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Notes on “Reducing Algorithm Complexity for Computing
an Aggregate Uncertainty Measure”

Van-Nam Huynh, Member, IEEE, and
Yoshiteru Nakamori, Member, IEEE

Abstract—In a recent paper, Liu et al. have proposed the so-called
F -algorithm which conditionally reduces the computational complexity
of the Meyerowitz–Richman–Walker algorithm for the computation of
the aggregate-uncertainty measure in the Dempster–Shafer theory of ev-
idence, along with an illustration of its application in a practical scenario
of target identification. In this correspondence, we will point out several
technical mistakes, which some of them lead to some inexact or incomplete
statements in the paper of Liu et al. The corrections of these mistakes will
be made, and some further improvement and results will be derived.

Index Terms—Aggregate uncertainty (AU), computational complexity,
Dempster–Shafer (D-S) theory, uncertainty measures.

I. INTRODUCTION

Since its inception, the Dempster–Shafer (D-S) theory of evidence
[3], [7] has appeared as one of the most popular theories for modeling
and reasoning with uncertainty. In the D-S theory, two types of
uncertainty referred to in the literature as nonspecificity and discord
coexist and are formally modeled by the notion of a belief function
or equivalently its basic probability assignment (BPA). Since the early
1990s, several attempts have been made to define justifiable measures
of uncertainty which would capture both nonspecificity and discord
and would play a similar role in generalized information theory to
that of the Shannon measure of entropy in the classical information
theory. In particular, Maeda et al. [9] and Harmanec and Klir [10]
proposed a well-justified measure of aggregate uncertainty (shortly,
AU) that aggregates both nonspecificity and discord in its formulation
and perfectly satisfies all axiomatic requirements that an AU measure
should meet [4]. However, this AU measure suffers from some sig-
nificant shortcomings, one of which is its computational complexity.
Meyerowitz et al. [8] developed an algorithm for computing the AU
measure of a belief function Bel, denoted by AU(Bel), which also faces
the same problem of computational complexity due to the required
computation of belief values over the power set of the frame of
discernment. Therefore, any improvement or new algorithm for effi-
ciently computing AU(Bel) is desirable. In fact, Harmanec et al. [11]
provided some important suggestions for improving the performance
of the algorithm of Meyerowitz et al.

Recently, Liu et al. [1] have proposed the so-called F-algorithm
for computing AU(Bel), which conditionally reduces the computa-
tional complexity of the algorithm of Meyerowitz et al. In addition,
an application of the F-algorithm in a practical scenario of target
identification has been also illustrated. Essentially, Liu et al. first pro-
vided justifications for suggestions, given by Harmanec et al. in [11],
of possible simplifications of the algorithm of Meyerowitz et al.
and then developed the F-algorithm based on these justifications.
The authors also provided interesting properties of the proposed F-
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algorithm. However, there are several technical mistakes which make
some statements in the paper of Liu et al. inexact or incomplete. In the
following, we will point out these mistakes and discuss the corrections
for them, which yield improvement on the work of Liu et al.

The rest of this correspondence is organized as follows. In
Section II, we briefly review a few concepts in the D-S theory
that are necessary for the discussion, as well as the algorithm of
Meyerowitz et al. and the remarks given by Harmanec et al. on it.
Section III is then devoted to the F-algorithm of Liu et al. and their
main results, as well as our discussion and improvement on their work.
Finally, Section IV presents some conclusions.

II. AU MEASURE IN D-S THEORY OF EVIDENCE

For convenience, we keep the notation unchanged from Liu et al.
[1]. Let X be a finite set called the frame of discernment. A belief
function on X is defined as a mapping Bel from the power set of X ,
2X , to the unit interval [0, 1] and satisfies the following conditions:

1) Bel(∅) = 0;
2) Bel(X) = 1;
3) For any finite family {Ai}n

i=1 in 2X

Bel
(

n
∪

i=1
Ai

)
≥

∑
∅�=I⊆{1,...,n}

(−1)|I|+1Bel
(
∩

i∈I
Ai

)
.

