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Abstract

In this thesis, we investigate modal logics semantically by using both algebraic seman-
tics and general Kripke type semantics. We will discuss several topics on modal logic.
Though the topic varies, there is a unique underlying motif through the whole thesis, i.e.
the duality between algebras and frames.

Kripke type semantics for modal logics has made a great success in these years. This
is mainly due to the fact that Kripke type semantics offers us intuitively comprehensible
and easily manageable, mathematical models for modal logics. On the other hand, while
algebraic structures lack these properties, they have one quite important merit which
Kripke type semantics lacks. That is, every modal logic is complete with respect to
algebraic semantics.

To supplement this defect, Kripke type semantics based on general Kripke frames was
introduced. This semantics bridges between original Kripke type semantics and algebraic
semantics. In fact, by the Stone duality, we have a nice correspondence between general
Kripke frames and algebras. Through this duality, it becomes possible to get important
results on general Kripke frames from results on the corresponding class of algebras, which
are obtained by using the fruits of universal algebra.

The first topic of our thesis is pseudo-Euclidean logics. For fixed non-negative integers
m and n, let By be the logic which is obtained from the smallest normal (classical) modal
logic K by adding the axiom OF¢p — OmO"¢p, where k& > 0. We will give a complete
answer to the question when E, O Fj holds.

Second, we discuss intuitionistic modal logics. For Kripke type semantics, we discuss
finite model property of intuitionistic modal logics by filtration method. For algebraic
semantics, we have succeeded to give a description of subdirectly irreducible algebras for
various kinds of modal Heyting algebras. By using the duality theory, this result can be
translated into a result on a description of irreducible (finite) Kripke frames.

Finally, we introduce a new type of products of modal logics, called normal products.
Normal products resemble products familiar to researcher of measure theory and topology,
and are defined as a generalization of products of algebras of sets. Our products of modal
logics can be defined either by means of normal products of general frames, or by means
of normal products of modal algebras. Since our notion of products is based highly on the
duality theory, it has such a nice property as follows; the product of two general frames is
isomorphic to the dual of the product of the corresponding dual algebras. This brought us
a desired effect that the definition of the normal product of modal logics L; and L, is not
affected by the choice of classes of general frames (or, modal algebras) which determine
Ly and L,. Note that this is not the case for usual products of modal logics.

The notion of normal products is quite natural from the view point of duality theory.
Therefore this enables us to extend the notion of products to other logics like intuitionistic
modal logics.
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Chapter 1

Introduction

Our aim in this thesis is to develop a semantical study of modal logic, using both al-
gebraic semantics and general Kripke type semantics. We will discuss several topics on
modal logic, including pseudo-Euclidean logics (Chapters 3), intuitionistic modal logics
(Chapters 4 and 5) and a new type of products of modal logics, called normal products
(Chapter 6 and 7). Though the topic varies in every chapter, there is a unique underlying
motif through the whole thesis, i.e. the duality between algebras and frames.

Kripke type semantics for modal logics has made a great success in these years. This
is mainly due to the fact that Kripke type semantics offers us intuitively comprehensible
and easily manageable, mathematical models for modal logics. On the other hand, while
algebraic structures lack these properties, they have one quite important merit which
Kripke type semantics lacks. That is, every modal logic is complete with respect to
algebraic semantics.

To supplement this defect, Kripke type semantics based on general Kripke frames was
introduced. This semantics bridges between original Kripke type semantics and algebraic
semantics. In fact, by the Stone duality, we have a nice correspondence between general
Kripke frames and algebras. Through this duality, it becomes possible to get important
results on general Kripke frames from results on the corresponding class of algebras, which
are obtained by using the fruits of universal algebra.

For instance, we have succeeded to give a description of subdirectly irreducible algebras
for various kinds of modal Heyting algebras, in Chapter 5. By using the duality theory,
this result can be translated into a result on a description of irreducible (finite) Kripke
frames.

Also, we introduce a new type of products of modal logics in Chapter 6. Since our
notion of products, i.e. normal products, is based highly on the duality theory, it has such
a nice property as follows; the product of two general frames is isomorphic to the dual
of the product of the corresponding dual algebras. In other words, the notion of normal
products is quite natural from the view point of duality theory. This enables us to extend
the notion of products to other logics, like superintuitionistic logics and intuitionistic
modal logics, and obtain similar results about them (see Chapter 7).

The dependencies among chapters are given by the following diagram:



Chapter 2

Chapter 3 Chapter 4 Chapter 5 Chapter 6

Chapter 7

The organization of the thesis is as follows:
In Chapter 2, we will introduce basic idea of algebraic and Kripke-type semantics for
intuitionistic modal logics, and general frame for intuitionistic modal logics.

In Chapter 3, we will consider pseudo-Fuclidean logics Let E}y be the logic which
is obtained from the smallest normal (classical) modal logic K by adding the axiom
Ok — OmO™¢, where k > 0 for fixed non-negative integers m and n. Since each axiom
OFp — O™mO™¢ is a Sahlqvist formula, we can show that the logic Ej, is Kripke complete
for each k. A binary relation R on a set W is k-pseudo-Fuclidean if for any x,y,z € W,
xRFy and 2R™z imply zR"y. Note that when m = n = 1, 1-pseudo-Euclidean relations
are equal to usual Euclidean relations. Let P&, be the class of all Kripke frames of the
form (W, R), where R is a k-pseudo-Euclidean relation on W. Then, it is easy to see that
E}. is Kripke complete with respect to P& and that Ey O Ej if and only if PE, C PEy.
Here, we identify the axiom system £} with the set of all formulas provable in E;. We
will give a complete answer to the question when E; O Ej holds.

Modal logics based on classical logic Cl have been thoroughly investigated. Classical
logic, however, is sometimes considered to be too strong from a view point of computer
science or constructive mathematics. This is a motivation for studying intuitionistic modal
logics, i.e., modal logics based on intuitionistic logic Int. In intuitionistic modal logics
the necessity operator O and the possibility operator <& are not necessarily considered to
be dual. In other words, we do not always assume that Op < =O-p and Op <> —=O-p
hold. This provides more possibilities for introducing various kinds of intuitionistic modal
logics (see e.g. [34]).

Indeed, several intuitionistic modal analogues of the classical normal modal logic K
have been considered. One example is the logic Int Ky with one modal operator O which
is axiomatized by adding to Int the axioms

O(pAq) <« (OpAOg) and OT,



and the congruence rule for O (i.e., b ¥ < ¢ / b O <> Op). Another is the logic
IntK, with one modal operator <& which is axiomatized by adding to Int the axioms

O(pV ) + (OpV<Oq) and —O L,

and the congruence rule for & (i.e., Fp ¢ <> ¢ /L O 3 Op). Also, the logic IntKqo,
the smallest logic containing both IntKn and IntK, having independent modalities O
and ¢ and congruence rules for both of them have been considered ([26]). Yet another
important example is the logic FS, introduced by Fischer Servi ([7],[8]), which is an
extension of IntKge obtained from IntKqoe by adding

Olp— q) — (Op — <Oq) and (Op — Og) — O(p — q),
as an axiom. This expresses a weak connection between O and <.

In Chapter 4, we will consider two method for completeness on Kripke type seman-
tics. One of them is the method of canonical models, and the other is filtration method.
In particular, we will show some logic enjoys the finite model property by using filtra-
tion method. Although the filtration method for classical modal logics has been studied
comprehensively, the method is not applied to intuitionistic modal logics yet.

In Chapter 5, we will give a uniform description of subdirectly irreducible algebras for
various classes of (multi-) modal Heyting algebras (Theorem 5.3.2 and Corollary 5.3.3),
which answers the problem posed in [30] (Proposition 5.3.4).

In recent years, products of modal logics have been studied intensively mainly by D.
Gabbay and V. Shehtman. These products, first introduced by Shehtman in [24], have
been defined through products of Kripke frames. Shehtman’s product of modal logics L,
and L, is the modal logic determined by the class of Kripke frames F x G such that F
and G validate L; and Ly, respectively.

In Chapter 6, we will propose a new notion of products of modal logics, which we
will call a normal product. Normal products resemble products familiar to researcher of
measure theory and topology, and are defined as a generalization of products of algebras
of sets (see § 6.2). Our products of modal logics can be defined either by means of normal
products of general frames, or by means of normal products of modal algebras. It enables
us to develop a duality theory between these two, as shown in § 6.3. This brought us a
desired effect that the definition of the normal product of modal logics L; and Ly is not
affected by the choice of classes of general frames (or, modal algebras) which determine
L, and Ly. Note that this is not the case for usual products of modal logics, as pointed
out in [21]. We also show some important transfer results, including the transfer of the
finite model property.

In Chapter 7, we will apply normal products to infinitely many products and products
of intuitionistic modal logics. Although in infinitely many products we assume that logics
are extensions of D and in shifted products of intuitionistic modal logics we doesn’t shift
implications, our argument in this chapter goes in parallel with that in Chapter 6.



Chapter 2

Preliminaries

Classical modal logics are the classical logic with some axioms and rules for modal oper-
ators. When a modal logic has a single modal operator O (or <), it is called mono modal
logic. Usually, < is considered to be equal to -0O- in any classical modal logic, where —
denotes the negation. In this thesis, in addition to classical modal logics we will study not
only intuitionistic modal logics, i.e. modal logics based on the intuitionistic logic (and its
extensions), but also multi modal logics (in Chapter 6).

For the brevity’s sake, we will be mainly concerned with intuitionistic modal logics
and semantics for them. For general information on classical modal logics, see e.g. [11],
[13], [19], [34], [3].

2.1 Modal logics

Let Lo be the language of propositional modal logics with countably many propositional
variables, p,q,r,... and the connectives A,V,—, L, 0, O, Let Form(Lne) be the set of
all formulas of Loo. Formulas —« and T are defined as the abbreviation of &« — 1 and
1 — L, respectively.

The basic classical modal logic is K. In this thesis, we will sometimes identify a logical
system L with the set of all theorems of L. Thus, K can be defined as follows.

Definition 2.1.1 The modal propositional logic K is the least set of formulas of Lao
which contains axzioms from (1) to (3), and is closed under the rules of inference from (a)
to (c).

(1) all theorems of the classical logic Cl, i.e. the logic which is axiomatized by the
following axioms;
(i) p = (¢ = p),
(i) (p—=(g—=7) = ((p—=q) = (p—r)),
(iit) (p N q) = p,
(iv) (pANq) = q,
(v) (r=p) = ((r—=4q) == 0@A0)),
(vi) p— (pV q),
(vii) ¢ = (pV q),



(viit) (p = 1) = (¢ =)= (pVq) — 1),
(iz) L —p,

(x) pV -p,
(2) O(p — q) — (Op — Og),
(3) =O-p <« Op,

(a) modus ponens

I—atﬂﬁ Fa (MP),
(b) substitution (Sub),
(¢) rule of necessitation i
«
F O (RN).

On the other hand, the intuitionistic version of K, there will be some possibilities of
defining since it is not necessary to define < as the dual of 0. The following logic IntKne
is introduced by Wolter and Zakharyaschev.in [33] (also Sotirov [26]). It is easy to see
that if we add the law of excluded middle p V =p and =-C—p < Op to IntKpoe, then it
becomes equal to K.

Definition 2.1.2 The intuitionistic bi-modal propositional logic IntKn is the least set
of formulas of Loo which contains azioms from (1) to (3¢ ), and is closed under the rules
of inference from (a) to (c).

(1) all theorems of the intuitionistic logic Int, i.e. the logic which is axiomatized
by the following axioms;
(i) p = (¢ = p),
(i) p—=(g—=7r) = ((p—=q9 = (—7)),
(ii1) (p A q) = p,
(iv) (pAq) —q,
(v) (r=p) = ((r—=4q) == 0®A0)),
(vi) p— (pV q),
(vii) ¢ = (pV q),
(viir) (p = 1) = (¢ = 71) = (V) —7),
(iz) L —p,

(20) (OpAOg) —O(pAg) and  (26) O(pVa) — (CpV Oq),

(3g) 4OT and  (3o) —<OL,
(a) modus ponens
Fa— 0 Fa
MP
]



(b) substitution (Sub),

(¢) rules of reqularity

It is easily seen that the converses O(p A q¢) — (Op A Og) and (Op V Oq) — O(p V q)
of (20) and (2<) are derivable in IntKge.

We can take alternative definitions. For example, the axiom (Op A Og) — O(p A q) is
replaced by O(p — ¢) — (Op — Ogq). The rule of inference (RRg) is equivalent to the
rule of inference (RN) under the formula O(p — ¢) — (Op — Og).

But the corresponding replacement doesn’t work for <-operator. The axiom <(p V
q) = (OpV <©q) is not equivalent to the formula &(p — ¢) — (Op — <q). The rule of
inference (RR.) is not equivalent to the rule of inference F o / F Oa even if we take
the formula O(p — ¢) — (Op — <O¢) as an axiom. As another example, the axiom (20)
with the rule of inference RRg is replaced by the axiom O(p A ¢) <+ (Op A Og) with
the rule of inference - o <+ # / = Oa <> 0OfF, while the axiom (2<¢) with the rule of
inference RR is replaced by the axiom O(pV q) <> (OpV Og) with the rule of inference
Fa+w 0/ FCaw Op.

Let Lo (Lo) be the language of propositional modal logics with countably many
propositional variables, p, g, r, ... and the connectives A, vV, —, 1L, 0O (), respectively. Let
Form(La) (Form(Les) ) be the set of all formulas of Lo (Lo), respectively. The intu-
ittonistic mono-modal propositional logic IntKg is the least set of formulas of Lo which
contains axioms (1), (25) and (3g), and is closed under the rules of inference (a), (b)
and RRg. The intuitionistic mono-modal propositional logic IntK is the least set of
formulas of L which contains axioms (1), (2¢) and (3¢), and is closed under the rules of
inference (a), (b) and RRs.

A set L of formulas of Lo is said an intuitionistic modal logic if L contains IntKqge
and is closed under all of rules of inference from (a) to (¢). Our logics are called normal
because of containing (25), (2¢), (30) and (3,). We denote by NExtIntKqe the set of all
normal intuitionistic modal logics. In general, for an intuitionistic modal logic L, NExtL
denotes the set of all normal intuitionistic modal logics containing L.

Let L; be any logics or sets of formulas. Then @ L; denotes the smallest logic which
icl
contains all of L;’s.

Theorem 2.1.3 (NExtIntKqno, N, @) is a complete lattice.

Proof. It is easy to see that (NExtIntKne, N, ®) is closed with respect to infinite
intersections and that by the definition @Li is the smallest logic which contains all of
iel

Y
Li S. |



2.2 Algebraic semantics

First we will introduce algebraic semantics for intuitionistic modal logics. By translating
the language of logic into that of algebra, we have algebraic semantics which will be an
adequate semantics for intuitionistic modal logics.

Recall that an algebra A = (A, A, V, —,0, 1) is called a Heyting algebra if the following
conditions hold in A for every a,b € A:

aNb=bAa,aVb=0bVa,
aN(bAc)=(aNb)Ac,aV (bVec)=(aVb)Ve,
(aVb)Vb=b,aN(aVb)=a,

a<biff c<a—0b,

where for every a,b € A,
a<b iff aNnb=a.

As usual, —a is defined as the abbreviation of a — 0.

Definition 2.2.1 An algebra A = (A’,0,) is called a OO-modal Heyting algebra if
the following conditions are satisfied;

(1) A"=(AA,V,—,0,1) is a Heyting algebra,
(20) O(aAb)=0aA0band (20) OlaVbd) =<aV Ob,
(35) Ol=1 and  (35) ©0 =0.

By mpoHA |, we denote the class of all O0-modal Heyting algebras.

A O<¢-modal Heyting algebra A = (A’,0,<) with a Boolean algebra A’ satisfying
$a = —0O-a is usually called modal algebra.

An algebra A = (A’,0) is called a O-modal Heyting algebra if A’ is a Heyting algebra
and both (25) and (3g) hold. Also an algebra A = (A’, <) is called a O-modal Heyting
algebra if A’ is a Heyting algebra and both (2,) and (3) hold.

Notice that from (25) and (2¢) both O and < are monotone operators, i.e.

(1) a<b=0Oa<0Ob,

(2) a<b=Ca<Ob.

Definition 2.2.2 (1) A valuation v on a modal Heyting algebra A is a function from
Form(Lno) to A which satisfies the following conditions;

(i) v(Ll) =0,
(it) v(a A B) =v(a) Av(B),
(iii) v(aV B) =v(a) Vu(f),



(iv) v(e = B) = v(@) = v(F),
(1) v(0a) = Ov(a),
(vi) v(Ca) = Cv(a).

(2) For any o € Form(Lpo), any A € moocHA and any valuation v on A,
« is true in A under v (in symbol, (A,v) E «) ifv(a)=1.

(3) For any o € Form(Lpo) and any A € mpnoHA |

« is valid in A (in symbol, A E « ) if v(a) =1 for any valuation v on A .
(4) For any o € Form(Loo) and any class K C mpo HA |

a is valid in IC (in symbol, K = «) if A = « for any A in K.

Note that the value of a given valuation v is uniquely determined only by its value for
each propositional variable.

Proposition 2.2.3

(1) Let A be a OO-modal Heyting algebra. The set of formulas which are valid in A is
an intuitionistic modal logic.

(2) Let K be a class of OO-modal Heyting algebras. The set of formulas which are valid
in all algebras in K is an intuitionistic modal logic.

They are called the logic characterized by A and are the logic characterized by K and
denoted by L(A) and L(K), respectively.

Proof. Since L(K) = () L(A) , it is enough to show (1). To show this, it suffices to show
Aek
that each axiom of IntKpgg, is valid in A and that each rule preserves the validity. Let v

be any valuation on A. v((OpAOq) — O(pAq)) = (Dv(p) ADv(q)) — O(v(p) Av(q)) = 1.
Next, suppose v(a — ) = 1. Since v(a) < v(f3), by using monotonicity of O Ov(«a) <
Ov(B3). Therefore v(Oa — OF) = 1. The validity of other axioms and rules can be shown
in the same way. 1
Let A = (A’,0,0) be a modal Heyting algebra.
(1) A set FFC Ais called a filter in A if

(i) F#0,

(ii) ce Fanda<b=begF,

(iii) botha € Fandbe F=aAb€EF,

(2) A filter F' is called to be proper if F' # A,
(3) A proper filter F'is called to be prime if a V b € F implies either a € F or b € F.

We denote by PF(A) the set of all prime filters in A.
An equivalence relation 6 in a modal Heyting algebra A = (A’, 0, ©) is said to be a
congruence if the following conditions hold: for every a,b,c,d € A,

8



(i) afband cOd imply (a Ac)@ (bAd), (aVe)d(bVd) and (a — c)0 (b — d),
(ii) a @b implies (Oa) 6 (Ob) and (Oa) O (Ob).

Suppose A = (A’,0,0) and B = (B’,0,<) are modal Heyting algebras. A map f
from A into B is called a homomorphism of A in B if f preserves the operators in the
following sense: for every a,a;,as € A,

a1 A az) = f(ar) A f(az),

a1V ag) = f(ar) vV f(az),

A homomorphism f of A in B is an isomorphism if f is an injection and also a surjection.

A modal Heyting algebra B is said to be a subalgebra of a modal Heyting algebra A
if B C A and B ’s operators are the restrictions of A ’s operators to B.

If f is a homomorphism of A in B then the set f(A) is clearly closed under operators
in B andso (f(A4),A,V,—,0,1,0,<) is a subalgebra of B . We call it the homomorphic
image of A (under the homomorphism f).

Given a family {Ax = (A4,0,0) | A € A} of modal Heyting algebras, the direct
product of {Ax | A € A} is the modal Heyting algebra

H AA = (H A/\a/\7v7_>707]-7|:|7<>)
A€A AEA

in which [Jycp Ay is the set of all function a from A into Uycp Ay such that a(A) € Ay
and each operator is defined by as follows:



for every a,b € [T e Ax and A € A. We often write a, instead of a(A).
The projection my is the function from []Jyc, Ay onto Ay defined by

7T)\(0J) = Q),

for every a € [Iyep Ax. Also, for A" C A the projection my: is the function from [Tycp A
onto [Tyear Ax such that 7y (a) is a restriction of a to A, for every a € [Tycp An.

Let K be a class of OC-modal Heyting algebra. Then, H (K), S(K) and P(K) denote
the class of all homomorphic images of algebras from /C, the class of all subalgebras of
algebras from IC and the class of all direct products of algebras from K, respectively.

When H(K) = S(K) = P(K) = K holds, K is said to be a variety . It is well-
known that K is a variety iff HSP(K) = K, because SH(K) C HS(K),PH(K) C
HP(K),PS(K) C SP(K)(see e.g. [28]). K is a variety if and only if I is a equivalent
class.

We can easily show that the class of all O0<-modal Heyting algebras forms variety. In
the following, A(mpoHA ) denotes the set of all subvarieties of mpo HA .

