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Discounting and Combination Scheme in
Evidence Theory for Dealing with Conflict in

Information Fusion?

Van-Nam Huynh
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Japan Advanced Institute of Science and Technology

Nomi, Ishikawa, 923-1292, JAPAN
Email: huynh@jaist.ac.jp

Abstract. Recently combination rules as well as the issue of conflict
management in Dempster-Shafer theory have received considerable at-
tention in information fusion research. Mostly these studies considered
the combined mass assigned to the empty set as the conflict and have
tried to provide alternatives to Dempster’s rule of combination, which
mainly differ in the way of how to manage the conflict. In this paper,
we introduce a hybrid measure to judge the difference between two bod-
ies of evidence as a basis for conflict analysis, and argue that using the
combined mass assigned to the empty set as a whole to quantify conflict
seems inappropriate. We then propose to use the discounting operator in
association with the combination operator to resolve conflict when com-
bining evidence, in which the discount rate of a basic probability assign-
ment is defined using the entropy of its corresponding pignistic probabil-
ity function. Finally, an application of this discounting and combination
scheme to fusion of decisions in classifier combination is demonstrated.

1 Introduction

The Dempster-Shafer theory of evidence (D-S theory, for short), originated from
the work by Dempster [6] and then developed by Shafer [32], has appeared as one
of the most popular theories for modeling and reasoning with uncertainty and
imprecision in intelligent systems. In the D-S theory, Dempster’s rule of com-
bination plays a pivotal role serving as a powerful tool for combining evidence
from distinct sources of information. According to Dempster’s rule [32], the com-
bined mass assigned to the empty set considered as the conflict is distributed
proportionally to the other masses. Critically, Zadeh [41] presented an example
showing that applying Dempster’s rule to conflicting evidence yields counterin-
tuitive results. After Zadeh’s example, many alternatives have been proposed in
the literature, most notably Smets’ unnormalized combination rule [33], Yager’s
combination rule [39], Dubois and Prade’s disjunctive combination rule [10].
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Lefevre et al. [21] have proposed a generic framework for evidence combination
which provides a flexible way of distributing the conflict, i.e. the combined mass
assigned to the empty set, among subsets of the frame of discernment and allows
Dempster’s rule as well as the three just mentioned rules of combination to be
retrieved within the framework. Recently, motivated by the practical difficulty of
verifying the distinctness assumption imposed on combined sources of evidence,
Denoeux [9] has proposed two new rules of combination, namely the cautious
conjunctive rule and its dual bold disjunctive rule, which are suggested to be suit-
able for combining belief functions from possibly overlapping bodies of evidence.
Although there have been a numerous number of combination rules developed
so far, Dempster’s rule of combination [32] together with its unnormalized ver-
sion [33] have been well justified theoretically and have greatly dominated the
other rules in information fusion applications, e.g., [2, 3, 5, 8, 7, 19, 31, 38].

In most previous studies on conflict management, it is mainly assumed that
the conflict is identified by using the combined mass assigned to the empty set
before normalization, denoted by m⊕(∅), and the thinking of how to manage
this mass has basically raised interesting ideas for developing alternatives such
as in [13, 21, 39]. Recently, Liu [26] has argued that the use of m⊕(∅) alone to
quantify the conflict might lead to a wrong claim when considering what combi-
nation rule would be appropriate for combining conflicting evidence. Instead, Liu
proposed to use a pair of quantitative measures, the combined mass allocated
to the empty set before normalization, i.e. m⊕(∅), and the so-called distance
between betting commitments, to justify when two pieces of evidence are in
conflict. This formal definition of conflict can be served as a prerequisite for se-
lecting appropriate combination rules [26]. Smets [36] has eventually provided a
throughout examination of perhaps all existing combination rules and proposed
an expert system approach for resolving conflict in evidence combination.

Note that the difference between two distinct bodies of evidence may be not
only due to the conflict between two sources of evidence but also due to the
complement of each other. For example, different sensors observe an object from
different angles may provide different but complementary evidence about it. Al-
though disjunctive consensus rules proposed in the literature such as Dubois
and Prade’s disjunctive combination rule [10] may be properly applied for com-
bining complementary sources of evidence, the issue of detection of complement
between combined bodies of evidence has been completely ignored so far. In the
following of this paper, we first introduce a hybrid measure consisting of two
components, the quantitative distance between two mass assignments and the
qualitative distance between two families of focal sets, to judge the difference
between two bodies of evidence. This hybrid measure can be used as a basis
for conflict and complement analysis later on. We then argue that only a part
of m⊕(∅) reflecting the conflict whilst the remainder representing the mass of
uncommitted belief as a result of combination.

