a set A is included in a set B if the intersection

is a majority of set A w.r.t a threshold. Based on such a relation the model rede�nes all

the notions of rough sets. Although those rede�nitions aimed at better handing uncertain

and noisy data, they also raised a new problem of specifying appropriate thresholds in a

particular application.

Di�erently from the variable precision model, in [73] the authors approached to this

problem by the probabilistic model without requiring any threshold. However this ap-

proach is somehow mixed. On the one hand, the de�nitions of the basic notions (i.e.

upper, lower approximations and boundary) are totally consistent with Bayes' decision

procedure. As a matter of fact, they are special cases of the ones of the variable precision

model when 0.5 is taken as the threshold. On the other hand, the de�nitions of the derived

notions (e.g. attribute dependency, reduct, core) are based exclusively on the information

theory. This mixed phenomenon makes the model incoherent and do not directly inherit

all useful properties of the original model.

We propose alternative de�nitions of the derived notions for the probabilistic model

that are consistent with Bayes' decision procedure. In short, our proposal aims at (1) over-

coming the limitations of the original model for noisy data, (2) making the probabilistic

model be more coherent, and (3) preserving the convenience of requiring no threshold.

We describe here only our modi�cations to the de�nition of the attribute dependency

22

measure. Other derived notions of rough sets (attribute signi�cance, reduct, core, super-

uous) are de�nitely based on this key notion, and can be de�ned accordingly. Returning

to Table 3.1, we can obtain the following probabilistic rules about the relation between

Flu and Headache

If Headache = yes then Flu = yes (3/4)

If Headache = no then Flu = no (3/4)

P Q positive area

µ

µ

dependent

independent

noise

h

if h belongs to [e] then it belongs to [e]

if h belongs to [e] then it probably belongs to [e]

[e]
P [e]

Q

h
[e]

P [e]
Q

P Q

P Q

positive area = ο

Figure 3.4: The drawback of the measure of attribute dependency

These rules show that Flu somehow depends on Headache, but the formula (3.9),

by its value 0 in this case, says that Flu is independent of Headache. Consider further

probabilistic rules. Suppose that the value on Headache of a new object is known, and

an agent wants to predict the value on Flu of this object. For example, if Headache =

yes, then there are two possibilities: Flu = yes (3/4), or Flu = no (1/4). To minimize the

probability of error, Flu = yes is certainly chosen as it is the value with the maximum

likelihood of occurrence among all possibilities. Due to the risk of Flu = no, this prediction

is uncertain and has an estimated accuracy of 3/4. Similarly, the value Flu = no will be

predicted if Headache = no with the estimated accuracy is also 3/4. Denote by X the

event that the prediction of the agent is true, we have

23

P(X) = P(H = yes) � P(X j H = yes) + P(H = no) � P(X j H = no)
= 1/2 � 3/4 + 1/2 � 3/4 = 3/4

This value can be interpreted as the degree of dependency of Flu on Headache estab-

lished by the above argument. This argument can be generalized and formulated for a

measure of degree of dependency of an attribute set Q on an attribute set P

�0P (Q) =
1

card(O)

X

[o]P

max[o]Qcard([o]Q
\
[o]P) (3.10)

The degree of dependency Flu on Temperature calculated by (3.9) is 3/4. The main

di�erence between �P (Q) and �
0

P (Q) is that the latter measures the dependency of Q on

P in maximizing the predicted membership of an instance in the family of equivalence

classes generated by Q given its membership in the family of equivalence classes generated

by P .

P Q positive area

µ

[e]P [e]Q

[e]Q [e]Q

[e]Q

’1 2

3 44

U[e]P4 [e]Q3

U[e]P4 [e]Q1

U[e]P4 [e]Q2

U[e]P4 [e]Q4

Figure 3.5: R-measure for attribute dependency

Proposition For every set P and Q we have

max[o]Qcard([o]Q)

card(O)
� �

0

P (Q) � 1 (3.11)

Proof. Denote by M and N the numbers of equivalence classes regarding Q and P . Let

n:: denotes the total number of instances in O, ni: the number of instances from the i-th

equivalence class regarding Q, n:j the number of instances with the equivalence class j-th

equivalence class regarding P , and nij the number of instances in the intersection of these

two classes, i = 1; :::;M ; j = 1; :::; N . We rewrite (3.11) in following form

maxini:
n::

�

P
1�j�N maxinij

n::
� 1 (3.12)

24

The right part of (3.12) is clear. We need to prove the left one, which is equivalent to

maxini: �
X

1�j�N

maxinij (3.13)

We prove it by induction on N. For N = 1 the inequality is clearly true. Assume that the

inequality is true for N, we prove that it also to be true for N + 1. We have

X

1�j�N+1

maxinij =
X

1�j�N�1

maxinij +maxiniN +maxiniN+1

Now we consider an equivalence relation P 0 corresponding to N equivalence classes which

are the same as those of P but only its N -th equivalence class is the union of N -th and

N + 1-th classes of P . For the sake of distinction, number this equivalence class N 0-th.

Suppose that maxiniN 0 = ni?N 0 , we can see that

ni?N 0 = ni?N + ni?N+1 � maxiniN +maxiniN+1

From the induction assumption we obtain

maxini: �
X

1�j�N�1

maxinij +maxiniN 0

=
X

1�j�N�1

maxinij + ni?N 0

=
X

1�j�N�1

maxinij + nijni?N + ni?N+1

�
X

1�j�N�1

maxinij +maxiniN +maxiniN+1

=
X

1�j�N+1

maxinij
2

From the theorem we have the following standardized version of �
0

�?P (Q) =

P
[o]P max[o]Qcard([o]Q

T
[o]P)�max[o]Qcard([o]Q)

card(O)�max[o]Q
(3.14)

and the inequality becomes

0 � �?P (Q) � 1 (3.15)

We can de�ne that Q totally depends on P i� �?P (Q) = 1; Q partially depends on P

i� 0 < �?P (Q) < 1; Q is independent of P i� �
0

P (Q) = 0.

25

R-classes P-classes degree of dependency

µ’

µ

R-measure

Rough sets
Attribute
Dependency

Union of R-classes those are contained in a P-class

Union of bigest intersections of R-classes with a P-class

Figure 3.6: Comparison between the measure used in rough sets and R-measure

3.4.2 Application to Attribute Selection Problem

In (3.10), if we consider P a descriptive attribute and Q the class attribute, we can rewrite

�
0

P (Q) in the form

�
0

=
X

j

p:jmaxipijj (3.16)

As this formula describes how much the class attribute depends on a descriptive attribute,

we can naturally consider it as an candidate for a new attribute selection measure. How-

ever, despite the fact that it shows good results in some datasets, the results become

unstable when both the vertical and horizontal sizes of data increase. The fact is that the

measure is too greedy in �nding \best" attributes for the front step while tree growing is

a multistep procedure. An analysis based on the notion of impurity function gives us a

clearer view of this phenomenon, and provides a basis to go from �
0

to ~� (R-measure) for

DTL.

Let O be a set of instances with each object o 2 O belonging to one of the classes

C1; C2; :::; CI . Vector PC =< p1; p2; :::; pI > is the class probability vector of O, where

each component pi is the proportion of i-class objects.

De�nition Let O be a set of objects having a class probability of PC =< p1; p2; :::; pI >.

An impurity function is a function � de�ned on PC with the properties

26

µ

µ’

µ’

dependent

independent

partially
dependent

P Q positive area

noise

(R-measure)

(R-measure)

(rough sets)

µ (rough sets)

Figure 3.7: R-measure is more stable with noisy data

(i) � is a maximum only at the point (1/I , 1/I , ..., 1/I),

(ii) � attains its minimum only at the points (1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, 0, ...,

0, 1),

(iii) � is a symmetric function of p1; :::; pI .

Given an impurity function � we can de�ne an attribute selection measure as

 =
X

j

p:j(1� �(p1jj; :::; pIjj)) (3.17)

where I is the number of classes. In the case of �
0

the corresponding impurity function

can be de�ned as

�(p1; :::; pJ) = 1�maxjpj (3.18)

As show in [9], decision tree learning needs another requirement for impurity function,

otherwise the corresponding attribute selection measure will have the defects of degeneracy

and not good for the overall multistep tree growing procedure

(iv) @2�

@p2
j

< 0.

Furthermore, we prefer that @2�

@p2
j

not only is negative but also is a constant. It makes

� not only downwards with respect to any of the components of PC but also downwards

in a constant degree. The most obvious modi�cation of our impurity function is

�(p1; :::; pJ) = 1� (maxjpj)
2 (3.19)

27

and the corresponding attribute selection measure will be

~� =
X

j

p:j(maxipijj)
2 (3.20)

We call ~� in (3.20) R-measure and for arbitrary attribute sets P and Q it becomes

~�P (Q) =
1

card(O)

X

[o]P

max[o]Q
card([o]Q

T
[o]P)

2

card([o]P)
(3.21)

In the next chapter we carry an experimental comparative evaluation among ~� and three

other attribute selection measures.

3.5 Experimental Results

To evaluate R-measure in terms of attribute selection measures, we carried out an ex-

perimental comparative evaluation on 32 datasets for four models. These models are

formed by combining �xed methods of error-complexity pruning and entropy-based dis-

cretization with four attribute selection measures: gain-ratio (c), gini-index (g), �2 (�)

and R-measure (R).

In order to study the e�ect of noise attributes on each measure we used the same

datasets from the work of Lim et al. [55]. Besides 16 original datasets, most of them

are from UCI repository, there are 16 datasets created by adding noise attributes. The

numbers and types of noise attributes added are given in right panel of Table 3.1. This

table also contains the name, number of classes, and number of attributes of the original

datasets.

Table 3.2 presents experimental results of size and error rates (both unpruned and

pruned trees) of these four measures on each datasets.

Some observations and conclusions can be drawn from these results.

� On the original datasets, gain-ratio, R-measure, gini-index, and �2 attained the
lowest error rates 9, 7, 6, and 4, respectively. We notice that while on a majority
of datasets the error rates of di�erent measures are signi�cantly di�erent, on some
datasets all or almost the measures attained the same error rates. If we consider
the fact that �2 attained no unique lowest value and that it had comparatively high
values in general, we can say that this measure showed a poor performance in our

28

Table 3.1: Datasets used in experiment

Original attributes Noise attributes
Name Examples Class NumAtt NomAtt NumAtt NomAtt
Wisconsin breast cancer (bcw) 683 2 9 9
Contraceptive method choice (cmc) 1473 3 2 7 6
StatLog DNA (dna) 3186 3 60 20
StatLog heart disease (hea) 270 2 7 6 7
Boston housing (bos) 506 3 12 1 12
LED display (led) 6000 10 7 17
BUPA liver disorders (bld) 345 2 6 9
PIMA Indian diabetes (pid) 532 2 7 8
StatLog satellite image (sat) 6435 6 36 24
Image segmentation (seg) 2310 7 19 9
Attitude towards smoking (smo) 2855 3 3 5 7
Thyroid disease (thy) 7200 3 6 15 4 10
StaLog vehicle (veh) 846 4 18 12
Congressional voting (vot) 435 2 16 14
Waveform (wav) 3600 3 21 19
TA evaluation (tae) 151 3 1 4 5

evaluation. The gini-index is showed to be better as it attained the lowest error rates
6 times and the middle values on almost other datasets. Our evaluation con�rm
again the fact that there are signi�cant di�erences between the attribute selection
measures and also there is no absolute superior measure. In this evaluation the
gain-ratio and R-measure overall attained lowest error rates. The gini-index and �2

showed average and high error rates accordingly.

� On the noisy datasets, R-measure is the most accurate measure, as it attained the
lowest error rates on 10 datasets in comparing to 7, 5, and 2 datasets of gain-ration,
gini-index, and �2. This experiment showed that R-measure is better than the other
when dealing with noise.

� For the tree size, the gain-ratio is the only measure that showed a signi�cant advan-
tage due to the fact that the measure was designed with this bias in mind. However,
in practice the di�erences between tree sizes are not very important when the trees
are not very large. For the datasets (Spice, Waveform, Segmentation) on those we
had rather big trees, the gain-ratio did not show any signi�cant advantage. Only
one thing worth to note is that in these datasets �2 always has biggest trees. The
gain-ratio showed its advantage of smaller tree when trees are small or middle-size,
but it did not when trees become big. Additionally, on the datasets every measure
attained big trees �2 has noticeable bigger ones.

� R-measure showed a very promising result in the application to the problem of
attribute selection in DTL, especially when dealing with noise. This make us believe
that R-measure is an appropriate solution when we applying DTL to datamining
problems where noisy data are very common.