Proposition 2.2.4 The set (A(mnoHA ), \,V) forms a complete lattice, where ki N ICo
18 ’Cl N ’CQ and ’Cl V ’CQ 18 HSP(ICl U’Cg)

Proof. It is easy to see that (A(mnoHA ), A, V) is closed with respect to infinite inter-
sections and that HSP(| J K;) is the least variety containing all K;’s. 1
i€l

The following proposition holds, similarly to (classical) modal algebras.
Proposition 2.2.5 Suppose that A and B are O -modal Heyting algebras.
(1) If B is a homomorphic image of A, then L(A) C L(B).
(2) If B is a subalgebra of A, then L(A) C L(B).
(8) If A is the direct product of {A;}ier , then L(A) = () L(A;).

iel

Proof. (1). Let f be the homomorphism of A onto B. There exists a map g of B
to A such that fog = idpg. For each valuation v on B, define the valuation v 4 on A
by v4 = (gov)(p) for each propositional variable p. Then we have f(v 4(a)) = v(a) for
every formula a. So, if v 4 (@) = 1in A then v(a) =1 in B. Thus, we have (1).

(2). If B is a subalgebra of A, any valuation on B is also a valuation on A.

(3). Let v be a valuation on A. Since for each i the projection 7; is a homomorphism
of A onto A;, m; ov is a valuation on A;. Moreover, the valuation v can be represented
(m; o v)ijer. Hence, (m; ov)(a) =1 in A; for each i iff m;(a) = 1 in A. Thus, we have
L(A) D () L(A;). The converse direction follows from (1). 1

iel

Let V(L) denote {A € mgoHA | A = L}. Then, since V(L) is closed under H, S
and P by Proposition 2.2.5, we have the following corollary.

Corollary 2.2.6 For a given L € NExtIntKno, V(L) is a variety.

Our algebraic semantics is adequate, since the following completeness theorem holds.
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Theorem 2.2.7 For any L € NExtIntKno, L a iff V(L) E a.

The theorem can be shown in the standard way. It is clear that L F « implies
V(L) E a. To prove the converse, define the algebra Ay, called the Lindenbaum algebra
of a logic L € NExtIntKqe as follows. First, for a given logic L, define a congruence
relation ~, on the set of formulas by taking

an~pfiff LE(a— B)A(a+ [).

Let |a|;, be the equivalent class to which a formula « belongs. Now the Lindenbaum
algebra Ay = (Form(Lao)/~,, A, V,—,0,1,0,<) is constructed by taking

Form(Laoo)/~, = {la|r| a aformula },
lalp A Bl = |an B,
ol VIBlL = eV B,
lalp = [Blr = |a— B,
0 := |1}z,
1 = |T|,
Olal, = |Balr,
Olalp, = [Calr.

The fact that A, is indeed a modal Heyting algebra is easily shown by using the axioms
and rules of IntKpe. Also, 1 of A, consists exactly of the set of all provable formulas.
Now, define a function vy by

vr(a) = |a|y, for each formula a.
It is obvious that v;, is a valuation. Then we have
vp(a) =1 iff a€ L.

Furthermore, for each valuation v on Ay, v(«) is ||z, for some substitution instance 3 of
«. So, in particular if & € L then vy (o) = |5 = 1, since L is closed under substitution.
Thus, A;, validates L. Now suppose that Lt/ «. Then vy («) # 1 for A, € V(L). Thus,
V(L) £ o Hence, we have our theorem.

Proposition 2.2.8
(1) For any L € NExtIntKqo, L(V (L)) = L.
(2) For any K € A(mnocHA ), V(L(K)) = K.
(3) For any Ly, Ly € AN(IntKno), Ly C Ly iff V(Lg) C V(L)

Proof. (1). This is the completeness theorem itself.

(2). By Birkhoff’s theorem [2], any variety K is of the form V(L) for some logic L, so
that V(L(K)) = V(L(V (L)) = V(L) = K.

(3). By the definition, both V(-) and L(:) are monotone decreasing. 1

Since any (dually) order isomorphism between lattices is also a (dually) lattice iso-
morphism, we have following corollary.

Corollary 2.2.9 NExtIntKne is dually isomorphic to A(mpoHA ).
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2.3 Kripke type semantics

In this section we will consider Kripke-type semantics for intuitionistic modal logics.

2.3.1 Kripke frames

Definition 2.3.1 (1) A structure F = (W, <, Ra, Ro) is called an intuitionistic modal
Kripke frame if the following conditions are satisfied.

(i) W#0,
(i) < is a partial order on W,
(1ii) both Rn and R are binary relations on W,

(iv) <o Rno< = Rg, where Ry o Ry is the relational composition of Ry, Ry
defined by x(Ry o Ry)y iff there is a z such that xRz and zRsy,

(v) <toRso<! =R, where <~ ' is the reverse of <.

(2) UpW s the set of all upward closed sets of W with respect to <, i.e. UpW = {V C
Wil(xeVandr<y)=yeV}

(3) A valuation v on F is a function : Form(Laoo) — UpW which satisfies the following
conditions

(i) (L) =0,
(it) v(a A f) = v(a) No(B),
(i) v(aV §) = v(a) Uv(f),
(i) v(a = §) = v(a) = v(f),
(v) v(Oa) = Ov(a),
(vi) v(Ca) = Cv(a),

where operators —, O and < are defined respectively as follows.

X—=Y = {weW]| foranyv, w<v and v € X implies v € Y},
OX = {weW| foranyv, wRpv implies v € X},
OX = {weW |wRev for somev € X }.

(4) A pair M = (F,v) of an intuitionistic modal Kripke frame F and a valuation v on
F is called a model. In this case, F is called the base of a model M.

(5) For any o € Form(Las), any model M and any v € W, « is true at = in M (in
symbol, (M, x) = a or simply x = « if M is understood) if x € v(«).

(6) For any o € Form(Loo) and any model M, « is true in M (in symbol, M = «) if
W =w(«). If it is not true in M then it is refuted in M.

(7) For any o € Form(Lno) and any intuitionistic modal Kripke frame F, « is valid
in F (in symbol, F = ) if W =v(«) for any valuation v on F.

12



Note that for modal logics we can take A as <, and consider R equal to R, where
Ay < x = y. Then we write (W, Rn) instead of (W,A, Rn, Rn). Then the above
conditions from (1) are obviously satisfied and UpW = P(WW) holds.

Note that the value of a given valuation v is uniquely determined only by its value for
each propositional variable.

We denote by IMF the set of all intuitionistic modal Kripke frames.

Proposition 2.3.2 (1) Let F be an intuitionistic modal Kripke frame. The set of
formulas which are valid in F s an intuitionistic modal logic.

(2) Let C be a class of intuitionistic modal Kripke frames. The set of formulas which
are valid in all frames in C is an intuitionistic modal logic.

They are called the logic characterized by F and the logic characterized by C and are
denoted by L(F) and L(C), respectively.

Proof. Since L(C) = (| L(F) , it is enough to show (1). Let v be any valuation on
Fec
F. If xRy, y = Op and y = Og then z = p and z = ¢ for any z such that yRnz. Hence

r | (OpAOg) — O(pAgq) at any z.

Next, suppose that u = p — ¢ for all w and y |= Op for 2 <y. Then if yRnz, z | p. Since
z E q, y E Oq. Therefore x = Op — Og. The other axioms and rules can be treated in
the same way. 1

We denote by 0"« and ™« the formulas O---Oa and & --- O a, respectively. For
——— ————

n n

brevity’s sake, both 0% and ¢°a denote a. We denote also by O0™q and ¢™a the
formulas 0% A -+ A0 and G0V -+ -V O™ay, respectively. In particular, we denote OW ¢
and OWa by Ot and Ot a, respectively.

Also, for n > 0 we denote Rqo---0 Ry and R¢ o ---0 R by RE and R3, respectively.
| — [ —

We understand RY and R% as < and <!, respectively. We denote also by R and R

the binary relations RYU---URY and RQU- - -UR%, respectively. In particular,we denote

RY and RE}) by RY and RJ, respectively. For each binary relation S, S denotes the

transitive closure, i.e. U S", of a given binary relation S.
n>0
Similarly to classical modal logic, we can develop the correspondence theory. Here are

some examples.

Proposition 2.3.3 For any intuitionistic modal frame F, F wvalidates each formula in
the following list iff F satisfies the corresponding condition in the list .

O —q) = (Op— Oq
Op—q) — (Op — Oq
(Op—0Og) — O(p — ¢
O (p — q) = (Op — Oq

yRex = dz
yRex = dz
rRoy = dz
yRex = dz

<z & yRoz & yRnz)
<z & yRoz & yRnz)
r <z & zRoy & zRny
T <z & yRoz & yRE2)

—_  —~
~~ —~ —
=W N =
N N N |
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OmM(p = q) = (Op = Cq)  yRox = Iz2(x A 2 & yRoz & yR™2) (2.5)
01  Rn:serial,i.e.,Vxdy vRay (2.6)

OT  Re :serial,i.e.,Ve3y xRoy (2.7)

Op —p Ry : reflexive (2-8)

p— <COp  Re:reflexive (2.9)

Op — OO0p  Rg : transitive (2.10)

OOp — Op  Ro : transitive (2.11)

ofalp — Omo"p  (xRPy & wRE2) = Ju(yR%u & 2R4u) (2.12)
OpVvO-0Op  (zRoy & tRnz) = yRaz (2.13)

O@pVye) = (OpvOq) (xRoy & xRpz) = Ju(rRou & u <z & uRpy)2.14)
O(@p —q)vO(0Og —p) (rRoy & xRnz) = (yRoz or zRny) (2.15)

Proof. We will take up several of them. The rest can be checked similarly.

(2.5). Suppose that M = (F,v) is a counter-model for it. Then y = 0™ (p — ¢) and
y E Op and y £ Og, for some y in F. Since z = p for some z such that yRex, if there
exist z and number n such that x < z, yRoz, yREz and 0 < n < m, then we have z = p
and z = p — ¢. Hence z = ¢q. This is a contradiction. Conversely, suppose that there are
x,1y such that yRex and there is no point z for which x < 2z, yRoz and ngm z. Define a
valuation v in F by taking v(p) = {w |  <w},v(q) = {w | * <w and yR™w}. Then for
any n such that 0 <n < m if zRLw and w = p then w |= ¢q. Hence y = O(p — ¢). w
can also show y = Op and y £ <g, since x = p and there is no point z for which yRoz,
r <1z and yREz. Thus, y = Op — q) — (Op — Oq).

(2.12). Suppose that M = (F,v) is a counter-model for it. Then z | <FO'p and
x OO, for some x in F. Hence there are y,z such that xRy, y K= <O"p and
wREz, 2 | O'p. If there is u such that yR%u and zRLu then this is a contradiction.
Conversely, suppose that there are x, v,z such that R%y, xR~ and there is no point
u for which yR%u and zR4u. Define a valuation v in F by taking v(p) = {w | zRLw}.
Then we can show z = O'p and y £ O"p, whence x = OFO'p and x £ O™O"p. Thus,
x [ OFOlp — Omonp.

(2.14). Suppose that M = (F,v) is a counter-model for it. Then z = O(Op V q)
and x £ Op Vv Oq, for some z in F. Hence there are y, z such that zRpy,y ¥~ p and
xRnz, z £ q. If there is u such that zRpu, u < z and uRny then w = Op and u = g.
Hence u [~ OpVq. This is a contradiction. Conversely, suppose that there are x,y, z such
that x Rgy, xRpz and there is no point u, for which xRou, u < z and uRgy. Define a
valuation v in F by taking v(p) = {w | w 4y}, v(q) = {w | w 4z}. Then we can show
y FEp, z = qand uw = OpV q. Indeed, there is no point u such that zRpu, v = Op and
u | q. Hence z =0(0p V q) and z = Op VvV Og. Thus, z = 0(0pV q) — (OpV Oq).

The following is a list of some intuitionistic modal logics, which are discussed often in
the literature.

IntK}, = IntKgo ® O (p — q) = (Op — Oq),

IntK:, = IntKno @ O(p — q) — (Op — <q),

FS = IntKno @ {O(p — ¢) = (Op = ©q), (Op — Og) — O(p — )},

IntDgo = IntKpe @ {-0OL, OTY,

IntTho = IntKno @ {Op — p, p — Opl,
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IntK4po = IntKpo & {dp — OOp, OOp — Op},
IntS4-¢ = IntK45, @ {Op — p, p — Op},
IntS4.306 = IntS40, @ O(0p — ¢) V O(Qq — p),
IntK55, = IntKqe @ {<>Dp — Op, <>p — |:|<>p}7
IntS55, = IntK500 @ {Op — p, p — Op}
MIPC = IntS50, & O(p — q) — (Op — <q) .

Then, the conditions of frames validating these logics are given as follows.
IntK;, yRox = Jz2(x < 2 & yRoz & yRE2)
IntKy yRox = Fz(x < 2 & yRoz & yRoz)

FS yRor = z(x < 2 & yRoz & yRnz)
TRy = Jz(x <z & zRoy & zRny)
IntDgoo Rn, R serial
IntToo R, Re: reflexive
IntK4n,  Rp, Ro: transitive
IntS4-. Rn, R reflexive and transitive
IntS4.30¢ Rno, Re: reflexive and transitive
(xRoy & xRnz) = (yRaz or zRpy)
IntK500  (zRoy & 2Roz2) = (2Ray & yRo2)
IntS55¢ R = R5! and Rp reflexive and transitive
MIPC Ro = R5' and Ry :reflexive and transitive
TRny = Jz(x < 2z & yRaz & zRny)

2.3.2 Truth-preserving operations

In this subsection we will introduce three important operations on intuitionistic modal
frames which preserve the validity.

Definition 2.3.4 (1) A Kripke frame F; = (W1, <y, Rn,, Ro,) is called a generated
subframe of a Kripke frame Fo = (W, <o, Rn,, Ro,) if the following conditions are
satisfied.

(Z) WI g W27

(ii)) <1 (Ro, and Ro,) is the restriction of <o (Rn, and R, respectively) to W.
(i) x e W & v <y = y € Wy,

(iv) © € Wy & xRn,y = y € Wy,

(v) €W, & tRo,y = 3Fz€ W) @ zRo 2z & y <y 2.

(2) A map f: W, — Wy is said to be a p-morphism from a Kripke frame F; to a Kripke
frame Fy if for all x € Wi,y € W,

(i) f(z) <y TzeW, @ 2< 2 & f(2)
(i) f(x)Ro,y < Jz€ Wy : xR,z & f(2)
(iti) xRoy = f(x)Ro,f(y),

(iv) f(z)Ro,y =3z € Wi : zRo,z & y <s f(2).

Y,
Y,
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(3) A Kripke frame Fy is said to be reducible to a Kripke frame Fy if there exists a
onto p-morphism (called a reduction) f: Wy — Wj.

(4) The Kripke frame > F; = (> Wi, |J <, | Ra,, | Re,) is called the disjoint union
i€l i€l iel el icl
of a disjoint family {F; | i € I}.
Note that each F; is a generated subframe of the disjoint union of {F; |i € I}.

Theorem 2.3.5 Suppose that Fi is a generated subframe of Fo, and that My (and Ms)
is a model with the base Fy (and with the base Fs, respectively). If for every propositional
variable p and every x in Fy

(M1,$) ):p Zﬁ (M2,$) ):p

then for every formula o and every x in Fy

(My,z) Ea iff (Ms,z) E a.

Proof. We prove by the induction on the construction of . The basis of induction is
obvious. Let a = Of. If (Mg, z) £ &3 then there is a point y € W; such that 2 Re,y and
(Mi,y) E (. By the induction hypothesis, (Ms,y) = 3, and by (1)(ii) of Definition 2.3.4,
zRe,y. Therefore (Mg, z) = Of. Conversely, suppose that (My, z) = <&, Then there
is a point y € W3 such that 2R,y and (May,y) = 5. By (1)(v) of Definition 2.3.4, There
is z € Wy such that zRe, 2z and y <5 z. Since (Ms, 2) | 3, (M, 2) = § by the induction
hypothesis, whence (M, z) E Of.

The cases @« =  — v and o = Of can be treated in the same way, and the cases
a = [ Avand also « = V  are trivial. 1

Corollary 2.3.6 If F; is a generated subframe of Fs, then L(Fy) C L(F).

Proof. Suppose F; [~ a. Then ((Fy,v1),z) = « for some vy on F; and some x € F.
Define a valuation vy on F, by taking

vo(p) := vi(p) for all propositional variables p.

By Theorem 2.3.5, ((F2, v2),x) = . Therefore, F» = a. 1

Theorem 2.3.7 Suppose that f is a reduction of Fy to F, , and that My (and Ms) is
a model with the base Fy (and with the base Fy, respectively). If for every propositional
variable p and every x in F,

My, 2) Ep iff (M, f(2) Ep

then for every formula o and every x in F;

My, z) = o iff (My, f(2)) = o
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Proof. We prove by the induction on the construction of a. The basis of induction
is obvious. Let a = ¢f. If (My,z) E <Of then there is a point y € W; such that
rReo,y and (My,y) E (. By the induction hypothesis, (Ms, f(y)) = 3, and by (2)(iii)
of Definition 2.3.4, f(z)Ro, f(y). Therefore (My, f(z)) = <&B. Conversely, suppose that
(My, f(z)) E <©B. Then there is a point y € W, such that f(x)Re,y and (Ma,y) = .
By (2)(iv) of Definition 2.3.4, There is z € W, such that xR¢,z and y < f(z). Since
(Mo, f(2)) E B, (M, 2) E (8 by the induction hypothesis, whence (M1, z) = Of.

The cases @« = 3 — v and o = Of can be treated in the same way, and the cases
a = [ Avand also « = V y are trivial. 1

Corollary 2.3.8 If F; is reducible to F» , then L(Fy) C L(F).

Proof. Let f be a reduction of F; to F,. Suppose Fy = a.. Then ((Fz, v2), f(z)) FE «
for some vy on F, and some x € F;. (Note that f is onto.) Define a valuation v; on F;
by taking

vi(p) == f~"(va(p)) for all propositional variables p.

By Theorem 2.3.7, ((Fi,v1),x) & «. Therefore, F; = a. 1

Again, as a corollary of Theorem 2.3.5 we have the following.

Corollary 2.3.9 If F is the disjoint union of a family {F; |i € I} ,
then L(F) = (| L(F;) .

el

2.4 Correspondence between algebraic semantics and
Kripke type semantics

In the following, we will show some relations between modal Heyting algebras and intu-
itionistic modal Kripke frames.

Definition 2.4.1 (1) The map ( - ) : IMF — munoHA s defined as follows :
For any F = (W, <, Ro, Ro), F' = (UpW,0,0), where UpW = (UpW,N, U, —,
0,W). Then F' is called the dual of F.

(2) The map ( - )t : mooHA — IMF is defined as follows :
For any A = (A’,0,0), At = (Wy, <IA,RDA, R(}A), where

i) Wy s the set PF(A) of all prime filters in A,

A
(i1) xQAygxgy,
(ii1) ngAy “va e A(Qa € x = a € y)(& o Cy, where zp := {a | Oa € z}),
(iv) xRoAy “Uva e Ala e y= Ca € x)(e y C xo, where xo := {a | Ca € x}).
Then Ay is called the dual of A.

Proposition 2.4.2
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(1) For every intuitionistic modal Kripke frame F , its dual F' is a modal Heyting
algebra.

(2) For every modal Heyting algebra A, its dual Ay is an intuitionistic modal Kripke
frame.

Proof. It is routine to check our proposition. Compare (1) with Proposition 2.3.2.

In relation to prime filters, the following well-known theorem can be obtained by using
Zorn’s Lemma.

Theorem 2.4.3 Let G and J be a filter and an ideal of a given distributive lattice A
such that GN.J = 0. Then there exists a prime filter F' such that G C F and FN.J = .

The least filter [X) containing a given non-empty set X in a lattice A is called the
filter generated by X which can be represented by

(X)={yeA|xz A--- Nz, <y for some zy,...,2, € X}.

The least ideal (X] containing a given non-empty set X in a lattice A is called the
tdeal generated by X which can be represented by

(X]={yeA|ly<z V- -V, for some zy,...,1, € X}.

Proposition 2.4.4 (1) For every intuitionistic modal frame F , F is embedded into
(F1s -

(2) For every modal Heyting algebra A , A is embedded into (A+)T .

Proof. (1). Let F = (W, <, Ro, Ro) and (F'); = (Wgi, <gt, Ro,, Ro_,). Define a
map fr from W into W as follows; for all x € W

fr(z) :=={a € UpW | x € a} € Wgi(= PF(UpW)).

Suppose x<y. If a € fr(x), theny € asince x € a and a € UpW. Therefore a € fr(y),
whence fr(z) <zt fr(y). Conversely, suppose fr(z) C fr(y). Since {z | z < z} € fr(z),
{z|x <z} € fr(y). Therefore y € {2 | z < 2}, whence z < y.

Suppose xRny. If Oa € fr(x), then y € a since x € Oa. Therefore a € fr(y), whence
f}-(x)Rfoff(y)‘ Conversely, suppose (fr(z))a C fr(y). Since O{z | xRoz} € fr(2),
{# | ®Raz} € fr(y). Therefore y € {z | xRnz}, whence zRny.

Suppose zRoy. If a € fr(y), then z € Ca since y € a. Therefore Ca € fr(x),
whence fr(z)Ro_, fr(y). Conversely, suppose fr(y) C (fr(z))o. Since {z | y<z} € fr(y),
O{z |y <z} € fr(x). Therefore since z € O{z | y < 2}, there is z such that zRez and
y < z, whence xRoy.

(2). Let A =(A’,0,0) and (A;)! = (UpW4,0,<). Define a map f4 from A into
UpW 4 as follows; for all a € A

fala) :={x € PF(A)|ac a} € UpWy (= UpPF(A)).