In the D-S theory, a belief function is often derived from its
corresponding BPA m, which is also defined as a mapping from 2X

to [0, 1] satisfying m(∅) = 0 and

∑
A∈2X

m(A) = 1. (1)

Then, Bel, for any A ∈ 2X

Bel(A) =
∑
B⊆A

m(B) (2)

is a belief function.
Definition 1: Let Bel be a belief function over X and m be its

corresponding BPA. A subset A ∈ 2X with m(A) > 0 is called a focal
element of Bel. Let us denote

F =
{
A ∈ 2X |m(A) > 0

}
the set of all focal elements, and

C =
⋃

A∈F

A

the core of Bel, i.e., the union of all its focal elements.
The AU measure proposed by Maeda et al. [9] and Harmanec

and Klir [10] then aims at quantifying both aspects of uncertainty,
namely, nonspecificity and discord, modeled by a belief function “in
an aggregate fashion” [4]. It is defined as follows.

Definition 2: Let Bel be a belief function over the frame of discern-
ment X . The AU measure associated with Bel, denoted by AU(Bel), is
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defined by

AU(Bel) = max
PBel

[
−

∑
x∈X

px log2 px

]
(3)

where the maximum is taken over PBel—the set of all probability
distributions 〈px|x ∈ X〉 that are consistent with Bel. Namely, distri-
butions 〈px|x ∈ X〉 from PBel must satisfy the following constraints:

px ∈ [0, 1] ∀x ∈ X;
∑
x∈X

px = 1 (4)

Bel(A) ≤
∑
x∈A

px ∀A ∈ 2X . (5)

More details of this measure and its justification regarding axiomatic
requirements for measures of uncertainty in generalized information
theory could be found in [4]. A recent attempt was made in [5] to
overcome the computational complexity of AU by introducing a new
functional as an alternative measure of AU. However, it was pointed
out in [6] that this new functional does not qualify as a measure of AU
since it violates the essential requirement of subadditivity.

Meyerowitz et al. [8] developed an algorithm (called MRW algo-
rithm, for short) for computing AU (Bel) associated with a belief
function Bel as formulated in Algorithm 1.

Algorithm 1 The MRW algorithm
In: A frame of discernment X , a belief function Bel on X .
Out: AU(Bel), 〈px|x ∈ X〉 ∈ PBel such that AU(Bel) =

−
∑

x∈X
px log2 px.

1: Find a nonempty set A ∈ 2X that maximizes Bel(A)/|A|. If there
is more than one such set A, the one with maximal cardinality
should be selected.

2: For x ∈ A, put px = Bel(A)/|A|.
3: For each B ⊆ X \ A, put Bel(B) = Bel(B ∪ A) − Bel(A).
4: Put X := X \ A.
5: If X �= ∅ and Bel(X) > 0, then go to 1.
6: If Bel(X) = 0 and X �= ∅, then put px = 0 for all x ∈ X .
7: Calculate AU(Bel) = −

∑
x∈X

px log2 px.

Due to the computation of all belief values on the power set of X
required in step 1, the MRW algorithm suffers from a high compu-
tational complexity when the cardinality of X becomes large. This
makes the algorithm potentially computationally intractable [1]. Inter-
estingly, Harmanec et al. [11] provided some important suggestions for
improving the computational efficiency of the MRW algorithm, which
are summarized as follows [1].

H-1. The elements of X outside the core of Bel could be excluded for
the computation of AU(Bel).

H-2. It is enough to consider only{
A ⊆ X|∃{F1, . . . , Fl} ⊆ 2X ,

such that m(Fi) > 0 and A =

l⋃
i=1

Fi

}
. (6)

The first suggestion H-1) for restricting the computation of AU(Bel)
to the core C of Bel instead of using the whole X is justified by the
following theorem.

Theorem 1 ([1, Th. 2]): Let Bel be a belief function (generalized or
not), and let C be its core. Then, the set A which maximizes the ratio
(Bel(A)/|A|) is included in C.

III. COMPLEXITY-REDUCING ALGORITHM FOR AU MEASURE

A. F-Algorithm

To reduce the computational complexity for calculating AU(Bel),
Liu et al. [1] have recently developed the F-algorithm, which was
named according to and based on the following idea as quoted from
their paper.

“The idea behind this algorithm is based on the observation
that if one restricts a subset to the set of the focal elements
included in it, its belief stays unchanged (from the definition
of a belief), while its size may decrease. Consequently, one
may consider only unions of focal elements rather than all
the subsets. For this reason, this algorithm has been called the
F-algorithm, since F represents the set of all focal elements of a
belief function. This supports the remarks of Harmanec et al. in
[20]”1 (see previous section).