29

Table 3.2: Experimental comparative evaluation results

original data noisy data

unpruned pruned unpruned pruned

dataset measure size errors size errors size errors size errors

bwc c 21.3 5.5 12.5 4.6 21.3 5.5 12.5 4.6

g 23.3 5.7 12.1 5.1 41.3 5.7 30.1 5.1

� 21.3 5.7 10.1 5.1 21.3 5.7 10.1 5.1

R 22.9 5.7 9.9 5.1 30.1 5.7 9.9 5.1

cmc c 232.2 51.4 22.6 46.1 258.2 51.6 21.1 45.6

g 319.2 53.2 26.8 48.1 367.2 53.0 57.8 48.0

� 321.8 53.1 28.2 47.5 360.6 52.7 61.2 48.9

R 315.2 54.3 22.0 45.5 555.7 52.7 47.2 48.1

dna c 267.8 8.5 125.8 7.1 271.0 8.4 121.0 7.1

g 281.8 10.1 112.6 8.0 280.6 10.1 107.8 8.0

� 289.0 9.6 119.0 7.8 287.0 9.7 119.4 8.0

R 310.6 11.5 103.0 9.3 311.4 12.0 96.2 9.2

hea c 32.1 25.2 15.7 23.3 27.9 23.3 12.6 23.7

g 51.5 25.9 23.8 23.0 63.9 24.4 40.7 23.0

� 48.2 25.9 14.6 23.3 50.4 24.4 17.7 23.0

R 68.7 25.2 16.3 23.0 109.3 24.8 26.6 22.6

bos c 77.2 24.9 17.1 22.3 77.2 24.9 17.1 22.7

g 103.4 25.9 13.2 24.9 127.4 25.9 38.5 24.5

� 103.5 25.5 18.0 22.4 113.1 25.5 18.0 22.4

R 107.8 25.9 15.1 25.1 184.6 25.9 22.5 25.1

led c 97.8 27.0 78.4 26.9 950.8 38.2 83.0 26.8

g 115.2 27.0 82.4 27.0 1162.8 40.5 90.4 27.3

� 113.4 26.9 83.0 26.9 1183.8 40.6 83.0 26.9

R 129.4 26.9 105.4 26.8 1211.2 40.1 93.6 27.5

bld c 3.0 37.1 3.0 37.1 3.0 36.6 3.0 36.6

g 13.0 37.1 13.0 37.1 31.0 36.6 31.0 36.6

� 3.0 37.1 3.0 37.1 3.0 36.6 3.0 36.6

R 3.0 37.1 3.0 37.1 3.0 36.6 3.0 36.6

pid c 25.2 21.1 14.8 21.7 23.2 20.6 12.4 23.0

g 37.0 23.0 13.0 21.3 45.0 21.3 32.8 20.4

� 36.8 23.0 10.6 21.3 44.2 21.3 11.8 23.3

R 42.2 23.0 11.8 21.5 75.2 21.3 17.8 23.0

sat c 1732.1 21.1 338.5 19.4 1856.7 19.3 371.4 17.6

g 1626.9 19.0 484.7 17.3 1689.1 18.9 420.3 18.4

� 1757.5 19.9 602.0 18.9 1844.0 19.7 579.6 17.5

R 1672.3 19.6 357.9 17.1 1722.2 18.7 403.6 17.0

seg c 360.2 7.3 324.2 7.1 383.9 7.1 335.7 7.2

g 308.5 6.8 258.1 6.9 367.0 6.5 321.3 6.6

� 346.4 7.3 268.2 7.8 420.0 7.5 384.0 7.7

R 313.2 7.3 240.1 7.9 368.0 6.5 307.1 6.6

smo c 77.1 32.4 1.0 30.5 91.2 34.0 1.0 30.5

g 102.1 33.1 1.0 30.5 125.7 34.2 1.0 30.5

� 101.3 33.0 1.0 30.5 110.5 32.7 1.0 30.5

R 118.7 33.3 1.0 30.5 115.3 34.9 1.0 30.5

thy c 55.1 1.0 47.3 1.0 66.4 1.0 50.2 1.0

g 68.4 0.9 62.4 0.9 70.7 1.0 67.5 1.0

� 70.8 1.1 56.2 1.1 80.3 1.2 57.4 1.1

R 67.7 0.9 56.0 0.9 71.9 0.9 60.8 0.9

veh c 169.3 33.2 93.7 33.4 169.3 33.2 93.7 33.4

g 229.6 33.6 66.0 30.8 253.6 33.6 90.0 30.7

� 238.5 32.6 92.2 31.9 250.5 32.6 92.2 31.9

R 234.8 33.4 73.7 30.7 417.2 33.4 94.2 31.1

vot c 18.1 5.7 5.8 4.5 23.2 7.5 4.0 4.3

g 21.1 6.4 8.5 5.2 25.3 7.0 7.9 4.3

� 20.8 6.6 8.5 5.5 25.3 5.7 7.9 4.3

R 21.4 6.4 8.2 5.2 27.1 7.5 7.9 4.1

wav c 851.9 29.8 162.3 26.8 837.5 27.9 159.5 25.4

g 1254.2 27.6 193.2 28.1 1677.8 28.4 198.3 27.9

� 1137.1 30.2 201.4 29.6 1558.4 29.5 243.3 27.2

R 1884.6 26.2 184.7 25.9 2007.3 27.4 195.8 24.8

tae c 50.8 63.8 20.8 63.1 39.8 58.1 28.9 60.0

g 141.4 57.5 87.5 58.8 122.6 53.8 68.3 56.2

� 139.4 58.1 85.9 59.4 117.0 55.6 70.4 56.9

R 139.6 60.6 70.1 62.5 131.3 55.0 59.8 56.2

30

3.6 Summary

In this research issue, to develop the a new criterion for attribute selection, we have pro-

posed a variant of attribute dependency measure of the probabilistic model of rough sets

[73] in order (1) to overcome the limitations of the original model in case of noisy data, (2)

to make the model more coherent, and (3) to preserve the convenience of non-parameter.

Based on this model, R-measure is developed to measure how much the class attribute

depends on a predictive attribute. Using R-measure as an attribute selection criterion,

an experimental comparative evaluation on 32 datasets|half of them are noisy|showed

that it can be considered as a good alternative criterion for attribute selection, especially

for noisy data.

31

Chapter 4

A Scalable Algorithm for Rule

Post-Pruning of Large Decision Trees

4.1 Introduction

Data mining algorithms have usually to deal with very large databases. For the prediction

data mining task, in addition to the requirements of high accurate and understandability

of discovered knowledge, the mining algorithms must be scalable, i.e., given a �xed amount

of main memory, their runtime increases linearly with the number of records in the input

database.

Decision tree learning has become a popular and practical method in data mining

because of its signi�cant advantages: the generated decision trees usually have accept-

able predictive accuracy; the hierarchical structure of generated trees makes them quite

easy to understand if trees are not large; and especially the learning algorithms, which

employ the divide-and-conquer (or simultaneous covering) strategy to generate decision

trees, do not require complex processes of computation. However, it happens that in

certain domains the comprehensibility and predictive accuracy of decision trees decrease

considerably because of the problem known as subtree replication [72] (when the subtree

replication occurs, identical subtrees can be found at several di�erent places in the same

tree structure).

Figure 4.1 shows an example domain where subtree replications is inevitable. The

target concept, described by the simple rules in Figure 4.1a, leads to the rather complex

32

decision tree in Figure 4.1b because information must be replicated in the subtrees at-

tached to nodes three and �ve. The complexity of the decision tree cannot be reduced by

changing the order in which the attributes are used for splitting: every correct decision

tree for this problem has the same size.

Figure 4.1 illustrates that subtree replication occurs whenever an accurate description

of the target concept consists of a set of rules, the rules include tests on disjoint sets

of attributes, and they cannot be decoupled by di�erent tests on the same attribute.

Unfortunately there are many situations where this scenario is likely to hold in practice.

For example, consider a disease that can be diagnosed using either one of two groups of

symptoms, and the two groups are not mutually exclusive. In this application a decision

tree is not a perspicuous representation of the underlying concept. Fortunately there is

an alternative to decision trees that avoids the problem of subtree replication: the target

concept can be modeled as a set of rules, where each rule is a conjunction of attribute-value

tests together with a corresponding class assignment.

Figure 4.1: An example of subtree replication

33

The solution to the problem of subtree replication in the most well-known decision

tree learning system C4.5 [83] is to convert a generated decision tree into a set of rules

using a post-pruning strategy [62]. The conversion of trees into rules is not only an

e�ective way to avoid the subtree replication problem but also o�ers other signi�cant

advantages: while large trees generated from large datasets are diÆcult to understand,

discovered knowledge in form of rules is much easier to understand. Also, in our practical

experience domain experts often feel more comfortable to analyze and validate rules than

trees if trees become large. Moreover, it appears that the generated rule sets usually

have equal or higher predictive accuracy than the original decision tree. However, the

C4.5rules algorithm is not scalable to large databases as the simulated annealing, which

is employed to achieve an optimal generalization, requires O(n3) time complexity where

n is the number of records in the input database [15].

The separate-and-conquer (or simultaneous covering) strategy is an alternative ap-

proach to learn rules directly from databases. The most well-known separate-and-conquer

algorithms include CN2 [17], REP [11], IREP [27], RIPPER [16], PART [25]. Among

them, CN2 and REP also require a computation with high complexity, and therefore can-

not be applicable to large data bases. IREP and RIPPER solve the problem of complexity

by using a scheme called incremental pruning. The result is that they can run very fast

and generate small rule sets with acceptable predictive accuracy. However, incremental

pruning may lead to the problem of overpruning (or hasty generalization) that reduces the

accuracy of the algorithms in many cases. PART [25] is an attempt to combine divide-

and-conquer and separate-and-conquer strategies, and was claimed to be e�ective and

eÆcient.

Our research concerns with scalable algorithms for rule-post pruning from large de-

cision trees. In particular it proposes a solution to the problem of high complexity in

C4.5rules by using a scheme similar to incremental pruning. The essence of the proposed

algorithm is to avoid the problem of overpruning by appropriate improvements in incre-

mental pruning. Experiments show that the proposed algorithm produces rule sets that

as accurate as those generated by C4.5 and is scalable for very large data sets.

34

4.2 General Concepts of Pruning

4.2.1 Why Pruning is Required?

A learning algorithm can generate a too complex classi�er that \over�ts the data" by

inferrring more structure than is justi�ed by the training cases. We reintroduce an example

taken in the book C4.5 [83] to illustrate this e�ect. It is also applicable to other rule

learning algorithms.

The e�ect is seen in the extreme example of random data in which the class of each

case is quite unrelated to its attribute values. We constructed an arti�cial dataset of

this kind with ten attributes, each of which took the value 0 or 1 with equal probability.

The class was also binary, yes with probability 0.25 and no with probability 0.75. One

thousand randomly generated cases were split into a training set of 500 and a test set of

500. From this data, C4.5's initial tree-building routine produces a a nonsensical tree of

119 nodes that has an error rate of more than 35% on the test cases.

This small example illustrates the twin perils that can come from too gullible accep-

tance of the initial tree: It is often extremely complex, and can actually have a higher

error rate than a simpler tree. For the random data above, a tree consisting of just the

leaf no would have an expected error rate of 25% on unseen cases, yet the elaborate tree is

noticeably less accurate. While the complexity comes as no surprise, the increased error

attributable to over�tting is not intuitively obvious. To explain this, suppose we have a

two-class task in which a case's class is inherently indeterminate, with proportion p � 0:5

of the cases belonging to the majority class (here no). If a classi�er assigns all such cases

to this majority class, its expected error rate is clearly 1� p. If, on the other hand, the

classi�er assigns a case to the majority class with probability p and to the other class with

probability 1� p, its expected error rate is the sum of

� the probability that a case belonging to the majority class is assigned to the other

class, p(1� p), and

� the probability that a case belonging to the other class is assigned to the majority

class, (1� p)p

35

which comes to 2p(1� p). Since p is at least 0.5, this is generally greater than 1� p,

so the second classi�er will have a higher error rate. Now, the complex decision tree

bears a close resemblance to this second type of class�ers. The tests are unrelated to

class so, like a symbolic pachinko machine, the tree sends each case randomly to one of

the leaves. We would expect the leaves themselves to be distributed in proportion to the

class frequencies in the training set. Consequently, the tree's expected error rate for the

random data above is 2:25:75 or 37.5% quite close to the observed value.

The above example and analysis is not only applicable for arti�cial datasets. Noise

in real world data also lead to that e�ect. Noisy data are a problem for many learning

algorithms, because it is hard to distinguish between rare exceptions and erroneous ex-

amples. The algorithm forms a complete and consistent theory, i.e. it tries to cover all of

the positive and none of the negative examples. In the presence of noise it will therefore

attempt to add literals to rules in order to exclude positive examples that have a negative

classi�cation in the training st and add rules in order to cover negative examples that have

erroneously been classi�ed as positive. Thus complete and consistent theories generated

from nosy examples are typically very complicated and exhibit low predictive accuracy

on classifying unseen examples. This problem is known as over�tting the noise.

One remedy for the over�tting problem is to try to increase the predictive accuracy by

considering not only complete and consistent theories, but also approximate, but simpler

theories. A simple theory that covers most positive examples and excludes most negative

examples of the training set will often be more predictive than a complete and consistent,

but very complex theory. Such a bias towards simpler theories has been termed over�tting

avoidance bias [95].

Several algorithms, such as CLASS [99], rely on the noise handling capabilities of search

heuristics like the Laplace-estimate, which can prefer rules that cover only a few negative

examples over clauses that cover no negative examples if the former cover more positive

examples. Other algorithms such as PROGOL [66] can also reply on a severely constrained

hypothesis language which is unlikely to contain over�tting hypotheses. On the other

hand, a wide variety of algorithms employs techniques that are speci�cally designed for

over�tting avoidance. The remainder of this section is devoted to a discussion of two most

36

common approaches to pruning in rule learning algorithms. Work that directly relate to

our research will be described in the next section.

4.2.2 Pre-pruning

Pre-pruning methods deal with noise during concept generation. They are implemented

into a stop criterion of learning algorithms. Their basic idea is to stop the re�nement

of rules although they may still be over-general. Thus, rules are allowed to cover a few

negative examples if excluding the negative examples is esteemed to be too costly by the

stopping criterion.

The most commonly used stopping criteria are

� Minimum Purity Criterion: This simple criterion requires that a certain percentage

of the examples covered by the learned rules is positive. It is for example used in the

SFOIL algorithm [76] as a termination criterion for the stochastic search. In FOIL

[82] this criterion is used as a stop condition: When the best rule is below a certain

purity threshold (usually 80%) it is rejected and the learned theory is considered to

be complete.

� Encoding Length Restriction: This heuristic used in the ILP algorithm FOIL is

based on the Minimum Description Length Principle [89]. It tries to avoid learning

complicated rules that cover only a few examples by making sure that the number

of bits that are needed to encode a clause is less than the number of bits needed to

encode the instances covered by it.

� Signi�cance Testing was �rst used as rule stopping criterion in the propositional

CN2 induction algorithm [17] and later on in the relational learner mFOIL [18].

It tests for signi�cant di�erences between the distribution of positive and negative

examples covered by a rule and the overall distribution of positive and negative

examples. For this test it exploits the fact that the likelihood ratio statistic that

can be derived from the J-measure as LRS(r) = 2(P + N)J(r) is approximately

distributed �2 with 1 degree of freedom. Insigni�cant rules can thus be rejected. In

BEXA [97] this test is also used for comparing the distribution of instances covered

37

by a rule to that of its direct predecessor. If the di�erence is insigni�cant, the rule

is discarded.

� The Cuto� Stopping Criterion compares the heuristic evaluation of a literal to a user

set threshold and only admits literals that have an evaluation above this cuto�. It

has been used in the relational separate-and-conquer learning system FOSSIL [28].

Under the assumption that the search heuristic returns values between 0 and 1,

FOSSIL will �t all of the data at cutoff = 0 (no pre-pruning). On the other hand,

cutoff = 1 means that FOSSIL will learn an empty theory (maximum prepruning).

Values between 0 and 1 trade o� the two extremes. For the correlation heuristic, a

value of 0.3 has been shown to yield good results at di�erent training set sizes and

at di�ering levels of noise as well as across a variety of test domains.