Let a £ b. Since there is a prime filter z in A such that « € z and b ¢ z by
Theorem 2.4.3, f4(a) € f4(D). Therefore f4 is a injection.
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Let’s check that f4 preserves the operations. It is easy to show f4 preserves A,V, L.
Suppose © € fq(a — b). If + C y and a € y, then b € y since a — b € x. Therefore
x € fp(a) = f4(b). Conversely, suppose x ¢ fq(a — b). If aAc < b for some ¢ € z then
¢ < a — b. But this leads to a contradiction. Therefore [z U {a}) and ({b}] are disjoint.
Then there is a prime filter y such that x C y, a € y and b ¢ y by Theorem 2.4.3. This
means z ¢ f4(a) = f4(D). Next, suppose & € f4(0a). If x5 C y, then a € y. Therefore
v € Ofq(a). Conversely, suppose # ¢ f4(0a). Since the filter zo does not contain a,
there is a prime filter y such that o C y and a ¢ y by Theorem 2.4.3. This means
T ¢ EIfA(a)

Suppose © € f4(<®a). Since the ideal —(x¢) does not contain a, there is a prime
filter y such that y C zo and a € y by Theorem 2.4.3. This implies that € < f4(a).
Conversely, suppose € < f4 (a). There is a prime filter y such that y C zo and f4(y) €
a. Then Ca € z, since a € y. Therefore z € f4(Ca). 1

Proposition 2.4.5
(1) For every intuitionistic modal frame F, L(F') = L(F).
(2) For every modal Heyting algebra A, L(A:) C L(A).

Proof. (1). By the definition, each valuation on F is at the same time regarded as a
valuation on FT, and vice versa.

(2). Since A is isomorphic to a subalgebra of (A;)" by Proposition 2.4.4 (2),
L((A:)") C L(A) by corollary 2.3.6. Also by (1), L((A4)") = L(A;). Hence L(A;) C
L(A).

2.5 General frame semantics

In this section we will consider general frame semantics for intuitionistic modal logics.

2.5.1 General frames

Definition 2.5.1 (1) A structure F = (W, <, Ra, Ro, P) is called an intuitionistic
modal general frame if the following conditions are satisfied.

(i) (W, <, Ra, Ro) is an intuitionistic modal Kripke frame,
(ii) A subset P of UpW is called a modal Heyting algebra on a Kripke frame
(W, <, Rn, Ro) satisfies as follows;
e P eP,
e X YeP=XnNnY XUY e€P,
e XY eP=X=>YecP,
e X e P=0X,0X €P.
(1ii) If P = UpW, then F is called a full (or Kripke) frame and is sometimes
written (W, <, Ra, Re) instead of (W, <, Ro, Ro, UpW). The underlying full
frame of F is denoted by kJF.
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(2) A valuation v on F is a function : Form(Loo) — P which satisfies the following
conditions

(i) v(1) =0,
(it) v(a A B) = v(e) No(B),
(i) v(aV §) = v(a) Uv(f),
(iv) v(a = B) = v(a) = v(B),
(v) v(Ba) = Ov(a),
(vi) v(Ca) = Cu(a),

(3) A pair M = (F,v) of an intuitionistic modal general frame F and a valuation v on
F is called a model. In this case, F is called the base of a model M.

(4) For any o € Form(Las), any model M and any v € W, « is true at x in M (in
symbol, (M, x) = a or simply x = o if M is understood) if v € v(«).

(5) For any o € Form(Loo) and any model M, « is true in M (in symbol, M = «) if
W =wv(«). If it is not true in M then it is refuted in M.

(6) For any a € Form(Lao) and any intuitionistic modal general frame F, « is valid
in F (in symbol, F = ) if W =wv(«) for any valuation v on F.

Note that the value of a given valuation v is uniquely determined only by its value for
each propositional variable.

Proposition 2.5.2 (1) Let F be an intuitionistic modal general frame. The set of
formulas which are valid in F s an intuitionistic modal logic.

(2) Let C be a class of intuitionistic modal general frames. The set of formulas which
are valid in all frames in C is an intuitionistic modal logic.

They are called the logic characterized by F and the logic characterized by C and are
denoted by L(F) and L(C), respectively.

2.5.2 Truth-preserving operations
In this subsection we will introduce three important operations on intuitionistic modal

general frames which preserve the validity.

Definition 2.5.3 (1) A general frame Fy = (Wy, <4, Rn,, Ro,, P1) is called a generated
subframe of a general frame Fy = (W3, <9, Rn,, Ro,, Pe) if the following conditions
are satisfied.

(Z) WI g W27
(i1)) <1 (Ro, and Ro,) is the restriction of <a (Rn, and R, respectively) to Wy.
(iii) x e W & v <y = y € Wy,
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(iv) © € Wy & xRn,y = y € Wy,
(v) €W, & 2Ro,y =3z € W) @ zRo 2z & y <y 2.
(UZ) Plz{YﬂW1|Y€P2}.

(2) A map [ : Wy — Wy is said to be a p-morphism from a general frame Fi to a
general frame Fy if for all x € Wi,y € W,

(i) f(x)<wyedzeW, : 212 & f(2) =y,
(ii) f(x)Ro,y < 2 € Wy : xRn,z & f(2) =y,

(iv) f(x)Ro,y =3z € Wy : zRo,z & y <y f(2).
(U) fﬁl(Y) e P, fOT’YEPQ.

(3) A general frame Fy is said to be reducible to a general frame Fy if there exists a
onto p-morphism (say reduction) f : Wy, — Wy .

(4) The general frame > F;, = (O_W;,|J <, |J Ro,, | Ro,, {UU Xi | X; € Pii € I})
iel il iel el il il
is called the disjoint union of a disjoint family {F; | i € I}.

Note that each F; is a generated subframe of the disjoint union of {F; | i € I}.
We can show the following results similarly to former results.

Theorem 2.5.4 Suppose that Fi is a generated subframe of Fs, and that My (and Ms)
is a model with the base Fy (and with the base Fs, respectively). If for every propositional
variable p and every x in F,

My, z) Ep iff (Mzz) =p
then for every formula o and every x in Fy
(My,z) Ea iff (Ma,z) Ea.
Corollary 2.5.5 If F; is a generated subframe of Fs, then L(Fy) C L(F).

Theorem 2.5.6 Suppose that f is a reduction of Fy to Fy, , and that My (and Ms) is
a model with the base Fy (and with the base Fy, respectively). If for every propositional
variable p and every x in JFy

(M, 2) Ep iff (Mo, f(2)) Ep
then for every formula o and every x in Fy
My, z) | a iff (M, f(z)) E o
Corollary 2.5.7 If F; is reducible to F» , then L(F,) C L(F).
Again, as a corollary of Theorem 2.5.4 we have the following.
Corollary 2.5.8 If F is the disjoint union of a family {F; |i € I} ,
then L(F) = (| L(F) .

el
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2.6 Correspondence between algebraic semantics and
general frame semantics

In the following, we will show some relations between modal Heyting algebras and intu-
itionistic modal general frames.

Definition 2.6.1 (1) For any intuitionistic modal general frame F = (W, <, Ra, Re, P),
define a modal Heyting algebra F* = (P,0,<), where P = (P,N, U, —, 0, W).
Then F* is called the dual of F. Also define the map fr from W into PF(P) as
follows; for all v € W

fr(z) ={X eP|xzec X} e PF(P).

(2) For any modal Heyting algebra A = (A’,0,0), we define an intuitionistic modal
general frame Ay = (Wy, <IA,RDA, R(}A,PA), where

(i) W4 is the set of all prime filters of A
(i1) xQAygxgy,
(ii1) ngAy v e A(Qa € x = a €vy),
(iv) xRQAy “Uva e Ala € y = Sa € ),
(v) The map fq from A into UpW 4 is defined as follows; for all a € A
fala) :={x € PF(A)|aca} € UpWy (= UpPF(A)).
(vi) Pg :={fq(a)[a € A}
Then A, s called the dual of A.
Proposition 2.6.2

(1) For every intuitionistic modal general frame F , its dual F* is a modal Heyting
algebra.

(2) For every modal Heyting algebra A, its dual A, is an intuitionistic modal general
frame.

Proposition 2.6.3 For every modal Heyting algebra A , A is isomorphic to (A)" with
being f4 an isomorphism.

Proof. By Proposition 2.4.4 (2), f4 is a one to one homomorphism. Since P4 is the
image of A by f4, f4 is a surjection. 1

Proposition 2.6.4
(1) For every intuitionistic modal general frame F, L(F*) = L(F).

(2) For every modal Heyting algebra A, L(A,) = L(A).
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By Proposition 2.6.3 every modal Heyting algebra A is isomorphic to its bidual (A,)™".
On the other hand, there are intuitionistic modal general frames F which are not isomor-
phic to its bidual (FT),. For example, for intuitionistic modal general frames of the form
F = (W, <, Ra, Ro, {0, W?}), their bidual (F*), are always singletons. So the relation
F = (F*), does not generally hold.

Definition 2.6.5 An intuitionistic modal general frame F s said to be descriptive if
F=2(FH,.

Definition 2.6.6 For every intuitionistic modal general frame F,
1. F is differentiated if Ve,y e W(zr Ay =31X e Pz € X,y ¢ X),
F isi-tight if Ve, y e W(x dy =3IX € Pz € X,y ¢ X),
F is O-tight if Ve, y e W(x Roy = 3IX € P2z € OX,y ¢ X),
F is O-tight if Ve, y e W(z Roy = 3IX € Py e X,z ¢ OX),
A C P(W) has finite intersection property if Ao # O for finite Ay C A.

S & e

F is compact if VA C P UP(A has finite intersection property = A # (), where
P={-X|XeP}

Note that F is i-tight only if it is differentiated, and that P = P if P is a modal
algebra.

Proposition 2.6.7 An intuitionistic modal general frame F is descriptive iff F is dif-
ferentiated, i-tight, O-tight, >-tight and compact.

Proof. It is enough to show that the map fr is an isomorphism from F to (F*1), iff
F is differentiated, i-tight, O-tight, $-tight and compact. We can show that fr is an
injection iff F is differentiated, that fr is a surjection iff F is compact, that (z <y <
fr(z) <z+ fr(y)) iff F is i-tight, that (zoy & fr(z)Ro,, fr(y)) iff F is O-tight and that
(zRoy < fr(z)Ro ., fr(y)) iff F is O-tight. I

Proposition 2.6.8

(1) If h is an isomorphism of an intuitionistic modal general frame Fy = (Wy, <2, Rn,,
Re,,Ps) onto a generated subframe of an intuitionistic modal general frame F; =
(W1, <1, Ro,, Re,, P1) then the map h™ defined by

ht(X) =h (X)), for every X € Py,
is a homomorphism of Fi" onto Fy .

(2) If h is a homomorphism of a modal Heyting algebra Ay onto a modal Heyting algebra
A, then the map h, defined by

hy(F) = h™'(F), for every prime filter F in As,

is an isomorphism of (Az); onto a generated subframe of (Ay)4.
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Proposition 2.6.9

(1) If f is a reduction of an intuitionistic modal general frame Fy = (Wy, <y, Rn,, Ro,, P1)
to an intuitionistic modal general frame Fy = (Wy, <g, Rn,, Re,, P2) then the map
T defined by
(X)) = fYX), for every X € Py,

is an isomorphism of Fy onto a subalgebra of F; .

(2) If [ is an isomorphism of a modal Heyting algebra As onto a subalgebra of a modal
Heyting algebra Ay then the map f. defined by

fr(F) = f~Y(F), for every prime filter F in Aq,
is a reduction of (Ay1)y to (Aa)y.

Proposition 2.6.10 Suppose {F; = (W;,<;, Ro,, Ro,,P;) | i € I} is a family of de-
seriptive frames. Then Z}", 15 descriptive iff I s finite.
i€l
Proposition 2.6.11
(1) Let {F; = (W;, <, Ra,, Ro,,P;) | i € I} is a family of intuitionistic modal general
frames and ZE = (W, <, Rn, Re, P) their disjoint union. Then the map [ defined
i€l
by
f(X)(i) = X nW;, for every X € P andi € I,

is an isomorphism of (>_ F;)* onto H}}Jr.

icl iel
(2) Suppose that both Ay and Ay are modal Heyting algebras. Then the map f defined
by

f(F) ={(a,a2) € Ay X Az | a1 € Fi,a9 € As}, for every prime filter Fy in Ay,
and
f(Fy) ={(ar,a2) € Ay X As | a1 € Ay, a9 € s}, for every prime filter Fy in As,

is an isomorphism of (A1); + (Az2)y+ onto (A1 X Aaz),.

2.7 Note

Many ways of defining intuitionistic analogues of classical normal modal logics have been
considered. First, one can take the family of logics extending IntKg. A model theory for
a logic extending IntKq was developed by H.Ono [17], M. Bosi¢ and K. Dosen [3], V. H.
Sotirov [26] and F. Wolter and M. Zakharyaschev [33]. A possibility operator < in those
logics can be defined in the classical way by taking &g as —O-p. Note, however, that in
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general this & doesn’t distribute over disjunction and that the connection via negation
between O and < is too strong from intuitionistic point of view.

Another family of normal logics is logics extending IntK. These logics were studied
by M. Bosi¢ and K. Dosen [3], V. H. Sotirov [26] and F. Wolter [29].

Fischer Servi [7] constructed FC, the logic IntKn, with a weak condition between
the necessity operator O and possibility operator <. The standard translation of modal
formulas into first order formulas not only embeds K into classical predicate logic but
also FC into intuitionistic predicate logic. Various extensions of FC were studied by
R.A. Bull [4], H. Ono [17], G. Fischer Servi [6][7], F. Wolter and M. Zakharyaschev [33],
F. Wolter [29] and C. Grefe [12]. A well-known extension of FC is the logic MIPC
introduced A. Prior [20]. R.A. Bull noticed that MIPC is embedded into the monadic
fragment of intuitionistic predicate logic. H. Ono [17], H. Ono and N.-Y. Suzuki [18]
and G. Bezhanishvili [1] investigated the relation between logics extending MIPC and
superintuitionistic predicate logics, and their models.

V. H. Sotirov studied in [26] weaker logics than IntKnqe, logics which are not neces-
sarily normal, and their models. In [26] he studied as a part of those logics IntKne (he
called IK(OC) ) and its extensions.

Our based logic IntK g, is induced by F. Wolter and M. Zakharyaschev. The algebraic
semantics and the dual relation semantics, i.e. Kripke type semantics and General frame
semantics presented in this chapter have been originally defined in [33]. The theorems
which is presented in this chapter are straightforward generalizations of analogous results
in superintuitionistic and classical modal logic (see e.g.[5]).
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Chapter 3

Pseudo-Euclidean logics

3.1 Introduction

Throughout this chapter, m and n are fixed non-negative integers. Let FEj be the logic
which is obtained from the smallest normal modal logic K by adding the axiom OF¢ —
OmOn¢p, where k > 0. Since each axiom OF¢p — O™O"¢ is a Sahlqvist formula, we can
show that the logic Ej is Kripke complete for each k. A binary relation R on a set W is
k-pseudo-Euclidean if for any z,y,z € W, tR*y and xR™z imply zR"y. Note that when
m = n = 1, 1-pseudo-Euclidean relations are equal to Euclidean relation. Let P& be the
class of all Kripke frames of the form (W, R), where R is a k-pseudo-Euclidean relation
on W. Then, it is easy to see that F} is Kripke complete with respect to P&, and that
Ey O Ey if and only if PE, C PE. Here, we identify the axiom system FEj with the set
of all formulas provable in Ej. Our main goal of this chapter is to show when F, O Ej,
holds. The answer is given as follows.

Theorem 3.1.1 1. If m >n >0 then

Ey D Ey  iff  either
D' =k ifm+n>k>m, or
2)k'2kand(k—m—n)‘(k'—m—n) if either k > m+mn orm >k > 0.

2. If m=n>0

E, D Ey  iff either
k" =k if either 2m >k >m or k=0, or
2)k' >k and (k — 2m) ‘ (k" —2m) if either k > 2m or m >k > 0.

3. Ifn>m>0

E, D Ey  iff either
Dk'=kifm+n>k>0, or
2)k'2kand(k—m—n)‘(k'—m—n) if k> m+n.
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4. If m =0
E, D Ey  iff either
DE'=kork'=nifn>k>0, or
2)k'2nand(k—n)‘(k'—n) if k> n.

For example, when m =n =1 and k, k' > 0

Ep D By iff K > kand (k—2) | (K —2)

Er O Ey < (k,K') in the graphs

1. m>n>0 2. m=n>0
k/

10n
8n
6n
4dn

2n

k;l

L L J n

) ml+n @) n

Figure 3.1:

We will give a proof of this theorem in the following section.

3.2 Proof of the theorem

When k' = k, it is clear that Ey = Ej. We will show the rests in the following.
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Lemma 3.2.1 If m =0 and k' = n then E;, O Ej.

Proof. It is clear that E, O E, since E; coincides with K.

Lemma 3.2.2 If k > k' and either m > 0 or k' # n then Ey 2 Ey.
Proof. When k£ > m, define a frame F = (W, R) as follows;

W = {w; |0<i<k +m},
w;Rw; < either
Nj=i+1lifm<i<k+m-—1or
9)j=i—1if1<i<m.

Wq W W' +m
L& b4 ihd
m k'
Figure 3.2:

Then, we can show that both mek'wkurm and w,,, R™wy hold, while woR"wy,, doesn’t,
since either m > 0 or k' # n. Thus, F ¢ PE. On the other hand, for each x € W,
there is no y € W such that 2 R¥y since k > k' and k > m. Therefore F € P& since R
is k-pseudo-Euclidean.

When k < m, take a frame F = (W, R) as follows;

W = {w; |0<i<k +1},
w;Rw; < either
j=i+1if1<i<Fk or
2)i=1and j=0or
3)i=0and j =0.

Wo w1 W1
o ° o

Figure 3.3:

Then, we can show that both wle'wkurl and wy R™w, hold, while wyR" w1 doesn’t.
Thus F ¢ PE. Next, suppose that both zRFy and 2 R™z hold, for a given x € W. Since
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k > k' and m > k', both y and z are equal to wg. Hence zR™y, i.e. woR"wq, holds since
wy is a reflexive point. Therefore F € PE&;. 1

Lemma 3.2.3 Ifk' >k >m+n and (k—m —n) ‘ (k" —m —n) then Ey O Ej.

Proof. By the assumption, &' — m —n = h(k — m —n), that is &' = k + (h —
1)(k — m — n), for a certain number h € Z. Since k' > k and k — m —n > 0, we can
assume that £ = k + (h — 1)(k — m — n) for a certain number h > 1. To show that
Ei O Ey = Eiy(h-1)(k—m—n) it is enough to show that every (W, R) € PE; belongs also
to PE k4 (h—1)(k—m—n) for any h > 1. This can be shown by the induction on h.

Figure 3.4:

If h =1, this is trivial since k + (h—1)(k—m —n) = k. So, we assume that this holds
for h. To show that (W, R) belongs to PEiink-—m-n), We assume that x RFHhk=m=n),
and sR™z. Then, for some w € W, xREF(r=Dk=m=n)y, and wR*™"y, since k + (h —
1)(k—=m —mn) >0and k —m —n > 0. Since (W, R) belongs to P&y (h—1)(k—m—n) by the
hypothesis of induction, zRFt*-1DE=m=n)y, and zR™~ imply zR™w. Since tR™z, zR"w
and wR* ™ "y hold, zRFy. But since (W, R) is in P&}, zR™y. Thus, we have shown that
(W, R) belongs to PEin(k—m-—n)- 1

Lemma 3.2.4 If E, O Ey then (k—m —n) ‘ (K" —m —n).

Proof. Suppose that E;, O Ey but (k — m — n) ‘ (k" — m — n) doesn’t hold. For
a =k —m —n, we define a frame F = (W, R) as follows;

W = A{w;|i€e Z/aZ},
w;Rw; < j=i+1 (mod a).
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Figure 3.5:

By the assumption, since ¥’ —m # n+ h(k —m —n) for any h € Z, ie. k' —m #n
(mod a), wy, R"wy doesn’t hold. On the other hand, both wyR* wy and wyR™w,, hold.
Thus F ¢ PEg. Next, suppose that w;R*w; and w;R™w,. Then, j —i =k (mod a)
and s —i =m (mod a). Hence j —s =k —m (moda). But k —m =n (mod a)
since a = k—m —n. Thus j —s =n (mod a), i.e. w,R"w;. Hence F € PE;. This
contradicts that E, O E. 1

Lemma 3.2.5 If k' >k and m+n >k >m >0 then Ey 2 Ej.

Proof. Define a frame F = (W, R) as follows;

W = {w;|0<i<m+n+1},
w;Rw; <4 either
l)j=i+1if0<i<m+nor
2)j=i—1lifm+2<i<m+n+1or
3j=iifm+1<i<m+n+1or
4)i=0and j=m+n+1—k.

Figure 3.6:
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First, we will show that F € PE,. If ¢ > 1, wiRkwj and w;R™w; then both w; and wj
are between wy,;1 and Wy,4p41 since i +k > m+1 and i +k > m + 1. Thus wyR"w;.
If wORkwj and woR™wj then wy R"w; since m+1 < j <m+mnand m < j' < m+n.
Hence F € PEj. On the other hand, w,, R"w,, 1,+1 doesn’t hold since m # 0, while both
woRF Wy 4 i1 and woR™w,, hold. (Note here that woRF ™ w,, 1,1 and k+1 < k') Hence

F ¢ PEy. '

Lemma 3.2.6 If k' >k, m >k >0 andn>m >0 then E;, 2 Ey.