On the other hand, observing from the previous studies on the conflict anal-
ysis which mostly cited Zadeh’s famous counterexample [41] to criticize Demp-
ster’s rule, we can see that ones assumed combined sources of evidence are still
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fully reliable to be combined even a large conflict has been identified between
them. Naturally, once realized that there is a conflict between sources of evi-
dence, one should behave as if at least one of the sources would be not fully
reliable. This issue has been critically discussed by Haenni in [23, 24]. One of
reasonable solutions to tackle such situations is to use discounting operator in
association with combination [24, 30]. A problem naturally arises here is how to
determine which source of evidence is not fully reliable and to what discount rate
it should be applied. Haenni [24] and Smets [36] suggested to use a meta-belief
structure on combined sources of evidence for modeling this problem. However,
it seems practically difficult to obtain such a meta-belief especially in informa-
tion fusion for pattern recognition applications. In this paper, motivated from
Smets’ two-level model of belief [34], we propose to define the discount rate of
a basic probability assignment based on how sure its commitment is if we use it
alone for decision making. More particularly, the discount rate applied to a body
of evidence is defined using the entropy of its corresponding pignistic probability
function and intuitively, the more committed a basic probability assignment is,
the lower discount rate it is applied.

The rest of this paper is organized as follows. In Section 2, we recall neces-
sary concepts in the D-S theory. Section 3 devotes to the analysis of conflict and
difference between two bodies of evidence. We particularly ague that the con-
ventional view of m⊕(∅) as a whole to reflect conflict may be inappropriate. In
Section 4, we propose to use the discounting and combination scheme for resolv-
ing conflict when combining evidence. Section 5 then illustrates an application of
this scheme to ensemble learning for the problem of word sense disambiguation.
Finally, some conclusions are presented in Section 6.

2 Basic of Dempster-Shafer Theory of Evidence

In the D-S theory [32], a problem domain is represented by a finite set Θ of mutu-
ally exclusive and exhaustive hypotheses, called frame of discernment. An impor-
tant concept of the theory is the so-called basic probability assignment (BPA,
for short), also called mass function or basic belief assignment (Smets [34]),
m : 2Θ → [0, 1] satisfying

m(∅) = 0, and
∑
A∈2Θ

m(A) = 1

The quantity m(A) can be interpreted as a measure of the belief that is com-
mitted exactly to A, given the available evidence. Note that the condition of
m(∅) = 0 corresponding to the “closed-world assumption” is not required in the
Transferable Belief Model (TBM) introduced by Smets [33]. A subset A ∈ 2Θ

with m(A) > 0 is called a focal element of m. A BPA m is called to be vacuous
if m(Θ) = 1 and m(A) = 0 for all A 6= Θ.

Let us denote Fm the set of focal elements of m, i.e.

Fm = {A ∈ 2Θ|m(A) > 0}
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Union of all elements in Fm defines the core of m and the pair B = (Fm,m) is
called a body of evidence (BOE).

Two useful operations that especially play an important role in the eviden-
tial reasoning are discounting and Dempster’s rule of combination [32]. The dis-
counting operation is used when a source of information provides a BPA m, but
knowing that this source has probability α of reliability. Then one may adopt
(1− α) as one’s discount rate, resulting in a new BPA mα defined by

mα(A) = α×m(A), for any A ⊂ Θ (1)
mα(Θ) = (1− α) + α×m(Θ) (2)

Consider now two pieces of evidence on the same frame Θ represented by two
BPAs m1 and m2. Dempster’s rule of combination is then used to generate a
new BPA, denoted by m⊕ = (m1 ⊕m2) (also called the orthogonal sum of m1

and m2), which is defined, for any A ∈ 2Θ \ ∅, as follows

m⊕(A) =

∑
B∩C=A

m1(B)m2(C)

1−
∑

B∩C=∅
m1(B)m2(C)

(3)

where ∑
B∩C=∅

m1(B)m2(C)
4
= m⊕(∅) (4)

is the combined mass assigned to the empty set before normalization. Note that
the orthogonal sum combination is only applicable to such two BPAs that verify
the condition m⊕(∅) < 1.