4.2.3 Post-pruning

While pre-pruning techniques try to account for the noise in the data while construct-

ing the �nal theory, post-pruning methods attempt to improve the learned theory in a

post-processing phase. A commonly used post-processing technique aims at removing

redundant conditions from the body of a rule and removing unnecessary rules from the

concept. The latter technique has already been used in various version of the AQ algo-

rithm [61]. The basic idea is to test whether the removal of a single condition or even of

an entire rule would lead to a decrease in the quality of the concept description, usually

measured in terms of classi�cation accuracy on the training set. If this is not the case,

the condition or rule will be removed.

This framework has later been generalized in the POSEIDON system [7]. POSEIDON

can simplify a complete and consistent concept description, which has been induced by

AQ15 [61], by removing conditions and rules and by contracting and extending interval

and internal disjunctions. POSEIDON successively applies the operator that results in

the highest coverage gain as long as the resulting theory increases some quality criterion.

This method can be easily adopted for avoiding over�tting of noisy data. A frequently

used approach is to maximize the predictive accuracy measured on a separate set of data

38

that has not been available to the learner during theory construction. This method has

been suggested in [72] based on similar algorithms for pruning decision trees [80]. Before

learning a complete and consistent concept description the training set is split into two

subsets: a growing set (usually 2=3) and a pruning set (1=3). The concept description

that has been learned from the growing set is subsequently simpli�ed by greedily deleting

conditions and rules from the theory until any further deletion would result in a decrease

of predictive accuracy measured on the pruning set.

Simpli�cations that are usually tried are deleting an entire rule, or deleting the last

condition of a rule as in reduced error pruning (REP) [11]. Other algorithms employ

additional simpli�cation operators like deleting each condition of a rule [27], deleting a

�nal sequence of conditions [15], �nding the best replacement for a condition [100], and

extending and contracting internal disjunctions and intervals [7]. If the accuracy of the

best simpli�cation is not below the accuracy of the unpruned theory, REP will continue

to prune the new theory. This is repeated until the accuracy of the best pruned theory is

below that of its predecessor.

Prunk and Pazzani (1991) have empirically shown that REP can learn more accurate

theories than FOIL, which uses pre-pruning. However, post-pruning has also several

disadvantages, most notably eÆciency. Cohen (1993) has shown that REP has a time

complexity ofO(n4) on purely random data. Therefore he proposed GROW a new pruning

algorithm based on a technique used in the GROVE learning system [72]. Like REP,

GROW �rst �nds a theory that over�ts the data. But instead of pruning the intermediate

theory until any further deletion results in a decrease of accuracy on the pruning set,

generalizations of rules from this theory are successively selected to form the �nal concept

description until no more rules will improve predictive accuracy on the pruning set. Thus

GROW performs a top-down search instead of REP's bottom-up search. For noisy data

the asymptotic costs of this pruning algorithm have been shown to be below the costs of

the initial phase of over�tting.

39

4.3 Related Work

A variety of approaches to learning rules have been investigated. One is to begin by

generating a decision tree, then to transform it into a rule set, and �nally to simplify the

rules (the divide-and-conquer strategy as used in the system C4.5 [83]). Another is to use

the separate-and-conquer strategy [72] to generate and an initial rule set, then applying

a rule pruning algorithm.

4.3.1 Rule Post-Pruning in C4.5

The rule learner in C4.5 does not employ a separate-and-conquer method to generate a

set of rules|it achieves this by simplifying an unpruned decision tree using the decision

tree inducer included in the C4.5 software. Then it transforms each leaf of the decision

tree into a rule. This initial rule set will usually be very large because no pruning has

been done. Therefore C4.5 proceeds to prune it using various heuristics.

First, each rule is simpli�ed separately by greedily deleting conditions in order to

minimize the rule's estimated error rate. Following that, the rules for each class in turn

are considered and a \good" subset is sought, guided by a criterion based on the minimum

description length principle. The next step ranks the subsets for the di�erent classes with

respect to each other to avoid conicts, and determines a default class. Finally, rules are

greedily deleted from the whole rule set one by one, so long as this decreases the rule set's

error on the training data.

Unfortunately, the global optimization process is rather lengthy and time-consuming.

Cohen [15] shows that C4.5 can scale with the cube of the number of examples on noisy

datasets.

4.3.2 Other Related Rule Pruning Algorithms

The earliest approaches to pruning rule sets are based on global optimization. These

approaches build a full, unpruned rule set using a separate-and-conquer strategy. Then

they simplify these rules by deleting conditions from some of them, or by discarding entire

40

rules. The simpli�cation procedure is guided by a pruning criterion that the algorithm

seeks to optimize [11]. The optimized solution can only be found via exhaustive search.

In practice, some heuristic searches are applied, but they are still quite time consuming.

There is a faster approach to rule pruning called incremental pruning that is introduced

�rst in IREP [27], and also used in RIPPER and RIPPERk [16]. The key idea is to

prune a rule immmediately after it has been built, before any new rules are generated in

subsequent steps of the separate-and-conquer algorithm. By integrating pruning into each

step of the separate-and-conquer algorithm, this approach can avoid the high complexity

of a global optimization process.

4.3.3 The Problem of Overpruning

Table 4.1: Potential rules in a hypothetical dataset
Rule Coverage

Training Set Pruning Set
yes no yes no

1: A = true! yes 600 60 200 20
2: A = false ^B = true! yes 1200 60 400 20
3: A = false ^B = false! no 0 30 0 10

Although the incremental pruning used in IREP (and its variants) avoids the high

complexity process of global optimization of C4.5rules, it may su�er the problem of over-

pruning or hasty generalization [25]. By using pre-pruning approach, the algorithm does

not know about potential new rules when it consider a rule to prune; the pruning de-

cisions are based on the accuracy estimation of the current rule only. In other words,

the algorithm cannot estimate how the pruning decisions on a single rule will e�ect the

accuracy of the whole �nal rule set. Therefore, it may happen that the pruning decisions

increase the accuracy of the current rule but may in fact decrease the accuracy of the

potential �nal rule set on the same estimation.

Table 4.1 shows a simple example of overpruning. The example is taken from [25] with

a modi�cation to make it easier to calculate. Consider a binary dataset with two attributes

A and B; examples can belong to either class yes or no. There are three potential rules

41

on the dataset as shown on the table. Assume that the algorithm generates �rst rule

A = true! yes: (4.1)

Now consider whether the rule should be further pruned. Its error rate on the pruning

set is 1/10, and the pruned rule

! yes (4.2)

has an error rate of 1/13, which is smaller, thus the rule will be pruned to that null

rule. As the null rule covers all the data the algorithm stops and satis�es with a �nal rule

set consisting only of that trivial rule. But the found rule set actually has a greater error

rate compare comparing to 4/65 which is the error rate of the set three rules showed in

the table. Note that this happens because the algorithm concentrates on the accuracy of

rule 1 when pruning|it does not make any guesses about the bene�ts of including further

rules in the classier.

4.4 A Scalable Algorithm for Rule Post-Pruning

As an attempt to solve the high complexity problem of C4.5rules we have developed a

new algorithm that adopts a scheme similar to incremental pruning used in IREP, we

have named it CABROrule as it is integrated in our decision tree learning CABRO [70].

Similar to C4.5rules, CABROrule uses a bottom-up search instead of IREP's top-down

approach: The �nal rule set is found by repeatedly removing conditions and rules from

an input unpruned rules rather than adding new rules to an initial empty set. In other

words, CABROrule uses post-pruning approach in contrast to pre-pruning one used in

IREP. By taking the advantage of working with a full grown rule set throughout the

pruning process, we can improve the incremental pruning scheme in CABROrule to avoid

the problem of hasty generalization.

42

Table 4.2: The Main Procedure of CABROrule

procedure CABROrule(UnprunedSet;Data)

PrunedSet ;
while (Data 6= ;)
Rule SelectRule(UnprunedSet;Data)
UnprunedSet UnprunedSet n fRuleg
PrunedRule PruneRule(Rule; UnprunedSet;Data)
PrunedSet PrunedSet [fPrunedRuleg
Data Data nMatch(PrunedRule;Data)

return PrunedSet

4.4.1 Description of the Algorithm

Similar to C4.5rules, CABROrule begins with a set of unpruned rules. The rule set is

taken directly from an unpruned decision tree where each rule corresponds to a path from

the tree root and a leave node. To prune the rule set, CABROrule follows a separate-and-

conquer strategy: �rst choosing one rule to prune at a time, then removing the covered

examples and repeating the process on the remaining examples. Table 4.2 shows the main

procedure of CABROrule, the procedure to prune a single rule is in Table 4.3.

The eÆciency of CABROrule comes from the avoidance of the process of searching for

an \optimized" subset of rules such as the one in C4.5rule. We will analyze the reason

why C4.5rules requires a global optimization but CABROrule does not. In C4.5rules,

each individual rule is pruned with respect to the all training data. Deleting conditions

from a rule|and thereby increasing its coverage|ultimately may result in a rule set with

many overlaps. The optimized exclusive subset of rules can only be found via exhaustive

search. In practise, exhaustive search is infeasible and C4.5rules apply some heuristic

approximations (two alternatives in C4.5rules are greedy search and simulated annealing),

but even these approximate algorithms are quite time consuming. In contrast, each single

rule in CABROrule is pruned with respect to the remaining training data after removing

all examples covered by previous pruned rules. The exhaustion of training data serves as a

stop condition. It is noticeable that while there is no natural order for rules generated by

43

Table 4.3: Pruning a Single Rule

procedure PruneRule(Rule; UnprunedSet;Data)

repeat

Accuracy EstimateAccuracy(fRuleg [UnprunedSet;Data)
DeltaAccuracyA 0
for each (Condition 2 Rule) do
NewRule Rule n Condition
NewAccuracy EstimateAccuracy(fNewRuleg [UnprunedSet;Data)
NewDeltaAccuracy NewAccuracy � Accuracy
if (NewDeltaAccuracy > DeltaAccuracy)
DeltaAccuracy NewDeltaAccuracy
BestCondition Condition

if (DeltaAccuracy > 0)
Rule Rule n Condition

until (DeltaAccuracy < 0)
return Rule

C4.5rules, CABROrule generates ordered rule sets those sometimes are known as decision

lists [90].

To calculate the complexity of CABROrule, we assume that the data set consists of

n examples described by a attributes. To choose a condition to prune the procedure

PruneRule needs to examine all the conditions of the considered rule each require n

tests on the training examples. Therefore complexity of pruning a condition is O(an).

Suppose the length of an unpruned rule is a, then pruning a rule requires O(a2n). If we

assume that the size of the �nal theory is constant [27], the complexity will be linear to

n. Because a decision tree can be built in time O(nlogn), the overall cost to build a rule

set from data is O(nlogn). The complexity is the same as that of PART [25] and better

than O(nlog2n) of IREP or RIPPER, or O(n3) of C4.5rules.

Before going to the next subsection which addresses the problem of overpruning we

discuss briey about the procedure SelectRule in CABROrule. There is only a number of

input rules that have their chance to be considered to prune and add to the �nal rule set.

Certainly, we want as many \signi�cant" rules having that chance as possible. A measure

44

is necessary to judge the \signi�cance" of a rule. In general, there are several existing

measures that may be suitable for that purpose such as relative frequency, m-estimate of

accuracy, or entropy [62]. However, when we apply CABROrule on an unpruned decision

tree resulting from C4.5 we use the coverage of a rule as a criterion to select which rule will

be prune �rst. That because when growing a decision tree, C4.5 already optimized each

path (corresponding to an unpruned rule) by information gain. Therefore, it is reasonable

that rules with larger coverage may be more important and need to be considered �rst in

the pruning process. If CABROrule is applied on rule sets that grown by other algorithms,

other criteria for selecting rules can be better choices.

4.4.2 Avoiding Overpruning

CABROrule uses a greedy search algorithm for pruning a single rule. At a time, the

algorithm searches for a condition to prune. The pruning continues until the accuracy

estimation cannot be improved anymore. A description of the algorithm for pruning a

single rule is in Table 4.3.

To overcome the problem of overpruning in the original algorithm of incremental prun-

ing used in IREP and its variants, CABROrule takes a di�erent approach to estimate the

accuracy when making pruning decisions. Instead of estimating the accuracy only on the

rule under consideration, the procedure EstimateAccuracy does estimation on that rule

together with all remaining unpruned rules. As we have stated in the previous section, the

overpruning occurs when pruning decisions on a rule improving the accuracy estimation

of that rule, but in fact potentially reducing the accuracy of the �nal rule set. By taking

into account of remaining unpruned rules when pruning a single rule, we can make sure

that a condition will be pruned if that potentially improves the accuracy on the whole

�nal rule set not only on that single rule locally.

We return to the example of overpruning in section 2 to illustrate the new approach.

Assume that the CABROrule considers pruning rule 1 back to a null rule. Instead of

estimating the accuracy of only rule 1 before and after pruning it, the algorithm does

estimation on all three rules to make that pruning decision. From Table 4.2, we can see

that after pruning rule 1, the accuracy estimation is 1/13 which less than 4/65 before the

45

pruning decision. Therefore the algorithm cancels that pruning decision and avoids a case

of overpruning.

The problem of overpruning or hasty generation is not restricted to a particular method

of accuracy estimation [25], and our solution to the problem does not depend on estimation

methods. The estimation of reduce error pruning is used in the example only to make

calculations easier. In CABROrule we uses pessimistic estimation [83] similar to the one

used in C4.5 to estimate the accuracy of a rule set. The estimation is done by calculating

the rule accuracy over the training data, then calculating the standard deviation in this

estimated accuracy assuming a binomial distribution. For a given con�dence level (we

used 95% in our experiments), the lower-bound estimate is then taken as the measure of

rule performance. The accuracy estimate of a rule set is the average of the estimates over

its members with respect to their coverage on the data set.

4.5 Experimental Results

In order to evaluate the performance of CABROrule we designed two experiments. The

�rst experiment evaluates the predictive accuracy of CABROrule comparing to C4.5 and

C4.5rules, the second evaluates the run-time of CABROrule comparing to C4.5rules.

For the �rst experiment we used 31 standard datasets from UCI collection. The

datasets and their characteristics, together with experimental results are listed in Table

4.4. We performed 10-fold cross-validation on these datasets with C4.5, C4.5rules and

CABROrule. The same folds were used for each program. A numbers in the result

columns is the average of error rates or size of rule sets over ten times of running. A

symbol \�" in the last column indicates that CABROrule has an error rate lower than

both C4.5 and C4.5rules on that dataset, while a \Æ" indicates that CABROrule has an

error rate lower than C4.5rules, and a \�" indicates that C4.5rules has an error rate lower

than that of CABROrule.