Proof. If ¥ <m+nthen m+n—k>m+n—~k>0,s0 (k—m—n) ‘ (k' —m —mn)
doesn’t hold. Thus, we can derive our conclusion by using Lemma 3.2.4. It is therefore
sufficient to consider the case where &' > m + n. We will divide the case into two.

For n > k + m, we define a frame F = (W, R) as follows;

W = {w;|0<i<m+n},

Wo w1 Wm4n—1 Wm+n
Ot—— PO »O¢——»0
m—+n
Figure 3.7:

Since m+n > n by m > 0, woR"w,,., doesn’t hold while both wyR™w, and ngk'mern
hold for ¥ > m + n. Therefore F ¢ PEy. We will next show that F € PE;. We first
note that w; R'w; holds if and only if |i — j| < . Now, suppose that w; R¥w; and w; R™wj.
Then, |i — j| < k and |i — s| < m. Therefore, |s —j| < |s—i|+|i—j| < m+k < n.
Hence, w,R"w;

For n < k + m, define a frame G = (V| S) as follows;

Vi = {v; |0<i<m+n+1},
v;Sv; & either
D)i—j|<1if0<i,j<m+n+1or
2)j=k4+m—-n+2if1<i<k+m-n+2or
)j=n—-1lifn—-1<j<k+m.
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»O=
Vo (N Uk+m=n+2 Unc1 AVk+m Vk+m+1

Figure 3.8:

Note that the frame takes at least n 4+ 1 steps from vy to vgime1 by the relation S.
Thus vgS™vk1me1 doesn’t hold. But both UmSk'vk+m+1 and v,,S™vy hold because of
k+m+1<k +m. Thus G ¢ PEy.

Assume that 5%y and 2S™z for any .7,z € V. Then both y and z must be either
between vy and vgy,,, or between v; and vgy,,.1, depending on z. For each case, y is

accessible from z by n steps, i.e. 25™y. Therefore G € PE,,. 1

Lemma 3.2.7 If k' >k, m =0, n >k and k' #n then Ey 2 Ej.

Proof. Similarly to Lemma 3.2.6, we can show our lemma easily when &' < n. So,
suppose that &' > n. If k¥’ <2n —k thenn —k > k" —n >0, so (kK —n) ‘ (k" —n) doesn’t
hold. This case has been discussed already in Lemma 3.2.4. It is therefore sufficient to
consider the case k' > 2n — k. Then we define a frame F = (W, R) as follows;

W = {w;|0<i<2n-—k},

Wo w1 Won—k—1 Won—k
O€¢————————— PO »Qe¢—»0O
2n — k
Figure 3.9:

Since 2n—k > n by n—k > 0, woR"w»,,_; doesn’t hold while woR¥ way, hold, therefore
F ¢ PEy.
On the other hand, if z R*y then xR"y for any x,y € W, since n > k. Thus F € PE&,.
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Lemma 3.2.8 Ifk' >k, m =n and k =0 then Ey 2 Ej.
Proof. We define a frame F = (W, R) as follows;

W = {w; |0<i<m+1},

Wo w1 w2 W Wm+1
o o R »O+—>0
m
Figure 3.10:

Then wqR™w,,+1 doesn’t hold while both wy R wy and w1 R™wy, 41 hold. Hence F ¢ PEy.
On the other hand, zR™y implies y R"x since the frame R is symmetric. Thus F € PE,.

Lemma 3.2.9 If ' >k, m >n >0, m >k >0, eitherm—n >0 ork >0, and
(k—m—n)‘(kz’—m—n) then Ey O Ey.

Proof. By the assumption, &' —m—n = h(m+n—k), that is k' = k+ (h+1)(m+n—k),
for a certain number h € Z. Since k' > k and m +n — k > 0, we can assume that
K =k + (h + 1)(m +n — k) with A Z —1. To show that Ek 2 Ekl = Ek—l—(h-l—l)(m-i—n—k)a
it is enough to show that every (W, R) € PE}, belongs also to PE i (h41)(mn—k) for any
h > —1. This can be shown by the induction on A.

Figure 3.11:
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If h = —1, this is trivial since k + (h + 1)(m +n — k) = k. So, we assume that
this holds for h. To show that (W, R) belongs to PEpi(ht2)(mtn—k), We assume that
wRFH0H2)mAn=k)y and x R™z. Then, for some w € W, z RFHh+Dm4n=k)y; and wR™Fy,
since k + (h+ 1)(m+n—%) > 0 and m+n —k > 0. Since (W,R) belongs to
PE ks (hi1)min—k) by the hypothesis of induction, zRFF(+Dmtn=k)yy and xR™2 imply
2R"™w. Thus, zR™k+2ny,

Then, for some u,v € W, xR *u, uR*z, zR™ *v and vR?"y, since m — k > 0 and
k > 0. Since uR*z and zR™ *v hold, uR™v. But since (W, R) is in P&, vR"2.

But by using the next lemma, zR"y by taking [ = n. Thus, we have shown that (W, R)
belongs to PE i (h+2)(m+n—k)- I

Lemma 3.2.10 Let (W, R) be in PEg. Suppose that m > n, m > k and either m—n > 0
ork > 0. Also, suppose that M > max(m—n—1,k—1) > 0. Then, for every non-negative
integer 1, if tR" 'y, xR'z and 2’ RMx then zR™y.

Figure 3.12:

Proof. We will show by the induction on [. If [ = 0, this is trivial. When [ = 1, we
will divide the case into two.

First, suppose that & > m — n. Then, for some w,u € W, 2/ RM=—Ny wRF 1z,
e R™ k1 and u R ™y, since M > k—1>0,m—k+1>0and k+n—m > 0. Since
wR* 'z and xRz hold, wR*z. Also, since wR¥ 'z and zR™ **+'y hold, wR™u. Since
(W, R) is in PEy, uR"z. Then, for some v € W, o’ RM+m=k+1=(m=n)y; and v R™ "u, since
M+m—k+1—(m—mn)>0and m—n > 0. Since vR™ "u and uRF*"~™y hold, vR*y.
Also, since vR™ ™u and uR"z hold, vR™z. Therefore zR™y since (W, R) is in PEy.
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Figure 3.13:

When k < m — n, for some w,u € W, o' RM-k-(m—n—k=1y, yRFy and uR™ " * 1z,
since M >k+(m—n—k—1),k>0and m —n—k—12>0. Since wR*u, uR™ " 1z
and zR"*'y hold, wR™y. Since (W, R) is in PE, yR™u. Then, for some v € W, wR™ *v
and vRFy, since m — k > 0 and k > 0. Since vR*y, yR™u, uR™ ™ %1z and Rz hold,
vR™z. Since (W, R) is in P&y, zR"y.

Figure 3.14:

Therefore, we have shown, when [ = 1.

Now, we assume that this holds for {. To show for [ + 1, we assume that zR"tt1y,
xR"*z and #’RMz. Then, for some y/, 2 € W, zR"*Yy/, y'Rly, xRz' and z’R'z. Hence
2’ R™y' by the result when [ = 1. Since 2’ R"y’ and y'R!y hold, 2’ R"*'y. Since 2’ RMx and
rR2' hold, 2’RM*12" | Since 2’ Ry, 2'R'z, 2’ RM*12 and M +1 > M > max(m — n —
1,k —1), zR"y by the hypothesis of induction. 1
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3.3 Note

About inclusion relations on family of logics, for example, a class of logics extending K45
is shown in [23].

As generalization of our results, it is interested in what happen if we allow both m
and n to change.
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Chapter 4

Intuitionistic modal logics I ——
finite model property

4.1 Introduction

In this chapter we will consider two methods for completeness on Kripke type semantics
for intuitionistic modal logics. One is the method of canonical models, and the other is
filtration method.

Definition 4.1.1 An intuitionistic modal logic L is called Kripke complete if there is a
class C of intuitionistic modal Kripke frames such that

Lta iff CEa.

To show Kripke completeness of a given intuitionistic modal logic L, it is necessary
to construct a model in which each formula which doesn’t belong L is refuted, but whose
frame validates L.

Definition 4.1.2

(1) Let L be an intuitionistic modal logic. A set T of formulas is said to be a L-theory
if

(i) LCT,
(ii)) o, — €T = B €T for each a, f3.

(2) A L-theory T is consistent iff | ¢ T.
(3) A L-theory T is prime iff

(i) T is consistent,
(i) avpBeT =acT oreT for each a, 3.

Definition 4.1.3

(1) Let L be an intuitionistic modal logic. The canonical frame Fr, = (Wp, <, Ro,, Ro,)
s defined as follows.

37



(i) Wy, is the set of all prime L-theories,
(ii) <y, is the set-inclusion relation C, i.e., Ty <y To=T) C Ty,

(iii) Ty Rn, T, YU vae Form(Lnoo)(Oa € Ty = a € Ty), in other words, (T1)n C Ty,
where (T})g :={a | Oa € T} },

(iv) TyReo, Ty “WUva e Form(Las)(a € Ty = Ca € TY), in other words, Ty C (T1)o,
where (T})o == {a | Ca € T }.

(2) The canonical model My, = (FL,vy) is the pair of the canonical frame and the
valuation vy, defined by,

vr(p) :={x € W, | pe€ zx},
for every propositional variable p.

We can regard a (prime) L-theory as a (prime) filter of the Lindenbaum algebra
Ap. Compare Definition 4.1.3 with Definition 2.4.1(2), and we can also consider the
canonical frame Fy, as the dual (Ay); of the Lindenbaum algebra A;. Actually a map :
T — Tp, :={|a|y | @ € T} is an isomorphism.

Definition 4.1.4 Let L be an intuitionistic modal logic. For a given non-empty set X of
formulas, we define [X)r and (X by

X).={B|LFayA---ANay, —  for some ay,...,a, € X},
(X]l.={B|LEFB—=ayV---Va, for some ay,...,a, € X}.
Then, similarly to Theorem 2.4.3, we can show the following theorem.

Theorem 4.1.5 Let L be an intuitionistic modal logic. Given non-empty sets X and Y
of formulas such that [X),N(Y], =0, there exists a prime L-theory T such that X C T
and TNY = 0.

Theorem 4.1.6 Let M, = (Fp,vr) be the canonical model. Then for every formula o,
vp(a) ={r e Wi | a € x}.

Proof. This can be shown in the same way as the proof of Proposition 2.4.4(2), by
taking vy, instead of h. 1
Theorem 4.1.7 For any L € NExtIntKno, L+ o iff M E a.

Proof. For any x € Wy, L C . So o € L implies z = a. Conversely, suppose
Lt/ a. Since L and ({a}];, are disjoint, by Theorem 4.1.5 there is a prime L-theory x

such that a ¢ x. Thus My, }~ a. 1

In order to show that a given logic L is Kripke complete, it is sufficient that the
canonical frame validates L. Such a logic L is called a canonical logic.

38



Proposition 4.1.8

(1) If a logic Ly is an extension of a logic Ly, then the canonical frame Fy, is a generated
subframe of Fr,.

(2) If L; is a canonical logic for each i € I, then @Li is also canonical.
icl

Proof. (1). It suffices to check the conditions of generated subframes ( see Defini-
tion 2.3.4.) Clearly Wy, contains Wp,,. Suppose that x € Wy, and y € Wy,. If 2 C y then
L, Cy,and if 2o C y then L; C y, too, since Ly C (L1)n. Thus, both conditions (iii) and
(iv) of Definition 2.3.4(1) hold. Suppose y C x¢. For any formula a € y and any formula
B, if « = 3 € Ly then Of € z since Ca — Of € Ly C x. Therefore since [Ly Uy), and
(—(xo)]1, = —(zo) are disjoint, by Theorem 4.1.5 there is z € Wy, such that y C z and
2N —(zo) = 0. Hence z C xo. Thus, both condition (v) of Definition 2.3.4(1) holds. (2).
By (1), Fer, is a generated subframe of Fy, for every i € I. Since F. = L;, For, E Li
by Corollary 2.3.6. Thus, Fgr, = P L 1

el

Theorem 4.1.9 IntKqo & T is a canonical logic, if T' is any combination of formulas in
the following list.

D(p = q) = (Op — ©q), (4.1)
Olp = q) = (Op — Oq), (4.2)
(Op — Og) = D(p — q), (4.3)
0% (p — q) = (Op = ©q), (4.4)
0™ (p — q) = (Op = Oq), (4.5)
-0, (4.6)
O, (4.7)
Op — p, (4.8)
p — p, (4.9)
Op — OOp, (4-10)
OOp — Op, (4.11)
okolp — amonp, (4.12)
Op Vv O-0p, (4.13)
O(0pV q) — (OpV Og) (4.14)
O(0p — ¢q) vV O(0g — p) (4.15)

As a consequence, each IntKq, @ I' in the above theorem is Kripke complete.

Proof. We will check only formulas which are shown in Proposition 2.3.3. The rest
can be checked similarly.

(4.5). Let us suppose that O™ (p — ¢q) — (Op — O¢) € L. We will show that the
canonical frame Fy, satisfies the condition of (2.5), i.e.

TCyo=>TIn(r C2z& 2Cys & yan C 2 & 0 < n<m).
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Suppose = C yo. Then we will show [xUygn ), C yo for some n. Suppose otherwise. Then
for each n (0 < n < m) there are formulas a,, 8,, 7, such that o, € x, 0", € y, Oy, ¢ y
and a,, A B, — v, € L. Since

(Bo VooV Bn) = (oA Aam) = (Yo V- Vm)) € L,
for each n
O"(Bo V-V By) = (a0 A- - Aay) = (Y0 V- V) € L.
Since 0", € y implies O"(By V - -+ V B,) € y, for each n
O"((wp A= Aag) = (Yo V-V Ym)) €.

Since also
O (g A+ Aam) = (0 V-V Ym)) € 9,

by using the axiom (4.5),
Olag A= ANay) = (Y V- Vam) €.
Since ag A -+ Ay, € 2 and & C yo, we have O(ag A -+ A ayy) € y. Therefore
OV - VOy, €.

This is a contradiction. Thus, we have [z U yon)r, C yo for some n. Therefore since
[*Uyan ), and —(yo) are disjoint, by Theorem 4.1.5 there is an L-theory z such that [z U
yon)r, € z and 2N —(yo) = 0. Thus, = C 2, z C yo and yan C z for some n.

(4.12). Suppose that OFOlp — OmO"p € L for some k, 1, m,n > 0. Then we will show
that the canonical frame Fj, satisfies the condition of (2.12), i.e.

(xom Cy & 2 Cxor) = Fu(u C yon & 2o C u).

Suppose xom C y and 2z C xor. Hence, xomen C yor and 2o € zerm. On the other hand
Torg C Tamen since OFOla — O™O"q € 2. Thus 2t C yon. Therefore Theorem 4.1.5
guarantees the existence of L-theory u such that v C yo» and 2o C w.

(4.14). Let O(Op V q) — (dp V Ogq) belongs to L. We will show that the canonical
frame F, satisfies the condition of (2.14), i.e.

(r0 Cy&axaCz)= Ju(to Cu&k ulz & un Cy).

Suppose x5 C y and x5 C 2. Then we will show xo N ({34 | § ¢ y} U—=z], = 0. Suppose
otherwise. Then there are formulas «, 31,..., 8,y such that Oa € x, f1,...,0, ¢ y
v ¢ z, and

o— 0B V...vOB,VyeE L.

Hence
Oa — 006, V...vOB, Vy) € L.

Since
0@ v...vOB, VY € x,
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by using the axiom (4.14)

06, vVOOF V...vEaOE, Vy) € .
By iterating this,

ap,vapy,Vv...vag,Vvdyeux.

Therefore, either OF; € x for some ¢ or Oy € x. If OF; € x for some i, 3; € vo C y.
This contradicts ; ¢ y. If Oy € x, v € g C z. This contradicts v ¢ z. Thus, we
have xo N ({05 | B ¢ y} U —z], = 0. Therefore by Theorem 4.1.5 there is an L-theory u
such that 10 Cu, v C zand uN {3 | B ¢ y} = 0. Since p = (uN{3B | & y})o =
unN{OB | B ¢ y}ta = un N —y, we have un C y. 1

Corollary 4.1.10 Logics IntKno, IntK/,,, IntK}, FS, IntDne, IntTne, IntK4po,
IntS4q., IntS4.3-¢, IntK5n,, IntS54, and MIPC are Kripke complete.

4.2 Filtration method

The canonical model of a given L refutes any formula which does not belong to L. The
frame will contain continuum many points. But it will be nice if we can find a finite
frame refuting each formula a which does not belong to L. For, if L is moreover finitely
axiomatizable, then L is decidable in this case. Here, we say that L is finitely axiomatizable
if L =IntKge @I for some finite set I' of formulas.

Definition 4.2.1 A logic L has the finite model property if for every non-theorem ¢ of
L, there exists a finite frame F such that F = L and F = .

In the following, by using filtration method we will show that many of basic intuition-
istic modal logics have the finite model property.

Definition 4.2.2 (1) Let M be a model and X be a set of formulas closed under subfor-
mulas, i.e., Subp C 3 whenever ¢ € ¥, where Suby s the set of all subformulas
of . Define an equivalence relation ~x on W, by taking

l’Nzyg (M, z) E @ iff forevery p € X(M,y) = p,

and say that x,y are X-equivalent in M. Denote by [z]s the equivalence class
generated by x. If understood, [x]s is written simply [z].

(2) A model Mx, = (Wx, <s, Ras, Rox, vs) is called a filtration of M through X if the
following conditions are satisfied.
(1) We ={[z] |z € W}
(i1) vs(p) = {[z] | z € v(p)}, for every propositional variable p € X,
(iii) for all x,y € W x vy implies [z] <x [y],
(iv) for all x,y € W xRny implies [v]Rox[y],
(v) for all x,y € W xRoy implies [z]Roxly],
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(vi) for x,y € W and ¢ € X if [z] <x[y] then y = ¢ whenever z = o,
(vii) for x,y € W and Op € X if [z]|Rox(y] then y = ¢ whenever z = Op,
(viii) for x,y € W and Op € B if [x]Roxly] then x = Op whenever y = .

Theorem 4.2.3 Let Msx be a filtration of a model M through a set ¥ of formulas. Then
for every z in M and every formula ¢ € X,

M, 2) ¢ & (Ms,[2]) .

Proof. we prove our theorem by induction on the construction of ¢. The basis of
induction follows from (ii). Now let ¢ = ¢ — y € X. Suppose that z E ¢ — x, [z] <s [y]
and [y] = ¢. Then, by (vi), y = ¢ — x and by the induction hypothesis, y = 1. Hence,
y E x. Again by the induction hypothesis, [y] = x. Thus, [z] E ¢ — x. Conversely,
suppose that [z] =9 — x, <ty and y = 9. Then, by (iii), [z] <x[y] and by the induction
hypothesis, [y] E . Hence, [y] = x. Again by the induction hypothesis, y = x. Thus,
rEY—x.

Next let ¢ = Oy € ¥. Suppose that x = Ot and [x]Rox[y]. Then, by (vii), y = ¢
and by the induction hypothesis, [y] = ¢. Thus, [z] E Oy. Conversely, suppose that
[z] E Oy and zRy. Then, by (iv), [z]Rox[y] and so [y] = 1. Hence, by the induction
hypothesis, y = 1. Thus, z = 0.

Let ¢ = Ot € X. Suppose that z = Otp. Then, there is y such that xRey and
y &= 1. Hence, by (v), [x]Rox[y] and by the induction hypothesis, [y] E . Thus,
[z] E ©1. Conversely, suppose that [z] = <1 Then, there is [y] such that [x]Rox|y]
and [y] E ¢. Hence, by the induction hypothesis, y = ¢ and by (viii), z | O. 1

In general, the conditions from (iii) to (viii) do not determine the binary relations
s, Ros, Ros uniquely. Actually, they allow us to choose any relations <sx, Ros, Roxs
such that <5, € <y C 4y, Royy € Roy C Ros, Ros € Ros € Rox, where

<z = {(l2z, ) | 32,/ (x ~2 2" &y ~2y & 2'RyY)},
Ros = {([z,[y]) | 32,/ (x ~2 2" &y ~2 ¥ & 2'Ray')},
Roy = {([z,[y]) | 3,y (z ~2 2" &y ~s ¥ & ' Reyf)},
<z = {(zLW) IV ez E o=y},
Ros = {([z],[y) |VOp e B(z = Do =y = ¢)},
Ros = {([z],[y]) |VOp € By E v =z |= Op)}.

Indeed, if [z] <x [y], [z]Ros[y] and [z]Rex[y] hold then, by (vi), (vii) and (viii),
[z]<ds[y], [r]|Ros|y] and [x]Roxly], respectively. And if [2]|<x[y], [x]Rox|y] and [2]Res[y]
then 2’ < ¢/, 2’ Roy' and 2'Rey’ for some o’ € [z],y’ € [y]. Hence, by (iii), (iv) and (v),
[z] <% [y], [z]Rox(y] and [z]Rox[y], respectively. Note here that the fact that [z]<x[y],
[z]Ras[y] and [z]Rex[y] satisfy (vi), (vii) and (viii), respectively, and [z]<s[y], [z] Rox[y]
and [z]Roxly], satisfy (iii), (iv) and (v), respectively, follows directly from the definition
of the valuation.