The F-algorithm is formulated specifically as described in
Algorithm 2. Here, again, for convenience of discussion, we keep all
formulations of F-algorithm and its properties the same as shown in
[1]. The main properties of F-algorithm are stated in the following
theorems.

Theorem 2 ([1, Th. 3]): If F is the set of the focal elements of a
belief function Bel, then the set A maximizing the ratio Bel(A)/|A| is
an element of the power set of F . [sic]

Proposition 1 ([1, Proposition 1]): Both the MRW algorithm and
the F-algorithm produce the same results for AU(Bel).

Proposition 2 ([1, Proposition 2]): If |F| < |X|, then the
F-algorithm reduces the computational complexity of AU compared
to the MRW algorithm.

By observing that the computational complexity of the F-algorithm
is directly linked to the size of 2F and that the size of F changes
in successive steps of the algorithm, Liu et al. [1] also suggested the
comparison, at each loop, of the size of the current support of Bel (its
core) with the number of current focal elements. If |F| < |C|, then
the F-algorithm should be used, and whenever |C| < |F|, the MRW
algorithm with the core restriction should be chosen.

Algorithm 2 The F-algorithm (From [1], with errors)
In: The set of focal elements F of a belief function Bel and their

corresponding BPA.
Out: AU(Bel), 〈px|x ∈ C〉 such that AU(Bel) =

−
∑

x∈X
px log2 px, px ≥ 0,

∑
x∈C px = 1, and Bel(A) ≤∑

x∈A
px ∀∅ �= A ⊆ C.

1: Initialize AU(Bel) = 0.
2: Compute the belief measures for all elements of F and their

unions. Suppose |F| = M

Bel(Ai)=m(Ai) ∀Ai∈F [sic]

Bel(Ai ∪ Aj)=m(Ai)

+m(Aj) ∀Ai, Aj ∈F [sic]

...

Bel(A1 ∪ A2, . . . ,∪AM )=

M∑
i=1

m(Ai). [sic]

3: Find a set A ∈ 2F , such that Bel(A)/|A| is maximal. If there is
more than one such set A, the one with the highest cardinality
should be selected.

1The reference for Harmanec et al. is given in [11] in this correspondence.
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4: For x ∈ A, put px = Bel(A)/|A|; calculate AU(Bel) :=
AU(Bel) − Bel(A) × log2 px.

5: For each focal element Bi ∈ F , put Si = Bi \ A ∩ Bi.
1) If Si = ∅, the F = F \ {Si}.
2) Otherwise, put m(Si) = m(Bi).
For each new focal element S, set m(S) =

∑
Si=S

m(Si) and
prune all Si so that S = Si.

6: If |F| > 1, return to Step 2.
7: If |F| = 1, put px = m(A)/|A| and AU(Bel) := AU(Bel) −

m(A) × log2 px.

B. Discussion and Further Improvement

Before discussing the F-algorithm formulated previously, let us
denote

U(F) =

⎧⎨
⎩

⋃
Ai∈F |F∈2F

Ai

⎫⎬
⎭ (7)

i.e., the set of the subsets of X which are generated by the unions of the
focal elements from F . It is worth emphasizing that U(F) represents
exactly the set described by (6) of the second remark H-2) due to
Harmanec et al. [11]. Note that

2F �= U(F) ⊆ 2X (8)

and that, mathematically, any element of 2F is never a member of 2X ,
i.e., a subset of X , but a member of 22X

.
Now, we can see that the most important mistake by Liu et al. in

the formulation of the F-algorithm earlier (as well as in the proof
of Theorem 2 given in [1]) is the confusion of using 2F and U(F)
identically. Consequently, it leads to several improper formulations as
pointed out next.

1) The formulas for calculating belief values Bel(∪iAi) in step 2 of
the F-algorithm are incorrect in general. For example, consider
X = {a, b, c, d} and assume that the focal set of Bel is F =
{{a, b, c}, {c}, {b, c, d}}. Then, we have

Bel ({a, b, c} ∪ {b, c, d}) > m ({a, b, c}) + m ({b, c, d})

irrespective of whatever m. Note that 2F consists of elements
that are sets of sets, such as {{a, b, c}, {c}}.

2) The statement “Find a set A ∈ 2F , such that. . .” in step 3 should
read “Find a set A ∈ 2X such that A is a union of focal elements
from F and . . .”. In addition, the statement “F = F \ {Si}” in
step 5-1) should be “F = F \ {Bi}.”