We can observe from Table 4.4 that CABROrule outperforms C4.5rules on 15 over 31

datasets, among them there are 9 datasets CABROrule outperforms both C4.5rules and

C4.5, whereas C4.5rules has a lower error rate comparing to CABROrule on 6 datasets

46

Table 4.4: Experimental Results

C4.5 C4.5rules CABROrule
Dataset #Exam NumAtt NomAt Class size error size error size error
anneal 898 6 32 5 60.0 4.3 11.3 4.4 12.0 3.1 �

audiology 226 0 69 24 49.0 9.3 21.0 8.8 22.0 8.8
australian 690 6 9 2 34.5 15.2 13.2 16.2 9.6 14.5 �

auto 205 15 10 6 68.7 19.5 22.2 18.4 20.8 20.4 �

balance-scale 625 4 0 3 82.0 22.1 37.0 21.1 28.7 22.2 �

breast 699 9 0 2 27.4 5.1 9.0 4.6 8.2 4.9 �

breast-cancer 286 0 9 2 12.1 25.9 7.8 29.7 3.0 26.2 Æ

german 100 7 13 2 86.0 29.7 19.7 29.6 14.6 29.1 �

glass 214 9 0 6 44.0 32.7 13.8 30.8 13.6 30.8
glass2 163 9 0 2 23.4 21.9 8.1 20.2 8.0 20.2
heart 303 6 7 2 24.0 12.2 8.8 14.4 7.2 11.5 �

hepatitis 155 6 13 2 18.6 25.2 8.4 20.1 6.7 21.4 �

horse-colic 168 7 15 2 8.2 15.2 5.9 16.0 4.1 14.7 �

hypothyroid 3772 7 22 4 12.2 0.6 6.0 0.6 5.1 0.6
ionosphere 351 34 0 2 25.0 9.4 9.1 8.8 9.2 8.8
iris 150 4 0 3 8.8 5.3 4.1 4.6 4.0 4.6
labor-neg 57 8 8 2 5.7 19.3 4.0 21.0 2.6 19.3 Æ

lymphography 148 3 15 4 26.9 22.8 9.6 22.8 9.2 22.9 �

mushroom 8124 0 22 2 29.7 0.0 17.0 0.0 16.9 0.0
pima 768 8 0 2 45.2 25.7 10.7 26.3 9.9 25.7 Æ

primary-tumor 339 0 17 21 77.8 59.3 17.1 60.2 13.9 59.9 Æ

segment 2310 19 0 7 87.0 2.8 28.2 3.7 27.6 3.7
sick-euthyroid 372 7 22 2 24.6 2.2 12.0 2.4 9.2 2.2 Æ

sonar 208 60 0 2 27.2 28.9 8.7 30.3 8.7 30.3
soybean-large 683 0 25 19 94.9 7.8 35.8 7.0 3.1 6.7 �

splice 3190 0 61 3 220.2 5.9 74.1 6.5 60.0 6.0 Æ

vehicle 840 18 0 4 135.8 28.7 26.6 27.1 25.9 26.8 �

vote 435 0 16 2 13.0 6.0 6.4 5.3 5.1 6.2 �

waveform-21 301 21 0 3 542.2 23.2 68.1 22.4 67.6 22.3 �

waveform-40 5002 34 0 3 584.6 24.9 66.1 23.4 68.0 23.0 �

zoo 101 1 15 7 17.4 7.6 7.8 7.6 7.8 7.6

47

Figure 4.2: Comparison of Running Time

(totally C4.5rules has lower error than C4.5rules on 15 datasets, while is with higher error

rate on 4 datasets). In some datasets the di�erences between error rates are too small

to say that they are signi�cant, but this experiment showed that CABROrule at least as

good as C4.5rules if not better in the predictive accuracy.

About the size of rule sets, CABROrule generated smaller rule sets on a major number

of datasets comparing to C4.5rules, and both reduce the number of rules comparing to

C4.5 substantially. That reduction, in many case, will increase the understandability

of result models, and this experiment recon�rms the advantage of transforming decision

trees to rules.

In order to evaluate the eÆciency of CABROrule, the second experiment is done

with the census-income dataset. We began with 10000 examples and repeatedly ran

CABROrule and C4.5rules, each time with a bigger number of examples, to learn in what

order the run-time increases according to the size of data. Figure 1 is the graph drawn

48

from the experiment results. This graph con�rms and illustartes that the run-time of

C4.5rules is higher than O(n2), while the run-time of CABROrule is about O(nlogn) that

con�rms our calculation about the algorithm complexity in the previous section.

Some signi�cant conclusions can be drawn from these two experiments:

� By using incremental pruning approach to post-pruning problem, CABROrule can

reduce the run-time substantially in comparison to C4.5rules. It allows us to apply

the algorithm to large datasets that are very common in data mining.

� There is no lost in criteria of predictive accuracy and model size. In fact, there

is some gain in accuracy, and CABROrule usually generates smaller rule sets in

comparison to C4.5rules.

� Transferring decision trees to rules may increase both understandability and predic-

tive accuracy of models.

4.6 Summary

This chapter has presented a new algorithm for rule post-pruning of decision trees. It can

be considered an alternative algorithm for C4.5rules when the input data become very

large. The problem of high complexity in C4.5 is solved by adopting an incremental prun-

ing scheme. However the algorithm does not su�er the problem of hasty generalization

such as in the original incremental pruning approach. Experiments have shown that the

new algorithm generates rule sets as accuracy as those of C4.5 but with far less time of

computation.

49

Chapter 5

Visualizing Large Decision Trees

5.1 Introduction

Learning decision trees from large datasets is quite di�erent from small or moderately

sized datasets. We have to face with new problems that we may never see previously

such as converting trees into rules or understanding, accessing, and manipulating large

trees, etc. For example, on a workstation Alpha 21264 (OS: Digital UNIX V4.0E; Clock

frequency: 500MHz; RAM: 2GB), in our experiments the well-known system C4.5 [83]

{ from the U.S. census bureau dataset consisting of 199,523 instances with 32 symbolic

attributes and 8 numeric attributes, and size of 103 MB [67] { produces a pruned tree

after ten minutes but cannot convert the tree into a set of rules after two days.

leaves = norm:
| seed-discolor = absent:
| | temp = lt-norm: rhizoctonia-root-rot (19.0/1.3)
| | temp = norm: anthracnose (24.0/1.3)
| | temp = gt-norm: anthracnose (0.0)
| seed-discolor = present:
| | canker-lesion = dna: diaporthe-pod-stem-blight (5.5/1.2)
| | canker-lesion = brown: purple-seed-stain (0.0)
| | canker-lesion = dk-brown-blk: purple-seed-stain (0.0)
| | canker-lesion = tan: purple-seed-stain (9.0/1.3)
...

Figure 5.1: Part of decision tree displayed by C4.5

Though decision trees are a simple notion, we can understand their content and hier-

archical structure easily if they are small but cannot understand or understand diÆcultly

50

if they are large. Research on visualization of decision trees has recently received a great

attention from the KDD (knowledge discovery and data mining) community because of its

practical importance. Many works have been done, e.g., the 3D Tree Visualizer in system

MineSet [12], CAT scan (classi�cation aggregation tablet) for inducing bagged decision

trees [87], the interactive visualization in decision tree construction [4], the tree visualizer

with a tree map in system CART [9] of Salford Systems, etc. However, it is still diÆcult

to view and navigate large trees with these systems. On the other hand, new approaches

in information visualization �eld for representing large hierarchical structures, e.g., cone

trees [91], hyperbolic trees [53], have not been well considered in AI, machine learning

and data mining.

Our research concerns with interactive visualization in learning decision trees, in par-

ticular large decision trees. The work was motivated by the need of an eÆcient tree

visualizer when we apply our system CABRO [70] to large datasets. Section 5.2 of this

chapter addresses the requirements for tree visualizers and related works. Section 5.3

describes some related work in the �eld of information visualization. Section 5.4 presents

the tree visualizer of our system CABRO. Section 5.5 describes how this tree visualizer is

used in the learning process.

sectionVisualization Requirements

The decision tree structure contains two kind of information: structural information

associated with the tree, and content information associated with each node. Based on

our DTL task analyses, we specify the primary requirements for tree visualizers, which

share many common points with [41], as follows:

� Embedded in the DTL process: Structural and content information should be avail-

able not only after inducing decision trees but also during the learning process. The

tree visualizer must provide the ability to quickly access and manipulate a large tree

according to operations in decision tree learning.

� Comprehension: The tree visualizer must facilitate the understanding of tree struc-

ture and its relation to nodes in focus.

� EÆciency: EÆcient use of space and visual tools is essential for the tree visualizer

51

Figure 5.2: DiÆcult to navigate large trees in Mineset

52

Figure 5.3: DiÆcult to navigate large trees in CART

53

to deal with large trees.

� Interactivity: Interactive control over the structure and the ability of users to cus-

tomize the layout to meet their current needs and interests are essential.

� Esthetics: Drawing and feedback must be esthetically pleasing.

Most decision tree learning systems employ visualization methods that belong to one

of two categories: outlines or node-link diagrams.

The outline methods to represent trees are similar to that of PC Shell under DOS or

Microsoft Windows. Basically, the number of display lines required in the outline method

is equal to the number of nodes in the hierarchy, but with the zooming functions the

tree can be reduced dynamically to a smaller one with size is linearly proportional to

the number of nodes. However, this method is somehow poor to associate with graphic

operators in order to deal with large trees. System C4.5 and its successor C5.0 are in

this category. Figure 5.1 shows a portion of a decision tree displayed by C4.5 from the

small soybean dataset [67]. From the large U.S. census bureau dataset, C4.5 produces a

decision tree of nearly 18,500 nodes with 2624 leaf nodes (about 1,850 times larger than

this portion). It is extremely diÆcult, even impossible, to understand such a big tree in

this outline representation.

The node-link diagram 5.11 has a main advantage of being easy to understand as it is

a natural mapping of structured relationships. However, the original node-link diagram

does not use eÆciently the available display space and therefore is not adequate for large

trees. Di�erent attempts have been done to overcome this limitation which can be roughly

classi�ed into two groups of 2D and 3D visualizers.

Many tree learning systems employ 2D tree visualizers. CART (see [9] { the widely

used system of Salford Systems { has a 2D tree visualizer associated with a tree map

that provides an overview of the tree. Another 2D tree browser having good features of

multi-level dynamic queries and pruning is developed in [51].

Two special 2D tree visualizers are that of hyperbolic trees and treemap. The hyper-

bolic tree method at Xerox is excellent for visualizing and manipulating large trees. It

54

Figure 5.4: A Node-link Diagram Tree Representation

55

lays out the hierarchy in a uniform way on a hyperbolic plane and map this plane onto a

display region. The hyperbolic browser can display more than 1000 nodes of which about

50 nearest the focus can show from three to dozens of characters of text [53]. However,

it also meets the problem of presenting partially trees for large tree of thousands nodes,

and it is somehow not a natural way in learning decision trees. The treemap visualization

method is a special 2D visualizer that makes 100% use of the available display space,

mapping the full hierarchy onto a rectangular region in a space-�lling manner [41]. This

eÆcient use of space allows very large hierarchical data to be displayed in their entirety.

However it tends to obscure the hierarchical structure of the values and provides no way

of focusing on one part of a hierarchy without losing the context.

Among typical 3D tree visualizers are that of MineSet (SGI) [12] and the cone tree

method at Xerox [88]. Mineset 3D Tree Visualizer can display the tree hierarchy and

map attributes to histogram at each node. The cone tree method of Xerox PARC embeds

trees in a three dimensional space with the rotating function that allows bringing di�erent

parts of the tree into focus [88]. However, this technique requires expensive 3D animation

support and manipulates diÆcultly trees with more than approximately 1000 nodes.

One common problem to all tree visualizers is if nodes on the tree, even only leaf

nodes, are to be given adequate spacing, the nodes near the root must be placed very far

apart, leaving no nice way to display the context of the entire tree [53]. In fact, the user

does not go from node to node randomly. He/she usually wants to move from a node to

one of its relatives, and often get lost (unable to �nd the way) in a huge hierarchy. Figure

5.2 shows that it is hard to navigate large trees in CART (left) and Mineset (right) where

relatives of the node in focus cannot be seen from these screens.

Our work was motivated by the lack of adequate tools for the visualization of large

trees. It contributes a new alternative to tree visualization with the node-link diagram. In

particular, it can be more natural to human perception and cognition than the hyperbolic

trees in learning decision trees, and it use more eÆciently the display space with multi-

level dynamic browsers and the �sh-eye view [31].

56

5.2 Related Work in Visualizing Large Trees

A large quantity of the world's information is hierarchically structured: manuals, outlines,

corporate organizations, family trees, directory structures, interned addressing, library

cataloging, computer programs, etc. Most people come to understand the content and

organization of these structures easily if they are small, but have great diÆculty if the

structures are large. That is why visualizing large hierarchical structures is one of active

research problem in the �eld of information visualization. In this section, we will describe

two well-known methods for this problem.

5.2.1 Tree-Maps

Tree-Maps [41] visualization technique makes 100% use of the available display space

by mapping the full hierarchy onto a rectangular region in a space-�lling manner. This

eÆcient use of space allows very large hierarchies to be displayed in their entirety and

facilitates the presentation of semantic information.

Tree-Maps displays look similar to the partition diagrams of quad-tree and k-D trees.

The key di�erence is the direction of the transformation. Quad-trees create hierarchical

structures to store 2D images eÆciently while Tree-Maps present hierarchical information

structures eÆciently on 2D display surfaces.

Tree-Maps require that a weight be assigned to each node, this weight is used to

determine the size of a nodes bounding box. The weight may represent a single domain

property (such as disk usage or �le age for a directory tree), or a combination of domain

properties. A nodes weight (bounding box) determines its display size and can be thought

of as a measure of importance of degree of interest.

Structure information in Tree-Maps is implicitly presented, although it may also be

explicitly indicated by nesting child nodes within their parent. Nesting provides for the

direct selection of all nodes, both internal and leaf. Although the space required for

nesting reduces the number of nodes which can be drawn in a given display space, and

hence reduces the size of the trees that can be adequately displayed compared to non-

57

nested drawings.