According to Smets’ two-level view in TBM [34], when a decision needs to
be made, a BPA m encoded the available evidence must be transformed into a
so-called pignistic probability function BetPm : Θ → [0, 1] defined by

BetPm(θ) =
∑

A⊆Θ,θ∈A

m(A)
|A|

(5)

where |A| is the cardinality of A. A justification for the necessity of the pignistic
transformation in TBM framework is provided in [35]. Here we assume, however,
to work under the closed-world assumption, i.e. m(∅) = 0.

3 Conflict and Difference Between Two BOEs

3.1 Conflict Revisited

In the research community of Dempster-Shafer theory, the mass associated with
m⊕(∅) when combining two bodies of evidence with Dempster’s rule has long
been commonly taken as the only quantity indicating the conflict between two
sources of information. The extreme case of fully conflict appears when m⊕(∅) =
1. Recently, Liu [26] argued that value m⊕(∅) cannot be used as a quantitative
measure of conflict between two bodies of evidence but only represents the mass
of uncommitted belief as a result of combination.



5

Example 1. Let us consider Liu’s example of two identical BPAs m1 = m2 on
frame Θ = {θ1, θ2, θ3, θ4, θ5} and m1(θi) = 0.2 for i = 1, ..., 5. Then we get
m⊕(∅) = 0.8, which is quite high whilst it appears the total absence of conflict
as two BPAs are identical.

More generally, we always get m⊕(∅) > 0 with two identical BPAs whenever
their focal elements define a partition of the frame. Simultaneously, Liu also
proposes to use an addition criterion based on the difference between the pig-
nistic probabilities together with value m⊕(∅) for judging whether two bodies of
evidence are in conflict. Formally, two BPAs m1 and m2 are said to be in conflict
if and only if

m⊕(∅) > ε and difBetP(m1,m2) > ε (6)

where ε ∈ [0, 1] is a threshold of conflict tolerance and difBetP(m1,m2) is defined
by

difBetP(m1,m2) = max
A⊆Θ

(|BetPm1(A)−BetPm2(A)|)

and called the distance between betting commitments of the two BPAs [26].
Basically, by the conclusion that “value m⊕(∅) cannot be used as a quanti-

tative measure of conflict between two beliefs, contrary to what has long been
taken as a fact in the Dempster-Shafer theory community.” ([26], page 913) Liu
tries to look into an addition criterion, namely difBetP(m1,m2), in order to
use in association with value m⊕(∅) for revealing the relationship between two
BPAs.

Let us consider the following example.

Example 2. Suppose that we have the following pair of BPAs on the same frame
Θ = {θi|i = 1, . . . , 7}

m1({θ1, θ2, θ3, θ4}) = 1; and m2({θ4, θ5, θ6, θ7}) = 1

Then, combining these two BPAs produces m⊕(∅) = 0. That is, in the qualitative
view of conflict defined by Liu [26], they do not contradict with each other, or in
other words these two BPAs are not in conflict at all. However, using the second
criterion we easily get difBetP(m1,m2) = 0.75.

In this example, note that m1 and m2 have assigned, by definition, the total
mass exactly to {θ1, θ2, θ3, θ4} and {θ4, θ5, θ6, θ7}, respectively, and to none of
the proper subsets of them. So intuitively these two BPAs are partly in con-
flict. Clearly, such a partial conflict does not be judged by means of m⊕(∅) but
difBetP(m1,m2) as shown above. However, they are not in conflict in the sense
of (6).

On the other hand, in some information fusion situations, evidence come
from different sources may offer complementary information each other but not
only being in conflict.

Example 3. Consider the following two BPAs on the frame Θ = {θ1, θ2, θ3, θ4}

m1({θ1, θ2}) = 0.4, m1(Θ) = 0.6
m2({θ3, θ4}) = 0.6, m2(Θ) = 0.4
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That is, while the event {θ1, θ2} is observable from the first source and becomes
unseen from the second one, its complementary event {θ3, θ4} is vice versa. The
masses assigned to these events are based on available evidence of correspond-
ing sources, and the unassigned masses are attributed to the whole frame due
to ignorance. Intuitively, these two sources of evidence provide complementary
information each other rather than they are in conflict. However, we obtain

m⊕(∅) = 0.24, and difBetP(m1,m2) = 0.4

which allows us, in light of Liu’s definition above, to conclude that two BPAs
are in conflict to some extent.

