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Rate Allocation for 2-User MAC with
MMSE Turbo Equalization

Marcus Grossmann, Thomas Ortlepp, and Tad Matsumoto, Senior Member, IEEE

Abstract—We consider the problem of rate allocation in
frequency-selective 2-user Gaussian multiple access fading chan-
nels employing turbo equalization. The turbo equalization frame-
work used in this paper contains a soft cancellation frequency
domain minimum mean squared error equalizer and two a
posteriori probability channel decoders. Using the relationship
between the rate of any code and the area under its corresponding
decoder extrinsic information transfer (EXIT) function, we derive
an upper bound on the rate region of the 2-user turbo system,
given the EXIT characteristic of the equalizer for a particular
channel realization. With the rate region upper bound, we
then study the problem of maximizing the sum rate of both
users, and provide an approximate solution to this optimization
problem. Based on the obtained result, a practical code selection
algorithm for rate allocation at both transmitters is proposed. In
addition, we discuss the extension of the proposed algorithm to
an outage-based rate allocation approach. Numerical results of
capacity calculations and throughput simulations are presented
to demonstrate the performance enhancement achieved by the
proposed rate allocation technique over automatic repeat request
with fixed coding rate.

Index Terms—Two-user multiple access channel, rate allo-
cation, extrinsic information transfer chart analysis, minimum
mean squared error equalization.

I. INTRODUCTION

RECENTLY, iterative (turbo) techniques have been rec-
ognized as practical solutions to multi-user detec-

tion/equalization problems in coded communication systems.
In [1], utilization of the optimal a posteriori probability (APP)
equalizer (EQ) in combination with the APP-based decoder
(DEC) is considered for turbo equalization in frequency-
selective fading channels. The turbo EQ of [1] achieves
excellent performance, however, its complexity is prohibitively
high in channels having a medium-to-large number of multi-
path components. In [2], the APP detector (DET) is replaced
by a less complex DET that performs soft canceling and
minimum mean squared error (SC MMSE) filtering. This SC
MMSE filtering approach, originally proposed for detection of
random coded code-division multiple-access (CDMA) signals,
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is applied to channel equalization in [3], and to multiple-
input multiple-output (MIMO) channel equalization in [4]. In
[5], a turbo equalization technique for single carrier block-
transmission over multiple-access channels (MACs) in the
presence of frequency-selective fading is proposed that per-
forms the SC MMSE filtering in frequency domain, further
reducing the computational complexity.

The convergence of turbo systems can be analyzed by
extrinsic information transfer (EXIT) charts [6]. The EXIT
chart may be used to predict the convergence threshold and
to visualize the mutual information (MI) exchange between
the soft-input soft-output components, representing the conver-
gence property of turbo systems. Ashikhmin et al. [7] showed
that for any code with rate 𝑅, the area under its corresponding
DEC EXIT function is 1−𝑅. This property has been proved
so far only for the case when the DEC’s a-priori information
is assumed to be from an erasure channel. However, it also
appears to work well for Gaussian distributed a-priori log-
likelihoods (LLRs) [7]. Based on the area property of the
EXIT chart, it has been shown in [8], [9] that the problem
of rate allocation in the single-user case, in general, reduces
to a simple curve-fitting problem of the two-dimensional (2D)
EXIT curves of the DET and DEC. In [8], ten Brink et al. used
this technique to determine the optimal degree distribution of
low density parity check (LDPC) codes for single-user MIMO
bit interleaved coded modulation (BICM) employing iterative
detection and decoding. Based on a similar idea, the authors
of [9] investigate the design of repeat-accumulate codes with
iterative detection.

The EXIT chart can also be used for rate allocation in
MAC scenarios. In [10], the EXIT chart analysis is used
to optimize LDPC codes for the equal-rate 2-user Gaussian
MAC without fading employing iterative decoding. It is shown
that for allocating the same rate to both users very simple
LDPC code optimization approaches can be derived, similarly
to the single-user case. Similar results with LDPC codes are
obtained in [11], where the authors showed that by properly
choosing the multi-user code and applying iterative decoding,
any point on the boundary of the capacity region can be
closely approached without requiring time-sharing [12] or
rate-splitting [13].

The EXIT chart analysis is used in [14] to optimize LDPC
codes for the equal-rate flat-fading MIMO MAC employing
iterative detection and decoding. The problem of rate allo-
cation is studied from a large-system perspective, i.e., the
number of users and antennas are taken to infinity, while
their ratio remains fixed. For such a system, it is shown
that results from the asymptotic analysis of CDMA with
random spreading remains valid, which allows the behavior

1536-1276/10$25.00 c⃝ 2010 IEEE
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of the iterative receiver to be described by a single 2D EXIT
chart. Thus, rate allocation is performed by 2D EXIT curve
matching, as in the single-user case. The results reveal that
with the system proposed in [14] near capacity performance
can be asymptotically achieved. Asymptotic techniques for
rate allocation have also been applied in [15] to design
repetition codes in the context of equal-rate CDMA systems
with iterative detection and decoding.

In this paper, we consider the problem of rate allocation
for the 2-user frequency-selective fading MAC employing
soft cancellation frequency domain MMSE (SC FD-MMSE)
equalization. In contrast to previous work [10], [14], [15], we
do not restrict the rates of both users to be equal. For such a
turbo system, the EQ EXIT characteristic is given by two 3D
surfaces, and thus, rate allocation is no longer a simple 2D
matching of the EXIT chart.

Based on the area property of EXIT functions, we derive
an upper bound on the rate region of the 2-user turbo sys-
tem, given the EQ EXIT functions for a particular channel
realization and receiver noise variance. The rate region upper
bound is then used to study the problem of maximizing the
sum rate of both users. Specifically, we show that the sum rate
maximization can be formulated as a variational problem. We
provide an efficient solution to this optimization problem by
using an approximation on the EQ EXIT functions. As a result,
the optimal DEC EXIT curves of both users with respect to
the maximum sum rate of the turbo system, are obtained.

For practical reasons, we restrict each transmitter to have
only a finite number of codes with fixed rates. For this scenario
assumption, we propose a simple code selection algorithm for
the rate allocation that maximizes the coding rate of each
user, given the optimal DEC EXIT curve, while satisfying
the constraints for successful decoding. Moreover, we discuss
as an extension of the proposed algorithm an outage-based
rate allocation approach, and determine the achievable coding
rates of both users using a specific outage constraint.

The remainder of this paper is organized as follows. The
notation is introduced in Section II. In Section III, the system
description and the channel model are presented. In Section
IV-A, we define the EXIT functions for the EQ and both
DECs, and derive an upper bound on the rate region of the
2-user turbo system. We then consider the optimization of the
sum rate of both users in Section IV-B and propose a simple
rate allocation algorithm in Section IV-C. In Section IV-D,
we extend the proposed algorithm to an outage-based rate
allocation approach. In Section V, we present some numerical
results to verify the performance of the proposed approaches.
We summarize our results in Section VI.

II. NOTATION

The transpose and conjugate transpose operators are de-
noted by (⋅)𝑇 and (⋅)𝐻 , respectively. The circ𝑄

{
a
}

operator
generates an 𝑄 × 𝑄 circulant matrix having the elements of
vector a on its first column. The symbol ⊗ indicates the
Kronecker product. The notation a ≥ b for length-𝑁 vectors
a and b means 𝑎𝑛 ≥ 𝑏𝑛 for 𝑛 = 1, .., 𝑁 . We use the
symbol ≡ to indicate that the expression on the left hand
side is defined by the expression on the right hand side. We

use 𝔼
𝑛 to represent a closed set 𝔼

𝑛 ≡ {x ∈ [0, 1]𝑛}, and
∂𝔼2 is used for the boundary of 𝔼

2. We denote the four
corner points of the region 𝔼

2 by 𝑎0 ≡ (0, 0), 𝑎1 ≡ (0, 1),
𝑎2 ≡ (1, 1) and 𝑎3 ≡ (1, 0). Finally, ℱ1[𝑎, 𝑏] denotes the
space of monotonically increasing, continuous and piecewise
differentiable functions on the interval [𝑎, 𝑏].