A non-nested display explicitly provides direct selection only for leaf nodes, but a

pop-up display can provide path information as well as further selection facilities. Non-

nested presentations cannot depict internal nodes in degenerate linear sub-paths, as the

bounding boxes of the internal nodes in the sub-path may be exactly equal. Such paths

seldom occur and tasks dependent on long chains of single child nodes will require special

treatments.

5.2.2 Hyperbolic Browser

Hyperbolic browser [53] is a tree visualization technique based on hyperbolic geometry.

The technique assigns more display space to a portion of the hierarchy while still embed-

ding it in the context of the entire hierarchy. The drawing algorithm lays out the hierarchy

in a uniform way on a hyperbolic plane and map this plane onto a display region. The

chosen mapping provides a �sheye distortion that supports a smooth blending of focus

and context.

The hyperbolic browser initially displays a tree with its root at the center, but the

display can be smoothly transformed to bring other nodes into focus. In all cases, the

amount of space available to a node falls o� as a continuous function of its distance in

the tree from the node in focus. Thus the context always includes several generations

of parents, siblings, and children, making it easier for the user to explore the hierarchy

without getting lost.

While the hyperbolic plane is a mathematical abstraction, it can be mapped in a nat-

ural way onto the Euclidean unit disk, which provides a basis for display on conventional

screens. The mapping focuses on one point on the hyperbolic plane by using more of the

disk for potions of the plane near that point than on other potions of the plane; remote

parts of the hyperbolic plane get miniscule amounts of space near the edge of the disk.

Moving the focus point over the hyperbolic plane|equivalent to translating the hierar-

chy on the hyperbolic plane|provides a mechanism for controlling which portion of the

structure receives the most space without compromising the illusion of viewing the entire

58

Figure 5.5: Tree-Maps Representation of Directory Hierarchies

59

hyperbolic plane. Other transformations of the mapping from the hyperbolic plane to

the display can yield other e�ects including changing the relative amount of the display

dedicated to the focus nodes and providing multiple foci.

5.3 The Tree Visualizer in CABRO

In CABRO, a mining process concerns with model selection in which the user try di�erent

settings of decision tree learning to attain most appropriate decision trees. To help the

user to understand the e�ects of settings on result trees, the tree visualizer is capable of

handling multiple views of di�erent trees at any stage in the learning.

CABRO with its tree visualizer has been implemented in UNIX workstations under

the X Window, and recently in MS Windows. Our attempt aims at improving the node-

link diagram of CABRO tree visualizer to deal with the above problems for large decision

trees. The main features of the CABRO Tree Visualizer are:

1. It provides several modes of view: zoomed, tiny, tightly-coupled and �sh-eyed, in

each mode the user can interactively change the layout of the structure to �t the

current interests.

2. It provides a new and eÆcient technique, called T2.5D, to make navigating large

tree easier.

5.3.1 Di�erent Modes of View

CABRO tree visualizer is a graphical interface that displays the same tree in two tightly-

coupled views, one a global view and the other a detailed view. Each of these views can

be expanded or collapsed and is with one of the following modes (Figure 3):

� Tightly-coupled views: The global view (on the left) shows the tree structure with

nodes in same small size without labels and therefore it can display a tree fully or a

60

Figure 5.6: Screenshots of Hyperbolic Browser

61

Figure 5.7: Screenshots of Cone Tree

62

large part of it, depending on the tree size. The detailed view (on the right) shows

the tree structure and nodes with their labels associated with operations to display

node information. The global view is associated with a �eld-of-view or panner (a

wire-frame box) that corresponds to the detailed view [75]. These two views are

tightly-coupled as the �eld-of-view can be moved around in the global view in order

to pan the detailed view. Also, when the detailed view is scrolled the position of

the �eld-of-view will be updated accordingly. The windows for these two views can

be resized by the user, and the �eld-of-view shape and size will be automatically

changed. Figure 5.8 shows a screen of CABRO tree visualizer with tightly-coupled

views for the well-known soybean dataset.

� Customizing views: Initially, according to the user's choice, the tree is either dis-

played fully or with only the root node and its direct sub-nodes. The tree then can

be collapsed or expanded partially or fully from the root or from any intermediate

node. Any subtree with the root at an uncollapsed node (node with +) can be

collapsed into one node (at its root with �). Thus, the user is able to interactively

customize views of the tree to meet his/her need and interests. Also, the user is

provided the focus view on one class and its relation to other classes in the whole

hierarchical structure with di�erent colors.

� View of decision/leaf nodes: The user can click a node to see its information: branch-

ing attribute and branched attribute-value, number of covered cases, the major class,

the percentage of major class, the leading path from the root, etc.). When focusing

on one class, only its leaf nodes are highlighted and proportions of cases bearing

this class label are indicated approximately.

� Tiny mode with �sh-eye view

Note that no current visualization technique allows us to display eÆciently the en-

tire tree when it has, says, ten thousands nodes. If we note that, \the foundational

period of information visualization is now ending", and \in the next period, infor-

mation visualization will pass out of the realm of an exotic research specialty and

into the mainstream of the user interface and an application design" [88], we might

have to think about eÆcient ways to manipulate large trees without expecting to

63

see it entirely.

The tightly-coupled views are extended with three viewing modes according to the

user's choice: normal size, small size and tiny size. The tiny mode uses much more

eÆciently the space to visualize the tree structure, on which the user can determine

quickly the �eld-of-view and pan to the region of interest. It allows the user to

be able to see the tree structure while focusing on any particular part so that the

relationship of parts to the whole can be seen and the focus can be moved to other

parts in a smooth and continuous way.

Fish-eye is an interesting variant of the classic overview-detail browser, proposed in

[31]. This view distorts the magni�ed image so that the center of interest is displayed

at high magni�cation, and the rest of the image is progressively compressed. In

CABRO tree visualizer, we de�ne three �sh-eye components as follows:

1. focal point f : some node of current interest in the tree;

2. distance from focal point f to a node x: D(f; x) = d(f; x) where d(x; y) between

two points x and y on the tree is the number of links intervening on the path

connecting them in the tree;

3. detail level, importance, resolution: LOD(x) = �d(r; x) where r is the root of

the tree.

CABRO tree visualizer permits the user to change dynamically the point of interest

on the tree, and a dynamic threshold k for the distance from focus. By default,

k = 2 for the distance from the left and from the right of focal point. A variant of

visualization is to use the global browser in tiny mode with �sh-view for the �eld of

interest.

5.3.2 Visualization with T2.5D Technique

With very large tree, the user might still �nd it is so diÆcult to navigate, even with

tiny mode and �sh-eye view. To address the problem, we have been developing a new

technique called T2.5D (stands for 2.5 Dimensions Tree). The starting points of T2.5D's

design are the following:

64

� The screen space is limited, therefore only a number of nodes of a tree can be

displayed simultaneously. Other nodes may be out of screen, pruned or displayed

in the background.

� How to display together a large subset of related nodes in a tree within a limited

space is essential. For a decision tree, as paths (we will de�ne them latter) corre-

spond to rules, tracing nodes belonging or relating to a path is an common task.

T2.5D aims to support doing this task as conveniently as possible.

� Maintaining the structural information of a tree when the user navigates the tree is

indispensable. It helps the user easily to identity where she/he is and where she/he

wants to go.

� The more nodes are displayed in the screen, the less scrolling operations the user

need to do. Therefore, arranging nodes such that a large number of them can be

displayed in a compact screen space is important.

To describe the technique we need to clarify some terms that will be used. We de�ne

a wide path to a node in the tree as the set of all nodes in the path from the root to

this node and their siblings. Therefore, the wide path to a node contains all of its direct

relatives. When visualizing a tree, at each moment, the wide path to the node in focus

is called the active wide path. We summary below the main ideas and characteristics of

T2.5D:

� The active wide path is displayed in the front of the screen with highlighted colors.

Other nodes of the tree are displayed in the background with dim colors. They are

drawn in a 3D form to save space while the active wide path is drawn in a 2D form

in order to give a clear view.

� The user can change the node in focus by clicking to another node of the tree, and

its wide path then becomes the active wide path and is highlighted. The user does

not have to make a lot of navigation in order to learn about the relatives of the

node in focus.

65

3D in Mineset 2D in CART Hyperbolic Tree T2.5D
Embedded in DTL no no n/a yes
Comprehension average average high high
EÆciency average average high high
Interactivity average high high average
Esthetics high average very high high

Table 5.1: Comparison of several tree visualizers

� The labels of some nodes in the background may be overlapped by other nodes. For

that case, a oating balloon is provided. The balloon will display clearly the label

of the node which is currently pointed by the mouse pointer.

� The mix between 2D and 3D drawing has two main merits. Firstly, the node in

focus and its relatives have a clear view, at the same time, many other nodes also

can be seen to maintain the tree structural information. Secondly, many nodes can

be displayed in a compact screen space.

We have been tried T2.5D with several datasets both real and arti�cial. In our exper-

iment, the new technique have several advantages:

� T2.5D easily handles decision trees with more than 20000 nodes, and more than

1000 nodes can be displayed together on the screen.

� It is useful to have a very clear view of a wide path to a node in a tree and an image

of the overall structure of the tree at the same time.

� Navigation even on huge decision trees is easy and fast. We do not have to perform

many operations (scrolling, expanding, collapsing, or using the map) to navigate

trees.

Figure 5.9 shows a screenshot of the CABRO tree visualizer with T2.5D technique.

The tree generated from a dataset of stomach cancer data and has more than 2000 nodes.

Most of nodes in the tree appear in the window.

66

5.4 Interactive Learning of Large Decision Trees

5.4.1 Support for Model Selection

There exist various methods for solving three main DTL problems of attribute selection,

pruning and discretization, and it is well known that none of them is universally superior

than others. It raises in practice the problem of model selection, that is how to choose

the most appropriate DTL methods/models for a given application task. This problem

requires meta-knowledge and/or empirical comparative evaluations of methods/models.

Three main criteria for selecting DTL models are size, accuracy and understandability

of trees. The tree size and accuracy can be quantitatively evaluated, among them the

accuracy is widely considered to be of great importance. The understandability of trees

is diÆcult to be quanti�ed or measured, and the idea here is to use tree visualizer to

support the understanding of users.

Though the starting point of CABRO is R-measure, a new proposed measure for at-

tribute selection [70], CABRO associates its tree visualizer with other modules to provide

a number of well-known DTL available techniques and to combine them to form DTL

models and evaluate them (accuracy, size and understandability).

In the current version of CABRO, the user can generate new models each is composed

by an attribute selection measure chosen from the gain-ratio [83], the gini-index [9], �2

and R-measure; a pruning technique from error-complexity, reduced-error and pessimistic

error [9], [83]; and a discretization technique from the entropy-based and error-based

techniques [21].

Information of each trial on a model chosen by the user is registered in a form called

plan of that model. The realization of that plan yields a model that may or may not be

accepted by the user, and the user usually has to try a number of di�erent plans. This

process is repeated automatically for di�erent model candidates by a k-fold strati�ed cross

validation (by default, k = 10).

For each model candidate, CABRO tree visualizer displays graphically the correspond-

ing pruned tree, its size, its prediction error rate. It o�ers the user a multiple view of

67

these trials and facilitates the user to compare results of trials in order to make his/her

�nal selection of techniques/models of interest.

5.4.2 Support for Matching of Unknown Objects

CABRO tree visualizer is used not only in inducing decision trees but also in classifying

unknown objects. It plays the role of the interface for visual explanation of the matching

process, in a way similar to the explanation in knowledge-based systems. CABRO tree

visualizer supports three modes of matching an unknown object according to the way

that the unknown object is declared.

� The whole record of the unknown object is read from a database: CABRO directly

show the leaf node that matches the object. The path from the tree root until

that leaf node will be highlighted. Information accumulated along the path can be

viewed at any node.

� Values of attributes are given by the user when answering the system questions:

Questions about attributes will be asked according to the hierarchical structure in

a top-down manner from the root. From menu the user will choose one value in the

list of discrete values of the attribute or enter a numerical value in case of continuous

attribute. Questions are asked dynamically according to the stepwise re�nement of

the matching process.

� The user declares values of attributes he/she knows: The user is able to select

attributes that he/she wishes to query on. These attributes can be selected from

the attribute list with corresponding values. Once the attribute-values pairs are

entered, the tree visualizer will limit the regions on the tree that partially satisfy

the data. The system will then ask additional questions to ful�ll the match.

Table 5.1 summarizes our evaluation on the properties of some tree visualizers accord-

ing to the requirements introduced in section 2.

68

5.5 Summary

In chapter we addressed problems of visualizing large decision trees, related works on tree

visualizers and information visualization �eld. We presented the interactive tree visualizer

of system CABRO that employs recent visualization techniques in mining decision trees.

We described our attempt to deal with large tree by introducing multiple views with a new

tiny mode, a variant of �sh-eye view, and the new technique T2.5D for tree visualization.

Though there are still a lot of work for improving this interactive tree visualizer, we

believe that it contributes an eÆcient solution to the state-of-the-art of visualization in

decision tree learning, especially T2.5D is very promising as a new display and navigation

technique for large trees.

69

Figure 5.8: CABRO Tree Visualizer: tightly-coupled views

70

Figure 5.9: T2.5D visualization

71

Figure 5.10: Changing for focus node in T2.5D (a)

72

Figure 5.11: Changing for focus node in T2.5D (b)

73

Chapter 6

A Data Mining System That

Supports Model Selection

6.1 Introduction

Knowledge discovery in databases (KDD) - the rapidly growing interdisciplinary �eld

of computing that involves from its roots in arti�cial intelligence (AI), statistics, and

algorithmics - aims at �nding useful knowledge from large databases. The following

steps are generally common to the process of knowledge discovery: (1) understanding the

application domain and formulating the problem; (2) collecting and preprocessing the

data; (3) mining to extract useful knowledge as patterns or models hidden in data (data

mining); (4) interpreting and evaluating discovered knowledge (postprocessing); and (5)

putting discovered knowledge in practical use. The main step (3) in this process consists of

\particular data mining algorithms that, under some acceptable computational eÆciency

limitations, �nd patterns or models in data" [23]. It is crucial that these steps are iterative

and interactive, i.e., one cannot expect to extract useful knowledge by just pushing one

time a large amount of data into a black box.