Note that Jy; is a partial order, s 0 Roy 0 Iy = Ros;, and Zgl o Rox OZ; = Ros.
The reflexivity of s follows from (iii). The anti-symmetry of Jx follows from (vi) and
the definition of ¥-equivalence. Suppose that [z]<ds[y] and [y]|<s[z] and ¢ € X. If
r | 9, then y = 9. Hence z = ¢. Thus, [r]|Ros[z2]. Next, suppose that [z]<s[y],
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[y|Rosz], [2]<ds[w], and Oy € . If 2 = O, then y = Otp. Hence 2 = 1. So, w = 9.
Thus, [z]Ros[w]. Finally, suppose that [7]<5'[y], [y]Rox[z], Jg [w], and Oy € . If
w = ¢, then z | . Hence y E Ot So, x = O1p. Thus, [1]Rexs[w]. Therefore,
(Ws, <s, Ros, Ros) is an intuitionistic modal frame.

But not all of <y, Rox, Ros in these intervals give rise to filtrations of intuitionistic
modal frames. More preciously, the reflexivity and the anti-symmetry of <y hold always,
while <ls; may be non-transitive and neither <|s;0 Rgs0 <sy = Rpx nor <1§;1 oRex0 <§;1 =
R(}E may hold.

To get a transitive relation it is enough to take the transitive closure < of <s.
Clearly, < satisfies (iii). By the transitivity of <z, < satisfies (vi). We also defines
Rfs, and Ry, by

Riy = <% o Ron o <%

and

* —1loo —1loo
ox =g o Rexpody

Then, it is easily shown that they satisfy (iv), (v), (vii) and (viii). Thus, (Ws, <, Rts, REs)
is also an intuitionistic modal frame. Clearly, if (Ws, <s, Ros, Rox) is an intuitionistic
modal frame, < = s, Riy = Rox and RYsx, = Rox hold. Therefore, for any fil-
tration (WE,QE,RQE,RQE,UE), we have ﬂozo C gy C Zg, EEIE C Rpx C EDE and
R%s, C Ros C Rosx.

Definition 4.2.4 The filtration on the frame Fs, = (Wx, IS, Ris, Ris) is called the

finest filtration of M through X, while the filtration on the frame Fs, = (Wx, <s, Ros, Roz)
1s called the coarsest filtration of M through X.

If 3 is finite then Wy is finite (in fact, it contains at most 2/*! elements.). Therefore,
to prove the finite model property of a logic L, it suffices to show that for every non-
theorem ¢ of L and a model M of L such that M [~ ¢, if there exists a filtration of M
through a finite set X containing ¢ such that Fx | L. If this is really the case then we
say that L admits filtration.

Suppose that P is a property of a frame. Suppose moreover that a given logic L is
sound with respect to the class C of frames satisfying a property P, and that the canonical
frames of L satisfies P. In such a case, to prove that L has finite model property it suffices
to show that for each non-theorem ¢ of L, there exists a finite set 3 containing ¢ such
that a filtration Fs of any M in C through ¥ satisfies P.

The following theorem will show how filtration method works well also for intuitionistic
modal logics.

Theorem 4.2.5 Any of IntKne, IntDng, IntToo, IntK4ne, IntS40, and IntS5q¢
admits filtration and hence has the finite model property.

Proof. For IntKpo: Our basic logic IntKpe is characterized by the class of all
intuitionistic modal frames, it trivially admits filtration.

For IntDno: When Rp and R are serial, by (iv) and (v) Rpx and Reox in any
filtration are also serial, respectively.

For IntTro: When Rn and Re are reflexive, by (iv) and (v) Rox and Res in any
filtration are also reflexive, respectively.
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For IntK45,: Let M be a model with transitive relations Ry and R.

First, we will consider the finest filtration. Let ¥ be a set of formulas closed under
subformulas. We take the transitive closures (Rfy)*> and (R%s)* of Ry and Riy. It
is easily shown that they satisfy (iv) and (v).

We show that (Rfs)> satisfies (vii). Suppose that [z]Rps|y], Ot € 3. Then, there
exist 2,y such that 2’ € [z],y € [y] and 2’Rpy’. If 2 = O, 2’ | Ov. Since Ry is
transitive, y' = O%¢y. Hence y = O%¢. By iterating this argument, for any Oy € 3,
if (R55)™ and z = 01, then y = O%. Thus, (Rfs)* satisfies (vii). Similarly, we can
show that (R )™ satisfies (viii). Thus, the frame (Wg, <%, (Rhs)™, (R5x)™) is also a
frame which we want to get.

Next, we will consider the coarsest filtration. Suppose that

3y = Subp U {00y | Oy € Subp} U {OOY | Oy € Subgp}.

We will check that in the coarsest filtration both RDEO and Eogo are transitive.

Suppose that [z]Ros,[y], [y]Ros,[2] and Oy € Xy. When Ot € Sube, if x = O,
then x = OO¢ by the transitivity. Since OO0y € Xy, y E Ot. Hence, z = 1. Thus,
[2]Ras, [2]. Otherwise, Oy = OOy € {O0O¢ | O¢ € Subyp} for some x. If x E OOy,
then y = Oy, since OOy € X,. By the transitivity, y = OOy. Hence, z = Ox. Thus,
lRomld. ~

Suppose that [z]Ros,[y], [y]Ros,[2] and Oy € 3y, When Oy € Subg, if z = 1,
then y | G, Since OOy € By, x = OO, Hence, © | O1), by the transitivity. Thus,
[7]Rox,[2]. Otherwise,01p = OOy € {OOC | ©¢ € Subg} for some x. If 2 E Oy,
then y = OOy, By the transitivity, y | $x. Since OOy € Xy, z | OOx. Therefore,
[#]Rox,[2]- Thus, the frame (Wx,, Rx,, Ros,, Rox,) is also a frame for IntK4pe.

Therefore, for any filtration (Ws, <s,, Ros,, Ros,, vs,), we have < C s, C Js,,
Ris, € (Bos,)™ C (Ros,)™ C Ros, and Rg, © (Bix,)™ C (Rox,)™ € Rox,. Thus,
the frame (Wx,, <5, (Ros,)%, (Rox,)*) is also a frame which we want to get.

For IntS4p,: When Rn and Re are reflexive, by (iv) and (v) Rpy and Reoy in
any filtration are reflexive, respectively. The filtrations for IntK45, work well also for
IntS4n,. Moreover, (Ris)® = Ry and (Ryx)™ = R3s by the reflexivities of Rys and
Rox.

For IntS5n.: Let M be a model such that both Ry and R, are reflexive and transitive,
and that Ry = R3L.

First, we will consider the finest filtration. Let ¥ be a set of formulas closed under

subformulas. By the assumption we can easily show that R.s, = Rsy. Thus both
R>, and RY, are reflexive and transitive, and Ry, = R%y'. Therefore, the frame

(W, <%, RS, RYs,) is a frame which we want to get.
Next, we will consider the coarsest filtration. Put

3, = Subp U {00y, ©0¢y | Oy € Subp} U {OOyY, OOy | O1p € Subp}.

We will check that the coarsest filtration satisfies Rox, = Eg;l. Notice that by
properties of IntS5n, if ¢ is either Oy or &y for some x then

rEY ff xEOY ff xkE Oy

Suppose [z]Ras, [y] and Oy € ;. When Ot € Subyp, if x | 1) then z = O by the
reflexivity of Re. Hence, x = OO, Then, y | Ot since OOy € 3. Thus, [y|Ros, [7].
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When &y € {00y, GOy | Dy € Subp} U {OOy, OO0y | Ox € Subg}, x = ¢ implies
v | Ot Since Oy € By, y | . Hence, y &= Otp. Thus, [y|Rox,[x]. Conversely,
suppose [y]Row,[z] and Oy € ;. When O¢ € Subgp, if x | Ot then y | OOy,
since ©O¢ € X;. Hence, y = Ov. By the reflexivity of Ro, y | . Thus, [z]Raos, [y].
When & € {00y, 0Oy | Oy € Subp} U {OOy, 00y | Ox € Suby}, if z = Ot then
x |= 1. Since O € 3, y | O¢. Hence, y = 1. Therefore, [z]Ros, [y]. Thus, the frame
(Ws,, Rs,, Ros,, Rox, ) is also a frame for IntS5q.

Therefore, for any filtration (Ws, <s,, Ras,, Rox,, vs,), we have <55 C <, C dx,,
Ry, C (Bis, 03321_1)00 C (Ros, ORglzl)oo C Rus, and Ris, C (BSs, OEEEI_I)OO <
(R<>21 o RE%I)OO - Eozl. Thus, the frame (ng, <z, (RD21 o Rggl)oo, (R<>21 o RE%I)OO)
is also a frame which we want to get. 1

4.3 Note

V. H. Sotirov proved in [26] the finite model property for IntKpne, Int T IntS4n, and
IntS5n¢ by using coarsest filtrations.

In this thesis, we gave alternative proofs of the finite model property for these logics
by using more general filtration method.

As another result of the finite model property for intuitionistic modal logics, C. Grefe
showed that FC has the finite model property [12].

In general, the finite model property for bimodal logics is much more difficult than
that for mono-modal logics. Many problems remain on the finite model property for
intuitionistic modal logics yet.

So far, we have treated the logics of Lne. But, if we restrict the modal operators
only to O operator, Some logics can admit filtration. For example, we fail to prove that
IntS4.3n¢ admits filtration. But IntS4.35 on which the modal operator is restricted to
O operator admits filtration, because we can take O-rooted counter-model.
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Chapter 5

Intuitionistic modal logics II ——
subdirectly irreducible algebras

5.1 Introduction

In this chapter, we will discuss modal Heyting algebras. From the algebraic point of view,
to each of these intuitionistic modal logics there corresponds a wvariety of modal Heyt-
ing algebras (O-modal Heyting algebras, ¢-modal Heyting algebras, O<{-modal Heyting
algebras and FS-algebras, respectively) with one or two operators (see [33]). Since ev-
ery algebra is isomorphic to a subdirect product of subdirectly irreducible algebras by
Birkhoff’s subdirect representation theorem, it is important to find a nice description of
subdirectly irreducible modal Heyting algebras. In the case of O-modal Heyting algebras
and FS-algebras, the following result was proved in [30].

The logic FS defined in page 14 corresponds FS-algebras, i.e. OC-modal Heyting
algebras with (e — b) < Oa — $b and Ca — Ob < O(a — b).

Proposition 5.1.1 Let A be either a O-modal Heyting algebra or a FS-algebra.

1. A nontrivial algebra A is subdirectly irreducible iff there exists an element a € A
with a # 1 such that for all b € A with b # 1 there exists a number n such that
bAODAD?*HA---ADO" < a.

2. A finite algebra A is subdirectly irreducible iff the dual frame of A is rooted.

In [30] the following problem is posed; “Is there a nice description of subdirectly irreducible
finite O-modal Heyting algebras as for a O-modal Heyting algebra in Proposition 5.1.17”
In this chapter, we will give a uniform description of subdirectly irreducible algebras for
various classes of (multi-) modal Heyting algebras (see Theorem 5.3.2 and Corollary 5.3.3),
from which an answer to the above problem immediately follows (see Proposition 5.3.4).

5.2 Normalizing operators
In this section, we will discuss Heyting algebras with operators. In the rest of the chapter,

we assume that A = (A’, M) is a Heyting algebra A’ = (A, A, V, —,0, 1) with a finite set
M of unary operators my, ..., my. Let a <> b be the abbreviation of (a — b) A (b — a).
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A filter F' of A is called an M -filter if for each i € {1,...,k},
a <» b € F implies m;a <> m;b € F for all a,b € A. (5.1)

Let F;(A) be the set of all M-filters of A. We can show that F/(A) = (Fy(A),N,V,
{1}, A) forms a complete lattice, where for all G, H € Fy;(A), GV H denotes the M-filter
generated by the set G U H. Let ©(A) be the set of all congruence relations on A. A
binary relation 6 on A will be identified with its graph {(a,b) € A? | a@b}. We can show
easily that @(A) = (O(A),N,V, A, A%) forms a complete lattice. Here A denotes the
diagonal {(a,a) € A% | a € A} and 6, V 0, denotes the congruence relation generated by
the set 6, U 6, for all 0,0, € ©(A).

It is well-known that for any Heyting algebra A’, the complete lattice of all filters of
A’ is isomorphic to the complete lattice of all congruence relations on A’. This result can
be easily extended as follows.

Proposition 5.2.1 The map

f:F—0p={(a,b)|a<beF}
is an isomorphism from the complete lattice F y;(A) onto the complete lattice ©(A). The
tnverse map is given by

g:0—Fy={acAlabl}.

Proof. We note first that 6 is a congruence relation by definitions if F' is an M-filter.
Next, Fy is an M-filter whenever 6 is a congruence relation, since (a <> b) 01 iff a0 b. It
is easy to see that Fy, = F and 0p, =0 i.e., (9o f)(F) = F and (fog)(#) =6. So, f is
an isomorphism from F'5;(A) onto @(A). 1

A unary operator m on A is monotone if
a <b implies ma <mb
for all a,b € A. A unary operator m is normal if both
ml=1 and m(aAb)=maAmb

hold for all a,b € A. It is clear that every normal operator is monotone.

Proposition 5.2.2 The condition (5.1) can be replaced by the following condition
a — b e F implies m;a — m;b € F for all a,be A (5.2)
when m; s monotone; and by the condition
a € F implies ma€ ' forall a€ A (5.3)

when m; 18 normal.
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Proof. First, suppose m; is monotone. We will show that the condition (5.1) implies the
condition (5.2). Suppose a — b € F. Then a <+ (a A b) € F, and, by the condition (5.1)
m;a <> m;(a Ab) € F. On the other hand, m;(a A b) < m;b holds by using monotonicity.
Therefore m;a — m;b € F. Conversely, it is clear that the condition (5.2) implies the
condition (5.1). Next, suppose m; is normal. Then, the condition (5.2) implies the
condition (5.3) by using 1 — z = z for any = and m;1 = 1. Conversely, the condition
(5.3) implies the condition (5.2) by using m;(a — b) < m;a — m;b, which is a consequence
of the normality. 1

Next, we will introduce an operator which characterizes M-filters. We will define
(partial) operators [m;] and [M] as follows: for each a € A,

mla:= N\ (mib <> me),
a<b<rc

(M]a:= N (mb <> me),
a<berc
1<i<k
if the infima exist, and they are undefined, otherwise. It is easily seen that if all [m;] exist
then [M] exists and [M] = /\ [m].

1<i<k

Theorem 5.2.3 Suppose that both [m;la and [M]a exist for all a € A. Then [m;] and
[M] are normal.

Proof. First [m;]1 = /\ (m;b <> m;c) = \ 1= 1. Next [m;](a Ab) < [m;]a A [m;]b holds,

since {(¢,d) | a < ¢ e(; cci} U{(e,d) | b<c+d} C{(c,d) | anb<c<> d}. Conversely
suppose that aAb < ¢ <> d. Then a < (bAc) <> (bAd), b < ¢ <> (bAc) and b < d <> (bAd).
Hence [m;la A [m;]b < (m;(bAc) <> mi(bAd)) A (mic <> mi(bAc)) A (mid <> mi(bAd)) <
mjc <> m;d. Therefore [m;|a A [m;]b < [m;](a A b) holds. Similarly, we can show that [M]
is normal. I

Proposition 5.2.4 Suppose that each m; is monotone. Then for all a € A, the following
equations hold.

1.
m;la = bAq(mib — m;i(a A D)),
2.
[M]a = /> (mib — m;(a A D)).

More precisely, whenever the infimum on one side exists in the above equations, the infi-
mum on the other side exists and they are equal.

48



Proof. Since a < b <> (a A b) and by the monotonicity m;b > m;(a Ab) for all a,b € A,
{mib — mi(aANb) | b€ A} C {mb > mc | a < b <> c}. Suppose a < b <> ¢. Then
aAb<cand aAc<b. Hence (mib— m;(aAb))A(mic— mi(aAc)) <mb <> micby
the monotonicity of m;. The second equality is proved, similarly. 1

Proposition 5.2.5 Suppose that m; is normal for a given i. Then [m;la always ezists
and [m;la = mya, for all a € A.

Proof. By Proposition 5.2.4, it is enough to show that m;a is the minimum of {m;b —
m;(anb) | b € A}. Since m; is normal, m;a = m;1 — m;(aAl) and m;a < m;b — m;(aAb),
for all b € A. I

Corollary 5.2.6 Suppose that both [m;la and [M)a exist for all a € A. Then [[mz]} =
[m;] and [[M]] = [M].

Proof. By Theorem 5.2.3 and Proposition 5.2.5. 1

5.3 A description of subdirectly irreducible algebras

Recall that a nontrivial algebra A, i.e. 0 # 1 holds in A, is subdirectly irreducible (s.i.,
for short) iff it has the second smallest congruence relation. In particular, A is s.i. iff
N(O(A) —{A})2 A. For asubset B C A, we denote by [B) the smallest filter containing
B, and by [B)js the smallest M-filter containing B. Sometimes, [{a}) is denoted by [a)
and [{a})ys is denoted by [a)y. For a € A we define [M]"a by induction on n as follows;

[M]°a = a, [M]"""a = [M]([M]"a).

Moreover, we put [M]™a = [M]°aA---A[M]"a. In particular, [M]™") is denoted by [M]*.
When [m;]b exists for all b € A and all ¢ € {1,2,...,k}, we can show that

(M) a = Nlmi,] -~ [mi,]a

where (i, ...,i4) ranges over all sequences consisting of elements in {1, 2, ..., k} with the
length d.

Lemma 5.3.1 Suppose that [M]a exists for all a € A. Then
1. for any filter F', if F' is a [M]-filter then F is also a M-filter,

2. for any nonempty subset B of A, [B)ar is a subset of [B)r, which in turn is equal
to{a € A|[M]™ (b A---Ab;) < a for someby,...,bj € B and somen,j € N},

3. ©(A',[M)]) is a subset of O(A’, M),

4. if (A, M) is s.i., then (A’,[M]) is also s.i., i.e. there exists such an element a € A
with a # 1 that for allb € A with b # 1 there exists a number n such that [M]™b < a.
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Proof. Before proving our lemma, we note here that while (A’, M) with M = {my,...,my}
is a Heyting algebra with k operators, (A’,[M]) is a Heyting algebra with a single
unary operator [M]. For (1), suppose that F' 3 a <« b for a [M]-filter F. Since
[m;](a < b) < mia < mb, F > ma <> m;b. Hence F is an M-filter. Next, we
will show that (1),(2) and (3) are equivalent. (1) implies (2) since [B)y, is the smallest
M-filter containing B. (2) implies (1) since F' C [F)y C [F) = F for any [M]-
filter F'. Clearly, (1) and (3) are equivalent by Proposition 5.2.1. (4) holds because
NO(A",[M]) — {A}) 2 N(O(A", M) — {A})2 A by (3) and the condition that (A’, M)

is s.i.. I

Theorem 5.3.2 The converse of each of (1)-(3) in Lemma 5.53.1 also holds iff [M]a
belongs to [a)y for every a € A. Moreover, when [M]a exists in [a)y for every a € A, a
nontrivial algebra (A’, M) is s.i. iff (A’,[M]) is s.i.

Proof. Suppose that any M-filter is a [M]-filter. Since [a)y D [a) and [a)ag 2 [M]a,
[M]a belongs to [a)y. Conversely, suppose that [M]a belongs to [a)y,. If F is an M-filter
and F' > a, then F' 5 [M]a since F' D [a)y and [a)y D [M]a. Since [M] is normal
by Theorem 5.2.3, F'is a [M|-filter. Thus, the set of [M]-filters is the same as that of
M-filters. The rest follows immediately from this. 1

The following corollary is an immediate consequence of Theorem 5.3.2.

Corollary 5.3.3 When [M]a exists in [a)y for every a € A, a nontrivial algebra A =
(A’, M) is s.i. iff there exists such an element a € A with a # 1 that for all b € A with
b # 1 there exists a number n such that [M]™b < a.

Proposition 5.3.4 Suppose that A = (A’, M) is finite. Then [Mla always ezists in
[a)rr. Hence the consequence of Theorem 5.3.2 holds.

Proof. For all by,c € A and all i € {1,...,k}, [a)p D mb <> muc, if [a)y 2 b < ¢
Hence [a)y o [M]a, since the infimum in the definition of [M]a consists of finitely many
elements. I

From Theorem 5.3.2 and Proposition 5.3.4 we can derive the result corresponding
to Proposition 5.1.1(2) for modal Heyting algebras, in general. As special case, we will
discuss the case of O<G-modal Heyting algebras in the next section (Theorem 5.4.9).

Fix-points of [M]* correspond to M-filters as the following theorems show.