III. SYSTEM MODEL

Consider a single carrier cyclic prefix (CP) assisted 2-user
uplink system, where a base station having 𝑀 receive antennas
receives signals from two active users, each equipped with
𝐾 transmit antennas. For the ease of analysis, we assume in
the following 𝑀 = 2 and 𝐾 = 1. However, the extension
to more generic cases (𝑀 > 2, 𝐾 > 1) is straightforward.
The transmission scheme of each user is based on BICM,
where the information bit sequence is independently encoded
by a rate-𝑟𝑐,𝑘 (with 𝑘 = 1, 2 being the user index) binary
encoder, randomly bit-interleaved, binary phase-shift keying
(BPSK) modulated, and grouped into 𝑁 (𝑛 = 1, .., 𝑁 ) blocks
b𝑘(𝑛) ≡

[
𝑏0,𝑘(𝑛), ..., 𝑏𝑞,𝑘(𝑛), ..., 𝑏𝑄−1,𝑘(𝑛)

]𝑇
of length 𝑄

that are transmitted over the frequency-selective fading MAC.
The binary encoder can be a single convolutional code (SCC)
or a serially concatenated convolutional code (SCCC) [22].
Note that throughout the paper, we use index 𝑘 to denote
user 𝑘.

The frequency-selective fading MAC is assumed to be
constant during the transmission of one frame (comprised of
𝑁 blocks), but varying randomly and independently frame-
by-frame. We restrict ourselves to Rayleigh block-fading
channels, where each of the 2𝐾𝑀 links is comprised of
𝐿 independent and identically distributed (i.i.d.) complex
circularly-symmetric Gaussian path components h𝑘,𝑚 ≡[
ℎ𝑘,𝑚(0), ..., ℎ𝑘,𝑚(𝐿 − 1)

]𝑇
for 𝑚 = 1, ...,𝑀 . We always

assume that all channel gains are perfectly known at the
receiver.

Employing a CP of length 𝑃 = 𝐿 − 1 to each transmit
block, the received signals can be expressed as

r(𝑛) =

2∑
𝑘=1

H𝑘b𝑘(𝑛) + v(𝑛), 𝑛 = 1, .., 𝑁, (1)

where H𝑘 =
[
H𝑇
𝑘,1 H𝑇

𝑘,2

]𝑇
with H𝑘,𝑚 = circ𝑄

{
h𝑘,𝑚

}
being the block-circulant channel matrix associated to the 𝑘-
th user, and v(𝑛) ∼ 𝒞𝒩 (0, 𝜎2I) is the additive white Gaussian
noise (AWGN). Note that each H𝑘 may be decomposed into
a diagonal-block matrix Ξ𝑘 by the Fourier matrix,

H𝑘 = (I2 ⊗ F𝐻)Ξ𝑘F, (2)

where F denotes the Fourier matrix of size 𝑄, whose (𝑙, 𝑗)-th
element is given by (1/

√
𝑄) exp(−𝑖2𝜋𝑙𝑗/𝑄), 𝑖 = √−1, for

0 ≤ 𝑙, 𝑗 ≤ 𝑄 − 1.
At the receiver side, iterative processing for joint equaliza-

tion and decoding is performed. The receiver consists of an SC
FD-MMSE EQ and two single-user DECs that perform APP
decoding. It should be noted here that the major outcomes of
this paper are also applicable to other types of equalization
techniques.

Within the iterative processing, extrinsic LLRs of the coded
bits are exchanged between the EQ and two DECs, each
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separated by the interleaver and deinterleaver in their iteration
loop, following the turbo principle [2]. Inputs to the EQ are
the received signals r(𝑛) and the a priori LLR sequences

𝜻𝑘(𝑛) ≡
[
𝜁0,𝑘(𝑛), ..., 𝜁𝑞,𝑘(𝑛), ..., 𝜁𝑄−1,𝑘(𝑛)

]𝑇
for all 𝑛, 𝑘,

(3)

where

𝜁𝑞,𝑘(𝑛) ≡ log

(
Prob

(
𝑏𝑞,𝑘(𝑛) = +1

)
Prob

(
𝑏𝑞,𝑘(𝑛) = −1

)
)
. (4)

The EQ computes the extrinsic LLR for each transmitted bit
𝑏𝑞,𝑘(𝑛),

𝜆𝑞,𝑘(𝑛) ≡ log

(
Prob

(
𝑧𝑞,𝑘(𝑛)∣𝑏𝑞,𝑘(𝑛) = +1

)

Prob
(
𝑧𝑞,𝑘(𝑛)∣𝑏𝑞,𝑘(𝑛) = −1

)
)

(5)

where 𝑧𝑞,𝑘(𝑛) is the SC FD-MMSE filter output as defined in
equation (18) in [5]. Similarly to (3), we arrange the 𝜆𝑞,𝑘(𝑛)’s
into vectors 𝝀𝑘(𝑛) ≡

[
𝜆0,𝑘(𝑛), ..., 𝜁𝑄−1,𝑘(𝑛)

]𝑇
for all 𝑛, 𝑘.

Note that during the first iteration of turbo equalization,
𝜁𝑞,𝑘(𝑛) is zero for all 𝑛, 𝑘, 𝑞, and later on 𝜁𝑞,𝑘(𝑛) is provided
via the interleaver in the form of extrinsic LLRs of the 𝑘-th
DEC.

The receiver also selects the code to be used for each user
from an available code set according to the criterion derived
in Section IV-C, where both users are notified of the codes
selected through separated feedback links. We assume zero-
delay and error-free feedback links.

IV. RATE ALLOCATION

A. Definition of EXIT Functions and Area Property

Let the MI between the transmitted bits 𝑏𝑞,𝑘(𝑛) and the
corresponding LLRs 𝜆𝑞,𝑘(𝑛) be denoted as [5]

𝐼𝑒,𝑘 ≡ lim
𝑁→∞

1

𝑁𝑄
I
(
b𝑘(1), ...,b𝑘(𝑁);𝝀𝑘(1), ...,𝝀𝑘(𝑁)

)
,

and let the MI between 𝑏𝑞,𝑘(𝑛) and 𝜁𝑞,𝑘(𝑛) be denoted as

𝐼𝑑,𝑘 ≡ lim
𝑁→∞

1

𝑁𝑄
I
(
b𝑘(1), ...,b𝑘(𝑁); 𝜻𝑘(1), ..., 𝜻𝑘(𝑁)

)
.

In the 2-user case the convergence characteristic of the EQ is
defined by two EXIT functions,

f𝑒 : I𝑑 → f𝑒 ≡
(
𝑓𝑒,1(I𝑑), 𝑓𝑒,2(I𝑑)

) ∈ 𝔼
2,

which depend on the MI I𝑑 ≡ (𝐼𝑑,1, 𝐼𝑑,2) ∈ 𝔼
2 of both

DECs. In [5] it is shown that these two EXIT functions can
be efficiently computed by modeling the LLRs 𝜁𝑞,𝑘(𝑞) ∼

𝒩 ((𝜎2
𝑘/2)𝑏𝑞,𝑘(𝑛), 𝜎

2
𝑘

)
as independent Gaussian random vari-

ables, where 𝜎𝑘 = 𝐽−1(𝐼𝑑,𝑘) with 𝐽−1 being the inverse of
𝐽 defined as [6]

𝐽(𝜎) = 1− 1√
2𝜋𝜎

∫ +∞

−∞
𝑒−

(𝑥−𝜎2/2)2

2𝜎2 log2(1 + 𝑒−𝑥)d𝑥. (6)

As stated in [3], the filter output 𝑧𝑞,𝑘(𝑛) of the EQ can be
closely approximated by an equivalent AWGN channel having
𝑏𝑞,𝑘(𝑛) as its input,

𝑧𝑞,𝑘(𝑛) = 𝜇𝑘𝑏𝑞,𝑘(𝑛) + 𝜂𝑞,𝑘(𝑛), (7)
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Fig. 1. EQ EXIT functions 𝑓𝑒,1 and 𝑓𝑒,2 for a single random channel
realization and DEC EXIT function 𝑓𝑑,1 for a constraint length 5 rate-1/2
SCC. A possible decoding trajectory visualizing the MI exchange over the
iterations is plotted as projection onto the plane region 𝒰 . 𝑄 = 128, 𝐿 = 10
and 𝐸𝑠/𝑁0 = 0 dB.