3) The statement “the set A maximizing the ratio Bel(A)/|A| is an
element of the power set of F” in Theorem 2 is inexact. Such a
set A is a union of focal elements from F , i.e., A ∈ U(F).

In addition, in the proof of Theorem 2 [1], given F =
{A1, . . . , AM}, the authors stated “let 2F be its power set

2F = {{A1}, . . . , {AM}, {A1 ∪ A2}, . . . , C}

where C = {A1∪, . . . ,∪AM} is the core of Bel” which, clearly, is
a confusion throughout the proof between sets of sets and unions of
sets. The confusion encourages one to think of using U(F) rather than
2F in the formulation of the F-algorithm.

However, as stated “This supports the remarks of Harmanec et al”
in the aforementioned quotation and the result formulated by
Proposition 2, it seems that Liu et al. might actually intend to use 2F

in their development of the F-algorithm. This would be a good and
solid idea, but the following revisions should be made.

First, one can define Γ : 2F → [0, 1] by

Γ(F ) =
∑

Ai∈F

m(Ai) ∀F ∈ 2F (9)

and the statement in step 2 of Algorithm 2 is replaced with “Compute
values Γ(F ) for all F ∈ 2F .” The statement in step 3 is then “Find a
set F ∈ 2F , such that

Γ(F )/| ∪
Ai∈F

Ai|

is maximal and put A = ∪Ai∈F Ai . . .”. Note that, with such a maxi-
mal set F ∈ 2F , we always have

Γ(F ) = Bel

(
∪

Ai∈F
Ai

)
= Bel(A).

Indeed, if Γ(F ) < Bel(A), by definition, there must be some ∅ �=
F ′ ⊆ (F \ F ) such that ∀Aj ∈ F ′, Aj ⊆ A and

Bel(A) = Γ(F ∪ F ′)

which violates the maximum of Γ(F )/|A| as then Γ(F )/|A| < Γ(F ∪
F ′)/|A|. Then, the remaining steps of Algorithm 2 could be kept
unchanged except the minor errors mentioned previously that should
be corrected.

To see clearly the relation between the two algorithms, we prove the
following.

Lemma 1: Let m′ denote the new BPA defined in step 5 of the
F-algorithm, and let Bel′ be the new belief function defined in step 3
of the MRW algorithm. Then, m′ is the corresponding generalized
BPA of the generalized belief function Bel′. Namely, we have

∀B ⊆ X \ A, Bel′(B) =
∑

S∈F′;S⊆B

m′(S) (10)

where A is the set with the largest cardinality which maximizes the
ratio Bel(A)/|A| and F ′ = {Ai \ A|Ai ∈ F} \ {∅}.

Proof: By definition, in step 5 of the F-algorithm, we have

∀S ∈ F ′, m′(S) =
∑

Ai∈F,Ai\A=S

m(Ai) (11)

while step 3 of the MRW algorithm defines

Bel′(B) = Bel(A ∪ B) − Bel(A) ∀B ⊆ X \ A.

Let us consider F = {Ai ∈ F|Ai ⊆ A ∪ B}. It is easily seen that
F = F1 ∪ F2, where

F1 = {Ai ∈ F|Ai ⊆ A}

F2 = {Ai ∈ F|Ai \ A �= ∅, Ai ⊆ A ∪ B}.

Moreover, for any S ∈ F ′ and S = Ai \ A for some Ai ∈ F , if Ai ⊆
B ∪ A, then we have S ⊆ B. Thus, the set F2 can be represented by

F2 =
⋃

S∈F′,S⊆B

{Ai ∈ F|Ai \ A = S}. (12)

As

Bel(A ∪ B) =
∑

Ai∈F

m(Ai) Bel(A) =
∑

Ai∈F1

m(Ai)
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it follows that

Bel′(B) =
∑

Ai∈F2

m(Ai)

=
∑

S∈F′,S⊆B

∑
Ai∈F,Ai\A=S

m(Ai) [by (12)]

=
∑

S∈F′,S⊆B

m′(S) [by (11)]

which justifies (10) as desired. �
Consequently, Lemma 1 provides a justification for the correctness

of the F-algorithm formulated by Proposition 1, the proof of which,
in [1], is mathematically unclear. At this moment, we can see the
similarity between the MRW algorithm and the F-algorithm. The only
difference is that, while the MRW algorithm initially computes all
belief values over the power set of X and later calculates the values for
the generalized belief function2 over the reduced frame X \ A (step 3
of Algorithm 1), instead, the (revised) F-algorithm initially computes
all values for the function Γ over the power set of F and later calculates
the values for the generalized BPA (step 5 of Algorithm 2). As for the
value of AU (Bel), instead of computing it once at the last step, as in the
MRW algorithm, the F-algorithm computes it in a cumulative fashion.