The above observations suggest that taking m⊕(∅) as a whole for identifying the
conflict seems inappropriate, except the extreme case of fully conflict, i.e. when
m⊕(∅) = 1. In the following subsection, we propose a more direct approach to
judging the difference between two bodies of evidence, which then together with
value m⊕(∅) can serve for conflict analysis. In the other words, we need to look
at the difference between two bodies of evidence before using value m⊕(∅) for
analyzing conflict.

3.2 Difference Between Two BOEs

Let B1 = (Fm1 ,m1) and B2 = (Fm2 ,m2) be two bodies of evidence on the same
frame Θ derived from two distinct sources of information. We first directly define
the distance between two BPAs m1 and m2, denoted by d(m1,m2), as follows

d(m1,m2) = max
A⊆Θ

(|m1(A)−m2(A)|) (7)

Obviously, d(m1,m2) = 0 if and only if m1 = m2. This distance is considered as
a quantitative measure for judging the difference between two bodies of evidence
B1 and B2. Now let us denote difF (m1,m2) the symmetric difference between
two families of focal elements Fm1 and Fm2 , i.e.

difF (m1,m2) = (Fm1 \ Fm2) ∪ (Fm2 \ Fm1) (8)

It is easily seen that if difF (m1,m2) = Fm1 ∪ Fm2 , and A ∩ B = ∅ for any
A ∈ Fm1 and B ∈ Fm2 , then m⊕(∅) = 1, which corresponds to the extreme
case of fully conflict mentioned above. If difF (m1,m2) = ∅ and d(m1,m2) > 0,
then qualitatively two sources are not in conflict but having different prefer-
ences in distributing their masses to focal elements. This qualitative measure
difF (m1,m2) allows us to see how different between two sources in realization
of the question of where the true hypothesis lies.

Let us denote

dif(B1,B2) = 〈d(m1,m2),difF (m1,m2)〉 (9)

and call it the difference measure of two bodies of evidence. It is clearly that
the conflict between two bodies of evidence originates from either or both of
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d(m1,m2) (quantitative) and difF (m1,m2) (qualitative). Actually, Liu’s crite-
rion of using difBetP(m1,m2) is somewhat weaker than using the direct distance
of d(m1,m2). For example, consider the pair of BPAs given in Example 2 we have
d(m1,m2) = 1 whilst difBetP(m1,m2) = 0.75. Note further that if m1 = m2 we
have difBetP(m1,m2) = 0 but the reverse does not hold in general.

We now argue that only a part of value m⊕(∅) should be used to quantify a
conflict qualitatively stemming from difF (m1,m2). Let

mcomb
⊕ (∅) =

∑
A,B∈F1∩F2,A∩B=∅

m1(A)m2(B) (10)

Clearly, mcomb
⊕ (∅) is a part of m⊕(∅) and intuitively representing the mass of

uncommitted belief as a result of combination rather than a conflict, which,
however, may be properly represented by the remainder of m⊕(∅), i.e.

m⊕(∅)−mcomb
⊕ (∅) 4= mconf

⊕ (∅) (11)

Interestingly enough, with this formulation of conflict, the fact used to question
the validity of Dempster’s rule that two identical probability measures are always
conflicting becomes inappropriate.

Example 4. Consider again two BPAs considered in Example 1, which are identi-
cal. Then we get mcomb

⊕ (∅) = 0.8 and mconf
⊕ (∅) = 0, and hence no conflict appears

between the two sources at all. Generally, we always get mconf
⊕ (∅) = 0 whenever

two BPAs being combined are identical. Now, looking at Zadeh’s famous coun-
terexample with two BPAs m1 and m2 defined on Θ = {a, b, c} as: m1(a) = 0.99,
m1(b) = 0.01 and m2(c) = 0.99, m2(b) = 0.01, we have mconf

⊕ (∅) = 0.98, which
accurately reflects a very high conflict between two BPAs. With such a high
conflict but still assuming both sources are fully reliable to proceed with di-
rectly applying Demspter’s rule on them (to get unsatisfactory results) seems
irrational.