where 𝜇𝑘 is the equivalent channel gain, which is conditioned
on the FD channel response (Ξ1, Ξ2) and the receiver noise
variance 𝜎2, and 𝜂𝑞,𝑘(𝑞) ∼ 𝒩 (0, 𝜇𝑘(1 − 𝜇𝑘)/2). The signal-
to-noise ratio (SNR) in (7) is given by SNR𝑘 = 2𝜇𝑘/(1− 𝜇𝑘).
Based on (5), the value of 𝐼𝑒,𝑘 is given by the average MI of
the equivalent memoryless binary-input Gaussian channel, as
[6]

𝐼𝑒,𝑘 = 𝑓𝑒,𝑘(I𝑑) = 𝐽
(
2
√

SNR𝑘
)
. (8)

Similarly, the convergence characteristics of both DECs are
defined by the two EXIT functions1 𝑓𝑑,𝑘 : 𝐼𝑑,𝑘 → 𝑓𝑑,𝑘(𝐼𝑑,𝑘) ∈
𝔼. In addition, these two functions have the extreme values
𝑓𝑑,𝑘(0) = 0 and 𝑓𝑑,𝑘(1) = 1 for 𝑘 = 1, 2. We obtain the 𝑓𝑑,𝑘’s
by a Monte Carlo method [6]. In the following, we assume
that f𝑒, 𝑓𝑑,1 and 𝑓𝑑,2 are monotonically increasing, continuous
and differentiable.

An example of the two EQ EXIT functions f𝑒 and the DEC
EXIT function 𝑓𝑑,1 is shown in Fig. 1. Also shown is a possi-
ble decoding trajectory of the MI exchange, which is plotted as
a projection onto the plane region 𝒰 ≡ {I𝑑 : I𝑑 ∈ 𝔼

2}. Note
that the DEC EXIT function 𝑓𝑑,2 (not shown) is drawn in
the 𝐼𝑑,2-coordinate. For the computation of the trajectory, the
codes of both users were in this case assumed to be identical,
and hence the shapes of their EXIT functions are exactly the
same.

Let 𝒟 be a region defined by

𝒟 ≡ {I𝑑 : 𝑓𝑒,𝑘(I𝑑) ≥ 𝑓𝑑,𝑘(𝐼𝑑,𝑘), 𝑘 = 1, 2
}
. (9)

The region in (9) is shown in Fig. 1, and is referred to as the
feasible region of f𝑒 and 𝑓𝑑,𝑘, 𝑘 = 1, 2. Note that 𝑎0 ∈ 𝒟,
since 𝑓𝑒,𝑘(𝑎0) ≥ 𝑓𝑑,𝑘(0) = 0 for 𝑘 = 1, 2.

Let {v(𝑝)}, v(𝑝) ∈ 𝒟, v(0) = 𝑎0, 𝑝 = 0, ..., 𝑇 be a sequence
of I𝑑-tuples that models the decoding trajectory (projected
onto the plane region 𝒰) according to a specific activation

1Note that 𝑓𝑑,𝑘 , denoted in this paper as the DEC EXIT function,
corresponds to the inverse DEC EXIT characteristic defined in [6].
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ordering of the EQ and the two DECs over 𝑇 iterations.
The monotonicity of all EXIT functions together with the
definition in (9) imply that v(𝑝+1) ≥ v(𝑝) for all 𝑝, and
thus, the sequence {v(𝑝)} converges monotonically to a limit
point I∗𝑑 = lim𝑝→∞ v(𝑝). As shown in Theorem 1 of [16], this
limit point is unique and independent of the actual activation
ordering. Convergence of turbo equalization is achieved, when
the decoding trajectory attains the maximum point I∗𝑑 = 𝑎2.
This is possible for 𝑇 being sufficiently large, if the following
two constraints hold:

𝒟 is pathwise connected2 and 𝑎2 ∈ 𝒟. (10)

Let 𝐴𝒟 ≡
∫∫

𝒟 dI𝑑 be the area of 𝒟. Assume now that each
DEC EXIT function 𝑓𝑑,𝑘 is matched to the corresponding EQ
EXIT function 𝑓𝑒,𝑘 so that only an infinitesimally small open
tube between the four surfaces remains, where the trajectory
can go from v(0) = 𝑎0 to I∗𝑑 = 𝑎2. Note that such DEC
EXIT functions imply 1) an ideally designed code for each
user of infinite block length to achieve a nearly zero BER
and 2) an infinite number of iterations between the EQ and
the two DECs3. Under this assumption, the size of the area
𝐴𝒟 is close to zero and the region 𝒟 can be characterized
by a curve 𝒮, which is referred to as convergence curve in
what follows. The convergence curve 𝒮 is parameterized by a
vector-function

u(𝑡) ≡ (𝑢1(𝑡), 𝑢2(𝑡)
)
: 𝔼→ 𝒮, 𝑢𝑘 ∈ ℱ1[0, 1], 𝑘 = 1, 2,

(11)

where each 𝑢𝑘(𝑡), 𝑡 ∈ 𝔼 is monotonically increasing in the
parameter 𝑡 and has the prescribed boundary values 𝑢𝑘(0) = 0
and 𝑢𝑘(1) = 1.

Let w𝑘(u) be a three-dimensional space curve, obtained by
projection of u on 𝑓𝑒,𝑘,

w𝑘(u) ≡
(
𝑢1(𝑡), 𝑢2(𝑡), 𝑓𝑒,𝑘(u(𝑡))

) ∈ 𝔼
3, (12)

and let 𝑓 (u)
𝑘 : 𝐼𝑑,𝑘 → 𝑓

(u)
𝑘 (𝐼𝑑,𝑘) ∈ 𝔼 be a function obtained

by projection of w𝑘 onto the 𝐼𝑑,𝑘-𝐼𝑒,𝑘-plane. The convergence
curve u ⊆ 𝒟 satisfies the constraints in (10), which implies
that

𝑓𝑑,𝑘(𝐼𝑑,𝑘) < 𝑓
(u)
𝑘 (𝐼𝑑,𝑘), ∀𝐼𝑑,𝑘 ∈ [0, 1), for 𝑘 = 1, 2. (13)

From (13), we easily obtain the following bound:

𝐴𝑘 < 𝐴
(u)
𝑘 , (14)

where 𝐴𝑘 and 𝐴
(u)
𝑘 denote the areas under 𝑓𝑑,𝑘(𝐼𝑑,𝑘) and

𝑓
(u)
𝑘 (𝐼𝑑,𝑘), respectively,

𝐴𝑘 ≡
∫ 1

0

𝑓𝑑,𝑘(𝐼𝑑,𝑘)d𝐼𝑑,𝑘, (15)

𝐴
(u)
𝑘 ≡

∫ 1

0

𝑓
(u)
𝑘 (𝐼𝑑,𝑘)d𝐼𝑑,𝑘. (16)

2A set 𝒜 is said to be pathwise-connected if for every 𝑝, 𝑞 ∈ 𝒜 there are
two real numbers 𝑎, 𝑏 with 𝑎 ≤ 𝑏 and a continuous mapping 𝑓 such that
𝑓(𝑎) = 𝑝, 𝑓(𝑏) = 𝑞, and 𝑓([𝑎, 𝑏]) ⊆ 𝒜 [18].

3Note that this does not lead to a conclusion that the whole transmission
chain can achieve capacity, since the use of sub-optimal (SC FD-MMSE)
equalization already incurs a loss in rate [7].

Id,1

Id,2

u(t)

fe,2(u(t))

fe,1(u(t))

R1

f
(u)
1 (Id,1)

f
(u)
2 (Id,2)

R2

a0

a1

a2

a3

Fig. 2. Example of the parametric convergence curve u(𝑡) with the two
corresponding EXIT space curves and the two areas defining the achievable
rates.