Let us now further show that an even better improvement could be
obtained if Liu et al. [1] perfectly took into account the aforementioned
second remark H-2) by Harmanec et al. [11] in their development of
the F-algorithm. First, it is of interest to present the following.

Lemma 2: Let Bel be a belief function on X and F be the focal set
of Bel. For any B ∈ 2X , if Bel(B) > 0, then there exists A ∈ U(F)
[cf. (7)] such that

A ⊆ B Bel(B)/|B| ≤ Bel(A)/|A|.

Proof: We have

Bel(B) =
∑

C∈F,C⊆B

m(C).

Therefore, by taking A =
⋃

C∈F,C⊆B
C, it follows that

A ∈ U(F) A ⊆ B Bel(B)/|B| ≤ Bel(A)/|A|

as Bel(B) = Bel(A) and |A| ≤ |B|. �
As a direct consequence of Lemma 2, we obtain the following

theorem which is an exact restatement of Theorem 2.
Theorem 3: If F is the set of the focal elements of a belief function

Bel, then the set A maximizing the ratio Bel(A)/|A| is an element of
the set U(F).

Furthermore, noting that any member of the set U(F) is a subset of
the core C, it then obviously follows Theorem 1, of which a long proof
was given in [1].

With Lemma 1 and Theorem 3, we are ready to formulate an
improvement of the F-algorithm as follows.

Algorithm 3 The improved F-algorithm
In: The set of focal elements F of a belief function Bel and their

corresponding BPA.
Out: AU(Bel), 〈px|x ∈ X〉 ∈ PBel such that AU(Bel) =

−
∑

x∈X
px log2 px.

1: Initialize AU(Bel) = 0.
2: Compute the belief measures for all elements of U(F).

2A generalized belief function Bel is a function that satisfies all the require-
ments of a belief function except the one that Bel(X) = 1. Similarly, the values
of a generalized BPA are not required to add up to one [2], [4].

3: Find a set A ∈ U(F), such that Bel(A)/|A| is maximal. If there
is more than one such set A, the one with the largest cardinality
should be selected.

4: For x ∈ A, put px = Bel(A)/|A|; calculate AU(Bel) :=
AU(Bel) − Bel(A) × log2 px.

5: Set F ′ = {Ai \ A|Ai ∈ F} \ {∅}.
1) If F ′ = ∅, stop.
2) Otherwise, for each S ∈ F ′, put

m(S) =
∑

Ai∈F,Ai\A=S

m(Ai)

and set F = F ′.
6: If |F| > 1, return to Step 2.
7: If |F| = 1 and F = {S}, put px = m(S)/|S| and AU(Bel) :=

AU(Bel) − m(S) × log2 px.

As discussed previously, it is worth noting here that, in the formula-
tion of Algorithm 3, if we replace the statement of step 2 by “Compute
values Γ(F ) [refer to (9)] for all F ∈ 2F”and the first statement of
step 3 by “Find a set F ∈ 2F , such that

Γ(F )/| ∪
Ai∈F

Ai|

is maximal and put A = ∪Ai∈F Ai,” we then obtain an accurate
formulation of the original F-algorithm.

Now, it follows by definition from (7) that∣∣U(F)| ≤ |2F
∣∣ .

Furthermore, as U(F) ⊆ 2X , we then have

|U(F)| ≤ min
(
|2F |, |2X |

)
.

Thus, we obtain the following result regarding the efficiency of the
improved F-algorithm in comparison to the MRW algorithm, which is
stronger than the result of Liu et al. formulated by Proposition 2.

Proposition 3: The improved F-algorithm generally reduces the
computational complexity of AU compared to both the MRW algo-
rithm and the (corrected) original F-algorithm.

IV. CONCLUSION

In this correspondence, we have pointed out and corrected several
mistakes in the formulation of the F-algorithm developed in [1]. The
simplification of some results obtained in [1] and further improvement
of the F-algorithm have been also made. Hopefully, this will support
a better understanding of the F-algorithm, as well as improve its
computational efficiency in calculating the AU measure of uncertainty
in potential practical applications.
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