Intuitively, the information from dif(B1,B2) and mconf
⊕ (∅) may properly provide

helpful suggestions for conflict management on selecting appropriate combina-
tion rules in some typical situations.

– If difF (m1,m2) = F1∪F2 and A∩B = ∅ for any A ∈ Fm1 and B ∈ Fm2 , we
havemconf

⊕ (∅) = 1 and two sources are fully conflict. In this case a discounting
and then combination strategy should be applied, where different attitudes
may suggest different combination rules for use.

– If difF (m1,m2) = ∅ and d(m1,m2) > 0, we have mconf
⊕ (∅) = 0 and two

sources qualitatively are not in conflict but having different beliefs attributed
to focal elements. In this situation, a compromise attitude may suggest to
use the trade-off rule [10], or its special case of averaging operator.

– If difF (m1,m2) 6= ∅, then we have d(m1,m2) > 0. In this situation, if
m⊕(Θ) = m1(Θ)m2(Θ) > 0 two sources may provide complementary infor-
mation each other as in the case of Example 3 above, and then Dempster’s
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rule can be applied. If m⊕(Θ) = 0, two sources may be in a partial conflict
and then depending on value mconf

⊕ (∅) whether it is tolerated and informa-
tion on meta-belief is available or not, one may apply discounting and then
combination strategy or a disjunctive combination rule.

The issue of justifying whether two bodies of evidence are in conflict plays an
especially important role in selecting alternative combination rules [36]. Thus,
identification of conflict should be analyzed as carefully as possible. An accurate
determination of the origin of conflicts can also help to manage them properly.
In addition, it is our opinion that justifying whether two bodies of evidence are
in complementary each other, which has been ignored so far, also have some
impact in the mentioned selection problem and should be incorporated into the
conflict analysis. Intuitively, the role of value m⊕(Θ) may play for this purpose
in a somehow similar fashion to that of mconf

⊕ (∅) for conflict analysis as roughly
mentioned above; however, this is not a main topic of this paper.

4 Discounting and Combination Scheme

Previously, a common explanation for counterintuitive results yielded by apply-
ing Dempster’s rule of combination is that possible conflicts between different
sources of evidence are mismanaged by Dempster’s rule, and this explanation
has motivated for developing alternatives combination rules, which are mainly
different in the way of managing possible conflicts [24]. Unfortunately, these al-
ternatives are generally not associative, e.g. [10, 21, 39], and thus making them
difficult to be applied in practice. In [23], Haenni also presented a critical note
on the increasing number of possible combination rules.

Once possible conflicts have been identified, we may naturally wonder about
the reliability of different sources of evidence being combined. If a meta-belief
of the sources is available, we can first use the discounting operator for BPAs
envolved and then apply Dempster’s rule to discounted BPAs for combining
them. The idea of using the discounting operator to resolve conflict has already
been suggested in, i.e., [23, 30, 36]. However, in practice such a beta-belief is
not always available, particularly in situations of applying the Dempster-Shafer
theory to, for instance, information fusion in pattern recognition (see, e.g., [2, 3,
19, 29, 38]).

According to Smets’ two-level view of evidence [34], to make decisions based
on evidence, beliefs encoding evidence must be transformed into probabilities
using the so-called pignistic transformation. Guided by this view, we propose to
discount a BPA involving in combination based upon how sure in its decision
when it is used alone for decision making. More particularly, we provide a method
for defining discount rates of BPAs being combined using the entropy of their
corresponding pignistic probability functions.

Let m1 and m2 be two BPAs on the frame Θ and BetPm1 and BetPm2 be
pignistic probability functions of m1 and m2, respectively. For i = 1, 2, we denote

H(mi) = −
∑
θ∈Θ

BetPmi(θ) log2(BetPmi(θ))
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the Shannon entropy expression of pignistic probability distribution BetPmi .
This measure has been used in Jousselme et al. [14] as an ambiguity measure of
belief functions.