In [7], it is shown that the area under the EXIT function 𝑓𝑑,𝑘 of
an APP-based DEC for a rate-𝑅𝑘 code satisfies the property
𝑅𝑘 = 𝐴𝑘 . Combining this result with (14) yields an upper
bound for the rate 𝑅𝑘 of user 𝑘 with respect to the convergence
curve u,

𝑅𝑘 < 𝐴
(u)
𝑘 . (17)

Equivalently, the area 𝐴
(u)
𝑘 in (16) can be expressed as

line integral of 𝑓𝑒,𝑘 along 𝒮 in 𝐼𝑑,𝑘-direction, 𝐴
(u)
𝑘 =∫

𝒮 𝑓𝑒,𝑘(I𝑑)d𝐼𝑑,𝑘. Therefore, we can also express (17) as

𝑅𝑘 <

∫
𝒮
𝑓𝑒,𝑘(I𝑑)d𝐼𝑑,𝑘 (18a)

=

∫ 1

0

𝑓𝑒,𝑘
(
u(𝑡)

)
𝑢′
𝑘(𝑡)d𝑡, (18b)

where 𝑢′
𝑘(𝑡) denotes the first derivative of 𝑢𝑘(𝑡). The equality

in (18b) follows directly from the curve parameterization
in (11). An example of the convergence curve with the
two corresponding EQ EXIT space curves and related areas
defining the achievable rates of both users is shown in Fig. 2.

Let 𝒫 be the set of admissible parametric curves in the
plane region 𝒰 ,

𝒫 ≡ {p : 𝑝𝑘 ∈ ℱ1[0, 1], 𝑝′𝑘(𝑡) ≥ 0, ∀𝑡, 𝑘 = 1, 2,

p(0) = 𝑎0,p(1) = 𝑎2
}
. (19)

From the inequality in (18) and with the definition in (19),
we finally obtain an upper bound for the rate region of both
users as

ℛ ≡
∪
p∈𝒫

{
(𝑅1, 𝑅2) : 𝑅𝑘 <

∫
p

𝑓𝑒,𝑙(I𝑑)d𝐼𝑑,𝑘, 𝑘 = 1, 2
}
.

(20)
Fig. 3 illustrates an example of the rate region in (20), where
𝑓𝑒,1 and 𝑓𝑒,2 have been computed using (8) for a random
channel realization. The rates at the corner point 𝑉1 can be
achieved by successive equalization and decoding techniques,
where the signal from user 1 is detected first through iterations
only between the EQ and user 1’s DEC, such that only the
MI 𝐼𝑑,1 increases with the iterations, while the MI 𝐼𝑑,2 stays
zero. After decoding user 1’s signal, the signal from user 2 is
iteratively detected, while 𝐼𝑑,1 = 1. Thus, for achieving the
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Fig. 3. Rate region of 2-user MAC with SC FD-MMSE turbo equalization
for a random channel realization at 𝐸𝑠/𝑁0 = 5 dB, numerically computed
by generating a large number of different admissible convergence curves (a
gray dot corresponds to one curve). 𝑄 = 32, 𝐿 = 10.

corner point 𝑉1, the convergence curve 𝒮 must be given by a
path on the boundary ∂𝒰 , which connects the points 𝑎0, 𝑎3
and 𝑎2, 𝒮 = ℒ(𝑎0, 𝑎3, 𝑎2), where ℒ(𝑞0, 𝑞1, ..., 𝑞𝑣) is defined
as the union of 𝑣 straight line segments, connecting the points
𝑞𝑖 ∈ 𝔼

2, 𝑖 = 0, ..., 𝑣:

ℒ(𝑞0, 𝑞1, ..., 𝑞𝑣) ≡
𝑣−1∪
𝑖=0

{
𝑞𝑖 + 𝜆(𝑞𝑖+1 − 𝑞𝑖) : 𝜆 ∈ [0, 1]

}
.

(21)

The rate tuple at 𝑉2 can similarly be achieved by first
iteratively detecting the signal from user 2, followed by user
1’s signal detection. In this case the convergence curve must
be given by 𝒮 = ℒ(𝑎0, 𝑎1, 𝑎2). Note that the rate region in
(20) is non-convex, in general, where the dominant face of
this region strongly depends on the particular realization of
the EQ EXIT functions f𝑒.

B. Maximization of Sum Rate

To identify the rates of both users and the corresponding
convergence curve that maximize the sum rate, we are inter-
ested to solve the following variational optimization problem:

𝑅𝑚𝑎𝑥 ≡ max
p∈𝒫

2∑
𝑘=1

∫
p

𝑓𝑒,𝑘(I𝑑)d𝐼𝑑,𝑘. (22)

Using (18), the functional in (22) can also be expressed as

𝑅[p(𝑡)] ≡
∫ 1

0

𝑌
(
p(𝑡)

)
d𝑡, (23)

where

𝑌 (p) =

2∑
𝑘=1

𝑓𝑒,𝑘
(
p(𝑡)

)
𝑝′𝑘(𝑡). (24)

A first-order necessary condition of optimality to the vari-
ational problem is given by the Euler-Lagrange differential
equations [17]:

∂𝑌 (p)

∂𝑝𝑘
− d

d𝑡

∂𝑌 (p)

∂𝑝′𝑘

!
= 0, 𝑘 = 1, 2. (25)

Using (24), one can easily check, that the differential equations
in (25) reduce to one algebraic equation,

∂𝑓𝑒,2(p)

∂𝑝1
− ∂𝑓𝑒,1(p)

∂𝑝2

!
= 0. (26)

The solutions of (26), if they exist, are the candidates satisfy-
ing the optimality requirement. However, a direct computation
of (26) is not possible, since 𝑓𝑒,1 and 𝑓𝑒,2 are not given in
closed form. Moreover, the candidate curves of (26) are sta-
tionary paths, which generally do not satisfy the monotonicity
and boundary conditions of (19). Thus, the extremal cannot
be obtained directly from (26).

An approximate solution to problem (22) may be derived
when each EQ EXIT function 𝑓𝑒,𝑘 is approximated by a 2D
quadratic form4

𝑓𝑒,𝑘(I𝑑) ≈ 𝛼𝑘,0 + 𝛼𝑘,1𝐼𝑑,1 + 𝛼𝑘,2𝐼𝑑,2 + 𝛼𝑘,3𝐼𝑑,1𝐼𝑑,2

+ 𝛼𝑘,4𝐼
2
𝑑,1 + 𝛼𝑘,5𝐼

2
𝑑,2 (27)

with the coefficients 𝛼𝑘,𝑖 obtained from a standard regression
method [18]. Under this assumption, the Euler-Lagrange equa-
tions in (25) reduce to one linear algebraic equation,

𝑇 (I𝑑) ≡ ∂𝑓𝑒,2(I𝑑)

∂𝐼𝑑,1
− ∂𝑓𝑒,1(I𝑑)

∂𝐼𝑑,2

!
= 0, (28)

which leads to three possible outcomes: (i) no solution, (ii)
infinite number of solutions, or (iii) a unique solution.

(i) If (28) has no solution, the partial derivatives
∂𝑓𝑒,2(I𝑑)/∂𝐼𝑑,1 and ∂𝑓𝑒,1(I𝑑)/∂𝐼𝑑,2 are non-equal constants
in ℝ. In Appendix A it is shown that in such a case either the
boundary curve ℒ(𝑎0, 𝑎3, 𝑎2) or ℒ(𝑎0, 𝑎1, 𝑎2) solves problem
(22). Thus, the sum rate is maximized at the rate region corner
point of either 𝑉1 or 𝑉2.

(ii) If (28) has an infinite number of solutions, i.e., curl f𝑒 =
0 for all I𝑑 ∈ 𝔼

2, the functional in (23) is path-independent
[18]. Thus, 𝑅[p] is identical for all p ∈ 𝒫 and the two corner
points 𝑉1 and 𝑉2 are connected by a straight line segment
having a decay of −1.

(iii) If (28) has a unique solution, the solution curve
ℰ ≡ {I𝑑 : 𝑇 (I𝑑) = 0

}
can be parameterized by a continuous

vector-function g : 𝔼 → ℰ , where the first derivative of g
satisfies 𝑔′𝑘(𝑡) ≥ 0 or 𝑔′𝑘(𝑡) ≤ 0 for all 𝑡 ∈ 𝔼. This property
allows us to formulate the following theorem.