Theorem 5.3.5 Suppose that [M]a exists for alla € A. Then ({a € A |a=[M]"a},A,V,
0,1) is a sublattice of A’, and the map

h:a—la)={be A|a<b}
dually embeds the lattice ({a € A | a =[M]*a},A,V,0,1) into the lattice Fp(A).
Proof. First we show that ({a € A|a = [M]ta}, A, V,0,1) is a sublattice of A’. Suppose

that a; = [M]%a; and ay = [M]|Tay. Then ay A ay < [M]ay A [Mlay = [M](a; A az) by the
normality of [M], and a1 Vay < [May V[ M]ay < [M](a1V az) by the monotonicity of [M].
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Also, 0 < [M]0 and 1 = [M]1. Next, we show that [a) is an M-filter if a = [M]"a holds.
Suppose a < b <> ¢. Then a < m;b <> mye, since [M]a < m;b <> m;c and a < [M]a.
Finally, it is easily seen that [a1) V [a2) = {b € A | ay Aag < b}, [a1) Naz) = {b € A |
a; Vay < b}, [0) = A and [1) = {1} hold. So, since h is clearly injective, h is a dual
embedding from ({a € A | a = [M]"a},A,V,0,1) into Fy(A). 1

When an algebra A is complete, we have the following theorem.

Theorem 5.3.6 Suppose that A = (A’, M) is a complete lattice. Then {a € A | a =
[M]*a} is closed under arbitrary joins, and the map h from Theorem 5.3.5 translates
arbitrary joins to arbitrary intersections in Fy(A). Hence if a nontrivial algebra A is
moreover s.i. then {a € A | a=[M]|Ta} has the second greatest element.

Proof. We note first that [M]a always exists for all @ € A. Suppose that B is a subset
of {a € A|a=[M]"a}. Then VB < \V{[M]b|be€ B} <[M](V B) by the monotonicity
of [M], and Nh(B) ={[b) | b€ B} ={aec A|VB <a}=h(VB). Hence, h(V({a €
Ala=[M"a} —{1})) =Nh({a € A|a=[M]"a} —{1}) 2 N(Fu(A) — {{1}}) 2 {1}
when A is s.i.. Therefore \/({a € A | a = [M]*a} — {1}) is the second greatest element
since V({a € A|a=[M]Ta} — {1}) < 1 holds. 1

When an algebra A is finite, we have following results.

Theorem 5.3.7 Suppose A = (A’, M) is finite. Then the map h in Theorem 5.3.5
becomes a dual isomorphism. Hence a nontrivial algebra A is s.i. iff {a € A | a =
[M]*a} has the second greatest element.

Proof. Since algebra A is finite, any M-filter is principal. For any M-filter F' there exists
an element a € A such that FF = [a). (Take a as A F.) Then [a) = [a)y holds. Since
[M]a € [a)n holds by Proposition 5.3.4, a = [M]*a holds. Thus, F' = h(a). The second
part follows immediately from this and Proposition 5.2.1. 1

5.4 Applications to O0-modal Heyting algebras

As an application of results in the previous section, we will give a characterization theorem
of finite irreducible intuitionistic modal Kripke frames (Theorem 5.4.9), which gives an
answer to a question put by Wolter in [30].

Any O<$-modal Heyting algebra A = (A’, 0, ) can be regarded as a Heyting algebra
with the set M = {0, &} In the following we will write [O<] instead of [M]. Note that O
is normal and < is monotone. As an immediate consequence of Corollary 5.3.3, we have
the following which implies the result in [30] for F'S-algebras.

Corollary 5.4.1 Let A be a OO-modal Heyting algebra with O(a — b) < Oa — b for
all a,b € A. A nontrivial algebra A is s.i. iff there exists an a € A with a # 1 such that
for all b € A with b # 1 there exists a number n such that O™b < a .
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Proof. It is easy to see that Oa < &b — <(a Ab) holds for all b € A by our assumption.
Then, by using Proposition 5.2.4 and 5.2.5, we have [O0<(]a = Oa. Thus [O0C)a = Oa €
[a)ne. Hence, we have our corollary by using Corollary 5.3.3. 1

As another consequence of Theorem 5.3.2, we have the following, which implies the
well-known result for Boolean algebras.

Corollary 5.4.2 Let A = (A’,0,0) be a OO-modal Heyting algebra in which A’ is a
Boolean algebra. Then

(A",0,0) is s.i.  iff (A',0,-0) is s.i..

Proof. First note that [Cla < &—a — O(aA—a) = =O—a, for any a € A. Conversely, for
any a,b € A, Ob < O=aV O (aAb), since b < —aV (bAa). Hence ~O—a < Ob — S(aAb).
Therefore [¢] = —O-. Next, =O-a € [a)o follows from ——a € [a),. We have the
corollary by Theorem 5.3.2. 1
An intuitionistic modal Kripke frame F is called irreducible if the dual FT is s.i..

Let F = (W, <, Rn, Ro) be an intuitionistic modal Kripke frame and V' a nonempty
subset of W satisfying the following conditions:

forany x € Viy € W, z Qy implies y € V, (5.4)

for any x € V,y € W, zRny implies y € V, (5.5)

for any eV, yeW, xRoy implies that there exists z €V such that vRez and yRz.
(5.6)
Then we can show that G = (V, RNV? RoNV? ReNV?) is also an intuitionistic modal
Kripke frame. Following [30], we say that G is the generated subframe of F induced by V.
For an intuitionistic modal Kripke frame F and r € W, W(r) denotes the smallest set
which induces a generated subframe and contains r, if such a set exists.

Proposition 5.4.3 Suppose that F = (W, <, Ra, Re) is an intuitionistic modal Kripke
frame. If both Vi and V5 induce generated subframes and their intersection is nonempty,
then ViNVy induces a generated subframe. If each V; (i € I) induces a generated subframe,

then U V; induces a generated subframe.
icl

Proof. It is clear that the family of sets satisfying conditions (5.4) and (5.5) is closed
under intersection. For condition (5.6), suppose that both Vi and V5, induce generated
subframes. Let x € V; NV; and y € W be elements satisfying zRoy. Then there exists
z € V] such that zRqz and y <1 z. Hence since xRz, there exists v € V5 such that x Rov
and z <v. Therefore v € Vi N Vs, xRev and y < v hold, since V; is upward closed with
respect to < and < is transitive. Thus the family of sets satisfying condition (5.6) is closed
under intersection. It is straightforward that the family of sets satisfying conditions (5.4),
(5.5) and (5.6) is closed under union. 1

Corollary 5.4.4 Suppose that F = (W, <, Ra, Ro) is a finite intuitionistic modal Kripke
frame. For allr € W, W (r) exists.
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Proof. We note that W induces a generated subframe which contains r. Let U be the
set of subsets of W, each of which induces a generated subframe and contains r. Then U
is closed under finite intersection, by Proposition 5.4.3. The intersection of all sets in U
gives W (r). 1

For any w € W we denote by <(w) the set {v € W | w < v}.

Theorem 5.4.5 Suppose that F = (W, <, R, Ro) is an intuitionistic modal Kripke
frame. Then for any nonempty X € UpW,

X =[0O0*X iff X induces a generated subframe.

Proof. We note first that
X € UpW iff X satisfies the condition (5.4).

Obviously,
X COX iff X satisfies the condition (5.5).

Since ¢ is monotone, [O]X = Ny cpw (CY = G(X NY)). Hence,
re[O]X
iff VY e UpW r € OY — &(X NY),
ifft VY e UpW Yw e W ((r<w,w € OY) = w € O(X NY)),
ifft VY e UpW Yw € W ((r <w,Jv € Y(wRov)) = w € O(X NY)),
iff VY € UpW Yw,v e W ((r<w,v € Y,wRov) = w € O(X NY)),
iff Vw,v e W ((r Qw,wRov) = VY € UpW (v €Y) = w e S(X NY))),
iff Vw,v e W ((r Qw,wRov) = w € (X N <(v))),
iff YVw,v e W ((r Qw,wRev) = Ju € X(wRou,v < u)).
Therefore for X € UpW,

X C[C]X iff X satisfies the condition (5.6).
1

Note that we can also show Proposition 5.4.3 by Theorem 5.3.5, 5.3.6 and 5.4.5, in an
alternative way.

Theorem 5.4.6 If an intuitionistic modal Kripke frame F = (W, <, Rn, Ro) is irre-
ducible then there exists r € W such that the only set which induces a generated subframe
and contains r is W.

Proof. By Theorem 5.3.6 and 5.4.5, U{X & W | X induces a generated subframe} is a
proper subset of W. Therefore there exists r € W such that r ¢ U{X & W | X induces
a generated subframe}. That is to say, there exists r € W such that the only set which
induces a generated subframe and contains r is W. 1

Proposition 5.4.7 A finite intuitionistic modal Kripke frame F = (W, <, Ra, Ro) is
irreducible iff there exists r € W such that W(r) = W.
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Proof. By Theorem 5.3.7 and 5.4.5, similarly to Theorem 5.4.6, we have that a finite
intuitionistic modal Kripke frame F is irreducible iff there exists » € W such that the
only set which induces a generated subframe and contains r is W. Since W (r) exists for
such r by finiteness, W must be equal to W (r). 1

We will define a binary relation o) on W as follows.

w Rjov Yvx e UpW(w € [O]X = v e X).

We say that an intuitionistic modal Kripke frame F = (W, <, Rn, Ro) is O[C]-rooted if
there exists such a root r that W = {w € W | r <w or r (Ra U Rj¢))® w}.

Proposition 5.4.8 Suppose that F = (W, <, Rn, Re) is an intuitionistic modal Kripke

frame. If V induces a generated subframe containing r € W, then V. O {w € W |

r<<w or v (RoU Re))® w}. Moreover, if [O] distributes over infinite intersections (i.e.,

(1) Xa) = [C]Xn), then W(r) ={w e W | r <w or r (Ra U Rjo))™® w}.

xeA YN

Proof. Since [C]X C {w € W | for any v, wRov implies v € X} for any X €

UpW by definition, V' O {w € W | r < w orr(Ra U Rio))®w}. Suppose that [O]

distributes infinitely many intersection. Note that wRev & v € ﬂ X. Then
wel[O]X

IV ORI ) X)= () [©]X 5w, when V2O (] X. Hence [O]X = {w €

we[C]X we[C]X we[C]X

W | for any v, wRew implies v € X} for any X € UpW. Therefore {w € W |

r <w or r (R U Rjo))® w} is the smallest set which induces a generated subframe and

contains r. 1

Recall here that a finite algebra (frame) is isomorphic to its bidual. The following
theorem answers to a question put by Wolter in [30].

Theorem 5.4.9 A finite intuitionistic modal Kripke frame F = (W, <, Rn, Re) is irre-
ducible iff it is O[<O)-rooted.

Proof. By Propositions 5.4.7 and 5.4.8. 1

5.5 Some remarks

So far, we have dealt with Heyting algebras with unary operators. But these arguments
can be extended to Heyting algebras with (a finite number of) operators having arbitrary
arities. Suppose that A = (A’, M) is a Heyting algebra with the set M of operators
my, ..., mg whose arities are ny,...,ny. For a € A, define (partial) operators

mia:= N (mi(be, ... by,) < myi(cr, ..., cn)),
a<b; e
1<j<n;

[M]a := /\ (mi(by, ..., by,) <> mier, ... ),
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if the infima exist. Again note that (A’,[M]) is a Heyting algebra with a single unary
operator [M]. Then most of results on Heyting algebras with unary operators hold also
for algebras in this section. The only alteration we are required to make in the proofs to
change Proposition 5.2.5 into Proposition 5.5.1, because a n;-ary operator m is normal if
both m(a,...,a,1,a,...,a) =1 and m(a,...,a,bAc,a,...,a) =m(a,...,a,b,a,...,a)A
m(a,...,a,c,a,...,a) hold for all a,b,c € A. Denote by ¢/ = (0,...,0,a,0,...,0) the
element of A™ whose j-th coordinate equals a and all other coordinates equal 0.

Proposition 5.5.1 Suppose that m; is normal n;-ary operator for a given i. Then [mila
exists and [m;la = N\ mud’ for any a € A.
1<5<n;

As another application of the relationship between M-filters and [M]-filters in Lemma 5.3.1,
we can show the deduction theorem for intuitionistic modal logics. By £, we denote the
language of propositional intuitionistic logic with connectives A, V, —, T, L and operators
M = {my,...,my}. Let L be a logic, i.e. a subset L of L, containing Int, and closed un-
der modus ponens, substitution, the congruence rule (i.e., Fp 1 <> ¢ /Fp m; 1 < m; @,
for all 7, 1 < i < k). Recall that a derivation of ¢ from assumptions T' is a sequence
©1, ..., pp of formulas such that ¢, = ¢ and for every 7, 1 <1 < n, ¢; is either an axiom,
an assumption or obtained from some of the preceding formulas in the sequence by one of
the inference rules, with substitution being applied only to axioms. We say that a formula
o depends on a formula ¢; in the derivation if either £ = i or ¢, is obtained by modus
ponens or a congruence rule from formulas, at least one of which depends on . If there
is a derivation of ¢ from assumptions I', we write I' 7, ¢. For simplicity, we will write

T ¢1,...,0, Fr @ instead of T U {41, ..., 9.} FL .

Theorem 5.5.2 (deduction theorem for intuitionistic modal logic L) Suppose T, b,
@ and there exists a derivation of ¢ from the assumptions T'U {¢} in which congruence
rules are applied to formulas depending on ) n(> 0) times. Also suppose that for any
formula « there exists such a formula [M]« that for any 5,v,9, Fi, a — (3 <> 7y) implies

that =1, 6 — [M]a < for each i1, § — (m; B <> m; ). Then

T by o A Mg A MIIMIS) A A M — .

Proof. The proof of this theorem can be directly shown by induction on the length of
derivation. I
In the case of the logic F'S, for example, we can take O« for [M]a. Let Aj be the
Lindenbaum algebra of L. Let ||¢|| be the element of A, to which a formula & belongs.
Then, our assumption means that ||[[M]«|| = [M]|«/|].

5.6 Note

A description of subdirectly irreducible Heyting algebras is wellknown. A description of
subdirectly irreducible O-modal Heyting algebra or a F'S-algebra is shown in [30]. In [30]
this description is applied to splittings. In order to be applied to splittings for O-modal
logics it is needed to a description of subdirectly irreducible ¢-modal Heyting algebra.
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Chapter 6

Products of modal logics

6.1 Introduction

In this chapter, we will propose a new concept of products of modal logics, which we will
call a normal product. Normal products will resemble the products familiar from measure
theory and topology, and will be defined as a generalization of products of algebras of
sets (see § 6.2). Our products of modal logics can be defined either by means of normal
products of general frames or by means of normal products of modal algebras. It enables
us to develop a duality theory between these two, as shown in § 6.3. This brings about a
desired effect that the definition of the normal product of modal logics L; and L, is not
affected by the choice of classes of general frames (or, modal algebras) which determine
Ly and Ls. Note, that this is not the case for usual products of modal logics, as pointed
out in [21]. We also show some transfer results, including transfer of the finite model
property, in § 6.4.

One conceptual difference between normal products and usual products is, that in the
usual case, when L; and Ly are m-modal and n-modal logics, then their product Ly X L,
is a (m 4+ n)-modal logic. On the other hand, the normal product can be defined only
when both L; and Ly are m-modal logics and their normal product is also a m-modal
logic. This difference, however, is not essential. In fact, when a m-modal logic L, and a
n-modal logic Lo are given, we first consider two (m + n)-modal logics L;° and °Ly and
then take their normal product. Here, L;° and °L, are essentially the same as L; and Lo,
respectively, but in addition they have n and m dummy modal operators, respectively (
see § 6.5 for the detailed definition ). We will denote it as L; ® Ly and call it the shifted
product of Ly and L. Relations between shifted and usual products will be discussed in
the last section.

As the definition of our normal products is quite general, by a slight modification of
definitions, we can also introduce normal products of two superintuitionistic logics, two
intuitionistic modal logics, and even of infinitely many of them, and obtain results similar
to these from the present paper.

We will assume a certain familiarity with [9], and basically follow the terminology in

[5].

26



6.2 Normal products of general frames

In this section, we will define normal products of general frames, following the standard
method used in measure theory and topology (see e.g. [16]). For simplicity, we will con-
sider only general frames for mono-modal logics, but it is easily seen that every definition
and result can be naturally extended to m-modal case for any given m > 1.

Definition 6.2.1 A set P of subsets of W is called a modal algebra on a Kripke frame
(W, R) if

(i) O € P,

(i) X, Y e P=XNY P,
(iit) X e P=>-X € P,
(iv) X e P=CX € P.

A modal algebra on (W, R) contains W and is closed under U, O. Clearly, P(W) is
an example of a modal algebra on (W, R).

Definition 6.2.2 A set S of subsets of W s called a modal semi-algebra on a Kripke
frame (W, R) if

(i) D €S,

(i) X, Y e S=XNY €S,
(i1i)) X € S = —X is a union of finitely many members of S,
(v) XeS=0CXeS.

Suppose that P and Q are modal algebras on (W, R) and (V,S), respectively. We
consider the product (W x V, R x S) of Kripke frames (W, R) and (V, S), where W x V
is the direct product of W and V and R x S is the product relation of R and S, i.e., a
binary relation on W x V defined by

(wy,v1)Rx S(wq, v9) if and only if w; Rwy and vy Svs,

for wi,wy € W and vy, v € V.

Now, consider the set {X xY | X € P and Y € Q} of rectangle sets, which is a set
of subsets of W x V. This set is not always a modal algebra on (W x V| R x S), but
it is always a modal semi-algebra on it. For a given Kripke frame (W, R) and a set S
of subsets of W, the smallest modal algebra on (W, R) containing S is called the modal
algebra generated by S. Then, the following lemma holds.

Lemma 6.2.3 Suppose that S is a modal semi-algebra on a Kripke frame (W, R). Then

the modal algebra generated by S is {{ ) X; | X; € S and some n < w}.
i=1
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Proof. Since {LnJ X; | X; € S and some n < w} contains S, we will show that {CJ X; |
X, € S and sorrlleln <w} satlsﬁes condltlons (i)-(iv) of modal algebras. Since & C(Z)Tl%cains
0, (i) holds. Since U XN U Y; = U U X;NYj;, (ii) holds. Since —O X = ﬁ —X; and
i=1 j=1 i=1j=1 i=1 i=1
—X is a union of finitely many members of S, (ii) implies (iii). Since O J X; = O OX;,
i=1 i=1

(iv) holds. 1

For modal algebras P on (W,R) and Q on (V,S), define P x Q to be the modal
algebra on (W x V; R x S) generated by {X xY | X € Pand Y € Q}.
Corollary 6.2.4

PxQ={JX;xY) | X;€P andY; € Q for a finite I }.
iel

Now, we come to the definition of normal products of general frames. In the following,
Fy and G, (with or without indices) denote general frames of the form (W), Ry, P,) and
(Viuy Syuy Qp), respectively.

For given general frames F = (W, R, P) and G = (V, S, Q), the normal product F x G
of F and G is a general frame (W x V, R x S, P x Q). Note that the normal product thus
obtained is also a general frame for mono-modal logics.

In the following, we will characterize the operators in F x G. Suppose that both
U(X; x Y;) and | J(T; x U;) are elements of P x Q.

icl jeJ
D=0x0(=0xV =W x0). (6.1)
U xy)n U@ xUy) = U XnTy) x (¥inly). (6.2)
i€l JjeJ (i,4)ElxJ
Ui xY)u (T xU;) = | Ak x By, (6.3)
iel jeJ keIug

where I L J = {(Z,O) | 1€ I} U {(], 1) | j € J},A(Z‘,g) = Xi;A(j,l) = Tj;B(i,O) = Y},B(j,l) =
U,.

-UXixy)= U (U x)x(= U v (6.4)

i€l KeP(I) i€K ie—K
O X x Yi) = J(0X; x 0Y)). (6.5)
i€l icl
U= U eNUx)«oU N, (6:5)
i€l CcCP(l) KeCicK KeCieK
Moreover, the following holds in P x Q.
U@ =< Yi) = U@ < Uj) (6.7)
icl jeJ
iff Viel,3CCP(J)suchthat X;C () U T,viC U N U
KeCjeK KeCjeK
and Vje J,3CCP(I)such that T; C () |J X:,U; C J () Vi
KeCicK KeCicK
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Note that for Kripke frames F and G, F x G is a general frame (W xV, RxS, P(W) x P(V))
while F x G is a Kripke frame (W x V, R x 5).

Theorem 6.2.5 Let F and G be Kripke frames. Then, F x G is a Kripke frame if and
only if either F or G is finite. In other words, P(W)x P(V) =P(W x V) if and only if
either W or V' is finite.

Proof. Suppose that W is finite. For Z € P(W x V), we can show Z = | ({w} x Z,),
weWw
where Z,, = {v € V' | (w,v) € Z}. Conversely, suppose that both W and V are infinite.

Then we can take distinct sequences {w;};<, C W and {v;};<, C V. Hence we can show

that {(w;,v;) | i <w} & P(W)xP(V). 1

It is well-known that each projection from a product of topological spaces to any of
its component spaces is continuous. As in the realm of modal logic reductions are natural
counterparts of continuous maps in topology, we can ask whether each projection from
a normal product of general frames to any of its component frames is a reduction. The
following theorem gives a necessary and sufficient condition. Here, S(v) and R(w) denote
sets {v' | vSV'} and {w' | wRw'}, respectively.

Theorem 6.2.6 A projection w: W x V. — W s a reduction of F x G to F iff either
S(v) # 0 for each v € V or R(w) =0 for each w € W.

Proof. Since it is easily seen that a projection 7 always satisfies the conditions (i), (iii)
of reduction, we will consider condition (ii).