In the KDD process, di�erent knowledge discovery methods usually share many com-

mon processing tasks such as those for feature selection, discretization of continuous

attributes, evaluation of discovered knowledge, visualization, etc. The �nal result of the

knowledge discovery process depends on interoperations between algorithms in di�erent

steps. This makes the KDD process diÆcult for the user and very time-consuming. Also,

many knowledge discovery methods compose of di�erent algorithms or variants to deal

74

with inuential factors in KDD such as the very large size of databases; non-incremental

or incremental mining tasks; mixed categorical and numerical data; irrelevant, noise and

missing data; constraints on the structure of discovered knowledge (e.g., disjoint or over-

lapping hierarchical structure). It is commonly agreed that there is no universally superior

algorithm for all applications and the result of each algorithm may depend largely on its

parameter settings. The problem of model selection - choosing the appropriate algo-

rithms/settings for a given application - is diÆcult for the user because it requires various

empirical comparative evaluations and/or meta-knowledge about the algorithms. Visual-

ization of data and discovered knowledge has recently received a great attention in KDD

because of its practical importance. From large datasets, data mining algorithms often

yield large structures of discovered knowledge. However, visualization of large discovered

knowledge structures is still ineÆcient and remains a research challenge.

The aim of our research is to develop a knowledge discovery system that emphasizes

integration of KDD common tasks and with a focus on two issues of model selection

and visualization. The system facilitates the interaction and decision of the user in the

complicated tasks of model selection. It is associated with a new proposed visualiza-

tion technique that allows displaying eÆciently large hierarchical structures. Within the

system framework, we have implemented and used decision tree induction methods with

di�erent algorithms including the new R-measure and method CABRO [70], and concep-

tual clustering methods including the method OSHAM [33] and its variants [34], [35].

The system is extendible in the sense that data mining methods generating hierarchical

models can be added.

There are several works related to ours. MLC++ [49] is a library of classi�cation

algorithms with guide to compare and select appropriate algorithms for the classi�cation

task. It also provides a visualization and interfaces between programs for both end-users

and software developers. Intelligent Miner [36] is IBM's data mining tool kit. It provides

a broad selection of mining algorithms which are scalable for large data volumes on IBM

platforms with a client/server structure. FlexiMine [20] is a KDD system designed as a

testbed for data mining research and a generic knowledge discovery tool. It is currently

a prototype requiring a lot of further implementation and evaluation. Our system shares

with their systems many features but di�ers from them in the interoperability between

75

Graphical User Interface

Data
Interface

Data
Preprocessing

Model Selection

Data
Mining Evaluation

Application

Visualization

Plan Manager

1

2 3 4 5

7

8

6

Data Base

Plan Base

Model Base

Figure 6.1: System architecture

algorithms, and the focus on model selection and eÆcient knowledge visualization.

Section 2 of this paper presents an overview of the system and our solutions to model

selection and visualization. Section 3 presents how decision tree induction and conceptual

clustering methods have been implemented and used in the system. Section 4 summarizes

the work and outlines further research.

6.2 Overview of the System and Solutions

This section presents an overview of the system and our solution to the problems of model

selection and knowledge visualization. Figure 6.1 shows the system architecture.

6.2.1 Overview of the System

The system consists of eight modules: Graphical user interface, Data interface, Data

processing, Data mining, Evaluation, Plan management, Visualization, and Application.

Additionally, it has a Plan base and a Model base.

Graphical User Interface

76

A exible graphical user interface is designed to facilitate the complicated interaction

between the user and the system in the knowledge discovery process. Especially, the user

interface provides facilities to allow the user to control multi interactive mining, to view

concurrently multiple models, and to compare evaluation results.

Data Interface

The native input format of the system is a at form of data �les. The system supports

other common database formats by using standard interfaces (e.g., ODBC).

Data Preprocessing

This module provides di�erent techniques of data preprocessing such as feature se-

lection, elimination of corrupt data records, encoding missing values, discretization of

continuous attributes, etc. For example, available discretization algorithms include the k-

means algorithm for unsupervised data, and the entropy-based and error-based algorithms

for supervised data [21].

Data Mining

The system is designed to support several types of classi�cation and clustering algo-

rithms. At present, available algorithms include those of decision tree induction with a

number of related techniques, and a conceptual clustering method with several variants.

Most of these algorithms originated in our earlier development of two methods CABRO

[70] and OSHAM [33].

Evaluation

Discovered models require a careful evaluation. The module carries out that evaluation

based on evaluation methods such as the k-fold cross validation and the t test. It also

generates automatically tables containing the evaluation results of di�erent models on

di�erent testing datasets to help the user making decision in model selection.

Plan Management

The main function of this module is to manage a plan base containing plans declared

by the user. It also coordinates other modules such as data mining, evaluation, and visu-

77

alization in model selection.

Visualization

This module is a set of algorithms and techniques to visualize data and knowledge.

The mining algorithms can frequently invoke this module during their running in order to

help the user taking part in it e�ectively. The module provides techniques to visualize data

and a browser to visualize and navigate hierarchical structures, especially large structures

can be handled eÆciently by using our developing technique called T2.5D.

Application

This module contains utilities which help the user to use discovered models. A model

can be used to match an unknown instance, or to generate an interactive dialogue where

the system conducts a series of questions/answers in order to predict the outcome.

6.2.2 Model Selection

Given input data, mining algorithms try to �nd useful patterns/models. A pattern \is a

local structure, perhaps relating to just a handful of variables and a few cases", whereas a

model can be seen as \a global representation of a structure that summarizes the system-

atic component underlying the data or that describes how the data may have arisen" [32].

We use the term 'model' to refer to hierarchical models generated by mining algorithms

of the system.

To extract a model the user has to carry out di�erent operations in steps (2) and (3)

and invoke a mining algorithm. While doing that, the user chooses a series of settings.

These settings concern algorithms for discretization and noise cleaning, feature selection

and data transformation, data mining algorithms and related techniques (e.g., attribute

selection and pruning techniques in decision tree induction), as well as parameters in

these algorithms. For example, to generate a decision tree, the user needs to choose:

which attribute selection and pruning algorithms to be used; the minimum number of

instances at leaf nodes; the lowest accepted error rate; which attributes to be grouped;

78

Figure 6.2: Support for model selection

79

encoding missing values, etc. Furthermore, if there are some continuous attributes the

user may have to choose which discretization algorithms should be applied before mining.

The chosen settings will be registered in a form called a plan. The realization of that

plan will yield a model that may or may not be accepted by the user. As there are

many possible combinations of settings, the user usually has to try a number of plans to

achieve satis�ed models. We call model selection the operation of running di�erent plans

to achieve the most appropriate model.

In model selection, the plan management module has a coordination role. It maintains

a list of pro�les about available data preprocessing and mining algorithms. A pro�le

contains information about types and e�ect of parameters, as well as related techniques

that a knowledge discovery method may require. Based on information from pro�les, the

system asks the user to choose settings required by the method when it is applied. The

user can either realize a plan just after it has been �lled up, or prepare a number of

plans then realize them altogether (Figure 6.2). The plan management module manages

registered plans and their links to corresponding generated models stored in a model base.

It provides functions to make, delete, modify, read and write plans. During generating

models are, the user can call other modules to visualize, evaluate and compare them. This

iterative cycle may be repeated until reaching appropriate models. Usually, the model

selection is a daunting and very time consuming task, but thanks to the plan management

module and supporting tools of the system, the task becomes easier and more e�ective.

6.2.3 Data and Knowledge Visualization

Data and knowledge visualization plays an increasing important role in KDD. The system

provides several specialized visualizers for the display of data to be mined and discovered

knowledge in hierarchical structures.

In data visualization, the system provides the user graphical views on the relations

between attributes and statistics of the input data. These include mode, mean, standard

deviation for numeric data, and cross-tabulation [54]. It supports the user to have an

intuitive understanding about data in order to choose correct attributes, methods, as well

80

as the links between the visualization of discovered knowledge and the visualization of

data.

In knowledge visualization, the system provides the user specialized tools integrated

in a visualizer. The visualizer serves for three tasks: (1) graphical views of hierarchical

structure of discovered knowledge; (2) support for model selection; (3) support for the

use of discovered knowledge.

The system distinguishes two kinds of information in the hierarchical structure: struc-

tural information associated with the hierarchy, and content information associated with

each node. While the latter can be de�ned freely according to each method, the former

is common to all methods and is described by a system's common data structure. The

visualizer is capable of visualizing both disjoint hierarchical models like decision trees gen-

erated by CABRO (Figure 6.3), or non-disjoint hierarchical models like those generated

by OSHAM. The visualizer is designed to achieve the following features:

� Embedded in the knowledge discovery process: Structural and content information

can be displayed not only after completing the discovery process but also during

this process. This is particularly signi�cant for the interactive mining mode.

� Comprehension: The hierarchical structures are drawn esthetically and they can be

easily browsed and understood even for the user with low perceptual and cognitive

loads.

� EÆciency: The hierarchy visualizer uses eÆciently the space and visual tools to deal

with large hierarchies. In particular, the new technique T2.5D introduced in the

system o�ers many advantages in comparison to many current techniques in terms

of visualization eÆciency.

� Interactivity: The system provides users the interactive control over the knowledge

structure and the ability to customize the layout to meet their needs and interests.

Models discovered from the KDD process usually are very large in size and complicated

in structure. With traditional visualization methods the user gets lost in these huge

structures and navigation become almost impossible. In order to handle them, the system

81

Figure 6.3: Hierarchy visualizer: tightly-coupled views

82

adopts three special visualization techniques: tightly-coupled views, �sh-eye view, and our

developing method named T2.5D.

Tightly-coupled and Fish-eye Views

The tightly-coupled views are extended with three viewing modes according to the user's

choice: normal size, small size and tiny size. The tiny mode uses much more eÆciently

the space to visualize the hierarchical structure, on which the user can determine quickly

the �eld-of-view and pan to the region of interest. It allows the user to be able to see

the hierarchical structure while focusing on any particular part so that the relationship of

parts to the whole can be seen and the focus can be moved to other parts in a smooth and

continuous way. Fish-eye is an interesting variant of the classical overview-detail browser,

proposed in [31]. This view distorts the magni�ed image so that the center of interest is

displayed at high magni�cation, and the rest of the image is progressively compressed.

T2.5D

Very large hierarchical structures are still diÆcult to be navigated and viewed even with

tightly-coupled and �sh-eye techniques. To solve the problem, we have been developing

a special technique called T2.5D (stands for Tree 2.5 Dimensions).

The 3D browsers usually can display more nodes in a compact area of the screen but

require currently expensive 3D animation support and the structure somehow not easy

to navigate, while the 2D browsers have a limitation in displaying many nodes in one

view. The T2.5D technique combines the advantages of both the 2D and 3D drawing

techniques to provide the user an eÆcient display with lower processing cost. The T2.5D

browser can display more than 1000 nodes in one view where the most of nodes may be

partially overlapped but they all are in full size. In T2.5D, a node can be highlighted

or dim. The highlighted nodes are those the user currently pays most attention on, and

they are displayed in 2D for ease of view and navigation. The dim nodes are displayed

in 3D to save the space, they allow the user to get an idea about overall structure of the

hierarchy (Figure 6.4). The main features of T2.5D are:

83

Figure 6.4: Matching a decision tree with data

84

� All highlighted nodes are displayed \on-top" of the screen, drawn by bright colors,

and have a bigger size. Other nodes might be overlapped, and are drawn by dim

colors. That allows the user to view easily and get all information about highlighted

nodes even in a complicated hierarchy of nodes and edges.

� Whenever a node is chosen to be focused, its siblings, its ancestors, and the siblings

of the ancestors are brought into highlight automatically. In other words, the system

opens a broad path of highlighted nodes from the root to the focused node. That

means the most related nodes under the focus always get a clear view altogether.

� Nodes in background are positioned such that at least a part of each node is dis-

played, hence the user can click to bring any of them back to highlight. A oating

balloon dynamically displays the information of the node under the mouse pointer

to allow the user to know more about it.

� The algorithm follows some common esthetics rules. Siblings are located at the

same horizontal coordinate and vertical distances between them are even.

6.3 Knowledge Discovery Methods in the System

There are two knowledge discovery methods that are provided in the system, a decision

tree and rule learning method (CABRO), and a conceptual clustering method (OSHAM).

We have described CABRO in Chapter 3 and Chapter 4, in this section we will describe

OSHAM briey.

6.3.1 A Conceptual Clustering Method

Conceptual clustering is a typical knowledge discovery method for unsupervised data. Its

basic task is from a given set of unlabelled instances to �nd simultaneously a hierarchical

model that determines useful object subsets and intensional de�nitions for these subsets

of objects. There are two main problems in conceptual clustering: representation of

concepts and constraints of categorization. Among concept representations, the classical,

prototype and exemplar ones are widely known and used [69]. Among categorization

85

constraints, the similarity, feature correlation, and structure of the concept hierarchy

are widely known and used. These two problems relate to another crucial problem of

interpreting hierarchical models discovered by unsupervised methods.

The method OSHAM (Making Automatically Hierarchies of Structured Objects) [33]

employs a proposed hybrid representation of concepts that combines in a reasonable way

some advantages of three main representation schemes mentioned above, and depending

on settings of parameters it can extract non-disjoint or disjoint hierarchical models of

concepts. OSHAM is a non-incremental divisive algorithm that works recursively and at

each step it seeks for an acceptable solution according to a quality function de�ned on

its hybrid representation. OSHAM is associated with an interpretation procedure to use

discovered models. There are several variants of OSHAM: incremental I-OSHAM [34]

that can learn when databases are regularly updated, and approximate A-OSHAM [35]

that can learn approximate concepts when data are uncertain and imprecise.

6.3.2 Implementation and Experiments with Model Selection

The conceptual clustering method OSHAM and its variants have been implemented and

used in the system with common tools on data preparation, discretization, visualization,

evaluation by k-fold cross validation, etc. Di�erent from supervised discovery methods,

unsupervised discovery methods as OSHAM cannot provide feedback about the appro-

priateness of their results. In such cases, to obtain an appropriate model, the user needs

to interact with the system and try di�erent plans with various parameters. The plan

management module facilitates doing this task by its support for comparing models, data

and knowledge visualization.

Linked with the visualizer, disjoint or non-disjoint models generated by OSHAM can

be displayed. The form and the size of OSHAM's hierarchical models depend on plans that

concern a number of parameters: (1) method is OSHAM or its variants; (2) the discovered

hierarchy is disjoint or non-disjoint; (3) the minimum size of each node; (4) the threshold

about the concept dispersion; and (5) the number of competitors for beam search. The

user can visualize the hierarchical model gradually in the discovery process, observe node's

content information and the quality estimation of model. The user may also modify the

86

Figure 6.5: Using generated models to interpret unknown cases

87

parameters when necessary before continuing to go further to cluster subsequent data,

or backtrack to regrow branches of the model with respect to the categorization scheme.