Theorem 1: Let ℰ ⊂ 𝒰 be parameterized by a vector-
function g : 𝔼 → ℰ . Let the following two conditions be
satisfied:

𝑔′𝑘(𝑡) ≥ 0, 𝑘 = 1, 2 for all 𝑡 ∈ 𝔼, (29a)

𝑇 (I𝑑)

{
≥ 0 for I𝑑 ∈ 𝒢1,
≤ 0 for I𝑑 ∈ 𝒢2,

(29b)

where the regions 𝒢𝑘, 𝑘 = 1, 2 are defined as 𝒢1 ≡
{
I𝑑 :

𝐼𝑑,1 ≤ 𝑔1(𝑡), 𝐼𝑑,2 ≥ 𝑔2(𝑡), ∀𝑡 ∈ 𝔼
}

and 𝒢2 ≡
{
I𝑑 : 𝐼𝑑,1 ≥

𝑔1(𝑡), 𝐼𝑑,2 ≤ 𝑔2(𝑡), ∀𝑡 ∈ 𝔼
}

. Then, the convergence curve

𝒮 = ℰ ∪ ℒ(𝑎0,g(0)) ∪ ℒ(g(1), 𝑎2) (30)

4Note that extensive simulations show that using a 2D quadratic form gives
a close approximation to 𝑓𝑒,𝑘 . Note also that a polynomial approximation on
the EXIT functions has been used in [8] to design LDPC codes for iterative
MIMO systems.
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G1

p

G2

g : E
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Fig. 4. Curve g : ℰ , corresponding convergence curve p̃ : 𝒮 , and partition
of p̃ for an arbitrary parametric curve p ∈ 𝒫 in the plane region 𝒰 .

comprised of the curve ℰ and the two straight line segments
(all shown in Fig. 4) is optimal with respect to (22).

The following proof of Theorem 1 is based on Green’s
theorem [18] and is similar to that presented in [19].

Proof: For any admissible parametric curve p ∈ 𝒫 , we
can find a parameterization p̃ ∈ 𝒫 of 𝒮 and a partitioning∪
𝑖[𝑡𝑖, 𝑡𝑖+1] of the interval 𝔼 such that for each interval

[𝑡𝑖, 𝑡𝑖+1], one has p(𝑡𝑖) = p̃(𝑡𝑖), p(𝑡𝑖+1) = p̃(𝑡𝑖+1), and
p(𝑡) ∈ 𝒢1 or p(𝑡) ∈ 𝒢2, for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1]. An example
of such a partitioning is shown in Fig. 4. Based on the parti-
tioning, we can express the sum rate difference 𝑅[p̃] − 𝑅[p]
between p̃ and p as

𝑅[p̃]−𝑅[p] =
∑
𝑖

(
Δ𝑅𝑖 ≡

∫ 𝑡𝑖+1

𝑡𝑖

𝑌 (p̃)d𝑡−
∫ 𝑡𝑖+1

𝑡𝑖

𝑌 (p)d𝑡
)
.

(31)
Each increment Δ𝑅𝑖 can be written as line integral along the
closed curve 𝒜𝑖 ≡

{
p(𝑡), p̃(𝑡) : 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1]

}
yielding

Δ𝑅𝑖 = 𝛾𝑖

∮
𝒜𝑖

𝑓𝑒,1(I𝑑)d𝐼𝑑,1 + 𝛾𝑖

∮
𝒜𝑖

𝑓𝑒,2(I𝑑)d𝐼𝑑,2, (32)

where 𝛾𝑖 = 1 when p(𝑡) ∈ 𝒢1, for all 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1], and 𝛾𝑖 =
−1 otherwise. Let each simple closed curve 𝒜𝑖 be oriented
in the positive direction with the bounded regionℳ𝑖 ⊆ 𝒰 on
the left. Then, applying Green’s theorem to (32) allows us to
rewrite Δ𝑅𝑖 as

Δ𝑅𝑖 = 𝛾𝑖

∫∫
ℳ𝑖

𝑇 (I𝑑)d𝐼𝑑,1d𝐼𝑑,2. (33)

With the conditions in (29), we can state that Δ𝑅𝑖 ≥ 0 since
either ℳ𝑖 ⊆ 𝒢1 or ℳ𝑖 ⊆ 𝒢2, as shown in Fig. 4. Thus, we
conclude that 𝑅[p̃] ≥ 𝑅[p] for any p ∈ 𝒫 , which yields the
optimality of 𝒮 in (30).

The optimality of 𝒮 in (30) is given only when both
conditions (29) are satisfied. In the cases when at least one of
these conditions is violated, we can use Green’s theorem as
in (31) and (32) to show that candidate solutions to problem
(22) are the convergence curves ℋ0(𝑢) ≡ ℒ(𝑎0, 𝑟0,1, 𝑟0,2, 𝑎2)
and ℋ1(𝑢) ≡ ℒ(𝑎0, 𝑟1,1, 𝑟1,2, 𝑎2), which are comprised of the
union of three straight-line segments connecting the points
𝑟0,1 = (𝑢, 0), 𝑟0,2 = (𝑢, 1) and 𝑟1,1 = (0, 𝑢), 𝑟1,2 = (1, 𝑢)

with 𝑢 ∈ 𝔼. Using the candidate solutions, we show in
Appendix B that problem (22) can be rewritten as a quadratic
extremal problem, which may be solved with standard meth-
ods of classical calculus [18].

The three possible outcomes of (28) discussed above, can
now be used to calculate the convergence curve that solves
problem (22), which is summarized in Algorithm 1.

Algorithm 1 Algorithm for computing the convergence curve
that maximizes the sum rate

1: Calculate the coefficients in (27) for each EQ EXIT
function 𝑓𝑒,𝑘 using a standard regression method [18].

2: if (45) is satisfied then
3: Output the boundary curve that solves (46).
4: else if (45a) is satisfied and (45b) is violated then
5: Output an arbitrary convergence curve p ∈ 𝒫 .
6: else if (29) is satisfied then
7: Output the convergence curve in (30).
8: else
9: Output the convergence curve ℋ𝑙(𝑢), 𝑙 = 1, 2, 𝑢 ∈ 𝔼

with (𝑙, 𝑢) being the solution to (51).
10: end if

C. Rate Allocation using EXIT Functions

Let p̄ ∈ 𝒫 be the convergence curve that solves problem
(22). An upper bound of the rate of user 𝑘 with respect to p̄

is then given by the area under the EXIT function 𝑓
(p̄)
𝑘 , 𝑅𝑘 =∫ 1

0
𝑓
(p̄)
𝑘 (𝐼𝑑,𝑘)d𝐼𝑑,𝑘, as illustrated in Fig. 2. To closely approach

the rate 𝑅𝑘, the code of user 𝑘 should have its DEC EXIT
function 𝑓𝑑,𝑘 as close to 𝑓

(p̄)
𝑘 as possible, while satisfying the

constraints in (10). In practice, however, optimizing 𝑓𝑑,𝑘 by
adjusting the available code parameters such that optimality
in a strict sense is guaranteed may not be possible, since the
code parameters are presumably limited. Thus, for practical
reasons, we restrict each transmitter to have only a finite set
of codes 𝒞 = {𝐶1, ..., 𝐶𝑚}, with 𝑚 being the number of the
codes in the set, with fixed rates. Then, a simple approach for
rate allocation is to select, for each 𝑘, the code 𝐶𝑛 ∈ 𝒞 with
the highest possible rate at which convergence is achieved,
while its DEC EXIT function 𝑓

(𝐶𝑛)
𝑑,𝑘 best fits to 𝑓

(p̄)
𝑘 . Based

on this concept, we now propose a rate allocation algorithm,
which is summarized as follows.

1) For each realization of the FD channel matrices (Ξ1,
Ξ2), calculate the EQ EXIT functions 𝑓𝑒,1 and 𝑓𝑒,2 using
(8).

2) Calculate the convergence curve p̄ ∈ 𝒫 that solves (22)
using Algorithm 1.