A projection 7 satisfies the condition (ii),

iff for all w,w’ € W and v,v' € V wRw' = Ju € V : (w,v)R x S(w', u),

iff for all w,w" € W and v,v" € V either w Rw' or Ju € V : vSu,

iff either S(v) # 0 for each v € V or R(w) = () for each w € W. 1

The next theorem gathers together several essential properties of normal products.

Theorem 6.2.7

1. If f; 1s a reduction of F; to G; for i = 1,2, then the product map f; X fo is a
reduction of Fi X Fy to Gy X Ga, where fi1 X fy is defined by (f1 x fo)(wy,wy) =
(fi(wy), fo(ws)) for each wy € Wy and wy € Wi.

2. If G; is a generated subframe of F; for 1 = 1,2, then Gy X Gy s also a generated
subframe of F1 x Fs.

3. The identity map id : > (Wi xV,) = (D_Wy) x (D V,) is a reduction of

AEA peM AEA pEM
Y (FaxGy) to (D Fn)x (D Gy), where Y denotes disjoint unions.
AEA peM AEA neM

Proof. Here, we will only show the part of algebras of sets. The rest is routine.

For 1, (fix fo) "(U(Xi x Y3)) = U1 (X)) x £ (V) € Prx Py

el el
For 2, ((J(X; x Yi)) N (Vi x V) = J((X: N 1A) x (Vi NT3)) € Q1 x Qs
el el
For s, J(C XD x (2 1) = ¥ Uix1) e Y(PixQ,). :
i€l AeA WEM AEA pEM icl AEA pEM
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6.3 Normal products of modal algebras and duality
theory

In the previous section, we have defined normal products of general frames employing
products P x Q of modal algebras P and Q on Kripke frames. In this section, we will
define normal products of arbitrary modal algebras. A structure A = (A, A,V,—,0,1,0)
is a modal algebra if (A, A, V,—,0,1) is a Boolean algebra and O is unary operator on A
satisfying 01 = 1 and O(x Ay) = Oz AOy for z,y € A. Any modal algebra P on a Kripke
frame (W, R) can be regarded as a modal algebra in the present sense, if we identify P
with P = (P,n,U, —, 0, W,0), where O is the operator defined in § 6.2. Below, we will
take this identification for granted.

For a given modal algebra A, let A, stand, as usual, for the dual of A. Also, for
a given general frame F, let FT stand for the dual of F. For modal algebras A and
B, we define their normal product Ax B as (A, x B,)". We can show that for modal
algebras P and Q on some Kripke frames, normal product P x Q in the present sense is
isomorphic to P x Q in the sense of the previous section. Though our definition of the
normal product A x B is stated by means of the normal product of general frames A,
and B, we can also give a direct definition by representing equations (6.1)—(6.6) from the
previous section in algebraic terms, and introducing an equivalence relation ~ following
(6.7), over the set Pr(A x B) of all finite sets of A x B. More preciously, for modal
algebras A = (A, A,V,—,0,1,0) and B = (B, A,V,—,0,1,0), Ax B is isomorphic to a
modal algebras

(Pr(A x B)/o, AV, =,0,1,0),

where P;(A x B) is the set {{(ai,b;) | i € I} | a; € Aand b; € B for a finite I } of
all finite sets of A x B, and Py(A x B)/. is the quotient set of Ps(A x B) under the
equivalence relation ~ defined by, for {(a;,b;) | i € I}, {(c,d;) | j € J} € Ps(A x B),

{(ai,b;) i€ I} ~{(c;.dy) [ j € J} (6.8)
iff  VielI, 3C CP(J) such that a; < /\ \/ cj, b < \/ /\ dj,
KeC jeK KeC jeK
and VJ € J, ac Q P(I) such that Cj S /\ \/ ai,d]’ S \/ /\ bz
KeCick KeCick

Let [(a;,b;) | @ € I] be the equivalent class to which {(a;,b;) | i@ € I} belongs. The
operators are defined as follows; for [(a;,b;) | ¢ € I, [(¢;,d;) | 7 € J] € Ps(A x B) /-,

[(ai, 0:) [ i € I} A [(cjydy) | € I = [(ai Aej, b Adj) | (,5) € I < J], (6.9)

[(ai, b;) | i€ I1V [(¢j,d;) | j € J] = [(k, ys) | k€ TUT], (6.10)
where I LI.J = {(i,0) | i € I} U{(j,1) | ] € J} 260 = ai, 1) = ¢, Ya0) = by, Y = d;

) i 1= [V =V b) | K € P(D) (6.11)
0= [(0,0)], (6.12)
1=[(1,1)], (6.13)
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Ollasb) i€ N=13 A VauaV Ab)lCSPUL. (6.15)

KeCieK KeCieK

Corollary 6.3.1 For general frames F and G,
(FxG)r = Frxgh. (6.16)

Theorem 6.3.2 If both general frames F,G are descriptive, then their normal product
F x G 1is also descriptive.

Proof. It is easily shown that it is differentiated and tight. We can show compactness
applying the method of Tikhonov’s theorem. For the case of finitely many products of
modal frames we can prove without Zorn’s Lemma. First, note that we can express an
element of P as the form of ﬂ (X; xVUW xY;). Therefore it is enough to show that for any
iel

A={X, xVUW xY,| X, €P,Y,€ Qe A}, (A has finite intersection property =
NA # (). Define 4, = {Xu x VUW xY, € A | X, x VUW x Y, 2 {w} xV}
and B, = {Y\ | Xao x VUW x Y, € A,} for each w € W. Suppose that B, doesn’t
have finite intersection property for any w € W. Hence for each w € W there exist
D G X“’ Y1, Y)Y such that Y“’ NYY =0and X x VUW x Y € A,.

Therefore, ﬂ X xVUWxY” D U X")x V. Since by finite intersection property of

Zw—l Zw—l

(J X )xV | w € W} also has finite intersection property, (| (|J X*)xV # 0 by
ip=1 WEW =1
compactness of F. But since (| X)xV 2 —({w}xV), wehave () (|J X})xV =0.
ip=1 wWEW =1
It is contradiction. Therefore, B, has finite intersection property for some w. Since
NAD {w} x (NAy,) #0, FxG is also compact by compactness of G. 1

Corollary 6.3.3 For modal algebras A and B,
(AxB), 2 A, xB,. (6.17)
We can show the duality of Theorem 6.2.7 as follows.
Theorem 6.3.4

1. If Ay is a homomorphic image of A1 and By is a homomorphic image of By, then
As x By is also a homomorphic image of A1 X Bj.

2. If Ay is a subalgebra of Ay and By is a subalgebra of B, then A, x By is isomorphic
to a subalgebra of Ay X Bs.

3. HAA X HBﬂ s 1somorphic to a subalgebra of HAA x B, where [] denotes

A€A neM (A,pm)eAxXM
direct products.
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Let IC be a class of modal algebras. As usual, V(K), H(K), I(K), S(K) and P(K)
denote, respectively: the variety generated by /C, the class of homomorphic images of
algebras in /C, the class of isomorphic copies of algebras in K, the class of subalgebras
of algebras in K and the class of direct products of nonempty families of algebras in K,
respectively. For classes IC; and ICy of modal algebras, i x Ky is the class {A; x Ay |
A, € Ky, Ay € K3}. By Theorem 6.3.4, we have the following.

Theorem 6.3.5 For classes K1, Ky of modal algebras,
1. H(Ky) x H(Ky) C H(K; x Ky),
2. S(K1) x S(K2) CIS(Ky xKs),
3. P(KCy)x P(Ky) CISP(K; xICy).

Hence,

4. V(V(K) x V(Ky)) = V(K x Ky).

6.4 Normal products of modal logics

For a given modal logic L, F'(L) is the class of all general frames which validate L, and
V(L) is the class of all modal algebras which validate L. For a class IC of modal algebras
(a class C of general frames), L(K) (L(C)) denotes the set of formulas valid in every modal
algebra in /C (in every general frame in C). For classes C; and Cy of general frames, C; x Co
is the class {Fy x Fy | 1 € C; and F, € Co}.
Now, for modal logics Ly, Lo, define the normal product Ly x Ly to be L(F(Ly) x F(Ls)).

By (6.16) and (6.17), Ly x Ly = L(V(Ly) x V(L)) holds. Thus, we may also take the
latter as the definition of Ly % Ly. By Theorem 6.3.5(4), we have the following.

Theorem 6.4.1 Let K1 and ICy be classes of modal algebras, and let C; and Cy be classes
of general frames. Then

1. LK) % L(Ks) = L(KC, % ),

This theorem says that the logic L(C; % Cs) is uniquely determined by the logics L(Cy)
and L(Cy). More precisely, if L(C;) = L(C}) and L(Cy) = L(C}), then L(Cy % Cs) =
L(C{ % C4). Since the normal product of general frames is associative, the normal product
of modal logics is also associative, by the above theorem.

Following [9], we say that a logic L has the product f.m.p. if L is a logic of some class
of finite products. It is obvious that if L has the product f.m.p., then L has the f.m.p..
By Theorem 6.2.5 and Theorem 6.4.1, we have the following.

Theorem 6.4.2
1. If both Ly and Lo have the f.m.p., then Ly X Ly has the product f.m.p.

2. If Ly has the f.m.p. and Lo is Kripke complete, then L1 x Ly is also Kripke complete.
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We say that L is product-persistent if, for every Kripke frames F and G, F x G = L
implies F x G = L.
As usual we define a Sahlqvist formula in the following way:

A formula ¢ is called a Sahlquist formula if ¢ is a formula which is equivalent to
a conjunction of formulas of the form O™(¢) — ), where m > 0, x is constructed
by A,Vv,0,$, T, L from propositional variables and 1 is obtained from propositional
variables and their negations applying A,V,0,<O, T, L in such a way that no positive
occurrence of a variable is in a subformula of the form either i V 15 or iy with the
scope of any 0.

Theorem 6.4.3 Suppose that L is a product-persistent logic and T" is any set of Sahlquist
formulas. Then the logic L ® T is also product-persistent.

Proof. The point of proof is that a (R x S)-expression (R x S)* (wi,v;) U --U (R X

S)En (wy, va) = | JRY (w;) x S¥(v;) belongs to P(W) x P(V). 1
i=1
Recall that, given a formula ¢(py, . .., p,) (whose variables are listed among p1, ..., py,),

a general frame F = (W, R, P) and sets X,..., X, in P, we denote by ¢(Xi,...,X,)
the set of points in F at which ¢ is true under the valuation v defined by v(p;) = X, for
i=1,...,n,ie, o(X1,...,X,) =v(p).

Theorem 6.4.4 Suppose that Ly is a modal logic and Lo is an extension of the logic D.
Then L1 D) Ll X LZ-
Moreover, if both Ly and Lo are extensions of the logic D,

LlﬂngLlXLg.

Proof. By induction on construction of formulas, we can show that for any formula ¢,
(X1 x V..., X, x V) = ¢(X1,...,X,) x V. Therefore this implies that L; x Ly is
included in L;. I

A formula ¢ is preserved under normal products if, whenever ¢ belongs to L;N Ly, then
¢ belongs also to L; x Ly. The next theorem shows that restricted Sahlqvist formulas are
preserved.

Theorem 6.4.5 Let ¢ be a formula which is equivalent to a conjunction of formulas of
the form O™ (Y — x), where m > 0, x is constructed by A,0,O, T, L from propositional
variables and 1) is obtained from propositional variables applying A, V, 0, T, L oin such
a way that no subformula of the form either 11 V 1y or Oy occurs in the scope of any O
and that 11 and Yy have no common propositional variable in a subformula of the form
U1 AN y. Then @ is preserved under normal products.

Proof. By induction on construction of formulas, we can show

WU K x ¥, U2 X)) D U (X XE) % (Vi Y) and
11€1 tn €1, 11€1,..,in €I,

WU ) U ey U (X X2 (Y] ... ¥7). Hence,
1€l in€ln 11€I1,....in€In

since we can show
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p(U (X5 <Y, U (X xYD) 2 () oX, o X2) x o(Yi, ., V), we
1€l in €I, 11€11,....in€ln
have our theorem. I

6.5 Shifted products

As we have noticed in the Introduction, the normal product of two m-modal logics is a
m-modal logic. On the other hand, products introduced in [9] have a property that if L,
and L, are m-modal and n-modal logics, the product Ly x Ly is a (m+n)-modal logic. To
compare this type of products with our normal products, we will introduce yet another
kind of products, called shifted products. Though we will discuss only mono-modal cases
for brevity, but we can extend the results to (n, m)-modal cases easily.

Suppose that A = (A4,A,V,—,0,1,0;) and B = (B, A,V,—,0,1,0,) are mono-modal
algebras. Define bi-modal algebras A° and °B as A° = (A,A,V,—,0,1,0y,0,) with
Osa = a for alla € A and °B = (B, A,V, —,0,1,0y,0,) with O:b = b for all b € B. For
general frames F and G, define general frames F° and °G, with two binary relations, as
Fo=(W,R,A,P) and °G = (V, A, S, Q), where A denotes the diagonal relation. For a
class IC of mono-modal algebras and a class C of general frames, K°, °C, C° and °C are
defined in a natural way. Now, define the shifted product A® B of A and B (the shifted
product F @ G of F and G) by AQ B = A°%x°B (F® G = F°x%°G). We can define
shifted product of classes of modal algebras and those of classes of general frames in an
obvious way. Then, we define the shifted product L; ® L, of modal logics L, and Ly by
Ly ® Ly =L(F(L;) ® F(Ly)).

Theorem 6.5.1 Let Ky and Ky be classes of modal algebras, and C; and Cy be classes of
general frames. Then

1. L(K;) ® L(Ky) = L(K; ® Ks),

2. L(C;) ® L(Cy) = L(C; ® Cy).

Proof. Since V(K°) = V(K)° and V(°K) = °V(K) hold, Theorem 6.4.1 implies this
theorem. I

Suppose that L; and Ly are modal logics. Define bi-modal logics L;° and °Ly as
L° = Ly * Triv and °L, = Triv % Ly, where Triv = K @ Op < p and * denotes the
fusion of logics.

Theorem 6.5.2 For modal logics L1 and Lo,
Ly ® Ly = L° % ° L.

Proof. Since V(L°) = V(L)° and V(°L) = °V (L) hold, by definition we have the result.
1

Define a translation T from the set of formulas in the language of L; % Ly (with one
modal operator O) to the set of formulas in the language of L; ® Ly (with two modal
operators 0y and Oy) inductively as follows. (i) T(p) = p for all propositional variables,
(i) T(p Atp) = T(p) AT(), (iii) T(p V1)) = T(e) vV T(¥), (iv) T(~¢) = 2T(g), (v)
T(L) =1, (vi) T(T) =T, (vii) T(Ogp) = 0;0,T(p). Then, we have the following.
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Theorem 6.5.3 A formula ¢ is a theorem of Ly x Ly iff T(p) is a theorem of L1 ® Ls.
Proof. Since 010\ J(X; x ¥;) = 01| J(X; x 02¥7) = |J(O1X; x 027) = OJ(X: x V7)

icl iel iel iel
holds, we can show this result by induction on construction of formulas. 1

After [9], we define the bi-modal logic [L, Ly to be (L * Ly) & O;0sp <> Oy01p @
$q109p — Oy p. The following theorem lists some properties of ® and enables us to
compare them with the corresponding properties of x.

Theorem 6.5.4 Let Ly, Ly be modal logics. Then

1. If Ly and Lo are consistent logics, then L1 ® Ly is a conservative extension of Ly
and Lo,

Ly ® Ly D [Ly, Ly,
if both Ly and Lo are extensions of the logic D, L N°Ly O Ly ® Lo,

If Ly and Ly have the f.m.p., then Li ® Ly has the product f.m.p.,

If Ly has the f.m.p. and Ly is Kripke complete, then L ® Ly is also Kripke complete.

Proof. For 1, by induction on construction of formulas, we can show that for any formula
@ in the language of Ly,

n .
e( > (XE xYh), o Y (XPxY™M) = > (XL, X)) % ﬂY;‘Z), where for
el in€ln 1E€T1 ynyin€ln j=1
any j=1,...,n, V = Z Yli holds. Therefore this implies that L; ® Lo is a conservative
;€15

extension of L.

For 2, since both L} and °Ly contain {O;0,p < Oy,0;p, O10,p — O,01p}, by Theo-
rem 6.4.5 Ly ® Ly O [Ly, Ly] holds.

3 immediately follows Theorems 6.4.4 and 6.5.2.

4 and 5 are shown similarly to Theorem 6.4.2. 1

6.6 Comparison of our ® and the usual product x

Here we will compare properties of our ® and the usual product x (cf. Table 1 in [9]).
For a modal logic L, F*(L) is the class of all Kripke frames which validate L. For modal
logics Ly and Ly, the usual product L; x Ly is defined by L(F*(L,)° x °F*(L,)).

By ®-transfer (x-transfer) of a property P, we mean that P carries over from modal
logics Ly and Ly to the product of L1 ® Ly (L1 X Ls).

Clearly, x-transfer of Kripke completeness holds, whereas ®-transfer of Kripke com-
pleteness remains an open question. We have, however, shown a partial result in The-
orem 6.5.4(4). On the other hand, while x-transfer of the fm.p. does not hold, its
®-transfer holds as shown in Theorem 6.5.4(3). It is easy to see that both ®-transfer and
x-transfer of tabularity hold.

We say that the modal logics L; and Ly are called ®-product-matching (x-product-
matching) if L1 ® Ly = [Ly,Ls] (Ly X Ly = [Ly,Ly]). A PTC-logic is a modal logic
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axiomatized by a set of PTC-formulas, i.e., either pseudo-transitive formulas G™0Op —
O™p for m,n > 0 or closed formulas. It is shown in [9] that every pair of PTC-logic is x-
product-matching. For a given modal logic L, F;(L) is the class of all finite general frames
which validate L, and F;( (L) is the class of all finite Kripke frames which validate L. For

modal logics L1 and LQ, Ll ®f LQ (Ll Xf LZ) denotes L(Ff(Ll) X Ff(LQ)) (L(F;((Ll) X
F;((LQ))) It is easy to see that L1 ®f L2 2 Ll X LQ 2 [Lla LQ] and L1 Xf L2 2 L1 X LQ 2
[L1, Ly] hold. The next theorem follows from Theorem 6.2.5.

Theorem 6.6.1 Let L, and Ly be modal logics. Then
L1 ®f LQ = L1 Xf LQ.
As a corollary, we obtain:

Corollary 6.6.2 Let Ly and Ly be PTC-logics which have the f.m.p. (e.g. K,D,S4,S5
and so on). Then Ly and Ly are @-product-matching if and only if Ly X Ly has the product
fm.p. if and only if L1 ® Ly = Ly X Ly.

Since both K x K and S5 x S5 have the product fm.p. (cf. [10]) but K4 x K4
doesn't, K K=K x K, S5® S5 =S5 x S5 and K4 ® K4 # K4 x K4.

Theorem 6.6.3 Let Ly and Ly be Kripke complete. Then Ly ® Ly O Ly X L.

Proof. Since L; and L, be Kripke complete, L, ® Ly = L(F¥(L,) ® F¥(L,)). Hence
since L(F¥(L,) ® F¥(Ly)) O L(F¥(L,)° x °F¥(L,)) holds, L, ® Ly O L; x Ly holds. y
Theorem 6.6.4 Let ¢ be a Sahlquist formula. Then if ¢ belongs to Ly ® Lo, ¢ belongs

also to Ly X L.

Proof. Since ¢ belongs to L(F(L)° % °F(Ls)), ¢ belongs also to L(FX(L)° x °FX(L,)).
Therefore by Theorem 6.4.3, ¢ belongs also to L(F¥(L;)° x °F¥(L,)). 1

6.7 Note

Usual products of modal logics induced by V. Shehtman [24] have been studied by Gabbay
and Shehtman [9][10], Marx and Venema [15], Reynolds [21] and Wolter [31], in recent
years. Numerous interesting problems on normal products remain unexplored yet.
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Chapter 7

Infinitely many products and
products of intuitionistic modal
logics

7.1 Introduction

The definition of our products introduced in the previous chapter is based on the standard
way of introducing “products” in measure theory and topology. In this chapter, we will
show that the same idea is also applicable to intuitionistic modal logics and infinitely
many products.

In general, our argument in this chapter goes in parallel with that in Chapter 6. So,
we will give an outline of it.

7.2 Products of infinitely many modal logics

For simplicity, we will consider only modal general frames for mono-modal logics. We
assume the logics in this section are extensions of D.

Now, consider the set {my (X)) | X\ € Py and A € A}, which is a set of subsets of
HAeA Wi.

For modal algebras Py on (Wy, Ry), define ;zi’P,\ to be the modal algebra on ( H Wi, H R))

AEA  XEA

generated by {7y (X)) | X\ € Py and \ € A}.

We say W{All ) (Xog X oo x Xy,) to be cylindric set of {Py | A € A} for a finite

.....

subset {A1,..., A\, } of A and X, € P,,.

.....

cylindric set of {Py | A € A} iff C' = J] X, where X, € P, for every A € A and X, = W,
AEA
finitely except A € A.

The set of all cylindric sets is not always a modal algebra on ([ W, [[ R») but it is
AEA  AEA
always a modal semi-algebra on it.