This function can be done in the interactive mining mode: as the hierarchy is generated

level by level, the user can point out a node generated previously from which he/she wants

to regrow the hierarchy with changed parameters. Moreover, the visualizer is used also

in the predictive task in which it links OSHAM's interpretation procedure with data and

hierarchy visualization (Figure 6.5).

We illustrate an application of the system to the clinical database on meningoen-

cephalitis collected at the Medical Research Institute, Tokyo Medical and Dental Uni-

versity [39]. This database is recently experimented by di�erent data mining groups in

Japan [98]. Each patient record in this database contains 38 attributes, where 7 continuous

and discrete attributes describe the clinical history; 8 continuous and discrete attributes

describe the physical examination; 11 continuous attributes describe the laboratory ex-

amination; 1, 1, 4, 1 and 1 discrete attributes describe the diagnosis, therapy, clinical

course, �nal status and risk factor, respectively. The third attribute DIAG presents the

diagnosis results into 6 classes (ABSCESS, BACTERIA, BACTE(E), TB(E), VIRUS(E),

VIRUS), which are summarized into 2 groups `VIRUS' and `BACTERIA' in the fourth

attribute DIAG2.

The �rst task is to �nd predicting prognosis relating to three pairs of inuential at-

tributes, considered as the class attributes: DIAG and DIAG2, CULT-FIND and CUL-

TURE, C COURSE and COURSE. The continuous attributes are all discretized by dis-

cretization tools of the system. Using OSHAM we investigate the \natural" clusters of

the database in order to answer a number of questions, for example, which attributes are

the most signi�cant in discovered clusters? if we know a priori that some attributes are

important then which hierarchical models could be extracted? The relationship between

the size of models and their comprehension?

It is worth noting that without the supervision in data, there is not always a sharp

boundary between groups in conceptual clustering. Figure 6.5 illustrates the interpreta-

tion of OSHAM in this application. It concludes that the class number 195 matches the

unknown case number 5 with the degree \very strong match by the nearest neighbor and

88

logical multiple match". Also in this application thanks to the plan management module

and visualization tools, di�erent trials can be done and compared easily. For example,

with the plan (1, 1, 8, 0.4, 8) OSHAM generated a model of 93 nodes, and with the plan

(1, 1, 4, 0.2, 4) OSHAM generated a model of 2929 nodes which can be all observed and

evaluated with the system support.

6.4 Summary

We have presented our research and development on an interactive-graphic system for

knowledge discovery. The system emphasizes integration of KDD common tasks and al-

gorithms according to the knowledge discovery process. The key idea behind the system is

to support doing model selection with di�erent trials on algorithms with di�erent settings,

and to support visualizing large hierarchical structures. Two methods of decision tree in-

duction and conceptual clustering have been implemented and used within the system

framework. These methods share di�erent tools of the system in preprocessing data, data

and knowledge visualization, testing procedure and using discovered knowledge. With

the features of the systems and the bene�t in implementing two methods, we hope that

the system contributes a solution to diÆcult system design problems and that may be of

interest to the KDD developer and user.

89

Chapter 7

Conclusion

The ultimate purpose of our research is to develop an integrated decision tree learning

system that can be applied e�ectively and eÆciently to data mining applications. To

that end, we try to solve several problems of decision tree learning on large and com-

plex datasets. These problems include attribute selection when data are incomplete or

uncertain, the scalability of rule post-pruning algorithms, and visualization of large deci-

sion trees. Based on the results of our research on those problems, we have developed a

prototype of a decision tree learning system as a �rst phase toward our ultimate purpose.

In the �rst research issue, to develop the a new criterion for attribute selection, we

have proposed a variant of attribute dependency measure of the probabilistic model of

rough sets [73] in order (1) to overcome the limitations of the original model in case of

noisy data, (2) to make the model more coherent, and (3) to preserve the convenience

of non-parameter. Based on this model, R-measure is developed to measure how much

the class attribute depends on a predictive attribute. Using R-measure as an attribute

selection criterion, an experimental comparative evaluation on 32 datasets shows that it

can be considered as a good alternative criterion for attribute selection. Especially, the

experiment showed that R-measure dealt with noisy data more e�ectively in comparing

to the others.

In the second research issue, we have proposed a new algorithm for rule post-pruning of

decision trees. It can be considered an alternative algorithm for C4.5rules when the input

data become very large. The problem of high complexity in C4.5 is solved by adopting

90

an incremental pruning scheme. However the algorithm does not su�er the problem of

hasty generalization such as in the original incremental pruning approach. Experiments

have shown that the new algorithm generates rule sets as accuracy as those of C4.5 but

with far less time of computation.

In the third research issue, we have developed a new technique for visualizing large

decision trees (T2.5D). The technique has several advantages comparing to other tech-

niques: (1) it easily handles decision trees with more than 20000 nodes, and more than

1000 nodes can be displayed together on the screen, (2) it gives the user a clear view of

an active path and an image of the overall structure of the tree at the same time, (3) it

facilitates the tree navigation as only a minimum number of operations (e.g., click, scroll,

etc.) is needed.

Based on the results of those researches we have developed a prototype of a decision

tree learning system as a �rst step toward our ultimate purpose|an integrated decision

tree learning system for data mining. The R-measure is used for attribute selection,

CABROrule is used for generating rules, and decision trees are visualized with T2.5D.

The program has been tested successfully with several large and complex datasets.

For the future work, we would like to continue our research on DTL for datamining.

How DTL can deal e�ectively with data with more complex structures, such as preference,

time, and image data is still an open problem. The predictive accuracy of CABROrule can

be further improved by applying more sophisticated approach to post-processing of rule

sets. A rule learning algorithm with linear time complexity may be the next interesting

target. Ultimately, we will try to build an integrated DTL system that can be apply to

real problems in datamining.

91

Bibliography

[1] Aha, D., Kibler, D. & Albert, M. (1991). Instance-based learning algorithms.Machine

Learning, 6(1), 37-66.

[2] Almuallim, H. (1996). An EÆcient Algorithm for Optimal Pruning of Decision Trees.

Arti�cial Intelligence, 83(2), 347{362.

[3] Alonso, F., Mate, L., Juristo, N., Munoz, P.L., & Pazos, J. (1994). Applying Metrics

to Machine-Learning Tools, AI Magazine, Fall 1994, 63{75.

[4] Ankerst, M., Elsen, C., Ester, M., & Kriegel, H. P. (1999). Visual Classi�cation:

An Interactive Approach to Decision Tree Construction. Proceedings of Fifth Inter.

Conf. on Knowledge Discovery and Data Mining, 392{397.

[5] Araki, D. & Kojima, S. (1992). Inductive Decision Tree Learning From Numerical

Data. Journal of Japanese Society for Arti�cial Intelligence, 7(6), 992{1000.

[6] Agresti, A. (1990). Categorical Data Analysis. New York: John Wiley & Sons.

[7] Bergadano, F. & Gunetti, D. (1993). An interactive system to learn functional logic

programs. In Bajcsy, R. (Ed.), Proceedings of the 13th International Joint Conference

on Arti�cial Intelligence, 1044-1049.

[8] Bohanec, M. & Bratko, I. (1994). Trading accuracy for simplicity in decision trees.

Machine Learning, 15(3), 223{250.

[9] Breiman, L., Friedman, Jb. H., Olshen, R. A., & Stone, C. J. (1984). Classi�cation

and Regression Trees. Belmont, California: Wadsworth.

[10] Brodley, C. E. & Utgo�, P. E. (1995). Multivariate Decision Trees.Machine Learning,

19(1), 45{77.

92

[11] Brunk, C. A. & Pazzani, M. J. (1991). An Investigation of Noise-Tolerant Relational

Concept Learning Algorithms. Proceedings of the 8th International Workshop on

Machine Learning, 389{393.

[12] Brunk, C., Kelly, J., & Kohavi, R. (1997). MineSet: An Integrated System for Data

Mining. Proceedings of Third Inter. Conf. on Knowledge Discovery and Data Mining

135{138.

[13] Buntine, W. & Niblett, T. (1992). A Further Comparison of Splitting Rules for

Decision Tree Induction. Machine Learning, 8(1), 75{86.

[14] Cestnik, B., Kononenko, I., & Bratko, I. (1987). ASSISTANT 86: A Knowledge-

Elicitation Tool for Sophisticated Users. In Bratko, I. & Lavrac, N. (Eds.), Progress

in Machine Learning (pp. 31{45). Bled, Slovenia: Sigma Press, Wilmslow, UK.

[15] Cohen, W. W. (1993). EÆcient Pruning Methods for Separate-and-Conquer Rule

Learning Systems. Proceeding of the 13th International Joint Conference on Arti�cial

Intelligence, 988{995.

[16] Cohen, W. W. (1995). Fast E�ective Rule Induction. In Prieditis, A. & Russell, S.

(Eds.), Proceedings of the 12th International Conference on Machine Learning (pp.

115{123). Tahoe City, California: Morgan Kaufmann, San Francisco, CA.

[17] Clark, P. & Niblett, T. (1989). The CN2 Induction Algorithm. Machine Learning, 3

261{283.

[18] Dzeroski, S. & Bratko, I. (1992). Handling Noise in Inductive Logic Programming. In

Proceedings of the International Workshop on Inductive Logic Programming, Tokyo,

Japan.

[19] Dietterich, T.G. (1996). Statistical Tests for Comparing Supervised Classi�cation

Learning Algorithms, Technical Report, Dept. of Computer Science, Oregon State

University.

[20] Domslak, C., Gershkovich, D., Gudes, E., Liusternik, N., Meisels, A., Rosen, T.,

& Shimony, S.E., (1998). FlexiMine - A Flexible Platform for KDD Research and

93

Application Construction, Proceedings 4th Inter. Conf. on Knowledge Discovery and

Data Mining KDD'98, 184{188.

[21] Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and Unsupervised Dis-

cretization of Continuous Features, in Proceedings 12th International Conference on

Machine Learning, 194{202.

[22] Fayyad, U. M. & Irani K .B. (1992). On the Handling of Continuous-Valued At-

tributes in Decision Tree Generation, Machine Learning, 8(1), 87{102.

[23] Fayyad, U.M., Piatetsky-Shapiro G., Smyth P. & Uthurusamy R. (1996). From Data

Mining to Knowledge Discovery: An Overview, in U.M. Fayyad et al. (Eds.) Advances

in Knowledge Discovery and Data Mining, 1{36.

[24] Forsyth, R. (1994). Over�tting revisited: an information-theoretic approach to sim-

plifying discrimination trees. Journal of Experimental & Theoretical Arti�cial Intel-

ligence, 6(3), 289{302.

[25] Frank, E. & Witten, I. H. (1998). Generating Accurate Rule Sets without Global

Optimization. In Shavlik, J. (Ed.), Proceedings of the 15th International Conference

on Machine Learning, 144{151.

[26] Friedman, J. H. (1997). A Recursive Partioning Decision Rule for Non-Parametric

Classi�cation. IEEE Transactions on Computers,404{408.

[27] Furnkranz, J. & Widmer, G. (1994). Incremental Reduced Error Pruning. In Cohen,

W. W. & Hirsh, H. (Eds.), Proceedings of the 11th International Conference on

Machine Learning, 70{77.

[28] . Furnkranz, J. (1994). FOSSIL: A Robust Relational Learner. In Bergadano, F. & De

Raedt, L. (Eds.), Proceedings of the 7th European Conference on Machine Learning

(ECML-94), Vol. 784 of Lecture Notes in Artivicial Intelligence, 122{137

[29] Furnkranz, J. (1997). Pruning Algorithms For Rule Learning. Machine Learning,

27(2), 139{171.

[30] Furnkranz, J. (1999). Separate-and-Conquer Rule Learning. Arti�cial Intelligence

Review, 13(1), 3{54.

94

[31] Furnas, G. W. (1981). The FISHEYE View: A New Look at Structured Files. Bell

Laboratories Technical Memorandum #81-11221-9.

[32] Hand, D. J. (1998). Data Mining: Statistics or More?, The American Statistician,

52(2), 112{118.

[33] Ho, T. B. (1997). \Discovering and Using Knowledge From Unsupervised Data",

Decision Support Systems, 21(1), Elsevier Science, 27{41.

[34] Ho, T. B., (1997). Incremental Conceptual Clustering in the Framework of Galois

Lattices, in Lu, H., Motoda, H., & Luu, H. (Eds.), KDD: Techniques and Applica-

tions, World Scienti�c, 49{64.

[35] Ho, T. B., (1997). Unsupervised Concept Learning Using Rough Concept Analysis, in

C. Hayashi et al. (Eds.) Data Science, Classi�cation and Related Methods, Springer,

404{411.,

[36] Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., & Zanasi, A., (1998). Discovering

Data Mining. From Concept to Implementation, Prentice Hall.

[37] Han, J., & Kamber, M. (2001). Data Mining: Concepts and Techniques. Academic

Press.

[38] Herman, I., Delest, M., & Melancon, G. (1998). Tree Visualization and Navigation

Clues for Information Visualization. Centrum voor Wiskunde en Informatica (CWI),

202{216.

[39] Ho, T. B., Nguyen, T. D., & Nguyen, N. B. (1999). Comparative Experimental Eval-

uation of Two Learning Systems CABRO and OSHAM Using the Common Med-

ical Data, Proceedings 42th SIG-KBS Symposium on Comparison and Evaluation

of Knowledge Discovery Methods Using A Common Dataset, Japanese Society for

Arti�cial Intelligence, 83{88.

[40] Hunt, E. B., Marin, J., & Stone, P. J. (1966). Experiments in Induction, Academic

Press.

95

[41] Johnson, B. & Shneiderman, B. (1991). Treemaps: A Space-Filling Approach to the

Visualization of Hierarchical Information Structures. Proceedings of IEEE Informa-

tion Visualization, 275{282.

[42] Jordan, M. I. (Ed.). (1999). Learning in Graphical Models. MIT Press.

[43] Jun, B.H., Kim, C.S., & Kim, J. (1997). A New Criterionin Selection and Discretiza-

tion of Attributes for the Generation of Decision Trees. IEEE Transaction on Pattern

Analysis and MAchine Intelligence, 19(12), 1371{1375.

[44] Kalkanis, G. (1993). The Application of Con�dence Interval Error Analysis to the

Design of Decision Tree Classi�ers. Pattern Recognition Letters, 14(5), 355{361.