3) Calculate 𝑓 (p̄)
𝑘 by projecting the space curve w𝑘(p̄) onto

the 𝐼𝑒,𝑘-𝐼𝑑,𝑘-plane.
4) To obtain high information rate, select the channel code

for each user that satisfies:

𝑟𝑐,𝑘 = max
𝐶𝑛∈𝒞

{
𝑟(𝐶𝑛) : 𝑓

(p̄)
𝑘 (𝐼𝑑,𝑘) ≥ 𝑓

(𝐶𝑛)
𝑑,𝑘 (𝐼𝑑,𝑘)

+ 𝑧(𝐼𝑑,𝑘), ∀𝐼𝑑,𝑘 ∈ [0, 1)

}
, (34)
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where 𝑟(𝐶𝑛) denotes the rate of code 𝐶𝑛, and 𝑧(𝐼𝑑,𝑘)
is a function to control the speed of convergence of the
decoding trajectory to the maximum point I∗𝑑 = 𝑎2.

5) If 𝑟𝑐,𝑘 is NULL, select the code with the lowest possible
rate in 𝒞,

𝑟𝑐,𝑘 = min
𝐶𝑛∈𝒞

𝑟(𝐶𝑛). (35)

6) Output the selected coding rates 𝑟𝑐,1 and 𝑟𝑐,2.

D. Outage-based Rate Allocation

In this section, we extend the above code selection algo-
rithm to an outage-based rate allocation approach for non-
ergodic fading channels. In the context of turbo equalization,
the coding rate 𝑟𝑐,𝑘 of the 𝑘-th user should be no greater than
𝑟∗𝑐,𝑘(p̄) ≡ max𝐶𝑛∈𝒞

{
𝑟(𝐶𝑛) : 𝑓

(p̄)
𝑘 (𝐼𝑑,𝑘) ≥ 𝑓

(𝐶𝑛)
𝑑,𝑘 (𝐼𝑑,𝑘) +

𝑧(𝐼𝑑,𝑘), ∀𝐼𝑑,𝑘 ∈ [0, 1)
}

with p̄ ∈ 𝒫 being the solution to (22),
such that the constraints in (10) are satisfied. Assume that for
each code 𝐶𝑛 ∈ 𝒞 we have 𝑓

(𝐶𝑛)
𝑑 (𝐼𝑑) ≥ 𝑓

(𝐶𝑚)
𝑑 (𝐼𝑑), for all

𝐼𝑑 ∈ [0, 1) if 𝑟(𝐶𝑛) ≥ 𝑟(𝐶𝑚) with 𝐶𝑚 ∈ 𝒞. Then, the set
of code rate pairs, at which convergence of turbo equalization
is achieved for the specific FD channel matrices (Ξ1, Ξ2), is
given by

𝒯 (p̄) ≡ {(𝑟𝑐,1, 𝑟𝑐,2) : 𝑟𝑐,1 = 𝑟(𝐶𝑛) ≤ 𝑟∗𝑐,1(p̄),

𝑟𝑐,2 = 𝑟(𝐶𝑚) ≤ 𝑟∗𝑐,2(p̄), 𝐶𝑛, 𝐶𝑚 ∈ 𝒞
}
. (36)

For an outage-based rate allocation, we view the rate pair(
𝑟∗𝑐,1(p̄), 𝑟

∗
𝑐,2(p̄)

)
as random variables since p̄ depends on

(Ξ1, Ξ2) which are random matrices whose particular re-
alizations change independently, frame-by-frame. If the two
users are transmitting at rates (𝑟𝑐,1, 𝑟𝑐,2), an outage event
occurs if either 𝑟𝑐,1 > 𝑟∗𝑐,1(p̄) or 𝑟𝑐,2 > 𝑟∗𝑐,2(p̄). Thus, we
define the outage probability for the code rate pair (𝑟𝑐,1, 𝑟𝑐,2)
as 𝑃𝑜𝑢𝑡(𝑟𝑐,1, 𝑟𝑐,2) ≡ Prob

(
(𝑟𝑐,1, 𝑟𝑐,2) /∈ 𝒯 (p̄)). The 2-user

outage rate region is then given by

ℛ𝑜𝑢𝑡𝜖 ≡
{
(𝑟𝑐,1, 𝑟𝑐,2) : 𝑃𝑜𝑢𝑡(𝑟𝑐,1, 𝑟𝑐,2) ≤ 𝜖

}
, (37)

where 𝜖 denotes the outage probability. The maximum sum
rate at which reliable transmission for the two users is possible
for (1 − 𝜖) ⋅ 100% of the channel realizations, can then be
expressed as solution to the problem:

𝑅𝑜𝑢𝑡𝜖 = max
(𝑟𝑐,1,𝑟𝑐,2)∈ℛ𝑜𝑢𝑡

𝜖

𝑟𝑐,1 + 𝑟𝑐,2. (38)

For the prescribed constraint 𝑃𝑜𝑢𝑡(𝑟𝑐,1, 𝑟𝑐,2) ≤ 𝜖, the coding
rates (𝑟𝑐,1, 𝑟𝑐,2) satisfying (38) are the largest rates over the
2-user MAC for the given codes in 𝒞. In this paper, we obtain
the region in (37) by a Monte Carlo method, as described in
Section V-C.

V. NUMERICAL RESULTS

In this section, results of capacity calculations and sim-
ulations conducted to evaluate the throughput enhancement
achieved by the proposed two rate allocation approaches are
presented. We consider a single-carrier block-cyclic transmis-
sion over frequency-selective Rayleigh block-fading channels,
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Fig. 5. Spectral efficiency of a 2-user turbo system with SC FD-MMSE
equalization when optimally designed user codes are assumed for transmis-
sion, and ergodic sum capacity with Gaussian and with BPSK inputs. 𝑄 = 32,
𝐿 = 3, 𝑃 = 2.

where typical values of 𝐿 (𝐿 = 3, 𝐿 = 5 and 𝐿 = 32) are
assumed. We define the average SNR at the receiver as

𝐸𝑠
𝑁0
≡
∑𝑀
𝑚=1

∑𝐿−1
𝑙=0 E

[∣ℎ𝑘,𝑚(𝑙)∣2]𝐸0

𝑀𝜎2
, (39)

where E[⋅] denotes expectation, and 𝐸0 is the total energy per
symbol at the transmitters.

A. Maximum Spectral Efficiency

Fig. 5 shows the maximum achievable spectral efficiency
𝜌 ≡ 𝑄

𝑄+𝑃 �̃� of the 2-user turbo system, when assuming
(optimally designed) user codes whose DEC EXIT functions
satisfy:

𝑓𝑑,𝑘 = 𝑓
(p̄)
𝑘 , for 𝑘 = 1, 2. (40)

In (40), p̄ is the solution to problem (22) for a specific channel
realization given. The rate �̃� has been calculated by averaging
𝑅 =

∑2
𝑘=1

∫ 1

0
𝑓
(p̄)
𝑘 (𝐼𝑑,𝑘)d𝐼𝑑,𝑘 over a large number of channel

realizations. For comparison, the ergodic i.i.d. Gaussian-input
sum capacity [20] and the ergodic BPSK-input sum capacity of
the frequency-selective Rayleigh fading channel (𝐿 = 3) with
evenly allocated transmit power are also shown. The BPSK-
input capacity result has been obtained by a Monte Carlo
method, as described in [21]. We assume that the channel
state information is known only at the receiver. Comparing
the numerical results in Fig. 5, we find that the loss incurred
by the use of SC FD-MMSE equalization with respect to
the BPSK-input capacity slightly increases for large values
of 𝐸𝑠/𝑁0. We also observe that there is almost no difference
between the three curves up to 𝐸𝑠/𝑁0 = −8 dB, indicating
that the 2-user turbo system with BPSK-inputs, using SC
FD-MMSE equalization with user codes whose DEC EXIT
functions satisfy (40), is nearly optimal in the low 𝐸𝑠/𝑁0

region.

B. Rate Allocation with Practical Codes

The rate-compatible punctured SCCCs proposed in [22],
consisting of a rate-𝑟𝑐 outer encoder and a recursive rate-
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TABLE I
SELECTED CODE RATE PAIRS AND INFORMATION RATE PAIRS OF BOTH

USERS FOR TWO DIFFERENT CONVERGENCE CURVES.