Clearly, H(mi) ∈ [0, log2(|Θ|)]. We now define the discount rate of BPA mi

(i = 1, 2), denoted by δ(mi), as follows

δ(mi) =
H(mi)

log2(|Θ|)
(12)

That is, the higher uncertainty (in its decision) a source of evidence is, the
higher discount rate it is applied. Once discount rates have been defined, the
discounting and combination strategy applied to two BPAs m1 and m2 can be
generally formulated in the following form

m⊕ = m
(1−δ(m1))
1 ⊕m(1−δ(m2))

2 (13)

where ⊕ is a combination operator in general and m
(1−δ(mi))
i is the discounted

BPA obtaining from mi after discounting at a rate of δ(mi) [refer to (1)-(2)].
It is of interest to note that if, for example, δ(m1) = 1, i.e. BetPm1 is the uni-

form distribution on Θ or m1 is at the most uncertain in its decision, m(1−δ(m1))
1

becomes a vacuous BPA and then plays no role in combination if Dempster’s
rule is applied. In other words, a decision made using the combined evidence
represented by m then depends on the second source of evidence represented by
m2 only.

As for illustration, this discounting and combination strategy will be ap-
plied for combining multiple classifiers in the following section. Here Dempster’s
rule and averaging operator are used for combination. Thanks to its associa-
tivity, we can develop an efficient algorithm for combining multiple classifiers
with Dempster’s rule, where soft decisions by individual classifiers typically are
represented in forms of probability distributions over the set of possible classes.
Also, although simple in computation, averaging is suggested as providing a good
solution to balance multiple evidence [27].

5 An Illustrative Application

Applying the D-S theory to classifier combination has received attention since
early 1990s, e.g., [2, 3, 29, 38]. In these methods, it is usually assumed that the in-
volved individual classifiers provide fully reliable sources of information for iden-
tifying the label of a particular input pattern, i.e. discounting operator plays no
role there. In this section, we present an illustration for applying the discounting
and combination scheme discussed above to ensemble learning for the problem
of word sense disambiguation (WSD) [12], which has received much interest and
concern since the 1950s and is still one of the most challenging tasks in NLP.

Actually, Le et al. [19] recently have attempted to apply the D-S theory for
weighted combination of classifiers for WSD, in which the weighting is also mod-
eled by the discounting operator. However, their method of defining discounting
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factors for individual classifiers is based on the strength of individual classifiers,
which is determined by testing them on a designed sample data set and there-
fore does not be influenced by an input pattern under classification. Here, in the
context of classification problem, the discounting method discussed above in this
paper provides a new way of adaptively weighting individual classifiers based on
ambiguity measures associated with their outputs corresponding to a particular
pattern under consideration.

5.1 WSD

Roughly speaking, WSD is the task of associating a given word in a text or
discourse with an appropriate sense among numerous possible senses of that
word. This is an “intermediate task” which necessarily accomplishes most natu-
ral language processing tasks such as grammatical analysis and lexicography in
linguistic studies, or machine translation, man-machine communication, message
understanding in language understanding applications [12].

During the last two decades, many machine learning techniques and algo-
rithms have been applied for WSD, including Naive Bayesian (NB) model, de-
cision trees, exemplar-based model, support vector machines (SVM), maximum
entropy models (MEM), etc. [1, 20]. On the other hand, as observed in studies
of classification systems, the set of patterns misclassified by different learning
algorithms would not necessarily overlap [25]. This means that different clas-
sifiers may potentially offer complementary information about patterns to be
classified. This observation highly motivated the interest in combining classifiers
to build an ensemble classifier which would improve the performance of the indi-
vidual classifiers. Particularly, classifier combination for WSD has been received
considerable attention recently from the community as well.

5.2 Individual Classifiers In Combination

To build individual classifiers for combination, we use three well-known statisti-
cal learning methods including the Naive Bayes (NB), Maximum Entropy Model
(MEM), and Support Vector Machines (SVM). The selection of these learning
methods is basically guided by the direct use of output results for defining BPAs
in the present work. Clearly, the first two classifiers produce classified outputs
which are probabilistic in nature. Although a standard SVM classifier does not
provide such probabilistic outputs, the issue of mapping SVM outputs into prob-
abilities has been studied [28] and recently become popular for applications re-
quiring posterior class probabilities [3, 22]. We have used the library implemented
for maximum entropy classification available at [37] for building the MEM clas-
sifier, whilst the SVM classifier is built based upon LIBSVM implemented by
Chang and Lin [4], which has the ability to deal with the multiclass classification
problem and output classified results as posterior class probabilities.