[45] Kearns, M. (1996). A Bound on the Error of Cross-Validation Using the Approxima-

tion and Estimation Rates, with Consequences for the Training-test Split. In Touret-

zky, D. S., Mozer, M. C. & Hasselmo, M. E. (Eds.), Advances in Neural Information

Processing Systems 8, MIT Press, 183{189.

[46] Kervahut, T. & Potvin, J.Y. (1996). An Interactive-Graphic Environment for Auto-

matic Generation of Decision Trees, Decision Support Systems, 18, 117{134.

[47] Kohavi, R.A. (1995). Study of Cross-Validation and Bootstrap for Accuracy Estima-

tion and Model Selection, Proceedings International Joint Conference on Arti�cial

Intelligence IJCAI'95, 1137{1143.

[48] Kohavi, R. (1995b). Wrappers for Performance Enhancements and Oblivious Deci-

sion Graphs. PhD thesis, Stanford University, Department of Computer Science.

[49] Kohavi, R., Sommer�eld D., & Dougherty J., (1997). Data Mining using MLC++,

a Machine Learning Library in C++. International Journal of Arti�cial Intelligence

Tools, 6(4), 537{566.

[50] Kononenko, I., Bratko, I., & Roskar, E. (1984). Experiments in Automatic Learning

of Medical Diagnostic Rules (Technical report). Jozef Stefan Institute, Ljubljana,

Yugoslavia.

96

[51] Kumar, H. P., Plaisant, C., & Shneiderman, B. (1997). Browsing Hierarchical Data

with Multi-level Dynamic Queries and Pruning. International Journal of Human-

Computer Studies, 46(1), 103{124.

[52] Langley, P. & Simon, H.A. (1995). Applications of Machine Learning and Rule In-

duction, Communications of the ACM, 38(11), 55{64.

[53] Lamping, J. & Rao, R. (1997). The Hyperbolic Browser: A Focus + Context Tech-

niques for Visualizing Large Hierarchies. Journal of Visual Languages and Comput-

ing, 7(1), 33{55.

[54] Lee, H. Y., Ong, H. L., & Quek, L. H. (1995). Exploiting Visualization in Knowledge

Discovery. Proceedings of First International Conference on Knowledge Discovery

and Data Mining, 198{203.

[55] Lim, T., Loh, W., & Shih, Y. (2000). An Empirical Comparison of Prediction Ac-

curacy, Complexity, and Traning TIme of Thirty-Three Old and New Classi�cation

Algorithms. Machine Learning, 40(3), 203{230.

[56] Liu, W. Z. & White, A. P. (1994). The Importance of Attribute Selection Measures

in Decision Tree Induction. Machine Learning, 15, 25{41.

[57] Malerba, D., Floriana, E., & Semeraro, G. (1995). A Further Comparison of Simpli�-

cation Methods for Decision Tree Induction. In D. Fisher & H. Lenz (Eds.), Learning

from data: AI and statistics. Springer-Verlag.

[58] L�opez de Mantaras, R. (1991). A Distance-Based Attribute Selection Measure for

Decision Tree Induction, Machine Learning, 6(1),81{92.

[59] Mehta, M., Rissanen, J. & Agrawal, R. (1995). MDL-Based Decision Tree Pruning.

In Fayyad, U. M. & Uthurusamy, R. (Eds.), Proceedings of the 1st International

Conference on Knowledge Discovery and Data Mining, AAAI Press, 216{221.

[60] Michalski, R. & Chilausky, R. (1980). Learning by Being Told and Learning from

Examples: An Experimental Comparison of the Two Methods of Knowledge Acqui-

sition in the Context of Developing an Expert System for Soybean Disease Diagnosis.

International Journal of Policy Analysis and Information Systems, 4(2).

97

[61] Michalski, R. S., Mozetic, I., Hong, J., & Lavrac, N. (1986). The Multi-Purpose

Incremental Learning System AQ15 and Its Testing Application to Three Medical

Domains. In Proceedings of the 5th National Conference on Arti�cial Intelligence,

1041-1045.

[62] Mitchell, T.M. (1997) Machine Learning, McGraw-Hill.

[63] Mingers,, J. (1987). Expert systems|rule induction with statistical data. Journal of

the Operational Research Society, 38, 39{47.

[64] Mingers, J. (1988). An Empirical Comparison of Selection Measures for Decision-Tree

Induction. Machine Learning, 3(4), 319{342.

[65] Mingers, J. (1989). An Empirical Comparison of Pruning Methods for Decision Tree

Induction. Machine Learning, 4(2), 227{243.

[66] Muggleton, S., H., (1995). Inverse Entailment and Progol. New generation Comput-

ing, 13(3,4), 245-286.

[67] Murphy, P. M., & Aha, D. W. (1994). UCI Repository of Machine Learning

Databases. Irvine, CA: University of California, Department of Information and Com-

puter Science.

[68] Nakamura, A., Tsumoto, S., Tanaka, H., & Kobayashi, S. (1996). Rough Set Theory

and Its Applications, Journal of Japanese Society for Arti�cial Intelligence, 11(2),

35{41.

[69] Van Mechelen, I., Hampton, J., Michalski, R. S., Theuns, P., (1993). Categories and

Concepts. Theoretical Views and Inductive Data Analysis, Academic Press.

[70] Nguyen, D. T., Ho, T. B. (1999). An Interactive-Graphic System for Decision Tree

Induction. Journal of Japanese Society for Arti�cial Intelligence, 14, 131{138.

[71] Niblett, T. (1987). Constructing Decision Trees in Noisy Domains. In Bratko, I. &

Lavrac, N. (Eds.), Progress in Machine Learning,Sigma Press, 67{78.

[72] Pagallo, G. & Haussler, D. (1990). Boolean Feature Discovery in Empirical Learning.

Machine Learning, 5, 71{99.

98

[73] Pawlak, Z., Wong, S. K. M., & Ziarko, W. (1988). Rough Sets, Probabilistic versus

Deterministic Approach. International Journal of Man-Machine Studies, 29, 81{95.

[74] Pawlak, Z. (1991). Rough sets: Theoretical Aspects of Reasoning About Data, Kluwer

Academic Publishers.

[75] Plaisant, C., Carr, D., & Shneiderman, B, (1995). Image Browser Taxonomy and

Guidelines for Designers. IEEE Software, 12, 21{32.

[76] Pompe, U., Kovacic, M., & Knononenko, I. (1993). SFOIL: Stochastic Approach to

Inductive Logic Programming. In Proceedings of the 2nd Slovenian Conference on

Electrical Engineering and Computer Science (ERK-93), Vol. B, 189-192.

[77] Quinlan, J. R. (1979). Discovering Rules by Induction from Large Collections of Ex-

amples. In D. Michie (Eds.), Expert Systems in the Micro Electronic Age. Edinburgh:

Edinburgh University Press.

[78] Quinlan, J. R. (1983). Learning EÆcient Classi�cation Procedures and Their Appli-

cation to Chess End Games. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell

(Eds.), Machine Learning: An Arti�cial Intelligence Approach. Morgan Kaufmann.

[79] Quinlan, J. R. (1986). Induction of Decision Trees, Machine Learning, 1, 81{96.

[80] Quinlan, J. R. (1987a). Simplifying decision trees. International Journal of Man-

Machine Studies, 27(3), 221{234.

[81] Quinlan, J. R. & Rivest, R. (1989). Inferring Decision Trees Using the Minimum

Description Length Principle. Information and Computation, 80(3), 227{248.

[82] Quinlan, J. R. (1990). Learning Logical De�nitions from Relations. Machine Learn-

ing, 5, 239{266.

[83] Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Los Altos, Morgan

Kaufmann.

[84] Quinlan, J. R. (1996). Improved Use of Continuous Attributes in C4.5. Journal of

Arti�cial Intelligence, 4, 77{90.

99

[85] Oates, T. & Jensen, D. (1998). Large Datasets lead to Overly Complex Models:

an Explanation and a Solution. In Agrawal, R. & Stolorz, P. (Eds.), Proceedings of

the 4th International Conference on Knowledge Discovery and Data Mining, AAAI

Press, 294{298.

[86] Oates, T. & Jensen, D. (1998). Large Datasets Lead to Overly Complex Models:

An Explanation and a Solution. In Agrawal, R. & Stolorz, P. (Eds.), Proceedings of

the 4th International Conference on Knowledge Discovery and Data Mining, AAAI

Press, 294{298.

[87] Rao, J. S., & Potts, W. J. E. (1997). Visualizing Bagged Decision Trees. Proceedings

of Third International Conference on Knowledge Discovery and Data Mining, AAAI

Press, 243{246.

[88] Card, S. K., Mackinlay, J. D., & Shneiderman, B. (1999). Readings in Information

Visualization, Morgan Kaufmann.

[89] Rissanen, J. (1978). Modeling by Shortest Data Description. Automatica, 14, 465{

471.

[90] Rivest, R. L. (1987). Learning Decision Lists. Machine Learning, 2(3), 229{246.

[91] Robertson, G. G., Mackinlay, J. D., & Card, S. K. (1991). Cone Trees: Animated

3D Visualization of Hierarchical Information. Proceedings of the ACM Conference on

Human Factors in Computing Systems, 189{194.

[92] Rumelhart, D. E. & McClelland, J. L. (1986). Parallel Distributed Processing: Ex-

plorations in the Microstructures of Cognition, Vol. 1: Foundations, MIT Press.

[93] Salzberg, S. L. (1995). On Comparing Classi�ers: A Critique of Current Research

and Methods. Technical Report JHU-95/06, Department of Computer Science, Johns

Hopkins Univ.

[94] Scha�er, C. (1993). Selecting a Classi�cation ethod by Cross-Validation, Machine

Learning 13, 135{143.

[95] Scha�er, C. (1993). Over�tting Avoidance as Bias, Machine Learning 10, 153{178.

100

[96] Utgo�, P. E., & Brodley, C. E. (1991). Linear Machine Decision Trees, (COINS

Technical Report 91-10). University of Massachusetts, Amherst, MA.

[97] Theron, H., Cloete, I. (1996). BEXA: A Covering Algorithm for Learning Proposi-

tional Concept Descriptions. Machine Learning, 24, 5-40.

[98] Tsumoto, S. (1999). Information About Clinical Databases on Meningoencephalitis,

Proceedings 42th SIG-KBS Symposium on Comparison and Evaluation of Knowl-

edge Discovery Methods Using A Common Dataset, Japanese Society for Arti�cial

Intelligence, 1{5.

[99] Webb, G., I. (1993). Learning Disjunctive Class Descriptions by Least Generaliza-

tion. (TR C92/9 Technical Report). Deakin University, School of Computing and

Mathematics, Geelong, Australia.

[100] Weiss, S. M. & Indurkhya, N. (1991). Reduced Complexity Rule Induction. In Pro-

ceedings of the 12th International Joint Conference on Arti�cial Intelligence (IJCAI-

91), 678{684.

[101] Wild, C. & Weber, G. (1995). Introduction to Probability and Statistics. University

of Auckland.

[102] Witten, I. H. & Frank, E. (2000). Data Mining: Practical Machine Learning Tools

and Techniques With Java Implementations, Morgan Kaufmann.

[103] Ziarko, W. (1993). Variable Precision Rough Set Model. Journal of Computer and

System Sciences, 46, 39{59.

101

Publications

[1] T.D. Nguyen & T. B. Ho: \An Interactive-Graphic System for Decision Tree

Induction", Journal of Japanese Society for Arti�cial Intelligence, Vol. 14, N. 1,

1999, 131-138.

[2] T.D. Nguyen, T.B. Ho, & H. Shimodaira: \A Visualization Tool for Interactive

Learning of Large Decision Trees", Proceedings of 12th IEEE International Confer-

ence on Tools With Arti�cial Intelligence, ICTAI 2000, IEEE, November 2000.

[3] T.D. Nguyen, T.B. Ho, & H. Shimodaira: \A Scalable Algorithm for Rule Post-

Pruning of Large Decision Trees", Proceedings of 5th Paci�c-Asaia Conference,

PAKDD 20001.

[4] T.D. Nguyen, T.B. Ho, & H. Shimodaira: \Interactive Visualization in Min-

ing Large Decisions", 4th Paci�c-Asaia Conference, PAKDD 2000, Kyoto, Appril

2000,Lecture Notes in Arti�cial Intelligence 1805, Springer, April 2000, 345-348.

[5] T.B. Ho, T.D. Nguyen, H. Shimodaira, M. Kimura, & N.B., Nguyen: "A knowl-

edge discovery system with focus on model selection and visualization", (submitted

to Applied Intelligence).

[6] T.B. Ho, T.D. Nguyen, & N.B. Nguyen: "An Agent-based Architecture in Knowl-

edge Discovery and Data Mining", 1st Paci�c-Asia Conference Intelligent Agent

Technology, Hongkong, December 1999, World Scienti�c, 259-263.

[7] T.B. Ho & T.D. Nguyen: \Integrating Human Factors With An Concept For-

mation Process", Proceedings 6th International Conference on Human-Computer

Interaction, Yokohama, July 1995, 74.

102

[8] T.B. Ho, T.D. Nguyen, & M. Kimura: \Induction of Decision Trees Using Rough

Sets", Proceedings Fifth Conference of the International Federation of Classi�cation

Societies IFCS'96, Kobe, March 1996, 148-151. Revised version \Induction of De-

cision Trees Based on the Rough Set Theory" published in the book Data Science,

Classi�cation and Related Methods, C. Hayashi et al. (Eds.) Springer-Verlag Tokyo,

June 1997.

[9] T.B. Ho & T.D. Nguyen: "Evaluation of Attribute Selection Measures in Decision

Tree Induction", Proceedings 9th International Conference on Industrial Engineering

Applications of Arti�cial Intelligence Expert Systems, Fukuoka, June 1996, Gordon

and Breach Publisher, 413-418.

[10] T.B. Ho, T.D. Nguyen, H. Shimodaira, & M. Kimura: \An Interactive-Graphic

Environment for Discovering and Using Conceptual Knowledge", Proceedings 7th

European-Japanese Conference on Information Modelling and Knowledge Bases,

Toulouse, May 1997, 327-343. Information Modelling and Knowledge Bases IX,

IOS Press.

[11] T.B. Ho & T.D. Nguyen: \Interactive Visualisation for Predictive Modelling with

Decision Tree Induction", Lecture Notes in Arti�cial Intelligence: Principle of Data

Mining and Knowledge Discovery, Second European Symposium, PKDD'98, Sep

1998, Springer, 158-166.

103