𝑟𝑐,1 𝑟𝑐,2 𝑟𝑐 𝑅1 𝑅2 𝑅
Max-Sum-Rate 0.75 0.85 1.60 0.84 0.90 1.74
Min-Sum-Rate 0.90 0.45 1.35 0.98 0.58 1.56

1 inner encoder with polynomials (𝑔𝑟, 𝑔0) = (3, 2) (𝑔𝑟 de-
notes the feedback polynomial) in octal notation, are assumed
for rate allocation at both users. The outer encoder of the
SCCC is selected from a set of 17 subcodes with rates
𝑟𝑐 = 0.05 ⋅ (1 + 𝑛), 𝑛 = 1, .., 17. The length of a frame
is fixed to 𝑁𝑄 = 16384 BPSK symbols, and 𝑧(𝑥) in (34) is
defined as 𝑧(𝑥) = 0.025 − 0.025𝑥. The turbo EQ performs
15 iterations between the EQ and both SCCC DECs, and 20
iterations between the inner and outer DEC. Note that 𝑧(𝑥)
is preliminarily optimized by computer simulations to find an
acceptable trade-off between performance of the turbo EQ and
number of iterations needed to ensure convergence.

Table I shows the selected code rate pairs at 𝐸𝑠/𝑁0 =
4.75 dB with respect to (34) and the information rate
pairs satisfying (22) for a single random channel realization.
The channel coefficients are given by ℎ1,1 = [0.045 +
0.027𝑖,−0.054+0.045𝑖,−0.134−0.022𝑖]𝑇 , ℎ1,2 = [−0.124+
0.125𝑖,−0.038−0.010𝑖,−0.193+0.590𝑖]𝑇 , ℎ2,1 = [−0.042+
0.020𝑖,−0.140 − 0.036𝑖,−0.145 − 0.121𝑖]𝑇 , and ℎ2,2 =
[−0.157 + 0.186𝑖,−0.153 + 0.078𝑖, 0.198 + 0.312𝑖]𝑇 with
𝑖 =

√−1. For comparison, the selected code rate pairs
𝑟𝑐,𝑘 and information rate pairs 𝑅𝑘 =

∫
p̌
𝑓𝑒,𝑘(I𝑑)d𝐼𝑑,𝑘,

computed for the convergence curve satisfying p̌ ≡
argminp∈𝒫

∑2
𝑘=1

∫
p 𝑓𝑒,𝑘(I𝑑)d𝐼𝑑,𝑘 , are also shown and re-

ferred to as ’Min-Rate-Sum’. The results in Table I indicate
that the selected code rate pairs of both users, and thus the
total achievable rate of the turbo system, strongly depend
on the convergence curve chosen for the particular channel
realization.

Fig. 6 shows the BER performance of the turbo EQ for
a single channel realization having the same coefficients
as given above. The users’ codes are selected with respect
to (34) at SNR 𝐸𝑠/𝑁0 = 4.75 dB. Also shown is the
SNR 𝐸𝑠/𝑁0∣min at which the instantaneous BPSK-input sum
capacity (for the given channel realization) is equal to the
total rate

∑2
𝑘=1 𝑟𝑐,𝑘 = 1.60 bit per channel use (bpc) of the

turbo system. It is observed that the selected codes show
convergence starting at 3.6 dB and 4.1 dB 𝐸𝑠/𝑁0 for user
1 and user 2, respectively. Thus, the SC FD-MMSE turbo
EQ indeed satisfies the convergence constraints (10) for the
desired SNR 𝐸𝑠/𝑁0∣des. Further, we observe that the turbo EQ
operates within about 2 dB 𝐸𝑠/𝑁0 to its respective capacity
limit at a BER of 10−6.

For evaluating the throughput efficiency, a selective-repeat
automatic repeat-request (ARQ) system with infinite buffering
[23] is assumed. Fig. 7 shows the average total throughput of
the turbo system versus 𝐸𝑠/𝑁0 for 𝐿 = 32 channels. The
spectral efficiency 𝜌 (see Section V-A) of the turbo system
with user codes whose DEC EXIT functions satisfy (40),
is shown as a reference. Also shown is the average total
throughput performance for an ARQ scheme with fixed coding
rates 𝑟𝑐,1/2 = 0.1 ⋅ 𝑛, 𝑛 = 1, .., 9 of both users. As observed
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Fig. 6. BER performance of the turbo EQ for a fixed 𝐿 = 3 channel
realization with user codes having the coding rates 𝑟𝑐,1 = 0.75 and 𝑟𝑐,2 =
0.85. 𝑄 = 32, 𝐿 = 3.
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Fig. 7. Average total throughput of both users versus 𝐸𝑠/𝑁0 for the proposed
rate allocation scheme and for ARQ with fixed coding rates 𝑟𝑐,1/2 = 0.1 ⋅𝑛
with 𝑛 = 1, .., 9 (dashed curves, from bottom to top). 𝑄 = 128, 𝐿 = 32.

in Fig. 7, substantial throughput gain is obtained with the
rate allocation approach proposed in Section IV-C over fixed
rate ARQ. Further, we find that the throughput performance
is only 1.5 dB away (in the high 𝐸𝑠/𝑁0 region) from the
throughput achieved when optimally designed user codes are
assumed for transmission. Notably, however, there is still a
gap of almost 2.5 dB between both curves in the low 𝐸𝑠/𝑁0

region. It should be noted though, that by using more flexible
coding techniques, such as irregular SCCCs (e.g., see [22])
or irregular LDPC codes (e.g., see [8]) which allow a code
design, given the channel realizations, the performance loss
can be reduced.

C. Outage-based Rate Allocation and Outage Capacity Re-
gion

In this section, the outage-based rate allocation technique
proposed in Section IV-D is applied to 𝐿 = 5 channels. The
same code set as in Section V-B is assumed for rate allocation



GROSSMANN et al.: RATE ALLOCATION FOR 2-USER MAC WITH MMSE TURBO EQUALIZATION 1041

TABLE II
CODE RATE PAIRS AND ACHIEVABLE INFORMATION RATES OF A 2-USER

SYSTEM WITH BPSK INPUTS FOR OUTAGE PROBABILITY OF 𝜖 = 0.1.

𝐸𝑠/𝑁0 [dB] 𝑟𝑐,1 𝑟𝑐,2 𝑟𝑐 𝑟1 𝑟2 𝑟
0 0.35 0.35 0.70 0.47 0.53 1.00
1 0.40 0.40 0.80 0.55 0.61 1.16
2 0.50 0.50 1.00 0.64 0.67 1.31
3 0.55 0.60 1.15 0.70 0.76 1.46

0.60 0.55
4 0.65 0.65 1.30 0.79 0.82 1.61

at both users. In addition, we include the numerical results for
the boundary calculation for the outage binary-input capacity
region [24], [25] with various values of outage probabilities
as references. The outage binary-input capacity region of the
2-user MAC is defined as the set of all rate pairs (𝑟1, 𝑟2)
satisfying [24]

𝒞𝑜𝑢𝑡𝜖 ≡
{
(𝑟1, 𝑟2) : 𝑃𝑜(𝑟1, 𝑟2) ≤ 𝜖

}
, (41)

where 𝑃𝑜(𝑟1, 𝑟2) ≡ Prob
(
(𝑟1, 𝑟2) /∈ 𝒞𝑏(Ξ1,Ξ2)

)
is the outage

probability constraint for the rate pair (𝑟1, 𝑟2) with 𝒞𝑏(Ξ1,Ξ2)
being the binary-input capacity region conditioned on the
specific FD channel realization (Ξ1,Ξ2). The binary-input
capacity region 𝒞𝑏(Ξ1,Ξ2) can be expressed as follows [12]:

𝒞𝑏(Ξ1,Ξ2) ≡
{
(𝑟1, 𝑟2) :

∑

𝑘∈𝒵
𝑟𝑘 ≤ I(r; 𝑏𝑘, 𝑘 ∈ 𝒵 ∣∣𝑏𝑙, 𝑙 ∈ 𝒵 )