Due to the limitation of page number, the technical detail of these meth-
ods as well as the discounting and combination strategy applied to them is
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omitted here (see [18] for the detail). Informally, the output of individual classi-
fiers is used to define corresponding BPAs. Then we apply the discounting and
combination strategy discussed in Section 4 to these BPAs and the final deci-
sion is made based on the resulted BPA. Two combination rules are applied
in this application, namely Dempster’s rule of combination and averaging. Ac-
cordingly, we develop two algorithms corresponding to these combination rules,
namely discounting-and-orthogonal sum combination algorithm and discounting-
and-averaging combination algorithm, respectively.

5.3 Experimental Results

Test Data. As for evaluation of exercises in automatic WSD, three corpora so-
called Senseval-1, Senseval-2 and Senseval-3 were built during three correspond-
ing workshops held in 1998, 2001, and 2004 respectively. Here, the developed
combination algorithms will be tested on English lexical samples of Senseval-2
and Senseval-3. Currently, these two datasets are widely used in current WSD
studies. The detail of these data sets can be referred to Kilgarriff [15] for Senseval-
2 and to Mihalcea et al. [17] for Senseval-3.

Like Le et al. [19], we use the evaluation method proposed by Melamed and
Resnik in [16], which provides a scoring method for exact matches to fine-grained
senses as well as one for partial matches at a more coarse-grained level. Also,
like most related studies, the fine-grained score is computed in the following
experiments.

Results. Table 1 below provides the experimental results obtained by three
individual classifiers and two combination algorithms developed, where DCA1

and DCA2 stand for the discounting-and-orthogonal sum combination algorithm
and the discounting-and-averaging combination algorithm, respectively. The ob-
tained results show that combined classifiers always outperform individual clas-
sifiers participating in the corresponding combination. It is of interest to see
that the results yielded by the discounting-and-averaging combination algorithm
(i.e., DCA2) are comparable or even better than that given by the discounting-
and-orthogonal sum combination algorithm (i.e., DCA1), while the former is
computational more simple than the latter. Although the averaging operation
was actually mentioned briefly by Shafer [32] for combining belief functions, it
has been almost completely ignored in the studies of information fusion and
particularly classifier combination with D-S theory. Interestingly, Shafer [32] did
show that discounting in fact turns combination into averaging when all the
information sources being combined are highly conflicting and have been suffi-
ciently discounted. This might, intuitively, provide an interpretation for a good
performance of DCA2.

To have a comparative view of obtained results, Table 2 provides compara-
tive results of the developed algorithms with previous studies, namely the best
systems in the contests for the English lexical sample tasks of Senseval-2 [15],
Senseval-3 [17], and the method developed by Le et al. [19]. The best system of
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Table 1. Experimental results

%
Individual Combination

NB MEM SVM DCA1 DCA2

Senseval-2 65.6 65.5 63.5 66.3 66.5

Senseval-3 72.9 72.0 72.5 73.3 73.3

Senseval-2 contest also used a combination technique: the output of subsystems
(classifiers) which were built based on different machine learning algorithms
were merged by using weighted and threshold-based voting and score combi-
nation [40]. The best system of Senseval-3 contest used the Regularized Least
Square Classification (RLSC) algorithm with a correction of the a priori fre-
quencies (for more details, see [11]). This comparative result shows that both
developed combination algorithms deriving from the discounting and combina-
tion scheme yield an improvement in overall accuracy compared to previous work
for WSD in the tests with Senseval-2 and Senseval-3.

Table 2. A comparative result

% Best systems Le [19] DCA1 DCA2

Senseval-2 64.2 64.7 66.3 66.5

Senseval-3 72.9 72.4 73.3 73.3

6 Conclusions

In this paper, we have introduced a difference measure of two bodies of evidence
serving as a basis for conflict analysis in Dempster-Shafer theory. We argued
that the combined mass allocated to the empty set should be divided into two
parts, one part represents the mass of uncommitted belief as a result of com-
bination whilst the other reflects the conflict. Interestingly, this analysis might
help to solve the question of the validity of Dempster’s rule by the fact that two
identical probability measures are always conflicting. We have also proposed the
use of the discounting operator together with the combination operator for re-
solving conflict when combining evidence, in which an entropy-based method for
defining discounting factors was introduced. As for illustrating the applicability
of the proposed discounting and combination scheme, we have also provided an
experimental study in combining multiple classifiers for WSD which produces
better results in comparison to previous related studies.
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