Corollary 7.2.1
X Pr={JCi|C is a cylindric set of {Py | X € A} for a finite I }.
AEA

el
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Normal products of infinitely many modal general frames can be defined in the same
way as normal products introduced in Chapter 6.
For given modal general frames Fy = (Wy, R)) (A € A), the normal product X F), of

AEA
F\’s is a modal general frame ([[ Wy, [ Rr, X Py).
AEA  AeA €A
Since any frame in this section is serial by our assumption. the following theorem

holds similarly to Theorem 6.2.6

Theorem 7.2.2 A projection Ty : HW)\ — Wy is always a reduction of X Fy to Fy .
AEA AEA

The next theorem gathers together several essential properties of normal products.
Theorem 7.2.3
1. If f\ is a reduction of Fy to Gy for A € A, then the product map )\>§§\f,\ is a
reduction of A)Si}} to ;Ef\g)" where éf\fA is defined by ((;SfA)(w))()\)ez fa(wy)

forw e H Wi.
AEA

2. If Gy s a generated subframe of Fy for X € A, then XX G, is also a generated

AEA
subframe of XX F,y.
AEA

3. The identity map id : Z H W)’f# — H Z W)’f# is a reduction of Z X FL

xeA TH
)\GH}LEM Ap AEA HEM X €N, /\EHMGM Au

to X Z ]:f#.

HEM ) eA,

Similarly to Chapter 6 for modal algebras Ay’s, we define their normal product X Ay

AEA
as (XK (Ax)+)".
Corollary 7.2.4 For modal general frames Fy for A € A,
(K F)T= X (F)7. (7.1)

AEA AEA

Theorem 7.2.5 If modal general frame Fy is descriptive for A € A, then their normal
product X Fy is also descriptive.
AEA

Proof. We will show compactness, i.e., VA C XX P, (A has finite intersection property =
AEA

(1A # 0). Since A has finite intersection property, () doesn’t belongs to the filter [4) gen-
erated by A in XX P,. Since [A)N (0] = 0, there exists a prime filter B such that [A) C B
AEA

and BN (0] = O by Theorem 2.4.3. Define B,, = {C' € B | Cis a cylindric set of{P) |

A € A}} Since B is a prime filter, | JC; € B implies C; € B, for some i € I. Hence
i€l

NB D NB. Since BN (0] = () implies § ¢ B, B has finite intersection property and

so B, does. Therefore, since each P, has finite intersection property, N B, # (0 by the

compactness of each Fy. Since NANB D N By, NA # 0. 1
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Corollary 7.2.6 For modal algebras Ay ’s,

(KA = XK (Ax)4. (7.2)

Similarly to Theorem 6.3.4, we can show the duality of Theorem 7.2.3 as follows.
Theorem 7.2.7

1. If By is a homomorphic image of Ay, then X By is also a homomorphic image of

AEA
X Ay
AEA

2. If By is a subalgebra of Ay, then XX By is isomorphic to a subalgebra of XK Ajy.
AEA AEA

g X N A} is isomorphic to a subalgebra of > XK AL

HEM 21 AT o A Aen
By Theorem 7.2.7, we have the following.
Theorem 7.2.8 For classes IC\ of modal algebras for A € A,
1. X H(Ky\) C H(XK,),

AEA AEA

2. XS(K)) CIS(XK,),
AEA AEA

3. X P(Ky) CISP(XK,).
AEA AEA

Hence,
VXX VIE)) = VXK.
b VO V(D) = VXK

Now, similarly to 6.4 we will define normal products of infinitely many modal logics.
For modal logics Ly’s, define the normal product XX Ly to be XX L(F(L,). By (7.1)
AEA AEA

and (7.2), X Ly, = L(XXV(L,)) holds. Thus, we may also take the latter as the
AeA XEA

definition of XX Ly. By Theorem 7.2.8(4), we have the following.
AEA

Theorem 7.2.9 Let Ky be classes of modal algebras, and let Cy be classes of modal general
frames for A\ € A. Then

1. X L(K)) = L(XK,),

AEA AEA
2. X L(Cy) = L( ().
AEA AEA

Since any logic in this section is extension of D, the following theorem holds similarly
to Theorem 6.2.6

Theorem 7.2.10 Suppose that Ly is modal logic for A € A. Then

() Ly 2 X L.
AEA AEA
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Theorem 7.2.11 Let ¢ be a formula which is equivalent to a conjunction of formulas of
the form O™(y — x), where m > 0, x is constructed by A, 0, T, L from propositional
variables and 1) is obtained from propositional variables applying A\, V, 0, T, L oin such
a way that no subformula of the form either 1 V 1y or by occurs in the scope of any O
and that 11 and Yy have no common propositional variable in a subformula of the form
U1 ANy, Then @ is preserved under normal products.

Now, similarly to 6.5 we will define shifted products of infinitely many modal logics.
Suppose that Ay = (A, A,V,—,0,1,0,) is mono-modal algebra, for A € A. Define
multi-modal algebra A,° as A5° = (A\,A,V,—,0,1,{0, | p € A}) with O,a = a for
all © # X and all @ € A. For modal general frame F, for A € A, define modal general
frame FY, with binary relations, as 5 = (W), {R, | n € A}, P), where R, = A for all
i # A. For a class I of mono-modal algebras and a class C of modal general frames, °

and C° are defined in a natural way. Now, define the shifted product ®A,\ of Ay’s, (the
AEA
shifted product Q) Fy of Fy's ) by R Axr = XK A\° (R)F\ = X F;). We can define
AEA AEA AEA AEA AEA
shifted product of classes of modal algebras and those of classes of modal general frames

in an obvious way. Then, we define the shifted product ®L,\ of modal logics L,’s by

Q) Ly = LIQF(Ly)).

AEA AEA

Theorem 7.2.12 Let IC\ be classes of modal algebras, and let Cy be classes of modal
general frames for A € A. Then

1. @L(K)) = L(QK),

AEA AEA
2. QL(C) = L(RC).
AEA AEA

Suppose that Ly is a modal logic. Define multi-modal logics L,° as L,° = zAL#,
7

where L, = Triv for 1 # A and * denotes the fusion of logics.

Theorem 7.2.13 For modal logics L) ’s,

R Ly = X L.
AEA AEA

Let T be the translation in Chapter 6. Then, we have the following.

Theorem 7.2.14 A formula ¢ is a theorem of X Ly iff T(p) is a theorem of ®L)\.
AEA AEA

We define the multi-modal logic [Ly | A € A] to be /\zALA © Oy,Oxp < Oy Oxp @
O Ox,p — Oy, 00p, for i # j. The following theorem lists some properties of ®.

Theorem 7.2.15 Let Ly be modal logic for A € A. Then
1. If Ly’s are consistent logics, then @yecp Ly is a conservative extension of Ly,

2. ®)\EA L, D [L)\ | A E A]
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7.3 Products of intuitionistic modal logics

For simplicity, we will consider only intuitionistic modal general frames for intuitionistic
O<S-modal logics, although every definition and result can be naturally extended to multi-
modal case.

Definition 7.3.1 A subset P of UpW is called a modal Heyting algebra on a Kripke
frame (W, <, Ra, Ro) if

(i) 0 € P,

(ii)) X,Y e P=XNY,XUY € P,

(iii) X, Y e P=X >Y € P,

(iv) X € P=0X,0X € P.

Clearly, UpW is an example of a modal Heyting algebra on (W, <1, Rn, Ro).

Definition 7.3.2 A subset S of UpW s called a modal Heyting semi-algebra on a Kripke
frame (W, <, Ra, Ro) if

(i) 0 €S,
(i) X, Y eS=XNY €S,

(ii) X,Y; € S = X — |JY; is a union of finitely many members of S,
i=1

(iv) X; € § = OJ X; is a union of finitely many members of S,
i=1

(V) XeS=CXeS.

Suppose that P and Q are modal Heyting algebras on (W, <, Ra, Re) and (V, <, Sp,
Ss), respectively. We consider the product (W x V, <1 x <, R X Sg, Re X So) of Kripke
frames (W, <, Ra, Re) and (V, <, Sq, So).

Now, consider the set {X xY | X € P and Y € Q}, which is a subset of Up(W x V).
This set is not always a modal Heyting algebra on (W x V, <X <', Rq X Sp, R X So), but
it is always a modal Heyting semi-algebra on it. For a given Kripke frame (W, <1, Ra, Ro)
and a subset S of UpW , the smallest modal Heyting algebra on (W, <, Rp, Re) containing
S is called the modal Heyting algebra generated by S. Then, the following lemma holds.

Lemma 7.3.3 Suppose that S is a modal Heyting semi-algebra on a Kripke frame (W, R).

Then the modal Heyting algebra generated by S is {U X; | X; €8 and somen < w}.
i=1

For modal Heyting algebras P on (W, <, Rn, Ro) and Q on (V,<',Sp, So), define
P x Q to be the modal Heyting algebra on (W x V, <1 x <’, Rn X Sg, Ro X So) generated
by {X xY | X ePandY € Q}.
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Corollary 7.3.4

PxQ={JX;xY) | X;€P andY; € Q for a finite I }.

el

Normal products of intuitionistic modal general frames can be defined in the same way
as normal products introduced in Chapter 6. In the following, F, and G, (with or without
indices) denote intuitionistic modal general frames of the form (W), <, Rn,, Ro,, P)) and
(Viu, <0, 80,,, So,., Qu), respectively.

For given intuitionistic modal general frames F = (W, <, Rg, Ro,P) and G = (V, </,
Sa, So, Q), the normal product F x G of F and G is an intuitionistic modal general frame
(W xV,<ax <, Ra X So, Re X So, P % Q). The normal product thus obtained is also an
intuitionistic modal general frame for mono-modal logics.

In the following, we will characterize the operators in F x G. Take notice of (7.6).
Suppose that both | J(X; x Y;) and | (T x U;) are elements of P x Q.

icl jeJ
D=0x0=0xV =W x0). (7.3)
U x)nU@xU)= U (XG0T x(Y;nU)). (7.4)
i€l JjeJ (i,4)ElxJ
Ui xY)u (T xU;) = | Ak x By, (7.5)
iel jed keluJ

Where I|_| J = {(Z,O) | Z € I} U {(], 1) | ] € J},A(i,g) = XiaA(j,l) = T’j,B(i’()) = }/j;B(j,l) =
U;.

Uo=xu)-UJXixyv)= U (N@G—= U NX)=x(NU—= U NY)

jeJ iel FCIXP(I) jEJ I'ef;iel’ jeJ I'ef;ier
(7.6)
O X x Yi) = J(0X; x 0Y)). (7.7)
el el

U= U ONUX)x O U N (78)

i€l cCP(I) Jecied Jecie

Moreover, the following holds in P x Q.

Ui x Yi) = (T < Uy) (7.9)
i€l jeJ
iff Viel, 3 CP(J)suchthat X;C (\ U T¥:iC U N Uss
KeC jeK KeC jeK
and Vje J,ICCP(I)suchthat T, C () |J X5, U; C J () Vi

KeCieK KeCieK

Theorem 7.3.5 Let F and G be intuitionistic modal Kripke frames. Then, F x G is
a Kripke frame if and only if either F or G is finite. In other words, UpW x UpV
= Up(W x V) if and only if either W or V is finite.
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The following theorem holds similarly to Theorem 6.2.6

Theorem 7.3.6 A projection m : W x V. — W is a reduction of F x G to F iff either
Sa(v) # 0 for each v € V or Ro(w) = 0 for each w € W, and either So(v) # 0 for each
v €V or Ro(w) =10 for each w € W.

The next theorem gathers together several essential properties of normal products.
Theorem 7.3.7

1. If f; 1s a reduction of F; to G; for i = 1,2, then the product map f; X fo is a
reduction of Fi X Fy to Gy X Ga, where fi1 x fy is defined by (f1 x fo)(wy,wy) =
(f1(wy), fo(ws)) for each wy € Wy and wy € Wi.

2. If G; is a generated subframe of F; for 1 = 1,2, then Gy x Gy is also a generated
subframe of F1 x Fs.

8. The identity map id : >, (WyxV,) = (D_Wy) x (> V,) is a reduction of

AEA peM AEA neM
Y (FaxGy) to (D F)x (D Gy), where Y denotes disjoint unions.
AeA pweM AeA pEM

Similarly to Chapter 6 for modal Heyting algebras A and B, we define their normal
product Ax B as (A, x B,)". Also, A x B is isomorphic to a modal algebras

(Pr(Ax B)/o, AV, —,0,1,0,0),

where the operator — is defined as follows; for [(a;,b;) | i € I], [(¢;,d;) | 7 € J] €
Pi(A X B)/-,

[(asbi) | i € 1] = [(e5,dy) | 5 € J]
= [(AN@ =V ANX), AW =V AY))IfCIxPI)]. (7.10)

jeJ I'ef;icl’ jeJ I'efjiel’
Corollary 7.3.8 For intuitionistic modal general frames F and G,
(Fxg)r =2 Frxgh. (7.11)

Theorem 7.3.9 If both intuitionistic modal general frames F,G are descriptive, then
their normal product F x G is also descriptive.

Proof. We will show compactness, i.e., VA C P x QUP x Q(A has finite intersection property =
NA # (). Since A has finite intersection property, () doesn’t belongs to the filter [A) gen-

erated by A in {{J((X;n X)) x Y;nY/)) | X;,X] € Pand V;,Y; € Q for a finite I }

il

Since [A) N (0] = 0, there exists a prime filter B such that [A) C B and BN (0] = 0

by Theorem 2.4.3. Define B,.. = {C € B | Cis a rectangle set} Since B is a prime filter,

JC: € B implies C; € By, for some i € I. Hence B D N Bye. Since BN (0] = () implies

i€l

() ¢ B, B has finite intersection property and so B,.. does. Therefore, since both P U P

and Q U Q have finite intersection property, N B,e. # 0 by the compactness of both F

and G. Since NANB D N Bree, N A # 0. 1
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Corollary 7.3.10 For modal Heyting algebras A and B,
(AxB); = A, xB,. (7.12)
Similarly to Theorem 6.3.4, we can show the duality of Theorem 7.3.7 as follows.
Theorem 7.3.11

1. If Ay is a homomorphic image of Ay and By is a homomorphic image of By, then
Ay x By is also a homomorphic image of A1 X Bj.

2. If Ay is a subalgebra of Ay and By is a subalgebra of By, then Ay x By is isomorphic
to a subalgebra of Ay X Bs.

3. HAA X HBu s wsomorphic to a subalgebra of HAA x B, where ] denotes
AeA peM (Ap)EAx M
direct products.
By Theorem 7.3.11, we have the following.
Theorem 7.3.12 For classes Ky, Ko of modal Heyting algebras,
1. H(Ky)x H(Ky) C H(K; x Ky),
2. S(K1) x S(Kq) C IS(KyxKs),
3. P(ICy)x P(Ky) CISP(K; xICy).
Hence,
4. V(V(K) x V(Ky)) = V(K x Ky).

Now, similarly to 6.4 we will define normal products of intuitionistic modal logics. We
also use F'(L) and L(K) for intuitionistic modal general frames, and also use V(L) and
L(C) for modal Heyting algebras.

For intuitionistic modal logics L, and Ls, define the normal product L, x Ly to be
L(F(Ly) x F(Ls)). By (7.11) and (7.12), Ly % Ly = L(V (L1) X V' (L3)) holds. Thus, we
may also take the latter as the definition of Ly % Ly. By Theorem 7.3.12(4), we have the
following.

Theorem 7.3.13 Let Ky and ICy be classes of modal Heyting algebras, and let C; and Cy
be classes of intuitionistic modal general frames. Then

1. L(K;) x L(Ky) = L(Ky x ),

2. L(Cy) x L(Cy) = L(Cy % Cs).
Similarly to Theorem 6.4.2, we have the following by Theorem 7.3.5 and Theorem 7.3.13.
Theorem 7.3.14

1. If both Ly and Lo have the f.m.p., then Ly x Ly has the product f.m.p.

2. If Ly has the f.m.p. and Lo is Kripke complete, then L1 x Ly is also Kripke complete.
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Theorem 7.3.15 Suppose that L is a product-persistent logic and I is any set of Sahlquist
formulas. Then the logic L ® T is also product-persistent.

Theorem 7.3.16 Suppose that Ly is an intuitionistic modal logic and Ly is an extension
of the logic IntDno. Then L1 O Ly x L.
Moreover, if both Ly and Lo are extensions of the logic IntDgg,

L10L22L1>§<L2.

Theorem 7.3.17 Let ¢ be a formula which is equivalent to a conjunction of formulas of
the form O™(y — x), where m > 0, x is constructed by A, 0, T, L from propositional
variables and 1 is obtained from propositional variables applying A, V, 0, T, L in such
a way that no subformula of the form either 1 V 1y or by occurs in the scope of any O
and that v, and Yy have no common propositional variable in a subformula of the form
Y1 A e. Then ¢ is preserved under normal products.

Now, similarly to 6.5 we will define shifted products of intuitionistic modal logics.
Note that we don’t shift implication because we need the only one implication in shifted
products, while we shift modalities.

Suppose that A = (A, A,V,—,0,1,0;) and B = (B, A,V, —,0, 1,0,) are mono-modal
Heyting algebras. Define bi-modal Heyting algebras A° and °B as A° = (A, A,V, —,
0,1,0,09) with Oya =a for alla € A and °B = (B, A,V, —,0,1,0;,0y) with 0,6 =0
for all b € B. For intuitionistic modal general frames F and G, define intuitionistic modal
general frames F° and °G, with two binary relations, as F° = (W, <, Rn, <, R, <1, P)
and °G = (V, <, <’, Sp, <’ 1, So, Q). For a class K of mono-modal Heyting algebras and
a class C of intuitionistic modal general frames, KC°, °/C, C° and °C are defined in a natural
way. Now, define the shifted product A ® B of A and B (the shifted product F ® G of F
and G) by AQ B = A°x°B (F®G = F° % °G). We can define shifted product of classes
of modal Heyting algebras and those of classes of intuitionistic modal general frames in
an obvious way. Then, we define the shifted product L; ® L, of intuitionistic modal logics
Ly and Ly by Ly ® Ly = L(F(L,) ® F(Ly)).

Theorem 7.3.18 Let Iy and Ky be classes of modal Heyting algebras, and C1 and Cy be
classes of intuitionistic modal general frames. Then

2. L(C)) ® L(Cy) = L(C, ® Cs).

Suppose that L; and Ly are intuitionistic modal logics. Define bi-modal logics L;°
and °Ly as L;° = Ly * Triv and °Ly = Triv % Ly, where Triv = IntKqe & Op <> p and *
denotes the fusion of logics.

Theorem 7.3.19 For intuitionistic modal logics L and L,
Ly ® Ly = L° x ° L.
Let T be the translation in Chapter 6. Then, we have the following.

Theorem 7.3.20 A formula ¢ is a theorem of Ly x Ly iff T(p) is a theorem of Ly @ L.
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The following theorem lists some properties of ® .

Theorem 7.3.21 Let Ly and Lo be intuitionistic modal logics. Then

1.

For any theorem ¢ of Ly, ¢ belongs to Ly ® Lo,

Ly ® Ly 5 0,0gp <> Loy p, O10op — OaOqp, Ui Oop > Oo0yp, O10op — HaCyp,
if both Ly and Ly are extensions of the logic IntDpe, LY N°Ly O Ly ® Lo,

If Ly and Ly have the f.m.p., then L1 ® Ly has the product f.m.p.,

If Ly has the f.m.p. and Ly is Kripke complete, then L, ® Ly is also Kripke complete.
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Chapter 8

Conclusions and further studies

In this chapter, we mention brief survey and open problems

1. Inclusion Relationship between Pseudo-Euclidean Logics
In this thesis, for fired non-negative integers m and n, we have shown when Ey O FEj/
holds. Now, what will happen if we allow both m and n to change? More preciously,
let E"" be the logic which is obtained from the smallest normal modal logic K by
adding the axiom OF¢p — O™O"¢, where k,m,n > 0. Then it will be interesting to
see when E™™ D E™™ holds.

2. Finite model property for intuitionistic modal logics

For classical modal logics, We have already a lot of general results on the finite model
property (see e.g. [5]). In fact, the finite model property of classical modal logics can
be obtained not only by filtration method but also by various methods, including
algebraic methods and the method of selecting points. On the other hand, because of
{-operator, the situation is much more complicated for intuitionistic modal logics.
Thus, it is quite interesting and important to develop methods for obtaining the
finite model property for intuitionistic modal logics. A certain attempt is made in
e.g. [12].

3. Subdirectly irreducible modal Heyting algebras

In this thesis, by normalizing we have shown a description of subdirectly irreducible
modal Heyting algebras under some weak conditions. But most general case remains.
Therefore, we have to investigate IntKge in the various points of view in order to
see how <-operator behave. An interesting problem is, for example, splitting which
is discussed in [30].

4. Products of modal logics
There are many open problems in this area:

(a) Which property carries over from modal logics L; and Ly to the product of
Li® Ly (Ly X Lg) ?
(b) Decidability of logics in the following list:

o K4 x K4, S4 x S4, K4 x K4.3, S4 x S4.3
e K®K4, S5® K4, K4® K4, S4® S4
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e Kx K, S5x S5, K4x K4, S4x S4
(c) Finite axiomatizability of logics in the following list:

e Ki®K4, K® K4, S5 ® K4
e Kx K, S5x S5, K4x K4, S4x S4

(d) K3 x K = K*?
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