}
,

(42)
where 𝒵 denotes any subset of {1, 2}, and 𝒵 its complement5.
Fig. 8 shows the code rate pairs (𝑟𝑐,1, 𝑟𝑐,2) that maximize sum
rate among those combinations of the codes in the code set
𝒞 for outage probabilities 𝜖 = 0.01, 0.1, and 0.5. In all the
cases, the 𝐸𝑠/𝑁0 is set at 4 dB. To obtain the code rate pairs
for the outage constraint 𝑃𝑜𝑢𝑡(𝑟𝑐,1, 𝑟𝑐,2) ≤ 𝜖, we computed
the 2-user outage rate region ℛ𝑜𝑢𝑡𝜖 by transmitting over 𝑉
independent channel realizations. Specifically, we determined
the set of code rate pairs 𝒯 (p̄) for each of the 𝑉 channel
realizations according to (36), and recorded the total number
𝑈 of outage events ((𝑟𝑐,1, 𝑟𝑐,2) /∈ 𝒯 (p̄)) for a given code rate
pair (𝑟𝑐,1, 𝑟𝑐,2). According to the definition of ℛ𝑜𝑢𝑡𝜖 , all the
code rate pairs (𝑟𝑐,1, 𝑟𝑐,2) ∈ ℛ𝑜𝑢𝑡𝜖 satisfy the condition 𝑈

𝑉 ≤ 𝜖,
and the code rate pairs that maximize sum rate can easily be
computed with (38). Also shown in Fig. 8 are the outage
binary-input capacity regions 𝒞𝑜𝑢𝑡𝜖 for the three different
values of 𝜖, obtained by a Monte Carlo method [21]. The
achievable rate pairs on the region boundaries that maximize
outage capacity, i.e., (𝑟1, 𝑟2) = max(𝑟1,𝑟2)∈𝒞𝑜𝑢𝑡

𝜖
𝑟1 + 𝑟2 are

marked as well. As it is evident from this figure, the larger
the desired outage probability, the larger is the resulting
outage binary-input capacity region. Furthermore, as expected,
the code rate pairs that satisfy (38) are contained by their
respective outage binary-input capacity region. We observe
that these rate pairs are almost symmetric with respect to
the line 𝑟1 = 𝑟2 = 𝑅𝑜𝑢𝑡𝜖 /2. This is apparently obvious
since we expect that the two users’ rates obtained by (22)
are equal in the sense of average. Note that, due to a finite
number of Monte Carlo trials, the rate pairs are not exactly
symmetric. The code rate pairs for a given outage probability
of 𝜖 = 0.1 at different 𝐸𝑠/𝑁0-values are listed in Table II.

5Note that the indices 𝑛 and 𝑞 in the variable 𝑏𝑞,𝑘(𝑛) have been omitted
in (42) for notational simplicity.
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Fig. 8. Achievable code rate pairs (markers: ’+’, ’∗’, and ’⋄’) for the two
users that maximize sum rate for the given code set 𝒞 and respective 2-
user outage binary-input capacity regions when 𝜖 = 0.01, 0.1, 0.5, and
𝐸𝑠/𝑁0 = 4 dB. The ’o’ markers indicate the achievable rates of the two
users that maximize outage capacity with the desired outage probability.

For comparison, the maximal achievable rates (𝑟1, 𝑟2) are also
listed. As observed in Table II, there is still a performance
loss of about 0.3 bpc in sum rate over the considered 𝐸𝑠/𝑁0

range of the proposed outage-based rate allocation approach,
compared to the outage capacity results. Reducing this loss
by using appropriate but still practical coding techniques is
an interesting further research topic that will be considered in
our future work.

VI. CONCLUSION

In this paper, we consider the problem of rate allocation
in frequency-selective 2-user Gaussian multiple access fading
channels employing SC FD-MMSE turbo equalization. The
area property theorem for EXIT charts is used to derive
an upper bound on the rate region of the turbo system.
Using this bound, we study the problem of maximizing the
sum rate of both users, given the EXIT function of the
EQ, and present an approximate solution to this optimization
problem. In addition, a simple code selection algorithm for
rate allocation, using the EXIT curves obtained as a result
of the sum rate optimization, is proposed. Numerical results
show that the achievable throughput of the proposed algorithm
using rate-compatible punctured SCCCs for each user, is only
1.5 dB away for high 𝐸𝑠/𝑁0 from the maximal supportable
throughput achieved with optimally designed user codes for
each channel realization. Furthermore, the extension of this
algorithm to an outage-based rate allocation approach is
discussed. It should be emphasized here that the proposed two
algorithms are only applicable for the 2-user case. In [26],
the authors discuss a heuristic approach based on a dynamic
programming principle that extends the proposed algorithms
to more generic cases having more than two users.

APPENDIX A

Using (27), the functional in (23) can be written as∫ 1

0

𝑌 (p)d𝑡 ≈ 𝑐+

∫ 1

0

ℎ1(𝑝1)𝑝
′
2d𝑡+

∫ 1

0

ℎ2(𝑝2)𝑝
′
1d𝑡, (43)
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where ℎ1(𝑝1) ≡ 𝛼2,1𝑝1 + (𝛼2,4 − 𝛼1,3/2)𝑝
2
1 and ℎ2(𝑝2) ≡

𝛼1,2𝑝2 + (𝛼1,5 − 𝛼2,3/2)𝑝
2
2 are quadratic polynomials in 𝑝1

and 𝑝2, respectively, and 𝑐 is a constant. The Euler-Lagrange
equation in (28) can be written with (27) as

𝛼2,1 − 𝛼1,2 + (2𝛼2,4 − 𝛼1,3)𝐼𝑑,1 − (2𝛼1,5 − 𝛼2,3)𝐼𝑑,2
!
= 0.

(44)

In the case when (28) has no solution, the coefficients of the
polynomials ℎ1(𝑝1) and ℎ2(𝑝2) satisfy:

𝛼1,3 = 2𝛼2,4, 𝛼2,3 = 2𝛼1,5, (45a)

𝛼2,1 − 𝛼1,2 ∕= 0. (45b)

By (43) and (45), the variational problem in (22) becomes

𝑅𝑚𝑎𝑥 ≈ 𝑐+max
p∈𝒫

{
(𝛼1,2 − 𝛼2,1)

∫
p

𝐼𝑑,2d𝐼𝑑,1

}
. (46)

Now, it is easy to confirm that the sum rate expression given
by (46) is maximized, either for p(𝑡) ∈ ℒ(𝑎0, 𝑎1, 𝑎2), for all
𝑡 ∈ 𝔼 if 𝛼1,2 > 𝛼2,1 or p(𝑡) ∈ ℒ(𝑎0, 𝑎3, 𝑎2), for all 𝑡 ∈ 𝔼 if
𝛼1,2 < 𝛼2,1.

APPENDIX B

Using the integral expression in (43), we can express the
sum rates 𝑅0(𝑢) and 𝑅1(𝑢) for ℋ0(𝑢) and ℋ1(𝑢), respec-
tively, as functions of 𝑢 ∈ 𝔼, as

𝑅0(𝑢) ≡ 𝑐+

∫ 𝑢

0

ℎ2(0)d𝐼𝑑,1 +

∫ 1

0

ℎ1(𝑢)d𝐼𝑑,2

+

∫ 1

𝑢

ℎ2(1)d𝐼𝑑,1, (47)

𝑅1(𝑢) ≡ 𝑐+

∫ 𝑢

0

ℎ1(0)d𝐼𝑑,2 +

∫ 1

0

ℎ2(𝑢)d𝐼𝑑,1

+

∫ 1

𝑢

ℎ1(1)d𝐼𝑑,2, (48)

Integrating each term in (47) and (48) allows us to rewrite
𝑅0(𝑢) and 𝑅1(𝑢) as

𝑅0(𝑢) = 𝑐+ ℎ1(𝑢) + (1− 𝑢)ℎ2(1), (49)

𝑅1(𝑢) = 𝑐+ ℎ2(𝑢) + (1− 𝑢)ℎ1(1). (50)

Thus, the variational problem in (22) reduces to:

𝑅𝑚𝑎𝑥 ≈ max
𝑙∈{0,1}

max
𝑢∈[0,1]

{
𝑅𝑙(𝑢)

}
, (51)

of which solution can easily be obtained with the standard
framework of classical calculus, since the objective function
is quadratic in 𝑢 [18].
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